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Abstract

The limit of current technology for mobile base station filters is the multimode filter,

in which each cavity supports two (or possibly three) independent degenerate reso-

nances. Shielded dielectric resonators with a rectangular cross-section are useful in this

application.

In the design of these filters, manufacturers are using software packages employing finite

element or finite difference time domain techniques. However, for sufficient accuracy

these procedures require large numbers of points or elements and can be very time

consuming. Over the last decade research using the mode matching technique has been

used to solve this kind of difficulty for various types of filter design and waveguide

problems.

In this thesis a mode matching method and computer program is developed to calculate

the propagation coefficients and field patterns of the modes in a shielded rectangular

dielectric rod waveguide. Propagating, complex, evanescent and backward wave modes

are included and the work shows the presence of a dominant mode, and other fun-

damental modes, not previously identified. The effect of the shield proximity on the

propagation characteristics and mode spectrum is investigated, together with the lim-

itations on the accuracy of the mode matching method.

In addition, the fields within the shielded rectangular dielectric rod waveguide, are used
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to calculate the attenuation coefficient of the dominant and fundamental modes. The

influence on the attenuation coefficient of the proximity of the shield to the rod is also

evaluated for these modes and limitations on accuracy are discussed.

The calculated numerical results for the propagation and attenuation coefficient values

are verified by measurement. The propagation coefficients results are typically within

2% of those measured. Verification of the attenuation coefficient results is achieved

by comparing calculated and measured Q at the resonant frequencies of a number of

shielded rectangular dielectric rod resonators. The difference between calculated and

measured Q values is on average less than 4%.

In the absence of a full solution of the shielded rectangular dielectric rod resonator,

these results provide useful design information for this structure.

In addition, the work reported in this thesis provides a basis for a full electromagnetic

solution of this type of resonator. This would encompass the cubic dielectric resonator

in a cubical cavity.
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Chapter 1

Introduction

1.1 Project Background

An increasing requirement of mobile phone technology is to fit as many radio frequency

channels as possible into the available frequency spectrum. This is not only to make

efficient use of the bandwidth, it also reduces congestion for users and increases the

revenue available to mobile phone companies. Another aspect of the mobile system is

that, during a call, the transmitter and receiver at each end must both be on so that

the users of a phone connection can converse at the same time. To achieve sufficient

signal selectivity and rejection, stringent specifications are required for the dielectric

loaded cavity filters employed in the mobile phone base stations. In the context of base

station filters, the limit of present technology is multimode filter design.

Multimode filters are made up of coupled resonant cavities each containing a cylindri-

cal or rectangular block of ceramic material having a high dielectric constant. These

dielectric resonators store most of the electromagnetic energy and the cavity walls sur-

rounding them are principally there to provide shielding. The dielectric resonators

also allow smaller cavity size and lower energy loss compared to non-dielectric filters.

This allows a sharper filter response and greater unwanted signal rejection. The term

1
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multimode can be explained with reference to a dual-mode waveguide filter where n

series cavities each support two orthogonally polarised degenerate mode resonances.

Applying this technique a 2nth degree filter can be constructed with n cavities giving

a significant reduction in size compared to a conventional filter, in which each cavity

supports only one resonant mode (Hunter, 2001, p. 255).

Due to difficulties caused by the interaction between components, a lot of design work

on filters is still performed empirically, as in the case of the coupled dielectric resonator

filter described by Walker & Hunter (2002). This is because a complete knowledge of

the electromagnetic fields in the coupled cavity sections has not been achieved (Rong

& Zaki, 1999). Because of their increased complexity this is especially true for the

multimode dielectric loaded cavity filters.

At present commercial software packages using Finite Element (FEM) or Finite Differ-

ence Time Domain (FDTD) methods are used to overcome this. These methods work

well but processing a solution of sufficient accuracy requires a large number of points or

elements (large memory requirement) and can be very time consuming. If a structure

is doubled in size in all coordinate directions (ie grid cell numbers increased by 23), or

equivalently if the frequency is doubled, a 3-D FEM solution could take up to 64-times

as long (depending on the sparsity of the matrix and how well the FEM software can

use this to advantage) , or 16 times for a FDTD solution (Veidt, 1998, p. 134). Rong

& Zaki (1999) have stated that the standard of efficiency of general purpose numerical

methods using FEM (example given: Hewlett Packard HFSS) makes their use for filter

design impractical.

In comparison the matching (MM) method generally gives solutions in a shorter time

and requires less memory (Itoh, 1989, p. 30), as it uses well known field equations

tailored to the boundary conditions of basic structure shapes common in present filter

design. These equations already contain most of the information required, and only

have to be matched at the junctions of the regions to obtain a solution. Moreover if the

overall size of a structure or the frequency used is increased the solution time remains

the same. Mode matching also gives a better understanding of the fields in the structure
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in that it allows an analytical analysis of the solution once the unknown coefficients

are found. This provides an insight into the mode structure which would be difficult to

achieve using purely numerical methods. For example, the results for shielded dielectric

rod waveguide show that this structure is capable of supporting complex modes and

backward waves, in addition to the expected propagating and evanescent modes.

During discussions with Brisbane based filter manufacturer Filtronic1, the use of the

mode matching method was proposed to remedy some of the commercial solver prob-

lems as well as to predict interactions between coupled multimode resonant cavities.

Although a lot of work has been done in this area over the past 10 years, no com-

mercial software package is available that can solve the present problems in multimode

dielectric loaded filter design.

This being the case, and as investigations into the use of cubic dielectric loaded res-

onators were being carried out by Filtronic and others, an improved theoretical under-

standing of these structures was desirable; and the MM technique provided a means to

achieve this. Specifically, the study of the shielded rectangular dielectric rod waveguide

could be seen as a basic precursor to the analysis of the cubic dielectric loaded cavity

resonator. The latter procedure would take a similar path to that of Zaki & Atia (1983)

where a cylindrical dielectric rod enclosed in a cylindrical waveguide was modeled and

the propagation coefficients of the fundamental modes were found. Metallic plates were

then placed on the ends of a section of this waveguide forming a cylindrical dielectric

loaded cavity resonator. Mode matching was then used to solve the resonant frequency

eigenvalue problem. Later Liang & Zaki (1993) extended this to cylindrical dielectric

resonators in rectangular waveguide and cavities.

1Filtronic Pty Ltd, Metroplex Avenue, Murarrie, Qld., Australia / http://www.filtronic.co.uk
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1.2 The Proposition of the Thesis

The proposition of this thesis is that the mode matching method has significant ad-

vantages for the analysis of the electromagnetic fields of structures used in current

dielectric loaded multimode cavity filters. In general the method requires less CPU

time than a strictly numerical procedure, such as the finite element method, due to its

inherent analytic pre-processing; and it also provides a better physical understanding

of the field structure.

1.3 Aim and Objectives

The broad aim of the project is to perform electromagnetic field analysis on the shielded

rectangular dielectric rod waveguide using the mode matching method.

The specific objectives of the project are as follows:

1. (a) To perform a literature survey on the use of mode matching in general and

to replicate the results of some of the early work associated with rectangular

waveguide discontinuities. A number of computer programs would have to

written to achieve this and would provide confidence in the validity of later

original work.

(b) Apply mode matching to the analysis of cylindrical structures such as a

coaxial resonator. This work was seen as an exercise in the use of mode

matching to solve eigenvalue problems. For the case of the coaxial resonator

these values are the resonant frequencies of the structure. In the event this

work produced some original results suitable for publication it would be

included in the thesis.

2. Perform a thorough investigation of the shielded rectangular dielectric rod waveg-

uide. This work would include an investigation of the proximity effect of the shield
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and of the losses associated with this structure. This would provide a foundation

for a complete analysis of shielded rectangular cross-section dielectric resonators

(as has been achieved for cylindrical resonators (Zaki & Atia, 1983)).

1.4 Overview of the Thesis

Chapter 1

Introduction

Chapter 1 introduces the proposition driving this research, namely that the mode

matching method has some advantages for the electromagnetic analysis on a struc-

ture associated with the latest dielectric loaded multimode cavity filters. Chapter 1

also outlines the aim and objectives of the research and highlights those areas where

original work has been performed.

Chapter 2

Overview of the Mode Matching Method

The first part of Chapter 2 presents two literature surveys, firstly to give some back-

ground to the project in the area of microwave cavity filters and secondly the theory

and application of mode matching techniques. The second part of Chapter 2 details

mode matching theory related to rectangular waveguide discontinuity problems. The

last part of the chapter gives an insight into some of the early work accomplished in

applying the mode matching procedure. This is shown by comparing some of the re-

sults from literature for waveguide discontinuity problems with those from computer

programs written to replicate them.

Chapter 3

The Coaxial Resonator

In this chapter a coaxial line in the form of a cylindrical cavity with a centre conductive
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rod (single coaxial resonator) is studied. A simplified mode matching procedure is used

to find the TEM mode resonant frequencies and gap capacitance. This chapter is

an expansion of a paper published in IEE Proceedings on Microwave Antennas and

Propagation (Wells & Ball, 2004).

Chapter 4

The Shielded Rectangular Dielectric Rod Waveguide

In Chapter 4 the mode matching method is developed to allow the computation of

the propagation coefficients and field patterns of the fundamental modes in a shielded

rectangular dielectric rod waveguide. The full solution described in this chapter shows

the results of all the dominant modes and field patterns. It also shows that in addition to

conventional waveguide modes the structure can support complex waves and backward

waves. This original work is an expansion of a paper published in IEEE Transactions

on Microwave Theory and Techniques (Wells & Ball, 2005b).

Chapter 5

Attenuation of a Shielded Rectangular Dielectric Rod Waveguide

In this chapter the calculated fields, found using the mode matching method of Chapter

4, are employed to find the wall and dielectric losses of the waveguide and hence its

attenuation. For the Ey
11 mode and the dominant Ex

21/E
y
12 coupled mode the effect of

the proximity of the shield on the attenuation is also be evaluated. This work is original,

and is an expansion of a paper submitted for publication (Wells & Ball, 2005a).

Chapter 6

Conclusion

This chapter summarises the major findings of the thesis and their significance to

the wider body of knowledge in the field. The chapter concludes with a summary of

suggested areas for future work.

Appendix A



CHAPTER 1. INTRODUCTION 7

Coaxial Resonator Mode Matching Equations

This appendix provides a summary of the basis functions and integrals used in the

mode matching method developed for the coaxial resonator in Chapter 3.

Appendix B

Shielded Rectangular Dielectric Rod Mode Matching Equations

This appendix provides a summary of the basis functions, continuity equations at

boundaries and integrals used in the mode matching method developed for the shielded

rectangular waveguide in Chapter 4.

Appendix C

Calculation of Unloaded Q Factor from the Measured Reflection Coefficient

of a Resonator

In this appendix the method used for determining unloaded Q factor from the measured

reflection coefficient S11 of the resonant structures of section 5.6 is described.

Appendix D

Guide to the Thesis Companion Disk

This appendix provides a guide to the thesis companion disk. The disk contains a copy

of the dissertation and a basic cross-section of the main computer programs for the

coaxial resonator of Chapter 3, the rectangular shielded dielectric rod of Chapter 4 and

for the rectangular shielded dielectric rod attenuation in Chapter 5.

1.5 Summary of Original Work

The areas of this project where original work has been performed are summarised below.

1. A simplified mode matching method of finding the resonant frequency of a coaxial



CHAPTER 1. INTRODUCTION 8

resonator, and calculation of the gap capacitance.

2. Calculation of the propagation coefficients of the modes in a shielded rectangular

dielectric rod waveguide. Propagating, complex, evanescent and backward wave

modes were included and the work showed the presence of a dominant mode, and

other fundamental modes, not previously identified. The effect of the proximity of

the shield to the dielectric rod on the propagation coefficient and mode structure

was also investigated.

3. Calculation of the attenuation coefficient of the commonly used Ey
11 mode, and

other fundamental modes, in a shielded rectangular dielectric rod waveguide. The

influence on the attenuation coefficient of the proximity of the shield to the rod

was also evaluated.

1.6 Publications

Wells, C. G. & Ball, J. A. R. (2004), ‘Gap capacitance of a coaxial resonator using

simplified mode matching’, IEE Proceedings on Microwave Antennas and Propagation,

151(5), 399 -403.

Wells, C. G. & Ball, J. A. R. (2005), ‘Mode matching analysis of a shielded rectangu-

lar dielectric rod waveguide ’, IEEE Transactions on Microwave Theory and Techniques,

53(10), 3169-3177, October.

Wells, C. G. & Ball, J. A. R. (2005), ‘Attenuation of a shielded rectangular dielectric

rod waveguide ’, submitted for publication in IEEE Transactions on Microwave Theory

and Techniques.



Chapter 2

Overview of the Mode Matching

Method

2.1 Introduction

This chapter begins with a description of two literature surveys. The first is on the topic

of microwave cavity filters. This describes how these filters have evolved from simple

cavity and combline filters of forty years ago to the small multimode dielectrically

loaded high selectivity types of today. The second describes how the mode matching

method has been used over this same period to solve at first, waveguide discontinuity

problems, and then later, aid in the design of combline, finlines, microstrip lines and

many other structures including dielectric loaded cavity filters.

Section 2.4 details the basic theory behind the mode matching method. The problem

of the junction of two rectangular waveguides in a boundary reduction configuration is

used as an example.

Finally section 2.5 describes the results obtained from a mode matching program writ-

ten for the rectangular waveguide discontinuity problem of the previous section. This

9



CHAPTER 2. OVERVIEW OF THE MODE MATCHING METHOD 10

program was written to gain experience in writing mode matching code, by using past

papers as a procedural guide (no code is ever given), and comparing the results with

those published.

2.2 Microwave Cavity Filters

A generation ago virtually all design information available on microwave filters was

summarised in the classic text titled “Microwave Filters, Impedance Matching Networks

and Coupling Structures” (Matthaei et al., 1984). Amongst other types, this dealt with

design of combline filters, from which present day base station filters could be said to

have evolved.

In the early 1970s dual mode filters, which effectively double the use of a cavity and

make the overall filter smaller, were introduced by Atia & Williams (1972). An other

step forward occurred when Fiedziuszko (1982) described dual mode dielectric loaded

filters. These allowed further size reduction, improved in-band performance and pro-

vided greater thermal stability. Wang et al. (1998) described a dielectric loaded version

of the combline filter which combined the merits of the metallic combline and dielectric

loaded filters. A mode matching method was used to model the electromagnetic fields

in the filter from which filter parameters were calculated. Sabbagh et al. (2001) and Wu

et al. (2002) then described methods for solving problems in this type of filter when a

number of interacting combinations of resonant cavities in the same type of filter were

coupled together.

2.3 Brief History of Mode Matching Method

in Filter Design

Up until about 1960 electromagnetic field modeling was only possible for simple struc-

tures which could be analysed theoretically. Since then the mode matching method,
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and other numerical methods, have been devised and then gradually improved to cope

with the invention of many new and complex microwave structures. Initially, these

were applied to the analysis of the discontinuities in rectangular waveguides.

The use of computer-aided mode matching to calculate the fields of simple structures

began in the 1960s with papers by Wexler (1967) and Clarricotes & Slinn (1967). The

use of computers has been an essential part of the method’s development because of

the amount of repetitive calculations required to reach a solution.

Luebbers & Munk (1973) used the method to calculate the reflection and transmission

properties of a thick rectangular window in centrally located in a rectangular waveguide.

The waveguides on either side of the window had to be identical.

Patzelt & Arndt (1982) and Safavi-Naini & Macphie (1982) adapted the method to solve

problems involving the junction of rectangular to rectangular waveguide steps as used

in waveguide transformers, irises (small windows across the waveguide) and reactance

coupled filters. By addition of the use of a technique involving the conservation of

complex power, rapid convergence of numerical results was achieved (Safavi-Naini &

Macphie, 1981). Also the results of a junction were presented in the form of a scattering

(S) parameter matrix. This enabled a number of cascaded junctions in a system to be

analysed in a unified manner.

Omar & Schunemann (1985) showed that the orthogonality relations associated with

the cross-product of field vectors, as used sometimes in mode matching, were again

related to the conservation of complex power 1 and hence good convergence properties

could be obtained. Also transmission matrix results were used in the formulation of a

multi-section finline bandpass filter. Calculations with this type of matrix have lower

computation time than with the S parameter matrix, but problems can sometimes

occur with the convergence of a solution (Alessandri et al., 1988).

1Complex power is the combination of the real and reactive power of the electric and magnetic fields
in a region in space. The concept is used in many texts associated with time harmonic electromagnetic
fields where it appears in derivations of Poynting’s theorem (Pozar, 1998, pp. 26-29)(Harrington, 2001,
pp. 19-23)
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About the same time Chu & Itoh (1986) modeled cascaded microstrip step disconti-

nuities using mode matching. An equivalent waveguide model was introduced for the

microstrip line. Also Wade & Macphie (1986) used the method to determine exact

solutions at the junction of circular and rectangular waveguide. James (1987) provided

solutions to irises in coaxial and circular waveguides.

Analyses of dielectric inserts in waveguide first appeared in 1988 (Gesche & Lochel,

1988), (Zaki et al., 1988). Also a more formalised approach to the cascading of junc-

tion discontinuities in general were formulated in a paper by Alessandri et al. (1988).

Particular types of junction problems were recognised and placed into so called mode

matching building blocks allowing the Computer Assisted Design (CAD) of a large class

of waveguide components (Arndt et al., 1997). It may be possible to use a variation of

this approach to analyse microwave filters.

A number of papers, spanning the early 1990’s and extending this formalised approach,

then appeared for rectangular waveguide: Sieverding & Arndt (1992) for the T-junction

building block and Reiter & Arndt (1992) for cascaded H-plane discontinuities.

Through the 1990s a succession of papers appeared that involved the method in the

solution of problems related to dielectric loaded waveguide cavities and filters. Most

of these were written in association with K. A. Zaki from the University of Maryland

(Chen & Zaki, 1991), (Liang & Zaki, 1993), (Yao et al., 1995), (Wang et al., 1997).

In 1998 Wang et al. (1998) described the calculation of the parameters of a dielectric

loaded combline filter. Sabbagh et al. (2001) and Wu et al. (2002) described methods

for solving problems in this type of filter when a number of interacting combinations of

resonant cavities in the same type of filter were coupled together. These final references

were mentioned in section 2.2 and represent the current level of filter technology and

the most ambitious application of mode matching method to filter design to date.
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2.4 Mode Matching

The mode matching procedure is useful for solving scattering parameter problems at a

discontinuity in a structure. It can be applied to junctions of different types of waveg-

uide or posts or obstructions in a waveguide. Additionally it can be used in eigenvalue

problems such as finding the resonant frequency of a cavity, the cutoff frequency of a

waveguide or the propagation coefficient of a transmission line.

2.4.1 Basic Procedure

To model a discontinuity a structure is divided into separate regions either side of the

discontinuity. The fields in each region are expressed as a sum of modes. In the case

of common rectangular waveguide these modes would be the electric and magnetic

TE and TM modes of homogeneously filled rectangular waveguide. By matching the

tangential components of the modes at the boundary between regions and using their

orthogonality properties an infinite set of linear equations can be obtained.

A number of formulations are available in the literature to achieve this, and the principal

difference between these lies in the method they use to expand the mode functions to

form an infinite set of equations. The method of Shih, described in Itoh (1989), uses the

dot product of testing functions with the mode functions whereas the method described

by Eleftheriades et al. (1994) uses a cross product. Ultimately there does not appear

to be a significant difference in the results using either of these methods and the final

decision of which to use comes down to the ease by which they can be applied to the

type of structure involved.

The set of equations can then be solved for the unknown coefficients of the mode

functions and the superposition of these functions will give the actual resultant fields

caused by the discontinuity. This will allow field plotting, the calculation of loss and the

study of field intensity in the structure. Alternatively the equations can be arranged so

that the forward and reflected component coefficient elements will form a Generalised
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Figure 2.1: Boundary Reduction Wave-guide Configuration

Scattering Matrix (GSM) from which the the scattering parameters of the discontinuity

can be obtained.

2.4.2 A Boundary Reduction Discontinuity Problem

The mode matching technique is usefully illustrated by means of a simple example,

that of the determination of the scattering parameters of a waveguide discontinuity.

The junction of a large to small waveguide is shown in Figure 2.1. This is called a

Boundary Reduction (BR) configuration when the input wave travels from the larger

into the smaller guide. In an early paper on mode matching by Wexler (1967), systems

of equations were derived, which were solved for all forward and reflected scattering co-

efficients of the modes either side of the junction of waveguides of different cross-section.

It has been shown in many later papers and texts, such as Omar & Schunemann (1985)

and Itoh (1989), that these equations can be used in the much more convenient form

of the Generalised Scattering Matrix (GSM). The conventional form of the Scattering

Matrix(S), as used in single moded transmission line systems, describes the ratio of

the amplitudes of forward and reflected waves at ports, or between ports of a network.

The GSM extends this to include the dominant and all scattered modes at a junction,

whether propagating or evanescent. The use of the GSM not only enables all modes

to contribute to the result, it also allows a number of discontinuities to be cascaded
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Figure 2.2: Forward and Reflected Components at a BR Wave-guide Junction

together by the algebraic combination of their S matrices. Figure 2.2 shows how the

forward (a(1),a(2)) and the reflected (b(1),b(2)) modal amplitude vectors are arranged

at the junction.

To implement the mode matching procedure the tangential components of the modes

are forced to be continuous at the mode matching boundary. The boundary conditions

to be satisfied are:

E
(1)
t =







E
(2)
t onS2

0 onS1 − S2

(2.1)

H
(1)
t = H

(2)
t onS2 (2.2)

where

E
(i)
t and H

(i)
t are the transverse electric and magnetic fields tangential at the boundary,
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S1 and S2 are the cross-sectional areas of waveguides 1 and 2 respectively; and

E
(1)
t =

∞
∑

m=1

(a(1)
m e−γ1z + b(1)

m eγ1z)e
(1)
tm (2.3)

E
(2)
t =

∞
∑

n=1

(b(2)
n e−γ2z + a(2)

n eγ2z)e
(2)
tn (2.4)

H
(1)
t =

∞
∑

m=1

(a(1)
m e−γ1z − b(1)

m eγ1z)h
(1)
tm (2.5)

H
(2)
t =

∞
∑

n=1

(b(2)
n e−γ2z − a(2)

n eγ2z)h
(2)
tn (2.6)

where m and n are all the TE and TM modes of rectangular waveguide in waveguides

1 and 2 respectively and a and b are the amplitude coefficients of those modes.

The transverse components (at the z = 0 boundary) can be written from those in Pozar

(1998) as:

e(i)
xp q

=







−q A(i)

B(i)

pB(i)

A(i)







cos βxpx sinβyqy







TE

TM







(2.7)

e(i)
yp q

=







p

q







sinβxpx cos βyqy







TE

TM







(2.8)

h(i)
xp q

=







−pY h
ω

−qY e
ω







sinβxpx cos βyqy







TE

TM







(2.9)

h(i)
yp q

=







−pA(i)

B(i) Y
h
ω

qB(i)

A(i) Y
e
ω







cos βxpx sinβyqy







TE

TM







(2.10)

where

β2
xp

+ β2
yq

= γ2
p q + β2

0εr (2.11)

Y h
ω =

γp q

ωµ0
; Y e

ω =
ωε0εr

γp q
(2.12)

βxp =
pπ

A(i)
; βyq =

qπ

B(i)
; β2

0 = ω2µ0ε0 (2.13)

and A(i)and B(i) are the width and height of the waveguides respectively and p and q

are the TE and TM mode indicies for rectangular waveguide.
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To implement the mode matching procedure on a computer it is necessary to truncate

the infinite number of modes involved to a value that will give the required accuracy

in the solution. Increasing numbers of modes are tried in the initial computation until

the result converges to a sufficiently constant value. The maximum number of modes

allocated for computation in waveguides 1 and 2 will now be designated M and N

respectively.

For proper convergence of the solution the number of modes in the larger waveguide

should always be greater than that in the smaller, ie M > N for Figure 2.2. If this is

not done there could be a violation of the field distributions at the edge of a conductive

boundary and ill-conditioning of the linear system of equations themselves can also

occur (Mittra & Lee, 1971). This is a consequence of truncating the number of modes

in each region from their true infinite value and in calculation is equivalent to truncating

two infinite series (Itoh, 1989, pp. 603-4). It will be shown later in section 2.5 that

the numerical solution will converge to different values depending on the ratio of the

number of modes chosen in each region. This phenomenon is called relative convergence

and is a limitation to the accuracy of the mode matching procedure. Fortunately some

simple rules can be employed to minimise its effect on accuracy. For example, for a

boundary reduction in height only, researchers have found that keeping the ratio of

modes in each waveguide region equal to that of the ratio of corresponding regional

cross-section side lengths gives optimum results (Itoh, 1989, p. 613).

A procedure to create a set of linear equations from the truncated form of equations

(2.3), (2.4), (2.5) and (2.6) and using the boundary conditions of (2.1) and (2.2), is im-

plemented by Omar & Schunemann (1985) and discussed by Eleftheriades et al. (1994).

This cross product formulation, used with rectangular waveguide discontinuities, is used

more often and given greater detail in the literature than the dot product method. In

the cross product formulation the dot product of the z unit vector is applied to the

result to give a scalar answer and in so doing uses only the tangential components and

testing functions at the mode-matching boundary as required. The formulation is also

related to the conservation of complex power across the discontinuity boundary (Omar
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& Schunemann, 1985) and also allows a better understanding of the mode matching

method and makes it easier to write a workable program. This procedure is as follows:

1. Find the cross product of the electric field equations on both sides of the junction

with a testing function from the magnetic field equation of the waveguide 1 and

integrate.

In wave-guide (1)
∫

s1

(

e(1)
m × h(1)

n

)

· ẑ ds = P (1)
m δmn (2.14)

In wave-guide (2)

Anm =

∫

s2

(

e(2)
m × h(1)

n

)

· ẑ ds (2.15)

2. Find the cross product of the magnetic field of waveguide 2 with a testing func-

tion from the electric field equation of the same waveguide and integrate, ie

∫

s2

(

e(2)
n × h(2)

m

)

· ẑ ds = Q(2)
n δnm (2.16)

Note that the integral of the cross product of the magnetic field of waveguide 1

with a testing function from the electric field equation of waveguide 2 could be

calculated as:

Bmn =

∫

s2

(

e(2)
m × h(1)

n

)

· ẑ ds (2.17)

However, in view of the equality:

Bmn = At
nm (2.18)

where superscript t means transpose, only Anm need be calculated.

In equations (2.14), (2.15), (2.16) and (2.17) m and n are the TE plus TM modes

used where:

m = 1, 2, ......,M

n = 1, 2, ......, N (2.19)

and δmn and δnm are Kronecker deltas
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3. The amplitude vectors can then be related by two sets of linear equations in

matrix form:

[λP ] ( [a(1)] + [b(1)] ) = [Anm] ( [a(2)] + [b(2)] ) electric field (2.20)

[Anm]t ( [a(1)] − [b(1)] ) = [λQ] ( [b(2)] − [a(2)] ) magnetic field (2.21)

where:

λP = (P
(1)
m δmn) and λQ = (Q

(2)
n δnm) are diagonal matrices of M x M and N x N

respectively. They contain the normalisation constants for each individual mode

in each wave-guide and:

Anm and At
nm are N x M and M x N matrices respectively which show the

reaction or coupling between modes across the wave-guide junction.

From these sets of linear equations the unknown coefficients (a(1),a(2),b(1) and b(2))

of the BR junction can be found or the Generalised Scattering Matrix (GSM) can be

derived:

1. In the method described by Wexler (1967) the electric field equation was re-

arranged for the b(1) coefficients and the resultant equation was substituted into

the magnetic field equation to eliminate them. This, and the fact that the a(1)

modal input and the scattered modes from a later junction a(2) would be known,

gave sufficient equations to solve for the b(2) coefficients. These could then be

substituted into the original equations to find the remaining b(1) coefficients.

2. In the method described by Omar & Schunemann (1985) the GSM for the junction

is derived. Firstly the equations are arranged into the following form:

a(1) + b(1) = [R] · (a(2) + b(2)) (2.22)

[T ] · (a(1) − b(1)) = b(2) − a(2) (2.23)

where:

[R] = [λP ]−1 · [Anm]
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and

[T ] = [λQ]−1 · [Anm]t

By dividing these equations through by the appropriate a(j) coefficient calculation

of the S matrix elements can be performed by use of the standard formula:

Sij =
b(i)

a(j)

∣

∣

∣

∣

∣

ak=0 for k 6=j

(2.24)

Using this procedure Omar & Schunemann (1985) give the S parameters, which

are actually GSM parameters, as:

[S11] = ([R][T ] + [I])−1 · ([R][T ] − [I]) (2.25)

[S12] = 2([R][T ] + [I])−1 · [R] (2.26)

[S21] = [T ]([I] − [S11]) (2.27)

[S22] = [I] − [T ][S12] (2.28)

where:

I is the identity matrix.

The scattering matrix representation can then be written as:





b(1)

b(2)



 =





[S11] [S12]

[S21] [S22]



 ·





a(1)

a(2)



 (2.29)

2.5 Numerical Results for the Boundary

Reduction Discontinuity

A computer program was written to duplicate a number of the results found in literature

for this type of discontinuity. This was done so as to gain experience in producing mode

matching code and also to be able to experiment with some of the problems associated

with the method such as relative convergence (see section 2.4.2).

The first case considered was when the waveguides are of equal height and are axially

symmetrical at the junction. The smaller waveguide width was then varied over the
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Figure 2.3: Reflection coefficient S11 of the incident TE10 mode to the BR discon-
tinuity

range of the larger and the reflection coefficient S11 of an incidentTE10 mode was found

to be as in Figure 2.3. For calculation the larger waveguide (1) dimensions were made

the same as WR284 (72.14 x 34.04mm) and the frequency was determined from the

free space wavelength λ, calculated as:

λ =
a1

0.71
(2.30)

where a1 is the width of the large waveguide. This is the same as that used in a paper by

Shih & Gray (1983) referred to later. Twenty TEp 0 modes (M) were used in waveguide

(2) and N modes in waveguide 1 calculated from the expression:

N = M
a1

a2
(2.31)

Where a1 and a2 are the widths of waveguides 1 and 2 respectively.

This is to satisfy the relative convergence criteria.

When a TE10 mode is incident on this type of structure only the TEp 0 modes are

excited (Shih & Gray, 1983) which reduces the number of modes required in the pro-

gram appreciably. The logical result can be seen in Figure 2.3 where full reflection is
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Figure 2.4: Mode matching susceptance results for the change in cross-section of
a rectangular waveguide. Upper graph: symmetrical change in width only (single
step) with a waveguide region width ratio of 3/1. Lower graph: symmetrical
change in height and width (double step) with a waveguide region height and
width ratios of 2/1.

approached as the width of waveguide 2 draws near to zero and the reflection becomes

minimal as the width of the waveguides become the same.

An investigation into the input susceptance results using mode matching for a BR

junction was described in a paper by Shih & Gray (1983). In this paper both the

single step (width only case of the previous example in this section) and also a double

step, where both the height and width are varied symmetrically, are described. This

procedure was duplicated using the program written and the results are shown in Figure

2.4. The the upper graph shows the convergence characteristics for the single step with

a waveguide region height ratio a1/a2 = 3/1 compared to a number of mode ratios.

Convergence can be seen to be faster, for the same number of modes in the smaller

waveguide, when the region height ratio is equal to the mode ratio. This verifies

the results of Shih & Gray (1983). Similarly the lower graph shows the convergence

characteristics for the double step with ratio of heights and widths equal to 2.
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Figure 2.5: Duplication of the results of Figure 3 Safavi-Naini & McPhie (1982).
Magnitude and phase of S11 and S21 for the BR junction double step.

Figure 2.6: Scan of the actual results for the BR junction double step, Figure 3
Safavi-Naini & McPhie (1982).
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The ratio of areas and the Shin and Gray method (Shih & Gray, 1983) give similar

convergence.

For a higher number of modes, where convergence is best, the calculated results compare

well with those from the Waveguide Handbook (Marcuvitz, 1951) for the single step

(within 1% for 36 modes in the input waveguide). Similarly for the double step the

calculated results are within 2% or less of the approximation of Craven & Mok (1971)

for 36 input waveguide modes.

Finally the results for the double step BR junction from a paper by Safavi-Naini &

Macphie (1982) were duplicated. The magnitude and phase of the reflection coefficient

and the transmission coefficient from the calculated results are plotted in Figure 2.5

and are almost identical with the actual Safavi-Naini & Macphie (1982) results shown

in Figure 2.6.

2.6 Conclusion

This chapter began with two literature surveys that gave a brief history of microwave

cavity filters and the use of the mode matching method over the last forty years.

The basic theory behind the mode matching method was then described. To illustrate

this a boundary reduction discontinuity problem in rectangular waveguide was used as

an example.

Results from experiments using a mode matching program, written as an exercise to

solve problems for this type discontinuity, gave information on the nature of the rate

of convergence and the relative convergence problem. These problems were found to

be associated with the number of modes and the ratio of the number of modes in each

region.

Results from literature were also compared to those obtained from the mode matching
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program. The closeness of the results indicated that the code written was performing

correctly and that future mode matching programs, created for the main objectives of

the thesis, would have a sound basis.



Chapter 3

The Coaxial Resonator

3.1 Introduction

After the initial introduction to mode matching through the analysis of rectangular

waveguide discontinuities, the coaxial resonator was selected as it was considered that

this would be a good learning exercise in using the method with regard to resonators

and the inherent eigenvalue problem of finding the resonant frequency.

Coaxial filters are used in wireless and mobile communication applications due to their

small size, low cost and relatively high Q factor. Traditionally these filters have been

designed using filter theory based on TEM mode transmission line structures (Matthaei

et al., 1984).

In this chapter a coaxial line in the form of a cylindrical cavity with a centre conductive

rod (single coaxial resonator) as shown in Figure 3.1 will be studied. A simplified mode

matching procedure is used to find the TEM mode resonant frequencies. This chapter

is an expansion of a paper published in IEE Proceedings on Microwave Antennas and

Propagation (Wells & Ball, 2004).

The coaxial line studied is less than λ
4 in length, with open and short circuit ends.

26



CHAPTER 3. THE COAXIAL RESONATOR 27

The inductance provided by the line at the open circuit, and capacitance due to the

gap Cg, provide conditions for a resonant circuit. The resonant frequency can be

adjusted by altering the gap capacitance with the aid of a tuning screw. Size constraints

may require the coaxial line length to be reduced to λ
8 or less, which means that

a substantial capacitance is required to bring the structure to resonance. This in

turn means the gap must be quite small. However calculation using a parallel plate

capacitance model will only give an approximate resonant frequency for the structure,

as the total capacitance will be larger due to fringing effects around the open circuit

end of the centre conductor. If a tuning screw is added, as shown in the figure, it will

further complicate the capacitance evaluation.

Inner Conductor

Outer Conductor
Gap Capacitance Cg

Short Circuit Open Circuit

Tuning Screw

Figure 3.1: Single Coaxial Transmission Line Resonator

This problem can be overcome by the use of a rigorous mode matching method (Wexler,

1967) (Omar & Schunemann, 1985) to compute the resonant frequency of the cavity, and

hence the gap capacitance. The cavity is partitioned into two cylindrical regions, as in

Figure 3.2, and the fields in each region are represented as linear combinations of radial

basis functions 1. Since only the lowest order quasi-TEM resonant frequency is required,

only radial basis functions having no circumferential variation need be included. The

transverse fields are matched at the boundaries between regions to ensure that they are

continuous, and a set of simultaneous equations is produced. The resonant frequency

is found by equating the determinant of this system to zero. Resonant frequencies

computed in this way show excellent agreement with measured results.

1To reduce confusion with the term ‘modes’, the modes of radial waveguide, used to ‘build up’ the
actual modes of the structure, will be called radial basis functions in this chapter.
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Once the resonant frequency has been found, the gap capacitance can be calculated.

For filter applications, a requirement is to maximise the resonator Q-factor. This is

accomplished by choosing the coaxial line radius ratio a/ro to be 3.591 (Sander, 1987,

p. 24), which minimises the conductor losses in the coaxial surfaces. This corresponds

to an air-spaced characteristic impedance of 76.7Ω. Values of gap capacitance are

provided for this optimum situation.

I

II

Z

b

b
b

2

1

a r 0

Gap g=b -b2 1

Figure 3.2: Single Coaxial Resonator Coordinate System

3.2 Analysis using the Radial Mode Matching Method

The mode matching method used in this chapter represents the fields within the cavity

in terms of radial waves, and is similar to that used by Kobayashi and others (Kobayashi

et al., 1981) (Yao et al., 1995) (Kajfez & Guillon, 1986) to solve the general problem

of cylindrical posts in waveguides . Another method, called the longitudinal mode

matching method, has been used by Risley (1969) and Zaki & Atia (1983). It entails

the matching to be performed at a plane at right angles to the cylindrical axis, and
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so uses cylindrical waveguide basis functions. This method was not used as it requires

the integral of the product of Bessel functions, which makes the problem more complex

and increases the computation time (Chen, 1990).

The structure to be analysed is shown in Figure 3.2, and is composed of two air filled

regions. Region I is the cylindrical gap between the inner rod and the tuning screw,

assumed to be of the same diameter (b1 < z < b2, 0 < ρ < ro, 0 < φ < 2π). The

remainder of the cavity is region II (0 < z < b, ro < ρ < a, 0 < φ < 2π). The mode

matching boundary is then defined as the surface: 0 < z < b, ρ = ro, 0 < φ < 2π. All

metal surfaces will be considered to be perfect electric conductors (PEC). The fields

within the structure are represented by superpositions of radial waves (basis functions),

which propagate in the radial direction forming standing waves. Their form can be

derived using the boundary conditions and the radial waveguide field equations as

described by Balanis (1988). In this structure these equations can be greatly simplified

by removing the circumferential variations. This can be justified by realising that for

the radial basis functions to describe the field patterns of the TEM transmission line,

only those parts describing the radial and longitudinal variations are necessary. This

means that the TE basis functions can be neglected as there is no Ez component, and

consulting the differential equations for the TE radial fields (Balanis, 1988, p. 501), Eρ

and Hφ, which would be used to ‘build up’ a TEM mode, are zero as they are dependent

on φ. The general form of the magnetic vector potential in the structure would then

be:

Az (ρ, φ, z) = (C1Ji (βρρ) + D1Yi (βρρ)) (C2 sin (βzz) + D2 cos (βzz))

· (C3 sin (iφ) + D3 cos (iφ)) (3.1)

and, using the simplification just described, the transverse magnetic (TM) radial basis

function fields can then be derived from:

Az (ρ, φ, z) = (C1J0 (βρρ) + D1Y0 (βρρ)) (C2 sin (βzz) + D2 cos (βzz)) (3.2)

where i = 0 due to no circumferential variation.
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3.2.1 Radial TM Basis Functions

Region I

Using equation (3.2) and the appropriate boundaries, the magnetic vector potential

field equation for the gap between the conductive rod and the tuning screw can be

shown to be:

AzI
(ρ, z) = ATM

k J0 (βρI
ρ) cos (βzI

(z − b1)) (3.3)

where:

βz =
(

kπ
b2−b1

)

due to the top and bottom PEC boundaries at the rod and tuning screw

ends.

The wave number in the radial direction βρ is related to βz, and to the wave number

of the medium β0, by the equations:

β2
ρ = β2

0 − β2
z ; β2

0 = ω2µ0ε0εr (3.4)

and the Bessel functions of the second kind (Y0) are infinite at ρ = 0 and are therefore

not part of the solution.

The TM basis function component equations for region I are then found from the

differential equations provided by Balanis (1988, p. 503). A summary of these are

presented in Appendix A.

Region II

Ez will be zero at the tangential outer cylindrical boundary ρ = a. This field component

is related to the potential function by:

Ez = −j
1

ωµε

(

∂2

z2
+ β2

)

Az (3.5)

Using equations (3.2) and (3.5) and working backwards from the outer wall PEC bound-

ary the potential function for region II must have the form:

AzII
(ρ, z) = BTM

n (Y0(βρII
a)J0(βρII

ρ) − J0(βρII
a)Y0(βρII

ρ)) cos(βzII
z) (3.6)

where:

βzII
=
(

nπ
b

)

due to the top and bottom PEC boundaries at the outer cylinder end
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plates. The wave number in the radial direction βρII
is related to βzII

, and to the wave

number of the medium β0, by the equations:

β2
ρII

= β2
0 − β2

zII
; β2

0 = ω2µ0ε0εr (3.7)

The TM basis function component equations for region II are then found from the

differential equations provided by Balanis (1988, p. 503). A summary of these are

presented in Appendix A.

If the radial wave number βρ is imaginary, then the basis function is non propagating,

and the fields will decay exponentially in the radial direction. This can occur in both

regions, and with either basis function type. In this case the Bessel functions J0 and Y0

for that particular basis function will have to be changed to modified Bessel functions

I0 and K0 respectively.

3.2.2 Mode Matching at the Boundary Between Regions

To find a field solution to the current problem the transverse (tangential) E and H

fields in both regions must be matched at the cylindrical boundary ρ = ro. Each

field component is represented by a summation of radial basis functions. Matching the

transverse electric fields across the boundary between regions I and II leads to:

E = ATM
p

∞
∑

p=1

ETM
I = BTM

q

∞
∑

q=1

ETM
II (3.8)

where the TM basis function in region I is identified by p and the TM basis function

in region II is identified by q.

Similarly, the transverse magnetic fields will be matched if the following condition holds:

H = ATM
p

∞
∑

p=1

HTM
I = BTM

q

∞
∑

q=1

HTM
II (3.9)

The above pair constitutes a doubly infinite set of linear equations for the modal co-

efficients Ap and Bq. To simplify these, and provide good convergence, the following
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orthogonality relation (inner product), as applied by Yao (1995), was used.

< Em,Hn > =

∫

S

(Em ×Hn) · ds = 0 if m 6= n (3.10)

This is applied to both equations (3.8) and (3.9). Firstly, form the cross-product of

equation (3.8) and a testing function from the magnetic field of region II and integrate

over the inner cylindrical surface of region II:

< E,hqII
>=

b
∫

0

2π
∫

0

(E× hqII
) · ρ̂ rodφdz (3.11)

For no circumferential variations this then becomes:

< E,hqII
>=

b
∫

0

(E× hqII
) · ρ̂ dz (3.12)

Secondly, form the cross-product of equation (3.9) and a TM testing function from the

electric field of region I and integrate over the outer cylindrical surface of region I:

< epI
,H >=

b2
∫

b1

2π
∫

0

(epI
×H) · ρ̂ rodφdz (3.13)

For no circumferential variations this then becomes:

< epI
,H >=

b2
∫

b1

(epI
×H) · ρ̂ dz (3.14)

Therefore the testing functions required are only the z dependent factors of the basis

functions.

The infinite set of linear equations so formed is then reduced, by truncating the number

of basis functions used, to a value that will give a desired solution accuracy. This is

possible because the basis functions tend to taper in dominance from lower to higher

order, providing convergence to near the exact value for relatively few basis functions

used. However numerical problems, such as relative convergence, associated with the

truncation of the set equations do occur. See section 3.6. A summary of the integrals

in these equations is shown in Appendix A.4.
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The resultant equations in matrix form for the electric field are:











a11 . . . a1p

...
. . . TM

(I)
Ez

TM
(II)
hφ

...

aq1 · · · aqp










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



ATM
1

...

ATM
p











=











b11 · · · 0
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. . . TM
(II)
Ez

TM
(II)
hφ
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0 · · · bqq





















BTM
1

...

BTM
q











(3.15)

or in an abbreviated form

[W][A] = [X][B] (3.16)

The magnetic field equations are:











a11 . . . 0
...

. . . TM
(I)
Hφ

TM
(I)
ez
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






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




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p


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
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BTM
q
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
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



(3.17)

and in abbreviated form

[Y][A] = [Z][B] (3.18)

The elements of [W] and [Y] are the result of the inner products on the LHS of equations

(3.8) and (3.9) respectively, and those of [X] and [Z] are the results of the inner product

on the RHS of the same equations. [X] and [Y] are diagonal matrices. [A] and [B] are

the unknown coefficients. These equations can then be used to solve for the resonant

frequencies of the structure or to find the unknown coefficients of the field equations.

3.2.3 Resonant Frequencies of the Structure

An efficient system of homogeneous equations may be formed from equations (3.16) and

(3.18) by eliminating either the [A] or the [B] coefficients. It is preferable to eliminate

[B], because this leads to a smaller matrix.

[

[Y]−1[Z][X]−1[W][A]
]

= 0 (3.19)

As [X] and [Y] are both diagonal matrices their inverses are easy to obtain, ie invert

each diagonal element. The eigenvalues of equation (3.19) are the resonant frequencies
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of the structure and these can be determined by finding the frequencies at which the

determinant of the overall matrix is zero. In this lossless case the elements of the matrix

are all real.

3.2.4 Radial Basis Function Coefficients

To check that the mode matching solution is physically sensible, it is good practice

to calculate and plot the field patterns. Also in high power applications, there may

be a requirement to determine the peak electric field strength within the structure, to

check if dielectric breakdown is likely. In order to plot these patterns, the coefficients

of the radial basis function field expansions must first be determined. The unknown

coefficient equations (3.16) and (3.18) can be rearranged into the form




W −X

Y −Z









A

B



 = 0 (3.20)

A selected coefficient is then chosen as unity or some appropriate factor. In the program

that was written the chosen coefficient was the first TM basis function in region II

(BTM
1 ). Consequently the associated inner product values are bTMTM

11 to bTMTM
q1 . The

B coefficients are reduced by one to Br and X and Z matrices are reduced by a column

to Xr and Zr. Hence equation (3.20) can then be written as:
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



W −Xr

Y −Zr
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
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


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




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
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0
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





























(3.21)

The system of equations (3.21) has more equations than unknowns (ie overdetermined)

but can still be solved for the normalised values of the unknown coefficients by matrix

inversion or the use of QR decomposition provided by the Matlab operator ‘\’. This

function has the advantage that it gives a least squares solution of the basis function

truncated equations, and so produces a best fit result (Penny & Lindfield, 1995).
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Once the coefficients are found they can then be substituted into the field equations,

so that the field components can be determined from the sum of the basis functions at

a number of spatial grid points, and the resultant field in the structure can be plotted

as a superposition of the components.

3.3 Mode Matching Computer Program for

Resonant Frequency Calculation

The programing steps to find the TEM mode resonant frequencies in a coaxial resonator

are shown in the flow chart of Figure 3.3 and the details are as follows:

1. Allocate resonator dimensions, relative permittivity of regions I and II, general

constants, number of basis functions used in each region and calculation of the

coupling integrals for all the combinations of the basis functions and testing func-

tions as described by expressions (3.12) and (3.14).

2. Provide a ‘for’ loop of the frequency range in which the resonator is thought

to have resonances. The resonances can be estimated by calculating the induc-

tive reactance of a shorted length of coaxial line (length of the inner rod) using

transmission line formula and resonating this with capacitance calculated by an

approximate parallel plate capacitance model of the resonator end gap.

3. Provide a ‘for’ loop of the region I basis functions indices.

4. Calculate the radial wave propagation coefficient βρI
of the current region I basis

function.

Calculate the ρ directed Bessel function factors of the region I basis function EzI

and HφI
of the current region I basis function. If the basis function is propagating

use the Bessel functions of the first kind J and their derivatives or if evanescent

use the modified Bessel functions of the first kind I and their derivatives 2.

2When the arguments for J become imaginary (evanescent modes) this is equivalent to using I with
real arguments. The latter was adopted in the program for convenience.
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(1)  Allocate

dimensions, constants,

permittivity of regions,

number of basis functions

(2) Allocate frequency

range

Find the coupling integrals

(10) Determinant value

crossed zero?

Yes

(11) Store the current

frequency value

(12) All Frequencies?

No

No

Yes

No
Stop

End

Yes

Start

Next frequency

(3) Allocate basis

function region I

Next region I

basis function

(5) Allocate basis

function region II

Next region II

basis function

(7) All Region II

basis functions?

(8) All Region I

basis functions?

No

Yes

(4) Calculate propagation coefficient for region I basis function

Calculate J and I Bessel functions and their derivatives

Calculate the cross-product components of region I

(6) Calculate propagation coefficient for region II basis function

Calculate J, Y, I and K  Bessel functions and their derivatives

Calculate the cross-product components of region II

(9) Form the homogeneous equation matrix

Figure 3.3: Flow chart of the mode matching program to find the TEM mode
resonant frequencies of the coaxial resonator
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Using these Bessel function factors calculate the integrated cross-product element

of the region I basis function HφI
and the region I testing function ezI

.

5. Provide a ‘for’ loop of the region II basis functions indices.

6. Calculate the radial wave propagation coefficient βρII
of the current region II

basis function.

Calculate the ρ directed Bessel function factors of the region II basis functions

EzII
and HφII

of the current region II basis function. If the basis function is

propagating use the Bessel functions of the first kind J and second kind Y and

their derivatives or, if evanescent, use the modified Bessel functions of the first

kind I and second kind K and their derivatives 3.

Using the Bessel function factors from step 4 calculate the integrated cross-

product elements of the region I basis function EzI
and region II testing function

hφII
. Using the Bessel function factors from this step calculate the remaining in-

tegrated cross-product elements, EzII
and hφII

, and HφII
and ezI

. The equations

used in steps 4 and 6 are the result of the appropriate orthogonality relations

presented in section 3.2.2 and are shown in full in Appendix A.

7. Repeat steps 5 and 6 until all the allocated region II basis functions are used with

the current region I basis function.

8. Repeat for the next region I basis function until all allocated region I basis func-

tions are used for the current frequency.

9. Use the cross-product elements calculated for this frequency to form the homo-

geneous set of linear equations in the form of matrix equation (3.19).

10. Check to see if the trend suggested by the current determinant value, of the LHS

of equation (3.19), and the previous value, indicate that zero has been crossed.

11. If so, store the current frequency value as a resonant frequency (eigenvalue) of

the coaxial resonator.

3When the arguments for J and Y become imaginary (evanescent modes) this is equivalent to using
I and K with real arguments. The latter was adopted in the program for convenience.
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Figure 3.4: Resonant frequencies of the coaxial resonator calculated from mode
matching program (top) and measured S11 data (lower). Frequency resolution =
2.8MHz. a = 17.42mm, b = 80mm, b1 = 0mm, b2 = 10mm, r0 = 5.65mm, region
I basis functions = 5, region II basis functions = 40

12. Allocate the next frequency value until all frequencies have been used.

The accuracy of this method is therefore dependent on the size of the steps in the allo-

cated frequency range. To speed up the process the resonant frequencies were initially

calculated roughly using large steps. The resonant frequencies were then determined,

to the required accuracy, by dividing the range between the each rough frequency and

its previous coarse step into much smaller steps and re-running the program. For a

lossless coaxial resonator the elements of equation (3.19) are always real and therefore

so is its determinant value. A typical set of determinant values calculated over a range

of frequencies is shown in the top graph of Figure 3.4. The zero crossings indicate the

first three TEM resonances calculated for the test resonator of section 3.4. For compar-

ison the lower graph shows the magnitude of a reflection coefficient S11 measurement

verses frequency using a vector network analyser. The TEM calculated and measured

resonant frequencies are within 0.2%. The lower graph also shows a resonance of the
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coaxial TE11 mode (see section 3.5, last paragraph) which is not modeled by the sim-

plified mode matching procedure. This TE111 resonator mode is the most dominant

of the TE and TM coaxial modes which are cut-off below 4.22GHz in this structure

(Pozar, 1998, pp.143-145).

The magnitude of the reflection coefficient S11 shown in Figure 3.4 will be dependent

on the degree of impedance mismatch between the network analyser and the resonator

at the resonant frequencies. This will depend on a number of factors such as the length

of the probe and its orientation in the field. Both of these will vary the degree of

coupling. For the same length probe the coupling will be different for the different

resonant modes and hence the respective magnitudes of the reflection coefficients will

vary. The length of the probe used was a compromise between providing a large enough

value for sufficient pick up of the fields (to allow low noise measurement) and small

enough so as not to perturb the resonator fields and change the resonant frequencies

significantly.

A copy of the computer program described in this section can be seen on the companion

CD-ROM for this thesis and operating details are given in Appendix D.

3.4 Comparison of Calculated and Measured Results

A number of mode matching calculations were performed to determine the resonant

frequencies of the lowest order TEM mode for various gap sizes (b2 − b1). A sufficient

overall number of basis functions were used to allow convergence of the resonate fre-

quency to a value that changed by less than 1MHz, when compared to the previous

value obtained with less basis functions.

A single coaxial resonator was constructed (as shown in Figure 3.5), so that S11 mea-

surements could be made with a vector network analyser (50 ohm input impedance).

The frequencies of the resonances obtained from the S11 data could then be compared

with calculated values. The mechanical dimensions were constrained by the use of
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Figure 3.5: Single Coaxial Resonator used in Measurements (ro = 0.565cm, a =
1.742cm, b = 8cm)

readily available materials, so that the inner and outer radii are ro = 0.565 cm and

a = 1.742 cm respectively.

The ratio a/ro is 3.0832, corresponding to a characteristic impedance of 67.5Ω which is

not quite optimum for minimum attenuation due to conductor loss. The equation for

the attenuation of a coaxial line is given by Sander (1987) as:

αc =
1

2

Rs

ηb

(

1 +
b

a

)/

ln (b/a)

where

Rs = (ωµ/2σ)
1/2, η =

√

µ/ε and b and a are the radii of the outer and inner conductors

respectively.

From Sander (1987, p. 24) this function has a minimum when

ln (b/a) = 1 + a/b

and from this the optimum value of b/a for minimum attenuation due to conductor loss

(or in the case of this structure a/ro) can be found to be 3.591.

The coaxial connector, shown in Figure 3.5, was located 1/3 of the length of the outer

cylinder from the gap end.
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The probe of the connector lay in the direction of the ρ co-ordinate so that the expected

radial electric field of the TEM mode would coincide with it. The 1/3 distance was

used as it was thought that the amplitudes of the TEM fundamental and first few

lower order electric fields would be of sufficient value at this point for a low noise S11

measurement ie far enough away from any nulls.

Both the measured and calculated results obtained, with the tuning screw penetration

set to zero (b1 = 0), are shown in Figure 3.6. The variation in gap size was obtained

by increasing b2 from 0.1 to 20mm . On this scale the mode matching results cannot

be distinguished from the measured results. Typically, the difference between them is

of the order of 1%. Another set of calculations and measurements were performed with

b2 = 5mm and b1was varied from 0 to 4.8mm to simulate adjustment of the tuning

screw. The results are shown in Figure 3.7. The calculated results are within 2% of

the measured values. The larger difference in values compared to the previous example

was found to be due to increased difficulty in setting the b1 and b2 distances accurately

in the test resonator.

3.5 Discussion

It is useful to interpret the results shown in Figure 3.6 in terms of the transmission

line equivalent circuit shown in Figure 3.1. The capacitance Cg for the gap g can

be calculated from the resonant frequency and the inductive reactance of the shorted

length of coaxial line. Since the capacitance is proportional to the overall size of the

structure, it is convenient to normalise the capacitance values, by dividing them by one

of the radial dimensions. In this case the radius of the inner conductor was used. A

graph of both the calculated and measured results, presented in this format, is shown in

Figure 3.8. The calculated results agree very well with measured results, the difference

being of the order of 1%. To minimise the coaxial conductor loses, and maximise the

Q factor of the resonator, the optimum ratio of the radii is a/ro=3.591 corresponding

to a characteristic impedance of 76.6 Ω.
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For this characteristic impedance, a normalised graph of calculated capacitance versus

gap size g is shown in Figure 3.9. The curve is the result of a least squares cubic

polynomial fitted to the calculated points, and is of the form:

Cg

ro
= ao +

a1
(

g
ro

) +
a2

(

g
ro

)2 +
a3

(

g
ro

)3 (3.22)

where ao = 0.1977, a1 = 0.09551, a2 = −4.5 × 10−4, a3 = 2.5 × 10−6 and the norm of

the residuals is 0.0451.

It is constructive to compare the values of capacitance for large and small gaps to those

obtained from other sources. For small gaps the parallel plate value of capacitance

calculated from the inner conductor end area and gap distance can be used. The

normalised value for a 0.02 cm gap (0.04 normalised) is 6.954 and this can be compared

to the calculated value of 8.348 when the fringing effects are taken into account. A few

values for the parallel plate approximation are plotted in Figure 3.9. For larger gaps

Rizzi (Rizzi, 1998) states that the plane of the coaxial open circuit is approximately

0.6(a− ro) past the end of the inner conductor. For the coaxial line used in this section

this length works out to be 0.777 cm. Using the Zo of the line a normalised capacitance

of 0.676 can be calculated. This compares favorably to the value (0.561) from mode

matching for large gaps plotted in the figure.

A further source of validation is that obtained from the Waveguide Handbook (Marcuvitz,

1951, p. 178). The equation:

BZ0 =
4b

λ
ln
(a

b

)

(

π

4

b

ro
+ ln

a − b

ro

)

(3.23)

gives the normalised susceptance of an infinite length coaxial line terminated by a ca-

pacitive gap where λ is the wavelength in free space. Approximate values of gap capac-

itance for the resonator can be calculated from C = ωB using the resonant frequencies

calculated by mode matching. A comparison with the previous cubic polynomial curve

is shown in Figure 3.10 . One of the restrictions on the Marcuvitz formulation is that

g
a−r0

� 1. This means in this example that g � 2.6 normalised. The effect of this can

be seen from the figure where the Marcuvitz points stray markedly from the polynomial
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Figure 3.10: Comparison of the calculated polynomial curve of the normalised gap
capacitance with results from the Waveguide Handbook. Normalised Capacitance
vs Normalised End Gap.(b2 = 0, end gap(g) = b1, a/ro = 3.591).

above a normalised gap of about 1. Below 0.25 the Marcuvitz points are within 2% of

the polynomial curve. The formula from Marcuvitz appears to be a good approxima-

tion for small gaps but, of cause, it does not allow for a the use of a tuning screw. In

a coaxial resonator situation it also requires the calculation of the resonant frequency

before the capacitance can be calculated.

When the measurements were performed the measuring equipment was connected to

the cavity by means of a small probe, as shown in Figure 3.6. Since the probe couples

to the radial electric field of the coaxial TEM mode and introduces asymmetry into the

cavity, it will also excite higher order coaxial modes having circumferential variation.

As referred to previously in section 3.3 the first of these to propagate (TE11) has a

cut-off frequency of 4.22GHz, so they will all be well below cut-off over the measured

frequency range (Pozar, 1998). Hence although they contribute to the local field of the

probe, they will have otherwise little effect.
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3.6 The Limitations of the Coaxial Resonator

Mode Matching Solution

3.6.1 Resonant Frequency Calculation

One of the difficulties in obtaining an accurate mode matching solution is the problem of

relative convergence (Mittra & Lee, 1971) (Leroy, 1983). This problem is a consequence

of the truncation of the theoretical infinite number of basis functions existing in each

region to some practical value. It was found that for good convergence, a ratio of region

I to region II basis functions (basis function region ratio BFRR), close to the ratio of

the heights of the regions, was required. This can be determined from the expression:

n

m
=

b2 − b1

b
(3.24)

where n and m are the number of basis functions used in regions I and II respectively.

Proof of better convergence for this criteria can be seen in Figure 3.11 for a BFRR

of 1/8. This value coincides with the region height ratio of 1/8 (ie 10mm/80mm).

It is interesting to note that the other basis function region ratio examples converge

to nearly the same value. This confirms the premise in literature that as long as the

number of basis functions are high the numerical result will converge to near the correct

value (Itoh, 1989, p. 613). In real terms the three examples in the figure all converge

to within 0.3% of the measured value (see section 3.4). The structure in this example

has a height b = 80mm, b2 = 10mm, b1 = 0 (ie gap=10mm) and r0 = 5.65mm.

The same basis function ratio criteria as described by equation (3.24) was used in Figure

3.12 where the convergence properties for a structure of different gap sizes is compared.

It can be seen that relatively few basis functions in region I are required before good

convergence occurs in both cases, however the number of basis functions required in

region II for the 1mm gap has to be 10 times that of the 10mm gap.
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Problems can arise for very narrow gaps (< 0.2mm in this case) where the higher

order basis functions created have Bessel function values that can exceed the maximum

or minimum possible floating point number of the computer. The matrix element

operations created are considered mathematically undefined by the software (Matlab

etc) and no solution can be given. For a 0.2mm gap the BFRR is 2/800 for the

current case but only a 1/400 BFRR can be used before numerical problems occur.

Up to a point the problem can be overcome by multiplying the row of the matrix

containing the offending element by a suitable constant as this does not change the

value of the determinant or, the region basis function ratio criteria can be relaxed

somewhat sacrificing accuracy.

3.6.2 Unknown Coefficients and Field Plotting

It was found that there is a limit to the number of basis functions for which an unknown

coefficient solution is feasible. Rank deficient matrices, giving inaccurate matrix inverse

results, occurred when more than about 20 basis functions where used in region II.

This is due again to the very large dynamic range of the element values in the matrix,

which approach the limited numerical range of the computer. The element values in

some rows are rounded off to the extent that they become indistinguishable with other

rows creating the rank deficiency. Specifically the higher order basis function Bessel

function values in the region II equations become very large and cause the problem.

In any case, the number of basis functions that can be used is not sufficient to obtain

results as accurate as the resonant frequencies of section 3.2.3 where only the value

of the determinant of a matrix had to be found. However, it is sufficient to generate

reasonably accurate field patterns as long as region height ratios are not less than about

1/8.

A magnified view of the electric field vectors in the vicinity of a 10mm gap is shown

in Figure 3.13 and represents the superposition of 3 TM basis functions in region I,

and 20 TM basis functions in region II. The cavity dimensions are: a = 17.42mm,

b = 80mm, r0 = 6mm. Some discontinuity may be seen at the boundary between the
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Figure 3.13: Ey - Ez Magnified Field Plot in the vicinity of a 10mm gap.
a=17.42mm, b=80mm, r0=6mm, BFRR=3/20, Fr=979.7MHz

regions in Figure 3.13 and this is more obvious when the matching of the Eρ and Ez

field components, at the mode matching boundary, are viewed as in Figure 3.14. For

larger gaps the matching is much improved as shown by Figure 3.15 for a 40mm gap

size.

As was the case when finding the resonant frequencies, it becomes more difficult to

obtain accurate results as the gap size becomes smaller. For small gaps the preferred

basis function region ratio, to satisfy relative convergence, can only be approached if

the number of basis functions overall is also made low.

Another reason for the less than optimum matching over the boundary in Figures 3.14

and 3.15 is the singularity of the field component solutions at the bottom corners of

the inner conductor.
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Figure 3.14: Matching of the normalised field components at the mode match-
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The modeling of a this type of discontinuity with continuous basis functions can be

likened to the Gibbs phenomenon in Fourier analysis where a series will converge slowly

and exhibit oscillations near the discontinuity (Sudbo, 1992). In this case the disconti-

nuity is an r−1/3 singularity (Collin, 1991, p. 25) which describes the variation in the

field solution for distance r from the corner.

3.7 Conclusion

In this chapter a simplified radial mode matching solution has been described which

provides a numerically efficient method of calculating the TEM resonant frequency and

gap capacitance of a coaxial resonator (Wells & Ball, 2004). Minimum conductor loss

and hence maximum Q factor occur for a radii ratio a/ro = 3.591. For this case the gap

capacitance results are well represented by a best fit least squares cubic polynomial,

which may be useful in design calculations.

The specific results reported can be applied to the calculation of gap capacitance, tuning

range or temperature drift in coaxial resonators, as used in cellular base station multi-

cavity filters. They may also be applied to the calculation of a coaxial open circuit

end effect correction. The general method is also applicable to the calculation of the

equivalent circuit of a gap in a coaxial centre conductor, and hence to the design of

coaxial diode mounts.

This exercise in the analysis of the coaxial resonator has shown that there are some

generic properties that are likely to be common to all mode matching solutions:

• The solution was found to be quite accurate when compared to measured results

and those calculated from other methods.

• A solution of required accuracy could be obtained in only minutes on a standard

personnel computer.
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However:

• Accuracy and good convergence to a solution in eigenvalue problems can be dif-

ficult to maintain when the difference in size of the regions either side of the

mode matching boundary is extremely large. This is because the number of basis

functions in the larger region has to be kept below the limit where the maximum

or minimum possible floating point number of the computer will be exceeded.

It then becomes difficult to maintain the optimum basis function region ratio

BFRR, and hence satisfy the relative convergence criteria.

• There can be matching difficulties close to boundary discontinuities, especially

those where the field components become singular. These will compromise accu-

racy to some degree.

• When solving for unknown coefficients and field component intensities, large dif-

ferences in region size can create the same difficulties as occurred with the eigen-

value problem. However in this case the required BFRR and the number of basis

functions in each region will require further compromise (ie less than the optimum

number of basis functions in the larger region) to prevent rank deficiencies that

can occur in the equation matrix.

These limitations of the mode matching method for the coaxial resonator would seem

to be general for MM and appear not to have been emphasised in literature.



Chapter 4

The Shielded Rectangular

Dielectric Rod Waveguide

4.1 Introduction

Dielectric waveguides are an attractive alternative to metal waveguides at millimeter

wave frequencies due to their lower propagation loss, lower cost and easier fabrication

(Lioubtchenko et al., 2003). Rectangular dielectric waveguides form a large proportion

of these and have uses in integrated optics and millimeter-wave integrated circuits,

transmission lines and filter applications. However there has always been difficulty

obtaining accurate propagation coefficients for the various modes on these structures.

There is no closed form solution to the problem (Lioubtchenko et al., 2003) and the

methods used either rely on approximations, as in the procedure originated by Marcatili

(1969) and improved by Knox & Toulios (1970), or are numerical in nature. The main

numerical techniques range from the circular harmonic analysis of Goell (1969), finite

element (Rahman & Davies, 1984) (Valor & Zapata, 1995) and finite difference (Schweig

& Bridges, 1984) procedures, to mode matching.

In this chapter a mode matching method will be developed to allow the computation of

53
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the propagation coefficients and field patterns of the fundamental modes in a shielded

rectangular dielectric rod waveguide. This structure has only partially been investigated

in literature, in the form of the shielded dielectric image line (Strube & Arndt, 1985),

and the full solution described in this chapter shows the result of the existence of

a dominant mode and other fundamental modes not previously presented in public

literature.

This work will give guidance on multimode problems and the understanding of losses

in shielded rectangular resonators (pursued in Chapter 5 of this thesis). In addition

this work could possibly be extended to a study of the cubic dielectric resonator.

The principal results of this chapter have been published in IEEE Transactions on

Microwave Theory and Techniques (Wells & Ball, 2005b).

4.2 Background

Mode matching methods have been applied to the dielectric image line by Solbach &

Wolff (1978), and to the homogeneous inverted strip guide by Mittra et al. (1980). The

latter used a similar procedure to Solbach & Wolff (1978), with the mode-matching

techniques developed by Mittra & Lee (1971).

In a very comprehensive paper, Strube & Arndt (1985) have applied the method of

Solbach & Wolff (1978) to the shielded dielectric image line. The first part of their

paper used this procedure, together with the inclusion of an extra electric wall, to

analyze propagation on infinite shielded image guide. As well as propagating modes

and evanescent modes, complex modes and backward1 waves were identified and thor-

oughly investigated. Complex modes can only exist in pairs having complex conjugate

propagation coefficients, and couple such that the total power flow is always reactive.

The second part of their paper finds the scattering matrix of a transition from shielded

1A backward wave is defined as one in which the power flows in the opposite direction to the
wavefronts.
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dielectric image guide to rectangular waveguide, by matching the tangential fields at

the interface. A comparison of measured and calculated S11 results were used to verify

the method. The results obtained by Strube & Arndt (1985) correspond to those modes

that can exist in the dielectric rod waveguide shown in Figure 4.1 when the x axis is

an electric wall. However, these do not include some of the dominant modes, for which

the x axis is a magnetic wall. To obtain the full set of modes for this waveguide it is

necessary to consider all four types of symmetry.

An analysis of complex and backward waves in inhomogeneously filled waveguide has

been carried out by Omar & Schunemann (1987). A method to predict the presence

of complex modes in inhomogeneous lossless dielectric waveguide can be found in the

paper by Marozowski & Mazur (1990).

An alternative mode matching (boundary element) method for the shielded dielectric

rod waveguide, incorporating dyadic Green’s functions, was also developed by Collin

(1991, p. 454), (Collin & Ksienski, 1987). Only the results using a dielectric rod with

a low value of relative permittivity (εr = 2.22) was presented.

A problem with numerical solutions is that they can suffer from slow convergence due

to divergence of the electric field at the corners of the dielectric where the refractive

index changes abruptly (Sudbo, 1992). However, for most purposes, a sufficient degree

of convergence to the extrapolated solution (see sections 4.6.1 and 4.10.2) can still be

obtained for a relatively small number of basis functions.

In a typical situation the permittivity of the dielectric εr2 will be higher than the

surrounding medium εr1 (usually air) so that the electromagnetic fields will be concen-

trated in the dielectric, and the proportion outside it will decay away exponentially.

The ability of a high permittivity material to contain and concentrate the fields, to-

gether with the availability of high Q temperature stable materials, has led to the

development of the dielectric resonator as a filter element. In filter applications the di-

electric resonators are often enclosed in metallic shields or cavities to prevent unwanted

coupling, as shown in Figure 4.1. Cavity filters incorporating dielectric resonators are
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Figure 4.1: Rectangular dielectric line and shield.

widely used in mobile base stations and other demanding applications. Traditionally,

many of these have used cylindrical resonators. Designers have sought to reduce the

size of these filters, by using multiple mode cavities. This has led to increased interest

in resonators that have a square cross-section, and also in cubical resonators. Dielectric

filter cavities may be analysed using the methods developed by Zaki & Atia (1983). The

propagation characteristics of an infinite cylindrical waveguide containing a dielectric

rod were first established. Then a cylindrical cavity was modeled as a length of this

guiding structure, terminated in short lengths of empty waveguide (Zaki & Atia, 1983).

In a later paper this was extended to cylindrical dielectric resonators in rectangular

waveguide and cavities (Liang & Zaki, 1993). This chapter represents the first step in

a similar study of the shielded rectangular cross-section dielectric resonator.

4.3 The Designation of Modes for Dielectric Waveguides

Rectangular metallic closed waveguides, filled with a uniform dielectric material, have

modes which are designated as transverse electric with respect to z or TE (H modes),

and transverse magnetic or TM (E modes), where a double subscript specifies the

number of half waves in the x and y directions. A subscript of zero specifies no variation.

Dielectric waveguides, however, consist of a high permittivity central core surrounded

by a lower permittivity dielectric cladding (usually air). The boundary conditions

created allow the coupling of the electric and magnetic longitudinal fields and so other
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modal types are formed (Lioubtchenko et al., 2003).

For dielectric waveguides, with a core of circular cross-section, the modes can only

be pure TE or TM with respect to z if they are independent of the co-ordinate φ

(Chambers, 1953). The rest of the modes (with φ dependency) are combinations of TE

and TM modes and are called “hybrid”.

These fields extend further from the rod and their attenuation lessens with a decrease

in the radius of the dielectric core (Balanis, 1988, p. 508). The attenuation decreases as

less of the field occurs in the rod where some dielectric loss will always exist. Therefore

minimum sized radius rods are usually used in dielectric waveguides (Balanis, 1988,

pp. 508, 513) (this may not apply in filters using high Q dielectrics). The modes in

the dielectric waveguide are cut off below a minimum value of electrical radius a/λ

(Collin, 1991, p. 721) (Balanis, 1988, p. 507). The dominant mode, sometimes called

the HEM11 mode (this designation will be described below) in theory has no cut-off

frequency.

Rectangular dielectric waveguides have similar hybrid modes to the circular cross-

section versions (including a dominant HEM11 mode) but have no TE and TM axially

symmetric modes (Lioubtchenko et al., 2003) (Chambers, 1953).

Unlike metallic waveguides the field patterns of the modes in dielectric waveguide are

sensitive to dielectric constant, frequency, and aspect ratio (if rectangular) or radius (if

circular). This complicates the problem of finding a suitably descriptive classification

scheme and as a consequence a number exist which have been created to suit the

particular structure being investigated at the time. That is, an overall standard does

not exist. For clarity, it is worthwhile to list some of the main schemes used in literature

up to date:

1. The method used by Marcatili (1969) and Goell (1969) in which modes are des-

ignated as:

Em
pq
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The superscript m is the direction of polarisation x or y of the dominant elec-

tric field component. Subscripts p and q denote the number of maxima of the

dominant electric field component in the x and y directions respectively. This

scheme is generally used when describing the modes of rectangular cross-section

dielectric waveguide.

2. The method proposed by Kobayashi et al. (1981) and used by Solbach & Wolff

(1978) and Collin (1991) in which modes are designated as:

EHmn, HEmn

This method is in agreement with that of Marcatili (1969) as to the meaning of

the subscripts but has no superscript. The designation EH is used to indicate

when the longitudinal field is mainly electric (TM) and HE when the longitudinal

field is mainly magnetic (TE). This method is used with rectangular and circular

cross-section dielectrics.

Referring to the work of Schweig & Bridges (1984) for a rectangular dielectric rod

in free space :

EH11 corresponds to Ey
11,

HE11 corresponds to Ex
11,

EH21 corresponds to Ex
21 and

HE21 corresponds to Ey
21 etc.

A third subscript (p) is used with dielectric resonators and dielectric loaded cavity

resonators (a dielectric rod in a metallic cavity) to denote the number of maxima

in the longitudinal direction.

3. The method used by Kajfez & Guillon (1986), Balanis (1988) and others in lit-

erature to describe modes in circular cross-section dielectric waveguide and res-

onators. This scheme has been designated by IEEE (IRE Standards on Antennas

and Waveguides: Definition of Terms, (1953)) as:

HEMmn

Balanis (1988, p. 512) states that subscript m refers to the order of the Bessel

functions used in the cylindrical dielectric rod hybrid mode field equations. Eigen-
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value equations, which can be used to determine the wave-numbers and propa-

gation coefficient of the circular dielectric waveguide, can only have eigenvalue

solutions that give real radially directed wavenumbers outside the dielectric and

thereby give decaying fields. If these wavenumbers were to become imaginary the

structure would cease to be a waveguide and become an antenna. The subscript

n refers to the propagation order of each mode for a particular m, that will allow

the wavenumbers to remain real. Again from Balanis (1988, p. 512), a conse-

quence of this is that odd values of n give EH modes and even n give HE modes.

Thus:

HEMm,2n−1 (n = 1, 2, 3, ...) corresponds to HEm,n and

HEMm,2n (n = 1, 2, 3, ...) corresponds to EHm,n.

A third subscript p is used with dielectric resonators to denote the number of

maxima in the longitudinal direction. This scheme does not appear to have been

used for rectangular dielectrics.

4. A simpler scheme, applied only to circular cross-section dielectric loaded res-

onators, was proposed by Zaki & Chen (1986) and uses only two subscripts. It

uses the designations:

HEHnm and HEEnm

The first two letters denote a hybrid mode. The third letter denotes whether

a transverse symmetry plane is a magnetic or electric wall. The subscript n

indicates the order of the φ variation (cos nφ or sinnφ) in the field equations of

a particular mode. Subscript m classifies the resonant frequencies of modes in

increasing order for a particular n.

In this dissertation the scheme used will be that of Marcatili. This is because the

transverse field pattern plots, generated from the field solving method of this chapter,

can easily be recognised and then allocated a mode designation from this scheme.
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Figure 4.2: One quarter of the rectangular dielectric line with shield, showing
mode-matching regions.

4.4 Analysis using the Mode Matching Method

An advantage of a mode matching method is that it has relatively good processing speed

due to its semi-analytical nature. It allows visualization of the fields in the structure by

solving for the unknown coefficients of the basis function equations. Another advantage

is that it can be used with reasonably high values of permittivity (Strube & Arndt

(1985) show results as high as εr = 50 for the shielded dielectric image line). The

other numerical methods cited, with the exception of the finite difference method of

Schweig & Bridges (1984), have only been applied to relatively low values (εr ' 2.5).

Due to the symmetrical nature of the shielded dielectric waveguide only one quarter of

the structure needs to be analysed. Figure 4.2 shows how the cross-section is divided

into three regions. Regions I and II1 surround the dielectric rod and are filled with

a medium of permittivity εr1, which will be considered to be air (εr1 = 1) in this

chapter. Region II2 is the dielectric rod with permittivity εr2. The outer shield will

be considered as a perfect electric conductor (electric wall). The bottom and left side

symmetry planes, coincident with the x and y axes, may be either electric or magnetic
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walls. The selection of wall types will determine the types of symmetry that can exist

in the structure.

In this chapter, as in Mittra et al. (1980) and Strube & Arndt (1985), a modification

of the mode matching method of Solbach & Wolff (1978) will be used so that the effect

of the proximity of the shield to the dielectric can be ascertained. However to provide

calculation of all modes possible in this structure, additional basis functions2 to cater

for the full range of symmetries (see section 4.4.1), have had to be provided. This

variation will be called the modified Solbach and Wolff method (MSW) through the

rest of this chapter.

4.4.1 Basis Functions

The modes which can propagate in a shielded rectangular dielectric rod waveguide are

all hybrid modes, ie they always have field variation along either the horizontal or verti-

cal dielectric rod boundaries, and so have both electric and magnetic field components

in the longitudinal direction (Chambers, 1953). In each of the regions in Figure 4.2,

the field patterns for these modes can be built up from superpositions of appropriate

basis functions, which are transverse magnetic or transverse electric with respect to the

y direction. These will be designated TM y (electric) and TEy (magnetic) respectively,

and indicated by subscripts e and h.

When using mode matching the basis functions used in each region must satisfy the

boundary conditions except at the mode-matching boundary (Itoh, 1989, p. 592). TM y

and TEy are used as they satisfy the boundary conditions on the upper dielectric to

air boundary. Other formulations such as TM x and TEx do not (Harrington, 2001, p.

158).

The cross-section has two axes of symmetry, which means there are four possible sym-

metries. In this chapter these will be classified according to the behaviour of the Hz

2To reduce confusion with the term ‘modes’, the modes of rectangular waveguide, used to ‘build up’
the actual modes of the structure, will be called basis functions in this chapter.
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field component, following Schweig & Bridges (1984). For example, superscript EO will

indicate that Hz is an even function of x and an odd function of y.

It is most efficient to derive the basis function fields from vector potentials. From

Balanis (1988), the magnetic vector potential for a TM y wave propagating in a non-

magnetic region in the z direction in a region with rectangular boundaries is of the

form:

Ay(x, y, z) = [C1 cos(βxx) + D1 sin(βxx)][C2 cos(βyy) + D2 sin(βyy)]e−γz (4.1)

The longitudinal field components can then be obtained from:

Ez(x, y, z) = −j
1

ωµoε

∂2Ay

∂y∂z
(4.2)

Hz(x, y, z) =
1

µo

∂Ay

∂x
(4.3)

From these expressions it can be seen that Ez and Hz will have opposite types of

symmetry. The longitudinal electric field will be as follows:

Ez(x, y, z) = j
βyγ

ωµoε
[C1 cos(βxx) + D1 sin(βxx)][D2 cos(βyy) − C2 sin(βyy)]e−γz (4.4)

Using the boundary conditions imposed by the shield, appropriate equations for Ez can

be selected in each region and for each symmetry. For the case of an even function of

x axis and odd function of y (EO) these are as follows:

E
(I)EO
zme =j

A
(I)
meβ

(I)
ymeγ

ωµoεo
sin(β

(I)
xme(a2 − x)) cos(β

(I)
ymey)e−γz

E
(II1)EO
zne =j

B
(II1)
ne β

(II1)
yne γ

ωµoεo
sin(β

(II1)
xne x) sin(β

(II1)
yne (b2 − y))e−γz

E
(II2)EO
zne =j

B
(II2)
ne β

(II2)
yne γ

ωµoεoεr2
sin(β

(II2)
xne x) cos(β

(II2)
yne y)e−γz

(4.5)
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Where

βI
yme

=
mπ

2b2
where m = 1, 3, 5...

β(I)2
xme

= β2
o − β(I)2

yme
+ γ2

β(II1)2
yne

= β2
o − β(II1)2

xne
+ γ2

β(II2)2
yne

= β2
d − β(II2)2

xne
+ γ2

β2
o = ω2µoεo

β2
d = ω2µoεoεr2

(4.6)

and n is the mode number in region II.

From equations (4.2) and (4.5) the resultant magnetic vector potential equations for

the dielectric waveguide are then:

A(I)EO
yme

=A(I)
me sin(β(I)

xme
(a2 − x)) sin(β(I)

yme
y)e−γz

A(II1)EO
yne
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ne sin(β(II1)

xne
x) cos(β(II1)

yne
(b2 − y))e−γz

A(II2)EO
yne

=B(II2)
ne sin(β(II2)

xne
x) sin(β(II2)

yne
y)e−γz

(4.7)

Then using equation (4.3) the equations for Hz are:

H
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zme =−A

(I)
meβ

(I)
xme
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cos(β

(I)
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(I)
ymey)e−γz
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B
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xne x) cos(β
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H
(II2)EO
zne =

B
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ne β

(II2)
xne

µo
cos(β

(II2)
xne x) sin(β

(II2)
yne y)e−γz

(4.8)

From equations (4.7) the other components of the TM y basis functions for each region

can be derived using the partial differential equations from Balanis (1988).

Similarly the electric vector potential equation for a TEy mode propagating in the z

direction is of the form:

Fy(x, y, z) = [C1 cos(βxx) + D1 sin(βxx)][C2 cos(βyy) + D2 sin(βyy)]e−γz (4.9)



CHAPTER 4. THE SHIELDED RECTANGULAR DIELECTRIC ROD
WAVEGUIDE 64

The longitudinal field components can then be found from:

Ez(x, y, z) = −1

ε

∂Fy

∂x
(4.10)

Hz(x, y, z) = −j
1

ωµoε

∂2Fy

∂y∂z
(4.11)

Ez will then be:

Ez(x, y, z) = −1

ε
[D1 cos(βxx) − C1 sin(βxx)][C2 cos(βyy) + D2 sin(βyy)]e−γz (4.12)

Using the boundary conditions and symmetry as for the TM y example the Ez equations

in each region can be selected as:
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(4.13)

where h is TEy.

Then a set of electric vector potential equations for the structure will be:
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Then using equation (4.11) the equations for Hz are:
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(4.15)
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The other components of the TEy basis functions can again be found from the partial

differential equations from Balanis (1988).

A summary of the vector potential and longitudinal basis function equations for all

symmetries is shown in Appendix B.1.

Continuity of the tangential field components at the boundary y = b1, 0 ≤ x ≤ a1

between region II1 and region II2 must also be taken into account so that wavenumbers

β
(II2)
yn and β

(II1)
yn can be found. At this boundary wavenumbers β

(II1)
xn = β

(II2)
xn to allow

for continuity of phase. Then for even x, odd y symmetry and TM y modes:

E(II1)EO
zne

= E(II2)EO
zne

(4.16)

and from this:

Kne =
B

(II1)
ne

B
(II2)
ne

=
β

(II2)
yne cos(β

(II2)
yne b1)

β
(II1)
yne εr2 sin(β

(II1)
yne (b2 − b1))

(4.17)

then also:

H(II1)EO
zne

= H(II2)EO
zne

(4.18)

substituting equation (4.17) into (4.18) gives the transcendental equation:

1

β
(II1)
yne

cot(β(II1)
yne

(b2 − b1)) =
εr2

β
(II2)
yne

tan(β(II2)
yne

b1) (4.19)

The wavenumbers can then be obtained from (4.19) by substitution of the relation:

β(II2)2
yne

= β(II1)2
yne

+ β2
o(εr − 1) (4.20)

which is derived using β
(II1)
xne = β

(II2)
xne and the region II equations of (4.6).

Similarly for the TEy modes:

Knh =
B

(II1)
nh

B
(II2)
nh

=
cos(β

(II2)
ynh

b1)

εr2 sin(β
(II1)
ynh

(b2 − b1))
(4.21)

and the transcendental equation for the wavenumbers becomes:

β(II1)
ynh

cot(β(II1)
ynh

(b2 − b1)) = β(II2)
ynh

tan(β(II2)
ynh

b1) (4.22)

The equations for the other symmetries of the TM y and TEy basis functions can

similarly be derived.
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A summary of the equations derived from the continuity of the longitudinal fields at

the boundary y = b1, 0 ≤ x ≤ a1, for all symmetries, is shown in Appendix B.2.

4.4.2 Mode Matching at the Boundary Between Regions

The transverse fields ET and HT must be continuous at the mode matching boundary

between regions I and II (x = a1, 0 ≤ y ≤ b2). In the case of the electric field this

leads to the equations:

∞
∑

p=1

A
(I)
ph E(I)

zph
+

∞
∑

p=1

A(I)
pe E(I)

zpe
=

∞
∑

n=1

B
(II2)
nh (KnhE(II1)

znh
+E(II2)

znh
)+

∞
∑

n=1

B(II2)
ne (KneE

(II1)
zne

+E(II2)
zne

)

(4.23)

and
∞
∑

p=1

A(I)
pe E(I)

ype
=

∞
∑

n=1

B(II2)
ne (KneE

(II1)
zne

+ E(II2)
zne

) (4.24)

For continuity of the magnetic fields:

∞
∑

p=1

A
(I)
ph H(I)

zph
+

∞
∑

p=1

A(I)
pe H(I)

zpe
=

∞
∑

n=1

B
(II2)
nh (KneH

(II1)
znh

+H(II2)
znh

)+

∞
∑

n=1

B(II2)
ne (KneH

(II1)
znh

+H(II2)
zne

)

(4.25)

and
∞
∑

p=1

A
(I)
ph H(I)

yph
=

∞
∑

n=1

B
(II2)
nh (KnhH(II1)

znh
+ H(II2)

znh
) (4.26)

where K is the RHS of equations (4.17) and (4.21) for TM EO and TEEO basis func-

tions respectively and was introduced to reduce the number of unknown coefficients.

The above equations constitute a doubly infinite set of linear equations for the modal

coefficients Ap and Bn. To simplify these equations, and to expand their number to

equal the number of unknowns the electric and magnetic fields in region I were used

as testing functions. Only the y dependent factors are required, and these have been

designated e
(I)
q (y) and h

(I)
q (y) respectively. The following orthogonality relations are



CHAPTER 4. THE SHIELDED RECTANGULAR DIELECTRIC ROD
WAVEGUIDE 67

required:

b2
∫

0

E
(I)
Tmh(I)

q (y)dy = 0 (4.27)

b2
∫

0

H
(I)
Tme(I)

q (y)dy = 0 (4.28)

for m 6= q

where m and q are the indices used to find wavenumbers β
(I)
ym or β

(I)
yq (as in (4.6)) for each

mode number p in region I. That is, for the electric fields, equation (4.23) is multiplied

by a h
(I)
q (y), TEy testing function and equation (4.24) is multiplied by a h

(I)
q (y), TM y

testing function. For the magnetic fields, equation (4.25) is multiplied by a e
(I)
q (y), TEy

testing function and equation (4.26) is multiplied by a e
(I)
q (y), TM y testing function.

The resultant equations are then integrated over the interval 0 ≤ y ≤ b2 at x = a1

continuing the procedure outlined by Mittra et al. (1980). The integrals derived from

equations 4.27 and 4.28 for all symmetries are summarised in Appendix B.3.

The infinite set of equations so formed is reduced by truncating the number of basis

functions used, to a value that can be practically computed and will give a desired

degree of convergence to the extrapolated solution (see sections 4.6.1 and 4.10.2). The

maximum values of the mode indices p and n are P and N respectively. An equal

number of basis functions were used (P = N) in both regions I and II to alleviate any

problems with relative convergence (Mittra, 1963)(Leroy, 1983). In matrix form the

equations using the electric field and odd y symmetry are:







































a11 . . . 0
...

. . . (TE
(I)
Ez

TE
(I)
hy(y))

...

0 · · · aPP





















a11 . . . 0
...

. . . (TM
(I)
Ez

TE
(I)
hy(y))

...

0 · · · aPP





















0 . . . 0
...

. . . (TE
(I)
Ey

TM
(I)
hz(y)) = 0

...

0 · · · 0





















a11 . . . 0
...

. . . (TM
(I)
Ey

TM
(I)
hz(y))

...

0 · · · aPP



































































ATE
1

...

ATE
P

ATM
1

...

ATM
P





























=
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





































b11 · · · b1N

...
. . . (TE

(II)
Ez

TE
(I)
hy(y))

...

bN1 · · · bNN





















b11 · · · b1N

...
. . . (TM

(II)
Ez

TE
(I)
hy(y))

...

bN1 · · · bNN





















0 · · · 0
...

. . . (TE
(II)
Ey

TM
(I)
hz(y)) = 0

...

0 · · · 0





















b11 · · · a1N

...
. . . (TM

(II)
Ey

TM
(I)
hz(y))

...

aN1 · · · bNN



































































BTE
1

...

BTE
N

BTM
1

...

BTM
N





























(4.29)

The sub matrices of the LHS of equation (4.29) are P x P diagonal matrices the

elements of which are the result of equation (4.27). The elements of the N x N sub

matrices of the RHS of equation (4.29) are coupling integrals of the form:

b2
∫

0

E
(II)
Tn h(I)

q (y)dy (4.30)

The zero sub-matrices are the result of the Ey component which is zero for TEy. This

is also indicated by equation (4.24). In abbreviated form the matrix equations can be

written as:

[W][A] = [X][B] (4.31)

The magnetic field equations are similar and can be written as:






































a11 . . . 0

...
. . . (TE

(I)
Hy

TE
(I)
ez(y))

...

0 · · · aPP





















0 . . . 0

...
. . . (TM

(I)
Hy

TE
(I)
ez(y)) = 0

...

0 · · · 0





















a11 . . . 0
...

. . . (TE
(I)
Hz

TM
(I)
ey(y))

...

0 · · · aPP





















a11 . . . 0
...

. . . (TM
(I)
Hz

TM
(I)
ey(y))

...

0 · · · aPP



































































ATE
1

...

ATE
P

ATM
1

...

ATM
P





























=







































b11 · · · b1N

...
. . . (TE

(II)
Hy

TE
(I)
ez(y))

...

bN1 · · · bNN





















0 · · · 0

...
. . . (TM

(II)
Hy

TE
(I)
ez(y)) = 0

...

0 · · · 0





















b11 · · · b1N

...
. . . (TE

(II)
Hz

TM
(I)
ey(y))

...

bN1 · · · bNN





















b11 · · · a1N

...
. . . (TM

(II)
Hz

TM
(I)
ey(y))

...

aN1 · · · bNN



































































BTE
1

...

BTE
N

BTM
1

...

BTM
N





























(4.32)

The sub matrices of the LHS of equation (4.32) are P x P diagonal matrices the

elements of which are the result of equation (4.28). The elements of the N x N sub
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matrices of the RHS of equation (4.32) are coupling integrals of the form:

b2
∫

0

H
(II)
Tn e(I)

q (y)dy (4.33)

The zero sub-matrices are the result of the Hy component which is zero for TM y. This

is also indicated by equation (4.26). In abbreviated form the magnetic field matrix

equations can be written as:

[Y][A] = [Z][B] (4.34)

For this odd y case, for both electric and magnetic field equations, the subscripts m and

q are odd integers only and are equivalent in number to the number of basis functions

used N . For the even y case there will be a total of N even integers (including zero).

A summary of coupling integrals for all symmetries derived from equations (4.30) and

(4.33) is shown in Appendix B.4.

4.4.3 Propagation Coefficient and Unknown Mode Coefficients of the

Structure

A homogeneous system of equations may be formed from (4.31) and (4.34)





W −X

Y −Z









A

B



 = 0 (4.35)

The eigenvalues of equation (4.35) are the propagation coefficients of the modes of the

structure. These can be found by substituting a range of propagation coefficient values

into the equation and finding those values for which the determinant is zero.

To determine that the propagation coefficients found are physically sensible, and also to

find the type of mode each represents, it is essential to calculate the unknown coefficients

and plot the field patterns. Also there may be a requirement to calculate the loss in the

dielectric and shield walls. In high power applications, it may be desirable to determine

the peak electric field strength so as to check if air or dielectric breakdown is likely.
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A selected coefficient is then chosen as unity (or some appropriate factor), so that

equation (4.35) can then be written as:





A

Br



 =





W −Xr

Y −Zr





−1











































(electric)

bTMTE
11

...

bTMTM
N1

(magnetic)

bTMTE
11

...

bTMTM
N1











































(4.36)

For example if the coefficient chosen is the first TM mode in region II (BTM
1 ) the

associated matrix element values will be bTMTE
11 (electric) to bTMTM

N1 (magnetic) as

shown. Consequently the B coefficients are reduced by one to Br and the X and Z

matrices are reduced by a column to Xr and Zr. The linear system of equations can

then be solved by matrix inversion or QR decomposition (see section 4.5.2) using the

Matlab operator ‘\’.

Once the coefficients are found they can then be substituted into the field equations,

so that the field components can be determined from the sum of the basis functions at

a number of spatial grid points, and the resultant field in the structure can be plotted

as a superposition of all the components.

4.5 Programing Methods

4.5.1 Propagation Coefficient Calculation

The programing steps to find the propagation coefficients in a shielded rectangular

dielectric rod waveguide are shown in the flow chart of Figure 4.3 and the details are

as follows:
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1. Allocate the dimensions of the structure, number of basis functions for sufficient

convergence, discrete steps of frequency and propagation coefficient values over

the ranges required, permittivity of the dielectric rod and constants (µ0, ε0 etc).

2. Provide a ‘for’ loop of the frequency range.

3. Calculate using equations (4.6) the wavenumbers of the air β0 and dielectric rod

βd region materials.

4. Find the wavenumbers β
(II2)
yn , β

(II1)
yn for the TE and TM basis functions and de-

sired symmetry from the transcendental equations of Appendix B.2 and equation

(4.20). The roots of the transcendental equations were found by the use of the

Matlab function ‘Fzero’. A wide enough range of wavenumber values has to be

provided, in this function, so that a sufficient number of roots are found to cover

the number of basis functions used. Also caution has to be exercised when assign-

ing the step size between estimates used in the root finding function otherwise

wavenumbers may be missed. See section 4.10.1 for more details. The equations

were tested for real and imaginary wavenumber roots and the results were stored

in a vector array.

5. An array of the coupling integrals of region II, as shown in Appendix B.4, was

calculated for all the combinations of the basis functions and test functions used.

The solutions to these integrals can be found analytically.

6. Calculate the constants K. These can be seen in equations (4.23), (4.24), (4.25)

and (4.26) and are used to reduce the number of unknown coefficients in the

region II equations.

7. Provide a ‘for’ loop of the anticipated propagation coefficient range:

(a) For propagating modes and backward waves the values will lie between 0

and jβd.

(b) There will be an infinite number of evanescent modes, so a range from 0

to a practical value which will give a sufficient number of roots to cover

requirements is needed.
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(1)  Allocate

dimensions, frequency range,

permittivity, constants,

number of basis functions

(2) Frequency

range

(3) Calculate

(4) Find the wave numbers

(5) Find the coupling integrals

(6) Calculate region II constants K

(7) Propagation

coefficient  range

(8) Form the region I elements of the equation  matrix

Form the region II elements of the equation matrix

From these form the homogenous matrix

(9) Determinant value

crossed zero?

Yes (10) Store the current

propagation coefficient

value for this frequency

(11) All propagation

coefficient values?

(12) Store all the propagation coefficients

for this frequency

(13) All Frequencies?

No

No

Yes

No
Stop

End

Yes

Start

Next frequency

Next propagation

coefficient

bo bd

Figure 4.3: Flow chart of the program to find the propagation coefficient of the
shielded rectangular dielectric rod waveguide
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(c) The propagation coefficient range of complex modes and the frequency range

over which they occur is difficult to estimate. They fill in areas of the

frequency range where a conversion takes place between propagating and

evanescent modes (Oliner et al., 1981). The characteristics of complex modes

can be seen in a paper by Strube & Arndt (1985) and a mathematical method

of predicting them is described by Marozowski & Mazur (1990).

8. Form the region I elements of the LHS sub-matrices of equations (4.29) and (4.32).

These are diagonal matrices derived from the orthogonality relations depicted by

equations (4.27) and (4.28). Nested ‘for’ loops of the region I basis function and

region I testing function indices are used in their formation. The integrals and

their solutions can be found in Appendix B.3

Form the region II elements of the RHS sub matrices of the equations (4.29) and

(4.32). These matrices are formed from integral expressions (4.30) and (4.33).

The integrals solutions were already calculated in step 5 and are sourced from

that stored array. Nested ‘for’ loops of the region II basis function and region I

testing function indices are used in the formation of these sub matrices.

Matrix equations (4.29) and (4.32) are then formed into the square matrix of the

LHS of homogeneous equation (4.35).

9. The determinant of the square matrix for the current propagation coefficient and

frequency is then determined using the Matlab function ‘det’.

10. A trend in the determinant value is ascertained by comparing the current value

with the previous one. If this indicates that the determinant value would have

passed through zero an eigenvalue is specified and the current propagation co-

efficient is stored as a propagation coefficient value for the structure. Therefore

part of the procedure accuracy is dependent on the size of the steps used over the

propagation coefficient range.

11. The next propagation coefficient value is used until all in the required range have

been applied.

A procedure of “zeroing in”, not shown on the flow chart, was used in the program
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to reduce the time needed to find suitably accurate propagation coefficients that

can exist in the large numerical range. Essentially steps 7 to 11 were repeated,

firstly with coarse steps to find rough values and the total number of them in

the range. Secondly, the area between each rough value found, and each preced-

ing coarse step of those values, was searched with much finer steps. The same

procedure could then be repeated again until the required degree of convergence

to the extrapolated solution (see sections 4.6.1 and 4.10.2) was obtained for each

propagation coefficient found. The initial coarse step size has to be chosen with

caution so as not to step over two values that are close together or, step over

a value which is close to where a “real/imaginary change-over” ReImC/O point

occurs (more detail on this below). In either case an eigenvalue may be missed

by the computer code written to detect a zero crossing.

When the data used in Figures 4.14 and 4.21 were produced the initial coarse

step size was 2 and then a succession of two finer searches of a tenth and then

a hundredth of that size were implemented at each rough propagation coefficient

value found.

12. All the propagation coefficient values (eigenvalues) found in step 9 are then stored

for the current frequency.

13. The next frequency value is used until all in the required range have been applied.

Plots of typical determinant values verses propagation coefficient for EO symmetry

and lossless dielectric are shown in Figures 4.4, 4.5 and 4.6. When searching for the

propagation coefficients of propagating modes and backward waves, imaginary testing

propagation coefficients are used. For evanescent modes the testing propagation coeffi-

cients are real. In both cases, for a lossless dielectric, the resultant determinant values

are either purely real or purely imaginary except for the occasional “real/imaginary

change-over” ReImC/O point . See Figures 4.4 and 4.5.

As indicated these ReImC/O points occur in the eigenvalue tests for both propagating

and evanescent mode propagation coefficients.
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They do not coincide with any mode seen in measurement or have a sensible place on

the calculated mode chart (section 4.6.5) and so appear to have no physical meaning.

When searching for complex modes, complex testing propagation coefficients have to

be used and the determinant values obtained are also complex. For complex modes the

eigenvalues occur at points where both the real and imaginary determinant components

cross zero as shown in Figure 4.6. This complicates the programing as two propagation

coefficient ‘for’ loops have to be provided. One for a range of αz values and another

for a range of jβz values. Extra programing then determines when real and imaginary

determinant values ,which are very close to being numerically equal (real/imaginary

intersection points), pass through zero. The program then records the current αz + jβz

propagation coefficient value. An initial starting range of jβz values for the program

can be determined from the cutoff propagation coefficient found previously, for the

propagating mode that stems from the complex mode to be calculated. For example,

see the evolution of the complex mode to the Ex
11 mode in Figure 4.14
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To calculate the propagation coefficient of a propagating mode when the dielectric has

some loss (complex permittivity) nearly the same programing procedure can be used as

in the lossless case. The only significant difference is that the region II wavenumbers,

β
(II2)
yn and β

(II1)
yn , are now complex, and consequently the transcendental equations

cannot be solved by the Matlab function ‘Fzero’. Newtons method can be used to find

complex roots but it requires a very good estimate of the root and this can be difficult

to obtain. It was found that the most convenient method to use was Muller’s method

(Conte & DeBoor, 1980). Although more complicated and slower than ‘Fzero’ it will

also find real and imaginary as well as complex roots and does not need a complex

estimate of the root, ie complex roots can be found with only an estimate of the real

or imaginary part of the complex root. However the rate of convergence of Muller’s

method is fairly dependent on the initial estimate chosen.

A method using this programming variation for calculating the attenuation due to

dielectric loss for the rectangular shielded dielectric rod waveguide will be described in

the next chapter in section 5.4.

4.5.2 Calculation of the Unknown Coefficients and Field Plotting of

a Propagating Mode

The programing steps to find the unknown coefficients of the basis functions for a

shielded rectangular dielectric rod waveguide are shown in the flow chart of Figure 4.7

and the details are as follows:

1. Download the parameters, including wavenumbers, and dimensions of the struc-

ture that was used in the previous program to calculate the propagation co-

efficients at a particular frequency. Downloading rather than regenerating the

wavenumbers is preferred as the process of obtaining them accurately is time

consuming.

Select and input a propagation coefficient of interest.

The next three steps are the same as steps 3, 5 and 6 of the program of section
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(1) Download:

dimensions, frequency,

propagation coefficient,

permittivity, constants,

number of basis functions,

(2) Calculate

wave numbers

(3) Find the coupling integrals

(4) Calculate region II constants K

(5) Form the region I elements of the equation  matrix

Form the region II elements of the equation matrix

(6) Select an unknown coefficient to be unity and form

a system of linear equations

Stop

End

Start

bo bd

(7) Solve the system of linear

equations by QR decomposition

Figure 4.7: Flow chart of the program to find the unknown coefficients of the basis
function equations associated with a mode of the shielded rectangular dielectric
rod waveguide.

4.5.1 to find the propagation coefficients:

2. Calculate using equations (4.6) the wavenumbers of the air β0 and dielectric rod

βd region materials.

3. Calculate an array of the coupling integrals of region II.

4. Calculate the constants K which are used to reduce the number of unknown

coefficients in the region II equations.

5. This step is essentially the same as step 8 of section 4.5.1 but in this case an

unknown coefficient is made unity (or some convenient factor) so that a column

of the LHS of matrix equation (4.35) can be transposed to the RHS forming the
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set of linear equations (4.36). Theoretically it does not matter which unknown

coefficient is selected to be made unity and in practice only very small variations

(<0.001%) were noted in calculated values of dielectric and shield wall losses (see

Chapter 5) when a different selected coefficient was used. It is thought that the

variation is associated with round off error as some of the matrix columns have

elements that do not have as many significant figures as others. This is due to

the very large range of element magnitudes that can occur in the matrix.

6. As an unknown coefficient has been removed but the number of equations remains

the same the system now has more equations than unknowns. This overdeter-

mined system of equations (4.36) can be solved for the normalised values of the

unknown coefficients by QR decomposition using the Matlab operator ‘\’.

A problem with rank deficiency of the equation matrix can be encountered when

the number of basis functions used in calculation exceeds a threshold value. When

this happens no solutions can be found. However the number of basis functions

required for a desired degree of convergence to the extrapolated solution of the

propagation coefficient (see sections 4.6.1 and 4.10.2) is well below this threshold.

If the unknown coefficients of the basis functions of a propagating mode are found the

field patterns of the mode can be plotted. The flowchart of a program to create 2

dimensional plots in coordinate planes of interest is shown in Figure 4.8 and the details

are as follows:

1. Download the parameters, including wavenumbers, and dimensions of the struc-

ture that was used in the previous program to calculate the unknown coefficients.

Download the calculated basis function coefficients.

Calculate using equations (4.6) the wavenumbers of the air β0 and dielectric rod

βd region materials.

Calculate the constants K which are used to reduce the number of unknown

coefficients in the region II equations.

2. Provide a ‘for’ loop of the indices allocated to each mode so that the calculated
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(1) Download:

Coefficients, dimensions, frequency,

propagation coefficient, permittivity,

constants, number of basis functions, wavenumbers

Calculate

Calculate region II constants K

Stop

End

Start

bo bd

(2) Range of basis functions

(4) Calculate basis function

field component values

for each grid point

(3) Range of grid points

(5) All grid points

evaluated?

(6) For each successive basis function

sum each, like, field

component value at

each grid point

(7) Basis functions

completed?

(8) Plot the required coordinate

plane field components

with  Matlab 'quiver'

Next basis function

Next grid point

No

Yes

No

Yes

Figure 4.8: Flow chart of the program to plot the 2 dimensional coordinate plane
field patterns of a propagating mode in the shielded rectangular dielectric rod
waveguide.
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Shield (Electric Wall)
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Figure 4.9: Example of a grid constructed to allow the plotting of 2 dimensional x-y
coordinate plane field patterns of the shielded rectangular dielectric rod waveguide.

coefficients for each mode can be accessed as required.

3. Provide ‘for’ loops of the indices of coordinate points assigned to a plane at the

intersection of grid lines. For example see Figure 4.9 where a grid has been

assigned to the x y plane of quarter of the structure.

4. Using the basis function equations of Appendix B calculate the field intensities

for each field component at a grid point in the desired plane.

5. Calculate the field component values until all points in the plane are completed

for this mode.

6. For each successive mode sum all, like, component values at each point.

7. Continue until all basis functions assigned are used.

8. Plot the electric field components of a coordinate plane against each other by use

of the Matlab function ‘quiver’. Likewise for the magnetic field components of the

same coordinate plane. This will create a 2 dimensional vector field representation

of the electric field and one of the magnetic field corresponding to the previously

calculated propagation coefficient.
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A copy of the computer programs described in this section can be seen on the companion

CD-ROM for this thesis and operating details are given in Appendix D.

4.6 Discussion and Comparison of Results

with other Methods

To confirm the validity of this method the propagation coefficients were calculated for

a number of frequency ranges and permittivity values, and compared to the results

from other methods. All of the calculations and measurements reported here are for a

square cross-section, ie a square dielectric rod symmetrically located within a square

shield. The structure will be characterized by the aspect ratio DDR = a1/b1 for the

dielectric rod and SDDR = a2/a1 for the shield. In some of the following results the

normalization applied by Schweig & Bridges (1984) will be used, where V and B are

the normalised frequency and propagation coefficient respectively.

V = 2a1β0
√

εr2

B =
(βz/β0)

2

εr2

β0 = ω
√

µ0ε0

(4.37)

The method described in this chapter gives the propagation coefficients of the possible

modes for each symmetry used. The designations of the modes on the dielectric line

in this chapter are same as that used by Marcatili, Goell and others. Modes will be

identified as Ey
mn or Ex

mn, where x or y denotes the direction of polarization of the

main electric field, and m and n are the number of maxima in the x and y directions

over the x-y plane of the dielectric.
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Figure 4.10: Comparison of the convergence properties of the Goell and MSW
methods when used with a square cross-section dielectric rod waveguide (εr2 =
37.4) in free-space. The propagation coefficients of the degenerate modes Ex

11 and
Ey

11 are calculated using EO and OE symmetry respectively.

4.6.1 Comparison of Method Convergence Properties

A comparison of the convergence properties of Goell’s method and the modified Solbach

and Wolff method (MSW), versus the number of basis functions used, is shown in Figure

4.10. The dielectric rod was square (DDR = 1, 6.025mm x 6.025mm) with εr2 = 37.4,

and in free space with a frequency of 4.532GHz (V=7 nornmalised frequency). The

square shield dimension ratio in the MSW method had SDDR = 3 which is of sufficient

distance from the dielectric so as to be a good approximation of free space. Evidence

of this can be seen in Figure 4.11 where the propagation coefficient results are virtually

constant above an SDDR of 2. The propagation coefficients of the degenerate modes

Ex
11 and Ey

11 are calculated using EO and OE symmetry respectively.

The convergence of the MSW method for both symmetries shown in Figure 4.10 is

good with the propagation coefficient values calculated with 4 TM y and 4 TEy basis

functions within 0.02% of that at 15 TM y and 15 TEy basis functions.
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Figure 4.11: Effect of the proximity of the shield on βz, εr2 = 37.4, a1 = b1=6mm,
frequency=3.5GHz.

At 11 TM y and 11 TEy basis functions, and above, the MSW method and Goell’s

results are within 0.4%.

4.6.2 The Effect on the Propagation Coefficient of the Proximity of

the Shield to the Dielectric Rod

The effect of the proximity of the shield on the propagation coefficients of the first few

modes to propagate (Ey
11 and Ex

21/E
y
12) is shown in Figure 4.11. It can be seen that for

a shield-to-dielectric dimension ratio value SDDR > 2 the shield has only a small effect

on the propagation coefficient. These results are verified by considering the situation

where the shield size approaches that of the dielectric (SDDR = 1). In both cases the

propagation coefficients found using the MSW method approached those calculated for

dielectric filled rectangular waveguide (Pozar, 1998, p. 128), as shown on the figure.
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Figure 4.12: Comparison of the βz calculation methods of MSW and Goell for a
square cross-section dielectric rod waveguide in free-space, where B and V are the
normalised propagation coefficient and frequency respectively (εr2 = 13.1).

4.6.3 Comparison of Methods used for Calculation of the Rod Prop-

agation Coefficient in Free Space

With the dielectric in free space, εr2 = 13.1 and DDR = 1, Figure 4.12 shows the

propagation coefficients of the first modes to propagate for normalised frequencies from

V = 4 to V = 12. To simulate a free-space situation, SDDR = 3 is used in the MSW

program. One can see that there is good agreement with the free space method of

Goell. Some differences at low frequencies are due to the effect of the use of the shield

in the MSW program. Modes Ex
11 and Ey

11 are degenerate while Ex
21/E

x
12 and Ex

12/E
x
21

are degenerate and coupled (discussed later in section 4.7).
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Figure 4.13: Comparison of the βz calculation methods of MSW, the boundary
element method of Collin and the finite difference method of Schweig and Bridges
for a shielded square cross-section dielectric rod waveguide, SDDR = 1.87, εr2 =
2.22, where B and V are the normalised propagation coefficient and frequency
respectively.

4.6.4 Comparison of Methods for Calculation of the Shielded Dielec-

tric Rod Propagation Coefficient

The MSW method with EO symmetry shows good agreement with propagation coeffi-

cients obtained by Collin (1991, pp.454-459)(Collin & Ksienski, 1987), using a boundary

element method, and the finite difference method of Schweig & Bridges (1984). These

results are shown in Figure 4.13. The mode is Ex
11, DDR = 1, SDDR = 1.87 and

εr2 = 2.22.

4.6.5 Propagation Coefficient verses Frequency Mode Diagram of the

Shielded Dielectric Rod Waveguide

The propagation coefficient verses frequency mode diagram, of the first few modes to

propagate, is shown in Figure 4.14. The 12mm square dielectric has a permittivity
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Figure 4.14: Mode diagram for the first few modes to propagate in a shielded
dielectric rod waveguide plus some of the associated complex modes, evanescent
modes and backward waves. DDR = 1(a1=6mm), SDDR = 2(a2=12mm),εr2 =
37.13. The modes are labeled with their associated symmetry in parentheses.

εr = 37.13, the shield is 24mm square (SDDR = 2). The figure shows differences

from that of the dielectric image line reported by Strube & Arndt (1985). The MSW

method (for a shielded dielectric rod waveguide with DDR = 1 and SDDR = 2)

reveals a coupled Ex
21/E

y
12 mode which is dominant in this structure and also the Ey

11

mode is associated with a degenerate Ex
11. The Ex

11 and Ex
21/E

y
12 modes and their

associated higher order modes do not occur in the dielectric image line and the studies

of this structure in Solbach & Wolff (1978) and Strube & Arndt (1985) use only a

combination of OE and EE symmetry. Some of the complex, evanescent and backward

wave modes for the shielded dielectric rod, mentioned in section 4.4.3, are also shown

in Figure 4.14. The symmetry associated with each mode is shown in parentheses.

A point of interest about this structure is that the propagating frequency range of

the hybrid modes shown is well below the cutoff frequency of an empty rectangular

waveguide of the same dimensions as the shield, ie 6.2457GHz for TE01/TE10 modes

in a 24mm square waveguide.
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4.7 Field Patterns of the First Few Modes to Propagate

on the Shielded Dielectric Rod Waveguide

The transverse electric and magnetic fields of the Ex
11 mode, in one quarter of the

structure, and determined from EO symmetry, are shown in Figure 4.15. The E y
11 mode

is degenerate with the Ex
11 mode and is shown in Figure 4.16. It has OE symmetry.

Both these modes have a calculated propagation coefficient of βz = 305.42 at 3.5GHz .

The 12mm square dielectric has a permittivity εr = 37.13, the shield is 24mm square

(SDDR=2).

The Ex
21/E

x
12 coupled modes have OO symmetry. In a square cross-section, using

the same parameters, these are also degenerate, as they have the same propagation

coefficient βz = 89.2. The resultant field plot is a superposition of both modes, as shown

in Figure 4.17. These modes are coupled together, as described by Goell (1969, p. 2150),

such that their propagation coefficients remain locked together for a range of cross-

section aspect ratios. The coupled modes separate when DDR is somewhat greater

or less than 1 depending on the frequency. For example if, for this same structure,

DDR = 4/3 (a1=8mm, b1=6mm) is used, the Ex
21 mode is now uncoupled and is

found to have a propagation coefficient of βz = 136.4. The Ey
12 mode was found not

to propagate. The field pattern of the mode is shown in Figure 4.18. If DDR = 3/4

(a1=6mm, b1=8mm) is used instead, the roles of the modes are reversed. The same

type of situations occur when the Ex
12/E

y
21 modes are produced with EE symmetry (see

Figure 4.19).

It is interesting to note that the transverse field patterns of Figures 4.16 (Ex
11) and 4.17

(Ex
21/E

x
12) in the dielectric rod are not unlike the TE10 and TM11 modes in dielectric

filled rectangular waveguide respectively, as was indicated in section 4.6.2. The Ex
12/E

y
21

coupled modes however cut off as SDDR approaches 1 and have no similarity to any

rectangular dielectric filled waveguide mode.
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Figure 4.15: Plot of the electric and magnetic fields (εr2 = 37.13) of the Ex
11 mode

from the MSW method and EO symmetry. Quarter of the structure.
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Figure 4.16: Plot of the electric and magnetic fields (εr2 = 37.13) of the Ey
11 mode

from the MSW method and OE symmetry. Quarter of the structure.
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Figure 4.17: Plot of the electric and magnetic fields of the coupled Ex
21 and Ey

12

modes with dielectric aspect ratio DDR = 1, OO symmetry. NB electric field
intensity in the dielectric x 5. Quarter of the structure.
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Figure 4.18: Plot of the electric field (εr2 = 37.13) of the Ex
21 mode with dielectric

aspect ratio DDR = 1.33 (Ey
12 now non propagating), OO symmetry. NB electric

field intensity in the dielectric x 10. Quarter of the structure.
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Figure 4.19: Plot of the electric and magnetic fields of the coupled Ex
12 and Ey

21

modes with dielectric aspect ratio DDR = 1, EE symmetry. Quarter of the
structure.

The electric field intensities in the dielectric in Figures 4.17 and 4.18 have been ar-

tificially increased by factors of 10 and 5 respectively in the plots. This is so that

field patterns in the dielectric can be shown effectively at the same time as the larger

intensity field of the air region.
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Figure 4.20: Setup for an S11 measurement of the shielded dielectric waveguide.

4.8 Measurement Technique

Apart from the boundary element method results of Collin mentioned in section 4.6,

there does not appear to be any published results on the specific effects of the shield

on the propagation coefficient of the structure described in this chapter. Therefore to

verify the method when the shield is close to the dielectric, a measurement approach

was devised whereby the propagation coefficient could be calculated from the measured

reflection coefficient S11 of the structure. A length L of shielded square cross-section

dielectric rod was fitted with end plates, and a connector and probe were installed mid

way to allow measurement by a vector network analyzer. See Figure 4.20. To provide a

situation where there would be a sufficient effect from the shield, dielectric dimensions

of a1=b1=6 mm and a2=b2=9 mm (SDDR = 1.5) where chosen. The dielectric used

was 153.3 mm long and had a nominal relative permittivity of 37.4± 1. This structure

behaves as a resonant cavity and the resonant frequencies produced are related to

multiple half wavelengths between the plates and can be measured at minimum points

in the S11 magnitude data. The propagation coefficient at these points can then be

calculated from:

βz(N) =
πN

L
(4.38)

where N is the number of multiple half wavelengths of the resonant modes that can

exist in the shielded dielectric rod waveguide, and L is the distance between the planes.
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These propagation coefficient values βz(N) can then be compared to calculated values

from the MSW method at the measured resonant frequencies.

4.9 Comparison of Calculated and Measured Results

A plot of calculated propagation coefficient over a frequency range that covers the first

few modes to propagate is shown in Figure 4.21. The coupled Ex
21/E

y
12 modes are

dominant, and the degenerate modes Ex
11 and Ey

11, which are normally dominant in the

free space situation, are found to be cut off at just below 2.9GHz.

With this frequency range applied to the test set up of Figure 4.20 the S11 data produced

is as shown in Figure 4.22. It was found that the frequencies at the resonant dips shown

were within 1% of calculated resonant frequencies for the Ex
21/E

y
12 coupled and Ex

11,

Ey
11 degenerate modes. The Ex

12/E
y
21 mode did not couple to the measurement probe,

nor did N = 5 for the Ex
21/E

y
12 mode and N = 11 for the Ex

11, Ey
11 modes.

It can be seen that some of the resonant dips associated with Ex
11 and Ey

11 are in pairs

and some are not. Some of these are too small to be seen due to the scale of the figure.

The pairing indicates that these modes are not quite degenerate in the test unit due

to some asymmetry in its dimensions. In these cases the measurement frequency was

averaged. Where only a single resonant dip was measured it appears that either the

Ex
11 or Ey

11 mode did not couple sufficiently to the probe to be visible or they overlap.

The figure also shows that there are no resonances below 2.9GHz for the Ex
11 and Ey

11

modes and so the Ex
21/E

y
12 coupled mode is truly dominant. The propagation coeffi-

cients, calculated from (4.38) at the measured frequencies for Ex
11, Ey

11, are compared

against MSW calculated values in Figure 4.23. An estimated permittivity of the di-

electric of εr2 = 37.13 was used. The extremes of the permittivity tolerance for this

dielectric are also shown in the figure.
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Figure 4.21: Calculated propagation coefficient values for the first few modes
to propagate, shield-to-dielectric dimension ratio SDDR = 1.5. The modes are
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Figure 4.23: Comparison of βz(N) propagation coefficients, at the measured reso-
nant frequencies, and calculated propagation coefficients for the Ex

11 or Ey
11 mode.
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Figure 4.24: Comparison of βz(N) propagation coefficients, at the measured reso-
nant frequencies, and calculated propagation coefficients for the Ex
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12 coupled

mode.
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The measured propagation coefficient values for the Ex
11, Ey

11 modes are within 2%

of the MSW values above 3GHz. Similarly the measured propagation values for the

Ex
21/E

y
12 coupled mode are also within 2% as shown in Figure 4.24.

4.10 Problems and Limitations of the Mode Matching

Solution

4.10.1 Wavenumber Calculations

During the mode matching program procedure, wavenumbers β
(II2)
yn and β

(II1)
yn for both

the TE and TM modes, are calculated from the transcendental equations of Appendix

B.2 and equation (4.20) using the Matlab function ‘Fzero’ or some other root finding

algorithm. Caution has to be observed while searching that none in the selected range

are overlooked. Missed values generally occurred when, in an effort to speed up the root

finding process, too large a step size was used between the wavenumber estimates. This

can have the effect that only one wavenumber will be found when two wavenumbers are

very close together or a wavenumber will be missed when one is very close to singularity

points that occur in the transcendental equations. See Figure 4.25. This problem can

cause poor convergence and inaccuracy in propagation coefficient calculations and in

extreme cases no solution will be found. Fortunately this problem can be detected easily

by graphing the calculated propagation coefficient values verses frequency and checking

for any discontinuity. The step size is then decreased for this particular frequency until

the discontinuity disappears. For example, as long as the wavenumber step size was

equal to or below 0.5 when compiling the data for Figures 4.14 and 4.21, no wavenumber

problems occurred.
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Figure 4.25: A root of a transcendental equation close to a singularity. This
wavenumber can be missed by a root finding function if the estimate step size is
too high.

4.10.2 Propagation Coefficient Calculation

The method used in the coaxial resonator problem of Chapter 3 used testing functions

from one region with the electric basis functions, and from the other region with the

magnetic basis functions. This allowed the final equation/testing function matrix (see

equation (4.35)) to be in the correct form for solution so that different numbers of

basis functions could be used in each region. The modified Solbach and Wolff method

however uses testing functions from region I only with the electric and magnetic basis

functions. This enables simple expansion of the tangential basis function components at

the mode matching boundary, as the integrals formed from the orthogonality relations,

are easy to solve. The consequence of this however is that, for the final equation/testing

function matrix to be in the correct form, equal numbers of basis functions must be

used in regions I and II. Fortunately this does not create any problems with relative

convergence (Mittra & Lee, 1971) (Leroy, 1983).
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Figure 4.26: Convergence properties of rectangular shielded dielectric rod res-
onator for different shield-to-dielectric dimension ratios SDDRs and a comparison
with the propagation coefficients corresponding to measured resonant frequencies.

The convergence properties of the MSW method using EO symmetry for three different

shield square cross-section sizes are shown in Figure 4.26. The dielectric is of square

cross-section (12mm x 12mm) and εr = 37.13. Shield-to-dielectric ratios SDDR of 2.0,

1.5, and 1.1 are calculated. The degree of convergence can be observed by comparing

the propagation coefficient values at 4 and 14 TE and TM basis functions. For SDDRs

of 2 and 1.5 these are within 0.002% and 0.025% respectively. For SDDR = 1.1, where

the shield is a lot closer to the dielectric, the propagation coefficient is within 0.5% but

reducing to 0.15% at 10 TE and TM basis functions.

With reference to the resonator set up of section 4.8, the dashed lines in the upper

and centre graphs of Figure 4.26 are propagation coefficients at N=13 and N=12 half

wavelengths respectively, calculated from the relationship βz(N) = πN
L (L = 153.3mm).

The propagation coefficient points in the upper and centre graphs were calculated using

the measured frequencies at these N half wavelengths. The difference in propagation

coefficient values at 14 TE and TM basis functions is less than 0.1% for N = 13 and

less than 0.4% for N = 12.
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There is a maximum limit to the number of basis functions that can be used in calcu-

lation. This is due to the very large numbers that occur when trigonometric functions

are evaluated with imaginary arguments which can exceed the maximum floating point

number of the computer. The indication of this is a message from the software (Matlab

etc) declaring mathematically undefined operations in the equation/testing function

matrix and that no solution is possible. This problem can be overcome for practical

numbers of basis functions by multiplying the equation/testing function matrix with

a suitable constant. For calculated values within 1% of those measured no more than

14 basis functions were ever needed in this research and this value was always well

below the onset of any numerical problems. For example a result for the structure with

SDDR = 2 depicted in the top graph of Figure 4.26 could still be obtained with 35

TE and TM basis functions. The structure with SDDR = 1.1 in the lower graph did

have numerical problems and failed to give a result at 31 TE and TM basis functions.

However, convergence to a sufficiently constant value had occurred, as shown, at less

than half this number of basis functions.

4.10.3 Unknown Coefficients and Field Plotting

As was the case for the coaxial resonator of Chapter 3 it was found that there is a limit

to the number of basis functions that can be used in the system of equations, before

ill-conditioning occurs in the form of rank deficiency. This is due to the very large

dynamic range of the element values in the matrix, which can approach the limited

numerical range of the computer. The element values in some rows are rounded off

to the extent that they become indistinguishable with other rows creating the rank

deficiency. However the number of basis functions required for a reasonable degree of

convergence (see sections 4.6.1 and 4.10.2) is well below the limit of about 10 to 12 TE

and TM basis functions (depending on the dimensions of the structure).
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Figure 4.27: Normalised intensities of the electric field components at the mode
matching boundary. Region II1/II2 is compared to region I . N = 8, SDDR = 2,
a1 = b1 = 6mm, a2 = b2 = 12mm
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Figure 4.28: Normalised intensities of the magnetic field components at the mode
matching boundary. Region II1/II2 is compared to region I . N = 8, SDDR = 2,
a1 = b1 = 6mm, a2 = b2 = 12mm
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Figure 4.29: Normalised intensities of the electric field components at the mode
matching boundary. Region II1/II2 is compared to region I . N = 11, SDDR = 2,
a1 = b1 = 6mm, a2 = b2 = 12mm
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Figure 4.30: Normalised intensities of the magnetic field components at the mode
matching boundary. Region II1/II2 is compared to region I . N = 11, SDDR = 2,
a1 = b1 = 6mm, a2 = b2 = 12mm
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In Chapter 5 it will be shown that values of attenuation loss for the rectangular shielded

dielectric rod waveguide can be calculated and these results can be verified by comparing

calculated and measured Q of a resonator, using this waveguide, to around 8% (section

5.7). In those calculations only 8 TE and TM basis functions were used to find the

unknown coefficients of the basis functions and the reason for this can be seen by

comparing Figures 4.27 and 4.28 with Figures 4.29 and 4.30. The first two figures show

the matching of the basis function field components at the mode matching boundary

between regions I and II (see Figure 4.2) for 8 TE and TM basis functions. The

matching is good with some components matching so well that the curves are nearly

coincident. The step in the Ex component values below 6mm is due to the change in

permittivity at the boundary. This step in permittivity also creates poorer matching of

the Ey component near 6mm due to the the field solution singularity at the dielectric rod

corner (Sudbo, 1992). In this case the discontinuity creates a r−1/3 singularity (Collin,

1991, p. 27) which describes the variation in the field solution for distance r from the

corner. The ringing effects in Ex and Ey can be likened to the Gibbs phenomenon

in Fourier analysis where a series will converge slowly and exhibit oscillations near

discontinuities (Sudbo, 1992). The last two Figures (4.29 and 4.30) are for 11 TE and

TM basis functions and show matching which is not significantly different to the first

two with only 8 TE and TM basis functions.

4.11 Conclusion

A rigorous method for the computation of the propagation coefficients and field pat-

terns of the fundamental modes in a shielded rectangular dielectric rod waveguide has

been presented. The method, based on that of Solbach and Wolff, gives closely compa-

rable results to that of Goell in free space, and the boundary element method of Collin,

and has been verified by experiment for the case of a shield close to a dielectric of high

permittivity. The method also reveals the original result that when the dielectric is

shielded there exists a dominant Ex
21/E

y
12 coupled modes, a fundamental Ex

11 mode,

and all the higher order modes associated with OO and EO symmetry not previously
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identified (section 4.2). The method allows the effect of shield proximity to be assessed,

and so has application to the design of cavity filters incorporating rectangular paral-

lelepiped or cubic dielectric resonators. It is easily extended to include calculation of

both dielectric losses, and conductor losses in the shield wall. This will be the subject

of Chapter 5. There are some limitations to the method but knowledge of these will

allow the achievement of sufficiently accurate results for most purposes. This work

could provide a basis for the calculation of the resonant frequencies of fundamental

mode dielectric-loaded cavity resonators.



Chapter 5

Attenuation of a Shielded

Rectangular Dielectric Rod

Waveguide

5.1 Introduction

Rectangular dielectric waveguides are used in integrated optics, millimeter-wave inte-

grated circuits and as transmission lines. Compared to metal waveguides, at millimeter-

wave frequencies, they have lower propagation loss (depending on the dielectric loss),

lower cost and are easier to fabricate (Lioubtchenko et al., 2003). They are also sig-

nificantly smaller (Engel-Jr. & Kathi, 1991). Shielded square cross-section dielectric

resonators are also used in filter applications e.g. in multimode cubic dielectric res-

onator filters (Hunter, 2001).

The loss in open rectangular dielectric waveguides is due to that in the dielectric.

However, if the waveguide is surrounded by a rectangular metallic shield, to prevent

interference (see Figure(5.1)), then the total loss of the waveguide will also include loss

due to induced currents in the inner surface of the shield walls. In Chapter 4 a modified

103
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Figure 5.1: Shielded dielectric rod waveguide

version of the mode matching method devised by Solbach & Wolff (1978), called the

MSW method, was used to find the propagation coefficients and field patterns of the

hybrid modes of a shielded rectangular dielectric waveguide.

In this chapter the calculated fields for the commonly used Ey
11 mode (Lioubtchenko

et al., 2003) will be employed to find the wall and dielectric losses of the waveguide and

hence its attenuation. For the Ey
11 mode and the dominant Ex

21/E
y
12 coupled mode the

effect of the proximity of the shield on the attenuation will also be evaluated.

All of this chapter is original work, and the principal results have been submitted

for publication in IEEE Transactions on Microwave Theory and Techniques (Wells &

Ball, 2005a).

5.2 Analysis of Power Loss in the Dielectric Waveguide

One quarter of the cross-section of the rectangular dielectric waveguide is shown in

Figure 5.2. In this chapter it will be considered that regions I and II1 will be free

space so that the permittivity εr1 will be ε0. From Poynting’s theorem (Pozar, 1998, p.

28) the time average power P0 over the full transverse cross-section (z = 0) of a wave
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Figure 5.2: One quadrant of the cross-section, showing mode matching regions

traveling in the plus z direction can be written as:

P0 =
1

2
Re 4

∫ b2

0

∫ a2

0
E×H∗ · ẑ dx dy (5.1)

= 2Re

∫ b2

0

∫ a2

0
(ExH∗

y − EyH
∗
x) dx dy (5.2)

where * denotes a complex conjugate.

If the dissipation in the walls and dielectric is sufficiently small, the fields within the

waveguide will be almost the same as the lossless case. This allows both types of loss

to be estimated from the lossless fields using the perturbation method. The following

subsections give expressions for the attenuation coefficient and the associated dielectric

and shield wall loss for the rectangular shielded dielectric rod waveguide adapted from

those of popular texts (Balanis, 1988) (Pozar, 1998):
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5.2.1 Attenuation Coefficient

From Balanis (1988, p. 377) the attenuation coefficient per unit length (Np/m) can be

written as:

α =
Pl

2P0
=

Pd + Pw

2P0
= αd + αw (5.3)

where Pd and Pw are the dielectric loss and shield wall loss respectively per unit length

and αd and αw are the respective attenuation coefficients.

In practice conductor loss is increased by surface roughness, and this is normally taken

into account by multiplying the theoretical value of the surface resistance by a roughness

factor (Morgan, 1949).

5.2.2 Dielectric Loss

From Poynting’s theorem the dielectric power loss for the full cross-section per unit

length (Pozar, 1998, p. 61) can be written as:

Pd =
ωε

′′

εo

2
4

∫ b1

0

∫ a1

0
|E(x, y, z)|2 dx dy (5.4)

= ωε
′′

εo 2

∫ b1

0

∫ a1

0
(EyE

∗
y + ExE∗

x + EzE
∗
z ) dx dy (5.5)

with

ε
′′

= ε
′

tan δ

where εo is the permittivity of free space, ε
′′

is the dielectric loss factor, ε
′

is the real

part of the dielectric relative permittivity εr2 in region II2 and tan δ is the dielectric

loss tangent.
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5.2.3 Shield Wall Loss

The conductor loss per unit length in the shield walls of a rectangular waveguide (Pozar,

1998, pp.38,125) can be written as:

Pw =
1

2
RS

∫

C
|Js|2dl (5.6)

=
1

2
RS

∫

C
|Htan|2dl (5.7)

and

RS =

√

ωµo

2σ

where J̄s is the surface current density in the walls, H̄tan is the magnetic field tangential

to them, RS is the wall surface resistance, µo is the permeability of free space, and σ

is the conductivity of the wall material. Integration contour C encloses the interior

cross-section perimeter of the guide walls.

Using equation (5.7) an equation for the loss per unit length of the top and right hand

side walls for the full cross-section of the rectangular dielectric waveguide can then be

found to be:

Pw =
1

2
RS 4 (

∫ a2

0
|H(t)(x, z)|2 dx

+

∫ b2

0
|H(s)(y, z)|2 dy) (5.8)

= RS 2 (

∫ a2

0
(H(t)

x H∗(t)
x + H(t)

z H∗(t)
z ) dx

+

∫ b2

0
(H(s)

y H∗(s)
y + H(s)

z H∗(s)
z ) dy)

(5.9)

where superscripts t and s denote field components that are tangential to the top or

right hand side walls respectively.
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5.3 Calculating the Attenuation Coefficient Using Mode

Matching

The modes supported by a rectangular shielded dielectric rod waveguide were investi-

gated using mode matching in Chapter 4, and this work has been reported in a recent

paper (Wells & Ball, 2005b). The cross-section was divided into three separate regions,

and the field within each region represented as a sum of basis functions particular to

the region. Because of symmetry, it was only necessary to consider one quadrant of

the cross-section, for which the mode matching regions are as shown in Figure 5.2.

Continuity of the tangential fields was then enforced at the boundaries between the

regions, allowing the amplitudes of the basis functions to be determined. Once this

has been accomplished, the field components of any required mode can be calculated

at any point in the cross-section.

To calculate the power losses within the waveguide, the cross-section is overlaid with

a grid with lines spaced at 4x and 4y, as illustrated in Figure 5.3. Field values and
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power densities are calculated at intersection of the grid lines, and the total power flow

and power dissipation are found by numerical integration. The total power flow, for

the full cross-section, can be found by writing equation (5.2) in Riemannn sum form

as:

P0 ' 2Re(

n
∑

i=1

(E
(i)
xI H

∗(i)
yI − E

(i)
yI H

∗(i)
xI )

+
m
∑

j=1

(E
(j)
xII1H

∗(j)
yII1 − E

(j)
yII1H

∗(j)
xII1)

+

p
∑

k=1

(E
(k)
xII2H

∗(k)
yII2 − E

(k)
yII2H

∗(k)
yII2))

·∆x∆y

(5.10)

where i, j, k identify the n, m and p nodes in regions I, II1, II2 respectively.

The dielectric power loss per unit length, for the full cross-section, is obtained from

equation (5.5) as:

Pd ' 2ωε
′′

εo

p
∑

k=1

(E(k)
y E∗(k)

y + E(k)
x E∗(k)

x + E(k)
z E∗(k)

z )∆x∆y (5.11)

where the k index identifies p nodes in region II2.

The conductor losses in the shield walls, for the full cross-section, are derived from

equation (5.9) as:

Pw ' 2RS(

T
∑

t=1

(H(t)
x H∗(t)

x + H(t)
z H∗(t)

z )∆x

+
S
∑

s=1

(H(s)
y H∗(s)

y + H(s)
z H∗(s)

z )∆y)

(5.12)

where t identifies T nodes, on the top shield boundary (0 ≤ x ≤ a2, y = b2) spaced ∆x

and index s identifies S nodes, on the right hand side shield boundary (0 ≤ y ≤ b2, x =

a2) with spacing ∆y. Also in equations (5.10), (5.11) and (5.12) each component of E

or H, at a point, is the sum of a number of basis function values calculated using the

MSW method at that point.
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By substituting the field component values at each grid point into these equations, a

close approximation of the power flow and losses can be obtained for the structure.

Since equations (5.10), (5.11) and (5.12) are obtained from four times the quarter

structure of Figure 5.3 duplication of any common points at the boundaries must be

taken into account. Equation (5.3) can then be used to find the attenuation coefficient

due to dielectric loss, shield wall loss or total loss.

5.4 Alternative Method - Attenuation Coefficient due to

Dielectric Loss

Another way of calculating the attenuation due to dielectric loss αd only is to calculate

it directly using the MSW method. In this procedure the lossless propagation coefficient

βz is calculated first. The loss factor ε′′, is then determined from the loss tangent, and

included to give a complex permittivity of the dielectric. The program can then be

run again using a range of complex propagation coefficients γz . These consist of the

lossless βz and a range of αz values. A value of αd is then determined by finding that

value of αz for which the determinant of the mode-matching equation matrix is closest

to zero. This would normally be the start of an iterative process in which αd and βz are

varied alternatively until the propagation coefficient converges to a value of sufficient

accuracy. It was found however, that during the iterative procedure, the variation in

βz was insignificant and so only the initial lossless βz was required.

The perturbation method using the grid is preferred to the above direct method as

it can be used to find both shield wall loss and dielectric loss. Also it is much faster

to compute. However, since fields from the lossless solution are used to estimate the

dissipation, some additional error is involved. In section 5.5.2, dielectric loss results

obtained by both methods are compared, to show that the additional error cost of the

perturbation approximation is negligible.

Typical determinant value verses attenuation coefficient data, from the computer pro-



CHAPTER 5. ATTENUATION OF A SHIELDED RECTANGULAR DIELECTRIC
ROD WAVEGUIDE 111

0.03 0.032 0.034 0.036 0.038 0.04 0.042
−1

−0.5

0

0.5

1
x 10

7

R
ea

l &
 Im

ag
in

ar
y 

   
   

 D
et

er
m

in
an

t 
V

al
u

e 
   

 Real
Imaginary

0.03 0.032 0.034 0.036 0.038 0.04 0.042
5.3

5.4

5.5

5.6

5.7

5.8
x 10

6

α
z
 Np/m

A
b

so
lu

te
 D

et
er

m
in

an
t 

V
al

u
e

Direct Method
0.03605 Np/m 

Grid Method  
0.03617 Np/m 

β
z
 lossless

288.2 rad/m 
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gram used, is shown in Figure 5.4. The upper sub plot shows the real and imaginary

values of the determinant and the lower the absolute value. The best approximation

to the attenuation coefficient eigenvalue occurs at the minimum absolute value of the

determinant, ie when the real and imaginary determinant values are closest to zero at

the same time. The figure also shows a comparison between a direct method result

and one using the grid method with a 201x201 grid size. The difference in the values is

within 0.5%. Detailed results from this direct method are presented in section 5.5.2 to

help validate the grid method. More detail concerning the programming of the direct

method can be found in section 4.5.1.
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5.5 Discussion of Calculated Results

5.5.1 Attenuation Coefficient Calculations

The resultant attenuation coefficients created by the dissipation within the dielectric

and shield walls were calculated for the Ey
11 mode and Ex

21/E
y
12 coupled mode using the

grid method described in section 5.3. The dielectric rod material is barium tetratitinate,

for which the loss tangent is specified by the manufacturer (picoFaradTM) as:

tan δ = Frequency(GHz)/3 × 104 (5.13)

This material was also used to obtain the experimental results presented later. A

surface roughness factor of unity has been assumed for the metal shield.

The attenuation coefficient verses frequency (beginning near cutoff) with a shield-to-

dielectric dimension ratio, SDDR = a2/a1 = 2, is shown in Figures 5.5 and 5.6 for the

Ey
11 mode and the Ex

21/E
y
12 coupled mode respectively. The rise in α at the higher fre-

quencies in the figures is due to the natural increase in the loss tangent with frequency.

Also the graphs of attenuation coefficient verses SDDR with the frequency at 3.4GHz is

shown in Figures 5.7 and 5.8 for the Ey
11 mode and Ex

21/E
y
12 coupled mode respectively.

For the Ey
11 mode shown in Figure 5.7, as shield size increases relative to the dielectric,

αw is gradually dominated by a relatively constant αd. This indicates that when using

the above dielectric with a relative permittivity of around 37, choosing an SDDR > 2,

will minimise the effect of the shield conductor loss. However a similar structure with

a dielectric that has a lower loss tangent would benefit, in better overall loss, if the

shield was positioned further from the dielectric. Another observation from Figure 5.7

is that for αw to equal αd the shield has to be relatively close to the dielectric with an

SDDR of about 1.16.
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Figure 5.5: Attenuation coefficient versus frequency for the Ey
11 mode. The shield-

to-dielectric dimension ratio SDDR = a2/a1 = 2.
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It is interesting to note, from all the figures, that the attenuation coefficient is apprecia-

bly lower for the Ex
21/E

y
12 coupled mode compared to the Ey

11 mode owing to its lower

dielectric loss while maintaining a relatively low shield wall conduction loss. This is due

to the smaller intensity of the electric field in the dielectric compared to the air region

for this mode, which is revealed when the field pattern is plotted as in Figure 5.10. In

the figure the field intensity of the electric field has had to be increased artificially by

5 so that the dielectric field could be shown effectively at the same time as the larger

intensity of the air region.

The size of grid used in these plots was 51x51 points for one quarter of the structure.

The values marked with ‘o’ and ‘*’ on the plots are generated from an extrapolation of

the convergence of the attenuation coefficient with increase in grid size. The maximum

grid used in this convergence process was 501x501 which took a number of hours to

compute with a 1.6GHz P.C. The comparison of these values show that a grid size of

51x51 (only minutes to compute) gave results that are within 2% of those obtained

with the 501x501 grid for SDDRs at 1.5 and 2. Hence the smaller grid size should give

sufficient convergence to a solution for SDDRs down to about 1.3. Below this, larger

grid sizes are required as the differences in results for SDDR at 1.1 can approach 13%

for some modes. This can be seen in Figure 5.8 for this SDDR where the differences

between the values for attenuation due to wall and dielectric loss, for the coupled

Ex
21/E

y
12 mode, are 6.5% and 12.9% respectively.

The grid size of 51x51 will be used in section 5.7 where the grid method accuracy

was validated by using the results from it to calculate the Q of a rectangular shielded

dielectric line (used as a resonator) and compared to measured Q values.

5.5.2 Comparison of the Grid Method and Direct Method

to Calculate αd

To estimate the the extra error due to the perturbation approximation which is inherent

in the grid method αd of the Ey
11 mode was also calculated directly using the modified
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Figure 5.9: Electric and magnetic field patterns in the x-y plane for the Ey
11 mode

for quarter of the structure.

Solbach and Wolff (MSW) method as described in section 5.4. The results are shown

in Figures 5.5 and 5.7, and agree closely with the grid method values. The maximum

difference in αd between the grid (51x51 points) and direct methods is 0.7% and 2.9%

in Figures 5.5 and 5.7 respectively. However the extrapolated points from the grid

method (501x501 points), of Figure 5.7, are within 0.025% of the direct method values

at the same SDDR.

5.5.3 Calculated Values Compared to those Obtained Analytically

As SDDR ⇒ 1, the Ey
11 mode becomes TE10 and the Ex

21/E
y
12 coupled modes become

the TM11 mode. The TE10 and TM11 like qualities of these modes, in a cross-section

of the dielectric region, can be seen in figures 5.9 and 5.10 respectively. For the TE10

mode in rectangular waveguide the electric field vectors in the x-y plane are the result

of the Ey component and have one half wave variation across the waveguide in the x

direction only. The electric field in the dielectric rod is similar but does have some

y variation. This y variation gradually disappears as the shield is brought closer to

the rod. The electric field vectors in the x-y plane of the TM11 mode, in rectangular

waveguide, is the result of the superposition of Ex and Ey components giving a radial

pattern. The components each have one half wave variation across the waveguide.
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Figure 5.10: Electric and magnetic field patterns in the x-y plane for the coupled
Ex

21/Ey
12 modes for quarter of the structure.

differences at the dielectric rod edges. Again this gradually disappears as the shield is

brought closer to the rod. For both modes the magnetic field vectors in the x-y plane

are perpendicular to the electric field vectors.

A further check of the grid method was performed by calculating analytically, good

approximations of αw and αd for a square cross-section waveguide homogeneously filled

with dielectric. These were compared to those obtained from the grid method as the

SDDR value is brought very close to 1. From Pozar (1998, p. 125) the attenuation due

to wall loss for the TE10 mode in rectangular waveguide can be calculated analytically

from:

αh
w =

P h
w

2P h
10

=
2π2Rs[b + a/2 + (β2

za3)/2π2]

ωµa3bβz
(5.14)

and (5.15)

βz =
√

β2
0 − (mπ/a)2 (5.16)

where a = b = 2a2 = 2b2 in this case, P h
10 andP h

w are the time average power for the

TE10 mode and the power dissipated in the waveguide walls respectively and superscript

h stands for TE. The expressions for P h
10 andP h

w are the same as equations 5.1 and 5.7.

Similarly using the method described by Pozar the attenuation due to dissipation in
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the walls for the TM11 mode can be found from:

P e
11 = |Ae

11|2 1/16Re
βzωε0εra

4

π2
(5.17)

P e
w = |Ae

11|2 Rs/4
(ωε0εr

π

)2
a3 (5.18)

and then:

αe
w =

P e
w

2P e
11

= 2Rs
ωε0εr

βza
(5.19)

and (5.20)

βz =
√

β2
0 − (π/a)2 − (π/b)2 (5.21)

where superscript e stands for TM and Ae
11 is an unknown coefficient.

From Pozar (1998, p. 111) the attenuation coefficient due to dielectric loss in a ho-

mogeneously filled rectangular waveguide for both TE and TM modes can be found

from:

αd =
ω2µ0ε0εr tan δ

2βz
(5.22)

where βz will be specific to the type of mode.

To obtain the best accuracy the grid method values, as mentioned before, were obtained

from an extrapolation of the convergence of the attenuation coefficient with increase

in grid size. The results of the extrapolation are shown in Figures 5.11 and 5.12 and

are summarised in table 5.1. The analytically obtained values and those from the grid

method show a difference of less than 2%. The dimensions of the waveguide used

were the same as the dielectric rod used in experimental measurement, ie a 12.05mm

square cross-section, εr = 37.13, a frequency of 3.4GHz and with tan δ calculated for

the dielectric at that frequency. The maximum grid size used was 501 x 501.
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Figure 5.11: Extrapolation of the grid method, wall and dielectric loss values to
SDDR = 1. Comparison is made with those calculated for the TE10 mode in
dielectric filled rectangular waveguide using an analytical method.
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SDDR = 1. Comparison is made with those calculated for the TM11 mode in
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Table 5.1: Comparison of extrapolated grid method attenuation coefficient results
(Np/m) for the shielded rectangular dielectric waveguide, at SDDR=1, and those
calculated for dielectric filled rectangular waveguide (a1 = b2 = 6.025mm, εr2 =
37.13, Frequency = 3.4GHz).

TE10 Ey
11 %

Grid Method

αw 0.08447 0.0837 -0.9

αd 0.03077 0.0306 -0.6

TM11 Ex
21/E

y
12 %

Grid Method

αw 0.1486 0.147 -1.1

αd 0.04659 0.0458 -1.7

5.6 Measurement Technique

To verify the grid mode matching method for finding loss, two comparisons of calcu-

lated and measured unloaded Q were made using different types of shielded dielectric

resonator.

The first set of measurements were made using the Ey
11 mode and two sizes of square

cross-section shield around the dielectric resonator. The resonators consisted of a square

cross-section barium tetratitanate dielectric rod (12.05 x 12.05mm) placed in a square

cross-section brass waveguide of the same length L (153.3mm). To facilitate accurate

machining, the brass waveguides was made in two ‘U’ shaped cross-sectional halves

and bolted together. Brass end plates were added to the ends of the waveguide, and

in contact with ends of the rod, to form the resonators. Measurements of the reflec-

tion coefficient were made using a vector network analyzer that was lightly coupled to

the resonators by a probe mounted at the mid-point, as in Figure 5.13. To provide

consistent results the same dielectric rod was actually used in both resonators. The

waveguide cross-sections were 23.8 x 23.8mm and 18 x 18mm, giving SDDR values of

1.98 and 1.49 respectively.
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Figure 5.13: Set up of the dielectric resonator used for the measurement of un-
loaded Q.

The second set of measurements using the Ey
11 and Ex

11 modes were made with a similar

resonator consisting of a square cross-section barium tetratitanate dielectric rod (12.05

x 12.05mm) and 85mm long but this time placed in a copper walled WR159 waveguide

of the same length as the rod. Again brass end plates were added to the ends of the

waveguide, and in contact with ends of the rod, to form the resonator. Measurements

on this type of resonator were performed because the rectangular cross-section of the

WR159 waveguide shielded allows the Ey
11 and Ex

11 modes to become non degenerate

over part of the frequency range which was not the case in the first measurement

arrangement. This variation in degeneracy can be seen by comparing the mode charts

of the square cross-section resonators (Figures 5.14 and 5.15) with that of the WR159

shielded type (Figure 5.18).

The calculation of unloaded Q was carried out using a least squares fit to the measured

reflection coefficient data. The method is the result of work carried out by Associate

Professor Jim Ball at the Faculty of Engineering and Surveying, University of Southern

Queensland (USQ), Queensland, Australia and is described in Appendix C.

The unloaded Q of a resonator can be calculated from:

Q =
ω0W

PCd + PCw + Pe
(5.23)

where ω0 is the frequency at resonance, W is four times the energy stored in the three
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regions of Figure4.2 over the resonator length, and PCd, PCw andPe are the dielectric,

wall and end plate losses respectively.

With reference to Balanis (1988, p. 390), the total energy stored in the resonator over

the full cross-section can be calculated from:

W =
ε0

2
4

L
∫

0

b2
∫

0

a2
∫

0

ε′(E · E∗)dx dy dz (5.24)

and the propagation coefficient will be:

βz =
Nπ

L
(5.25)

where N is the number of half wavelengths of the resonant mode under investigation.

Furthermore the z variation of the components of E in this type of resonator will be

of the form sinβzz or cosβzz and their amplitude will be twice that of unidirectional

waveguide propagation. After integration with respect to z equation (5.24) be written

as:

W = Lε0 4

b2
∫

0

a2
∫

0

ε′(e · e∗)dx dy (5.26)

where e is a function of the transverse coordinates only. In Reimann sum form:

W ' 4Lε0(
I
∑

i=1

(e
(i)
xI e

∗(i)
xI + e

(i)
yI e

∗(i)
yI + e

(i)
zI e

∗(i)
zI )

+

I
∑

i=1

(e
(i)
xII1e

∗(i)
xII1 + e

(i)
yII1e

∗(i)
yII1 + e

(i)
zII1e

∗(i)
zII1)

+ε′
I
∑

i=1

(e
(i)
xII2e

∗(i)
xII2 + e

(i)
yII2e

∗(i)
yII2 + e

(i)
zII2e

∗(i)
zII2))

·∆x∆y

(5.27)

where i, j and k identify the n, m and p nodes in regions I, II1, II2 respectively.

Alternatively, the energy stored in the cavity may be obtained from the power flow in

the infinite waveguide (5.10):

W =
2LP0

vg
(5.28)
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where vg is the group velocity, obtainable numerically.

Similarly, over the full cross-section, equation (5.11) for the dielectric loss Pd of dielectric

waveguide per unit length will become:

PCd ' 4ωε
′′

εoL

I
∑

i=1

(e(i)
y e∗(i)y + e(i)

x e∗(i)x + e(i)
z e∗(i)z )∆x∆y (5.29)

which is equivalent to:

PCd = 2LPd (5.30)

Wall Loss Pw from equation (5.12) for the full cross-section per unit length will become:

PCw ' 4RSL(
T
∑

t=1

(h(t)
x h∗(t)

x + h(t)
z h∗(t)

z )∆x

+

S
∑

s=1

(h(s)
y h∗(s)

y + h(s)
z h∗(s)

z )∆y)

(5.31)

which is equivalent to:

PCw = 2LPw (5.32)

The end plate loss, for both ends over the full cross-section of the resonator, can be

calculated from:

Pe = 16Rs

b2
∫

0

a2
∫

0

|ht|2dxdy (5.33)

which becomes in Reimann sum form:

Pe ' 16Rs

I
∑

i=1

(h(i)
x h∗(i)

x + h(i)
y h∗(i)

y )∆x∆y (5.34)

5.7 Comparison of Calculated and Measured Results

5.7.1 Square Cross-section Shielded Resonators

The reflection coefficient values for resonances of the Ey
11 mode were measured over a

frequency range from cut-off to 4.2GHz. When comparing the measured Q factor results
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Table 5.2: Comparison of calculated and measured Q values for the 153.3mm long
square cross-section dielectric rod resonator at N half wavelengths (a1 = b1 =
6.025mm, a2 = b2 = 11.9mm& 9mm).

SDDR N Measured Measured Calculated %

(a2/a1) Frequency Unloaded Unloaded Q

(GHz) Q Q Diff.

7 2.9731 3420 3373 -1.4

1.49 8 2.9973 3793 3589 -5.8

17 3.7589 5095 4924 -3.5

20 4.1135 4702 4927 +4.6

7 2.8371 5092 5079 -0.3

1.98 13 3.2907 5278 5743 +8.1

17 3.7313 5241 5507 +4.8

18 3.8508 5224 5412 +3.5

to calculated values, it is necessary to account for surface roughness. The average

surface roughness due to the milling process was estimated as 3.2 micrometers. Given

that the shield material is brass containing 38% zinc with a conductivity of 1.57 × 107

ohm.m, a surface roughness factor of about 1.7 is predicted from (Morgan, 1949). The

method used in Morgan (1949) assumes that the surface profile shows a regular variation

e.g. a sawtooth. The actual surface profile is likely to be more complicated than this.

Therefore a surface roughness factor of 2 was used to calculate the Q factor values.

A comparison of measured and calculated values is shown in Table 5.2. Percentage

differences of the measured values with respect to the calculated values are shown in

the right hand column. From this it can be seen that on average the measured Q

factor values are too low by about 5%. The most probable reason for this is the flange

contact resistance of the short circuit end plates (Somlo, 1979) which were bolted on, not

soldered. The join between the brass waveguide halves (again bolted on not soldered)

could also cause some loss due to the Hz components of the hybrid modes. These

components will create perpendicular surface currents that will have to pass through

the contact resistance of the join.
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Figure 5.14: Calculated and measured propagation coefficient values for the first
few modes to propagate, shield-to-dielectric dimension ratio SDDR = 1.49.
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Figure 5.15: Calculated and measured propagation coefficient values for the first
few modes to propagate, shield-to-dielectric dimension ratio SDDR = 1.98.
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Not all possible resonances were able to be measured. It was found that some resonances

did not couple well to the probe and so were too noisy. Other resonances were found

to be affected by significant coupling to the degenerate mode Ex
11 which made accurate

unloaded Q calculations impossible at these frequencies.

Mode charts for the first few modes to propagate are shown in Figures 5.14 and 5.15 for

SDDRs of 1.49 and 1.98 respectively. The ‘o’ points show the propagation coefficients

from (5.25) plotted against the measured frequencies of the resonances, so that compar-

ison with calculation can be made. The differences between measured and calculated

frequencies at the same N propagation values are less than 1% for both resonators.

5.7.2 WR159 Waveguide Shielded Resonator

The reflection coefficient values for resonances of the Ey
11 and Ex

11 modes were measured

over a frequency range from 2.4 to 4GHz. In this resonator the inside walls of the

waveguides and end plates were highly polished and so the surface roughness could be

considered to be very low. The shield wall material is copper (conductivity 5.813 ×
107 ohm.m) and the end plates are brass containing 38% zinc (conductivity of 1.57 ×
107 ohm.m). A comparison of measured and calculated values is shown in Table 5.3.

Percentage differences of the measured values with respect to the calculated values are

shown in the right hand column. This result is also shown graphically in Figure 5.16.

The figure shows good correlation between the measured points and corresponding cal-

culated values illustrated by the least squares 2nd order polynomial fit to the measured

points.

A break up of the calculated Q due to dielectric loss Qd, end plate loss Qe and shield

wall loss Qw can be seen in Figure 5.17.
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Figure 5.16: Calculated and measured Q factor of the Ey
11 mode for the 85mm

long, WR159 shielded, square cross-section dielectric rod resonator. Dimensions:
a1 = b1 = 6.025mm, a2 = 20.1mm, b2 = 10.045mm.
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Figure 5.17: Break up of the calculated Q factor components of the Ey
11 mode for

85mm long, WR159 shielded, square cross-section dielectric rod resonator. The
upper graph shows all the Q components due to dielectric loss Qd, end plate loss
Qe and shield wall loss Qw. The lower magnified graph shows Qd and Qe only.
Dimensions: a1 = b1 = 6.025mm, a2 = 20.1mm, b2 = 10.045mm.
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Table 5.3: Comparison of calculated and measured Q values for the 85mm long,
WR159 shielded, square cross-section dielectric rod resonator at N half wave-
lengths. Exact dimensions a1 = b1 = 6.025mm, a2 = 20.1mm, b2 = 10.045mm.

Mode N Measured Measured Calculated %

Type Frequency Unloaded Unloaded Q

(GHz) Q Q Diff.

2 2.5785 7803 7640 -2.1

3 2.6286 7863 7387 -6.4

Ey
11 4 2.7150 7215 7160 -0.8

6 3.1172 6555 6560 +0.1

10 3.9159 5297 5688 +6.9

Ex
11 5 2.9620 6164 6217 +0.9

6 3.0959 6435 6191 -3.9

The upper graph shows that, for the WR159 shielded, square cross-section dielectric

rod resonator, the large Qw will have little effect on the overall Q as it is swamped

by the much lower Qd and Qe, ie the shield wall loss in this structure is much lower

than the other losses. Similarly the lower graph, which excludes Qw, shows that Qd is

the more dominant factor compared to Qe. Therefore the gradual decrease in total Q,

shown in Figure 5.16 for calculated and measured results, is due mostly to Qd whose

behaviour is caused by the natural increase in dielectric loss with increase in frequency.

Furthermore the shape of the calculated Q curve in Figure 5.16 follows that of Qd, and

to a lesser extent Qe, and hence a least squares polynomial fit to the measured points

was considered appropriate.

The flange contact resistance of the end plates with the waveguide ends and the surface

roughness of the inside wall and end plate surfaces do not appear to play a significant

role in the result. This is thought to be due to the far superior machining of the

commercial waveguide and the polished finish of the surfaces respectively.

Again with this structure not all possible resonances were able to be measured and it

was found that some resonances did not couple well to the probe and so were too noisy

or not found. Measurements and recognition of some desired resonances was also made
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Figure 5.18: Calculated propagation coefficient values for the first few modes to
propagate of a WR159 shielded, square cross-section dielectric rod waveguide.
Dimensions: a1 = b1 = 6.025mm, a2 = 20.1mm, b2 = 10.045mm.

difficult by the close proximity of other resonances caused by the near degeneracy of

the Ey
11 and Ex

11 modes and the congestion of other propagating modes at the higher

frequency end of the measured band. A mode chart for the band of interest is shown

in Figure 5.18 and reveals the reasonably large proliferation of propagating modes.

5.8 Computer Program to Calculate the Attenuation due

to Losses and the Q Factor of the Test Resonator

The programing steps to find the attenuation due to dielectric and shield wall losses

and the Q factor of test resonator of section 5.6 are shown in the flow chart of Figure

5.19. Before the program is run the propagation coefficient for the mode of interest in

the structure and also the unknown coefficients of the basis functions have to be found.

This procedure has already been described in section 4.5. The details of the flow chart

of Figure 5.19 are as follows:
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(1) Download:

Coefficients, dimensions, frequency,

propagation coefficient, permittivity,

constants, number of basis functions,  wavenumbers

Calculate

Calculate region II constants K

Stop

End

Start

bo bd

(2) Range of

basis functions

(4) Calculate basis function

field component values

for each grid point

(3) Range of grid points

(5) All grid points

evaluated?

(6) For each successive basis

function sum each, like,

field component value at

each grid point

(7) Basis functions

completed?

(12) Plot the required coordinate

plane field components

with  Matlab 'quiver'

Next basis function

Next grid point

No

Yes

No

Yes

(8) Calculate power flow, energy stored

and dielectric power loss from the

Riemann sum equations

(9) Go to the wall power

loss function

(10) Fit grid points to the wall boundaries

and calculate the magnetic field

component values.

Similar to steps  2 to 7.

Calculate the wall power loss

using the Riemann sum equation.

(11)Calculate the attenuation per unit length due to

losses in a shielded rectangular dielectric rod Wg.

Or

Calculate the Q factor of the test dielectric resonator

Figure 5.19: Flow chart of the program to find the attenuation due to power losses
of the shielded rectangular dielectric rod waveguide and the Q factor of the test
resonator.
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1 to 7. These steps of the flow chart have the same function as the programing steps

described in section 4.5.2 for the field plotting program of a propagating mode. The

only difference is that the grid is offset by a half space to facilitate the Riemann sum

elemental areas. Compare Figures 4.9 and 5.3 which show the grid setup in both cases.

8. Using the Riemann sum equations calculate the power flow (equation (5.10)) and

dielectric loss (equation (5.11)) of the shielded rectangular dielectric rod waveguide

and/or the energy stored (equation (5.27)), dielectric loss (equation (5.30)) and end

plate loss (equation (5.33)) of the test resonator.

9. Go to the wall power loss function.

10. This sub-routine performs the same function as in steps 1 to 7 of the main pro-

gram but the grid points are arranged to only fall on the wall contour boundary. The

Riemann sum equations calculate the shield wall loss (equation (5.12)) of the shielded

rectangular dielectric rod waveguide and/or the shield wall loss (equation (5.32)) of the

test resonator. Return to the main program.

11. Calculate the attenuation coefficient due to dielectric and shield wall loss using

equation (5.3) and/or the Q factor of the test resonator from equation (5.23).

12. Plot the electric and magnetic field pattern of the quarter cross-section. This is an

optional step but is recommended because it allows a check as to whether the correct

mode has been used in calculation. Also if a mistake has made in entering a dimension

or variable etc, this will show up as a very poor field match at the mode matching

boundary.

A copy of the computer programs described in this section can be seen on the companion

CD-ROM for this thesis and operating details are given in Appendix D.
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5.9 Conclusion

In this chapter a numerical method for finding the attenuation coefficient of a shielded

rectangular dielectric rod waveguide has been presented. The method is based on well

known formulae for power and loss in association with the field calculations of the

modified Solbach and Wolff mode matching method described in Wells & Ball (2005b).

The effect on the attenuation coefficient of frequency, and the proximity of the shield

to the dielectric rod, has also been shown for both the Ey
11 mode and the dominant

Ex
21/E

y
12 coupled modes. These mode matching results are original for this type of

structure.

The method is confirmed by close comparison with a direct method for calculating

the attenuation coefficient due to the dielectric and also with analytically calculated

values for a rectangular waveguide completely filled with dielectric. The method is also

validated by good comparison of the measured and calculated Q values of the shielded

dielectric rod waveguide when used as a resonator. The difference between calculated

and measured Q values is on average less than 4%; the worst result differing by 8.5%.

This method of finding the losses of the hybrid modes will have application in the design

of rectangular shielded dielectric rod waveguide and fundamental mode dielectric-loaded

cavity resonators.



Chapter 6

Conclusion

6.1 Project Overview

The main proposition of this thesis is that the mode matching method has significant

advantages for the analysis of the electromagnetic fields of structures used in current

dielectric loaded multimode cavity filters. The broad aim of the project was then to use

mode matching to perform electromagnetic field analysis on the rectangular shielded

dielectric rod waveguide.

As set out in the Introduction of the thesis the main objective was to completely

characterise this structure and this has been achieved. The work has included an in-

vestigation of the proximity effect of the shield to the dielectric on the propagation

coefficient and field patterns and of the distribution of losses within this structure.

This has to provided a foundation for a complete analysis of the shielded rectangu-

lar cross-section dielectric resonators (as has been achieved for cylindrical resonators

(Zaki & Atia, 1983)). This could then be seen as a precursor to later research on a

cubic dielectric loaded multimode cavity resonator and the present design problems as

discussed with filter manufacturer Filtronic (see chapter 1, Introduction, p. 3).

133
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The numerical results have been confirmed by experimental measurements on short

circuited lengths of this waveguide.

Section 6.2 to 6.4 summarise the major findings of the thesis and their significance to

the wider body of knowledge in the field. The chapter concludes with summaries of

original work and suggested areas for future work.

6.2 The Resonant Frequency and Gap Capacitance of a

Coaxial Resonator

In Chapter 3 a simplified mode matching method of finding the TEM mode resonant

frequencies of a coaxial resonator, and calculation of the gap capacitance was presented.

The procedure, initially started to obtain expertise in mode matching eigenvalue prob-

lems, was found to have enough original content to be the subject of a paper published

in IEE Proceedings on Microwave Antennas and Propagation (Wells & Ball, 2004). In

the course of this preliminary work some general characteristics that can be encountered

with mode matching were revealed.

6.2.1 Characteristics of the Mode Matching Solution

The accuracy of the resonant frequency calculations for the coaxial resonator are limited

principally by three factors:

• the size of the steps between frequencies over the range tested (section 3.3);

• the number of modes used in each region (which determines the degree of con-

vergence to the solution - section 3.6.1); and

• the number of modes that can be used before numerical problems occur which

in turn limits the possibility of good convergence. This is due to matrix element

values exceeding the dynamic range of the computer (section 3.6.1). At the same
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time the problem is further complicated by the requirement to keep the ratio

of modes in each region close to that of the region heights so as to satisfy the

relative convergence criteria. This is difficult in the coaxial resonator structure

as the ratio of heights is generally large.

Despite these limitations the resonant frequency values calculated for the coaxial res-

onator (without a tuning screw) were shown to be within 1% of measured values (section

3.5).

The accuracy of the unknown coefficients and field plotting is limited similarly by the

same numerical problems as the resonant frequency calculations. However in this case

the solution to a set of linear equations is required, not just eigenvalues found from

the zeros of the determinant of the homogeneous equation matrix. The availability of

a solution is now limited by the onset of rank deficiency of the matrix (section 3.6.2),

which occurs before problems with computer dynamic range, as the gap size becomes

smaller. Therefore this aspect of the method is limited to the field plotting of TEM

modes in coaxial resonators with larger gap sizes. In the example structure of section

3.6.2 the region height ratio (gap width to structure length) had to be greater than

1/8.

These limitations of the mode matching method for the coaxial resonator would seem

to be generic for MM, and appear not to have been emphasised in literature.

Traditionally coaxial filters have been designed using filter theory based on TEM mode

transmission line structures. The mode matching procedure (Wells & Ball, 2004) pre-

sented in Chapter 3 allows a more accurate determination of the resonant frequency

than the traditional procedure as it takes into account the effective gap capacitance

of the whole structure and not just the simple parallel plate gap model. Furthermore

the method described has been tailored to only find resonant frequencies of the desired

TEM modes, and so the computer program is more efficient as it is not encumbered

with unwanted code. However, because this method is designed to reproduce TEM

resonances, the cutoff frequencies of coaxial TE and TM modes in the structure of
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interest should always be calculated, as some of these modes may exist (Pozar, 1998,

p. 143), but not show up in the solution. The method also allows an accurate method

of calculating the gap capacitance.

6.3 Propagation in a Shielded Rectangular Dielectric Rod

Waveguide

There has always been difficulty obtaining accurate propagation coefficients for the var-

ious modes in rectangular dielectric rod waveguide (Sudbo, 1992). In Chapter 4 a mode

matching method (Wells & Ball, 2005b) was developed to calculate the propagation co-

efficients and field patterns of the modes in this type of structure with a surrounding

rectangular shield. The unshielded result can still be realised by moving the shield a

sufficient distance from the rod where it has negligible effect.

The analysis performed reveals the original result that when the dielectric is shielded

there exists dominant Ex
21/E

y
12 coupled modes, a fundamental Ex

11 mode, and all the

higher order modes associated with OO and EO symmetry. These higher order modes

had not previously been identified (section 4.2).

The chapter is an expansion of a paper accepted for publication in IEEE Transactions

on Microwave Theory and Techniques (Wells & Ball, 2005b).

The accuracy of the propagation coefficient calculations in the shielded rectangular

dielectric rod are limited by a number of factors, some of which are similar to that of

the coaxial resonator problem. These are:

• the size of the steps between propagation coefficient values over the range tested

(section 4.5.1);

• The number and the ratio of basis functions used in each region, and the proximity

of the shield to the dielectric determines the rate of convergence to the solution.
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In particular:

1. The number of basis functions is limited to a maximum value, beyond which

numerical problems occur. This is due to matrix element values exceeding

the dynamic range of the computer, creating operations that are considered

mathematically undefined by the software (Matlab etc) so that no solution

is possible. However the number of basis functions required for sufficient

convergence was always well below this limit (section 4.10.2).

2. The configuration of the modified Solbach and Wolf method, for the shielded

dielectric rod waveguide, requires that an equal number of modes must be

used in each region. This was found to give very good convergence and

therefore automatically satisfies the relative convergence criteria (section

4.10.2).

3. As the shield in the structure is moved closer to the dielectric rod more basis

functions are required to maintain the same degree of convergence. However

for the accuracy required the number of basis functions necessary was always

well below the maximum limit described in point 1 above (sections 4.6.2 and

4.10.2).

And in addition:

• caution has to be observed when searching for the wavenumbers β
(II2)
yn and β

(II1)
yn

to ensure that none in the selected range are overlooked. Missed values generally

occurred when, in an effort to speed up the root finding process, too large a

step size was used between the wavenumber estimates. Missed wavenumbers can

cause poor convergence and inaccuracy in propagation coefficient calculations and

in extreme cases no solution will be found (section 4.10.1).

With these limitations taken into account, a comparison of calculated and measured

propagation coefficients of the more dominant Ex
11, Ey

11 modes and the Ex
21/E

y
12 coupled

mode were found to be within 2% over a wide frequency range (section 4.9, p. 88).

More typically though, away from the steep slope of the mode diagram curves near
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propagation cut off (section 4.6.5), the difference between measured and calculated

values is less than 0.5% (section 4.10.2, p. 92).

The accuracy of the unknown coefficients and field plotting (see section 4.10.3) is limited

by the same numerical problems as the propagation coefficient calculations. As was the

case of the coaxial resonator problem, the availability of a solution is now determined

as well by the rank deficiency of the equation matrix (section 4.10.3). In this case

however the matrix condition is superior to the coaxial resonator problem because, as

previously stated, the relative convergence criteria is conveniently satisfied. This means

that sufficient modes can be used to give quite accurate field component values before

any numerical problems occur (section 4.10.2). This is borne out by the good results

obtained in Chapter 5 for the attenuation of the shielded rectangular dielectric rod

waveguide (section 5.7).

The method developed allows the effect of shield proximity to be assessed, and so has

application to the design of cavity filters incorporating rectangular parallelepiped or

cubic dielectric resonators. It is easily extended to include calculation of both dielectric

losses, and conductor losses in the shield wall, which may be used as a guide to resonator

design. As noted in section 4.10 there are some limitations to the method but knowledge

of these will allow sufficiently accurate results for most purposes to be achieved. This

work could extended to the calculation of the resonant frequencies of fundamental mode

dielectric-loaded cavity resonators (considered further in section 6.6 below).

6.4 Attenuation of a Shielded Rectangular Dielectric Rod

Waveguide

In Chapter 5 the calculation of the attenuation coefficient of the commonly-used E y
11

mode, and other fundamental modes, in a shielded rectangular dielectric rod waveguide

was presented. The influence on the attenuation coefficient of the proximity of the shield

to the rod was also evaluated. This result is not reported in literature, and has therefore
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been submitted for publication (Wells & Ball, 2005a).

The accuracy of the numerical grid method of finding the attenuation of a shielded

rectangular dielectric rod waveguide described in Chapter 5 is dependent on the size

of the grid used. It was found that for shield-to-dielectric dimension ratios above 1.3

a grid size of 51x51 gave results that were within 2% of those for a 501x501 grid. The

smaller grid size took only minutes to compute on a 1.6GHz PC using Matlab code.

Below this dimension ratio, larger grid sizes were required and an inherent exponential

rise in processing time occurred (section 5.5.1).

Verification of the attenuation coefficient results was achieved by comparing calculated

and measured Q at the resonant frequencies of a number of shielded rectangular di-

electric rod resonators. The difference between calculated and measured Q values is on

average less than 4%; the worst result differing by 8.5%.

The loss in rectangular dielectric waveguides is mostly due to that in the dielectric.

However, if the waveguide is surrounded by a rectangular metallic shield, then the total

loss of the waveguide will also include loss due to induced currents in the inner surface

of the shield walls. From the method of Chapter 4 (Wells & Ball, 2005b) the values of

the modal field components for a shielded rectangular dielectric rod can be calculated.

In Chapter 5 using the numerical grid method (Wells & Ball, 2005a) the fields of

the commonly used Ey
11 mode and the Ex

21/E
y
12 coupled modes were employed to find

the respective wall and dielectric losses of the waveguides and hence their attenuation

(section 5.5.1). The effect of the proximity of the shield on the attenuation of these

modes was also evaluated and is summarised below:

• For the Ey
11 mode in the structure described it was found that, as the shield size

increases relative to the dielectric, the attenuation due to wall loss is gradually

dominated by a relatively constant attenuation due to the loss of the dielectric.

This indicates that when using the dielectric described, choosing a shield-to-

dielectric dimension ratio SDDR greater than 2, will minimise the effect of the

shield conductor loss. Another observation was that for the attenuation due to
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wall loss to equal that of the dielectric the shield had to be relatively close to the

dielectric with an SDDR of about 1.16 (section 5.5.1).

• It was found that the attenuation coefficient was appreciably lower for the domi-

nant Ex
21/E

y
12 coupled mode compared to the Ey

11 mode owing to its lower dielec-

tric loss while maintaining a relatively low shield wall conduction loss. This was

due to the smaller intensity of the electric field in the dielectric compared to the

air region for this mode (section 5.5.1).

These results will have application in the design of rectangular shielded dielectric rod

waveguide and fundamental mode dielectric-loaded cavity resonators.

6.5 Summary of Original Work

The areas of this project where original work has been performed are summarised below.

1. A simplified mode matching method of finding the resonant frequency of a coaxial

resonator, and calculation of the gap capacitance. This preliminary work in the

project revealed a number of general limitations of the mode matching method

that appear not to have been emphasised in literature.

2. Development of a mode matching method to calculate the propagation coefficients

and field patterns of the modes in a shielded rectangular dielectric rod waveguide.

Propagating, complex, evanescent and backward wave modes were included and

the work showed the presence of a dominant mode, and other fundamental modes,

not previously identified. The effect of the shield proximity on the propagation

characteristics and mode spectrum was investigated. The limitations on the ac-

curacy of the mode matching method developed for this type of structure were

also revealed.

3. Development of a numerical method and computer program, using the fields as-

certained in (2), to calculate the attenuation coefficient of the commonly used
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Ey
11 mode and the Ex

21/E
y
12coupled modes in a shielded rectangular dielectric rod

waveguide. The effect on the attenuation coefficient of the proximity of the shield

to the rod was also evaluated for both these modes. Limitations on accuracy were

also discussed.

6.6 Recommendations for Future Work

It was always the intention that the present project would provide the foundations for

a study of the rectangular dielectric rod in a rectangular waveguide cavity and once

this was completed the work could be extended to the cubic dielectric resonator in a

rectangular cavity.

6.6.1 The Rectangular Dielectric Rod in a Rectangular Waveguide

Cavity

This work is surmised to follow closely the method described by Zaki & Atia (1983)

where a cylindrical dielectric rod in a cylindrical waveguide cavity was modeled. The

propagation characteristics of an infinite cylindrical waveguide containing a dielectric

rod were first established. This could be calculated analytically. Then a cylindrical

cavity was modeled as a length of this guiding structure, terminated in short lengths

of empty waveguide. This formed a dielectric rod loaded cavity. Mode matching was

applied at the boundaries between these regions to solve the eigenvalue problem of the

determination of the resonant frequencies of the possible modes.

The differences in this process for a mode matching method to model the rectangular

dielectric rod in a rectangular waveguide cavity would be:

1. Propagation coefficients for an infinite waveguide would have to be calculated

numerically for a range of frequencies covering the suspected frequency range of

resonant modes in a rectangular dielectric loaded cavity. These propagation coef-
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ficients and the type and number of possible resonant modes could be ascertained

by using the mode matching method of Chapter 4 on a particular structure to

produce a mode chart (for example see Figure 4.14) over the frequency area of

interest.

2. As in Chapter 4, due to symmetry, only a quarter of the cross-section would

need to be used in calculation. Also if the dielectric rod is placed in the centre

of the rectangular cavity symmetry would allow that only half the length of the

structure would be necessary in the computation.

3. Standard rectangular waveguide equations would be used as basis functions in

the empty rectangular waveguide ends of the structure.

4. In the rectangular shielded dielectric rod waveguide part of the structure, the

basis functions used in Chapter 4 would be used, but there would be individual

groups of these. One for each rectangular shielded dielectric rod waveguide mode

determined from the mode chart. The number of basis functions in each mode

group would have to be large enough to allow a sufficiently accurate determination

of each mode.

5. The rectangular shielded dielectric rod waveguide modes obtained from the mode

chart would have to include backward waves, complex modes and evanescent

modes as well as the propagating modes. A sufficient number of these (‘built up’

from the basis functions) would be required to give an accurate determination of

the resonant modes in the structure.

6. In the one quarter cross-section mode matching method used in Chapter 4 the

position of electric and magnetic wall boundaries (section 4.4 pp. 56,57) deter-

mines the basis functions and type of modes found in the solution. Therefore in

the resonator described here only the symmetry that produces an expected reso-

nant mode would be required in computation, ie only the modes produced from

a particular symmetry will be required to ‘build up’ the resonant mode fields in

the cavity.
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6.6.2 The Cubic Dielectric Resonator in a Rectangular Cavity

This would follow on from the previous topic and could encompass the multimode

aspects of this type of structure as described by Hunter (2001, p. 298) and the empirical

approach of Walker & Hunter (2002).

6.6.3 Benefits of the Recommended Work

The benefits to be expected if these solutions were carried out would be:

• A greater understanding of the effect of the proximity of rectangular cavity walls

to a parallelepiped type dielectric resonator.

• An accurate dissection of the loss due to the cavity walls and the dielectric and

their effect on the Q factor.

• Accurate calculation of the resonant frequency of dominant and higher order

modes and hence their distance from the desired resonant mode. This can be

important where high stop band attenuation is required.
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Coaxial Resonator Mode

Matching Equations
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Figure A.1: Single coaxial resonator coordinate system and designations applicable
to the equations presented in this appendix
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A.1 The differential equations for Radial TM Modes

These equations are from Balanis (1988, p. 503)

Hφ = − 1
µ

∂Az

∂ρ

Hρ = 1
µρ

∂Az

∂φ

Eρ = −j 1
ωµε

∂2Az

∂ρ∂z

Eφ = −j 1
ωµε

1
ρ

∂2Az

∂φ∂z

Ez = −j 1
ωµε

(

∂2

z2 + β2
)

Az

A.2 Basis Functions for Region I

AzI
= ATM

k J0 (βρI
ρ) cos (βzI

(z − b1)) (A.1)

EzI
= −j

ATM
k

ωµ0ε0εr
β2

ρI
J0(βρI

ρ) cos(βzI
(z − b1)) (A.2)

EρI
= j

ATM
k

ωµ0ε0εr
βρI

J0
′(βρI

ρ) sin(βzI
(z − b1)) (A.3)

HφI
= −ATM

k

µ0
βρI

J0
′(βρI

ρ) cos(βzI
(z − b1)) (A.4)

where: βz = ( kπ
b2−b1

); β2
ρ = β2

0 − β2
z ; β2

0 = ω2µ0ε0εr

As there is no circumferential variation considered the other field components are zero.
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A.3 Basis Functions for Region II

AzII
= BTM

n (Y0(βρII
a)J0(βρII

ρ) − J0(βρII
a)Y0(βρII

ρ)) cos(βzII
) (A.5)

EzII
= −j

BTM
n

ωµ0ε0εr
β2

ρII
(Y0(βρII

a)J0(βρII
ρ) − J0(βρII

a)Y0(βρII
ρ)) (A.6)

· cos(βzII
)

EρII
= j

BTM
n

ωµ0ε0εr
βρII

(Y0(βρII
a)J0

′(βρII
ρ) − J0(βρII

a)Y0
′(βρII

ρ)) (A.7)

· sin(βzII
)

HφII
= −BTM

n

µ0
βρII

(Y0(βρII
a)J0

′(βρII
ρ) − J0(βρII

a)Y0
′(βρII

ρ)) (A.8)

· cos(βzII
)

where: βzII
= (nπ

b ); β2
ρII

= β2
0 − β2

zII
; β2

0 = ω2µ0ε0εr

and the prime ‘ ′ ’ represents the differential of the particular Bessel function.

As there is no circumferential variation considered the other field components are zero.

A.4 Summary of Integrals

A.4.1 Cross-product of the Basis Functions and Testing Functions of

the Same Region

A summary of the integrals derived from orthogonality relation equation (3.10) (ie the

integrals are for a field equation and testing function from the same region):

ISS =

∫ b2

b1

sin
mπz

B
sin

nπz

B
dz =

B

2
for m = n

= 0 for m 6= n

(A.9)
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ICC =

∫ b2

b1

cos
mπz

B
cos

nπz

B
dz =

B

2
for m = n

= 0 for m 6= n

(A.10)

Where:

B = b2 − b1 for a region I equation and a region I testing function or

B = b for a region II equation and a region II testing function.

A.4.2 Cross-product of the Basis Functions and Testing Functions of

the Different Regions

A summary of the integrals derived from the coupling integral equations (3.12) and

(3.14)( ie the integrals are for a field equation and testing function from different re-

gions) :

ISS =

∫ b2

b1

sin
mπz

b
sin

nπz

b2 − b1
dz (A.11)

=
mπ

b2 − b1

(

(

−1m+1
)

sin
nπb2

b
+ sin

nπb1

b

)

·
/(

(

mπ

b2 − b1

)2

−
(nπ

b

)2
)

(A.12)

ICC =

∫ b2

b1

cos
mπz

b
cos

nπz

b2 − b1
dz (A.13)

=
nπ

b

(

sin
nπb1

b
− (−1m) sin

nπb2

b

)

·
/(

(

mπ

b2 − b1

)2

−
(nπ

b

)2
)

(A.14)

.
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Shielded Dielectric Rod

Waveguide Mode Matching
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Figure B.1: One quarter of the rectangular dielectric line with shield, showing
mode-matching regions and designations applicable to the equations presented in
this appendix.
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B.1 Basis Function Equations

B.1.1 Magnetic vector potential and longitudinal component basis

function equations for TM y

From Balanis (1988, p.397) longitudinal component basis function equations for TM y

can be derived from:

Ez = −j 1
ωµε

∂2Ay

∂y∂z

Hz = 1
µ
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EO symmetry
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(I)EE
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(I)
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(II1)EE
zne =
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cos(β
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xne x) cos(β

(II1)
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H
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B
(II2)
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cos(β

(II2)
xne x) cos(β

(II2)
yne y)e−γz

(B.12)
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The rest of the TM y basis function components can be derived from the equations

described by Balanis (1988, p.397):

Ex = −j 1
ωµε

∂2Ay

∂x∂y

Ey = −j 1
ωµε

(

∂2

y2 + β2
)

Ay

Hx = − 1
µ

∂Ay

∂z

Hy = 0
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B.1.2 Electric vector potential and longitudinal component basis func-

tion equations for TEy

From Balanis (1988, p.395) longitudinal component basis function equations for TE y

can be derived from:

Ez = 1
ε

∂Fy

∂x

Hz = −j 1
ωµε

∂2Fy

∂y∂z

EO symmetry

F (I)EO
ymh

= A
(I)
mh cos(β(I)

xmh
(a2 − x)) cos(β(I)

ymh
y)e−γz

F (II1)EO
ynh

= Bnh cos(β(II1)
xnh

x) sin(β(II1)
ynh

(b2 − y))e−γz (B.13)

F (II2)EO
ynh

= B
(II2)
nh cos(β(II2)

xnh
x) cos(β(II2)

ynh
y)e−γz

E(I)EO
zmh

= −A
(I)
mhβ

(I)
xmh

εo
sin(β(I)

xmh
(a2 − x)) cos(β(I)

ymh
y)e−γz

E(II1)EO
znh

=
Bnhβ

(II1)
xnh

εo
sin(β(II1)

xnh
x) sin(β(II1)

ynh
(b2 − y))e−γz (B.14)

E(II2)EO
znh

=
B

(II2)
nh β

(II2)
xnh

εoεr2
sin(β(II2)

xnh
x) cos(β(II2)

ynh
y)e−γz

H(I)EO
zmh

= −j
A

(I)
mhβ

(I)
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γ

ωµoεo
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(a2 − x)) sin(β(I)
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y)e−γz

OO symmetry

F (I)OO
ymh

= A
(I)
mh cos(β(I)
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ynh
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EE symmetry
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H(II2)EE
znh
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nh β
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γ

µoεoεr2
cos(β(II2)

xnh
x) cos(β(II2)

ynh
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The rest of the TEy basis function components can be derived from the equations

described by Balanis (1988, p.395):

Ex = 1
ε

∂Fy

∂z

Ey = 0

Hx = −j 1
ωµε

∂2Fy

∂x∂y

Hy = −j 1
ωµε

(

∂2

y2 + β2
)

Fy



APPENDIX B. SHIELDED DIELECTRIC ROD WAVEGUIDE MODE MATCHING
EQUATIONS 164

B.2 The Continuity Equations at the II1/II2 Boundary

A summary of the equations derived from the continuity of the longitudinal fields at

the boundary y = b1, 0 ≤ x ≤ a1, for all symmetries:

EO and OO symmetry

Kne =
B

(II1)
ne

B
(II2)
ne

=
β

(II2)
yne cos(β

(II2)
yne b1)

β
(II1)
yne εr2 sin(β

(II1)
yne (b2 − b1))

(B.25)

1

β
(II1)
yne

cot(β(II1)
yne

(b2 − b1)) =
εr2

β
(II2)
yne

tan(β(II2)
yne

b1) (B.26)

Knh =
B

(II1)
nh

B
(II2)
nh

=
cos(β

(II2)
ynh

b1)

εr2 sin(β
(II1)
ynh

(b2 − b1))
(B.27)

β(II1)
ynh

cot(β(II1)
ynh

(b2 − b1)) = β(II2)
ynh

tan(β(II2)
ynh

b1) (B.28)

OE and EE symmetry

Kne =
B
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B
(II2)
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=
β
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yne sin(β

(II2)
yne b1)

β
(II1)
yne εr2 sin(β

(II1)
yne (b2 − b1))

(B.29)

1

β
(II1)
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cot(β(II1)
yne

(b2 − b1)) = − εr2

β
(II2)
yne

cot(β(II2)
yne
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Knh =
B

(II1)
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B
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sin(β
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ynh

b1)

εr2 sin(β
(II1)
ynh
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(B.31)

β(II1)
ynh

cot(β(II1)
ynh

(b2 − b1)) = −β(II2)
ynh

cot(β(II2)
ynh

b1) (B.32)

where subscripts h and e are TM y andTEy respectively.
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B.3 Summary of Integrals for Region I

A summary of the integrals, derived for all symmetries in region I, from the orthogo-

nality equations (4.27) and (4.28):

ISISI
=

∫ b2

0
sin

mπy

2b2
sin

qπy

2b2
dy =

b2

2
for m = q, m and q ≥ 1

= 0 for m or q = 0

= 0 for m 6= q

(B.33)

ICICI
=

∫ b2

0
cos

mπy

2b2
cos

qπy

2b2
dy =

b2

2
for m = q, m and q ≥ 1

= b2 for m or q = 0

= 0 for m 6= q

(B.34)

B.4 Summary of the Integrals for Regions II1 and II2

A summary of the integrals derived for regions II1 and II2 withTM y orTEy from the

coupling integral equations (4.30) and (4.33):

EO and OO symmetry, region II1

ICII1
CI

=

∫ b2

b1

cos(β(II1)
yn

(b2 − y)) cos
qπy

2b2
dy (B.35)

ISII1
SI

=
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sin(β(II1)
yn

(b2 − y)) sin
qπy

2b2
dy (B.36)

OE and EE symmetry, region II1

ICII1
SI

=

∫ b2

b1

cos(β(II1)
yn

(b2 − y)) sin
qπy

2b2
dy (B.37)

ISII1
CI

=

∫ b2

b1

sin(β(II1)
yn

(b2 − y)) cos
qπy

2b2
dy (B.38)
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all symmetries, region II2

ICII2
CI

=

∫ b1

0
cos(β(II2)

yn
y) cos

qπy

2b2
dy (B.39)

ISII2
SI

=

∫ b1

0
sin(β(II2)

yn
y) sin

qπy

2b2
dy (B.40)

It was found that the algebraic solutions to the above integrals are large and best

calculated using a symbolic solver package such as MapleTM. The solution expressions

can then be cut and pasted directly into a computer program.



Appendix C

Calculation of Unloaded Q Factor

from the Measured Reflection

Coefficient of a Resonator

In this appendix the method used for determining unloaded Q factor from the measured

reflection coefficient S11 of the resonant structures of section 5.6 will be described. The

method is the result of work carried out by Associate Professor Jim Ball at the Faculty

of Engineering and Surveying, University of Southern Queensland (USQ), Queensland,

Australia.

To obtain consistent unloaded high Q calculated results from lightly coupled S11 re-

sponse data requires a numerical technique involving the least squares of the data

points. This is because of the limitations of the vector network analyser (HP 8720C

used in testing) which typically cause the measured data to be noisy and allow only

a small number of points to be used in the narrow bandwidths required. Typical

magnitude and phase data are shown in Figure C.1 for the WR159 waveguide shielded

dielectric rod at the N = 2 half wave length, Ey
11 mode, resonance described in Chapter

5. This example will be used through the rest of this section. The method procedure

167
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Figure C.1: Typical lightly coupled reflection coefficient response data (N = 2)
from the WR159 shielded dielectric resonator of Chapter 5.

is as follows:

1. When plotted on a Smith chart the S11 data of an ideal resonator near resonance

should form a perfect circle touching the outer circumference of the chart. A

requirement of the method is that an accurate measure of the magnitude of the

minimum reflection coefficient |ρmin| is required. This can be achieved firstly

by calculating a least squares fitted circle to the data points (Kasa, 1976). The

minimum reflection coefficient |ρmin| is than found as that value of reflection

coefficient on the circle closest to the centre of the Smith Chart. A least squares

fit circle of typical data is shown in Figure C.2 and in close up in Figure C.3.

2. In some cases it is desirable to reduce some of the off resonance part of the data

ie above about 3db in the top magnitude graph of Figure (C.1). This part of the

data can decrease accuracy due to the effects of noise and periodic ripples due to

mismatches in the measurement setup (Leong & Mazierska, 2002).
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Figure C.2: A least squares fit circle to the N = 2, Ey11, mode reflection coefficient
response data from the WR159 shielded dielectric resonator of Chapter 5.

−j0.8
−j1

Figure C.3: Close up of a least squares fit circle to the N = 2, Ey
11 mode, reflection

coefficient response data from the WR159 shielded dielectric resonator of Chapter
5.
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Figure C.4: Close up of a least squares fit circle to the N = 2, Ey
11 mode, reflection

coefficient response data from the WR159 shielded dielectric resonator of Chapter
5. Off resonance points removed

3. From Kwok & Liang (1999) the resonant structure can be modeled as a series

resonant circuit with source impedance Zo terminated by the series resistance R

and the following expression can be written:

Q

(

ω

ω0
− ω0

ω

)

= ± 2

1 ± |ρmin|

√

|ρ|2 − |ρmin|2
1 − |ρ|2 = y (C.1)

where at resonance

|ρmin|2 =

(

R − Z0

R + Z0

)2

(C.2)

The first ± to the right of the equal sign in equation (C.1) is positive when

ω > ω0 and negative when ω < ω0. The second ± is positive if the resonator is

undercoupled and negative if overcoupled.

Equation (C.1) places the reflection coefficient data in a form that expresses it as

a linear relationship between ω and y in the cartesian plane. Further simplifying

the LHS of the equation gives:

Q
(ω + ω0)(ω − ω0)

ωω0
= y

and since ω ' ω0 near resonance the equation finally becomes:

y = (
2Q

ω0
)ω − 2Q = (

2Q

f0
)f − 2Q (C.3)
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Figure C.5: Least squares fit line to the, N=2, Ey
11 mode, reflection coefficient

response data from the WR159 shielded dielectric resonator of Chapter 5. Off
resonance points removed.

4. Equation (C.3) is in the form y = a1x + a0

This allows a1 and a0 to be determined from a least squared error straight line

procedure obtainable from most mathematical texts. The WR159 shielded ex-

ample, with reduced off resonance data points, is shown in Figure C.5. With

reference to equation (C.3) the Q and the resonant frequency of a resonance can

then be found from:

Q = −a0/2 (C.4)

ω0 = −a1/a1 (C.5)

For more precise calculations of unloaded Q (Kajfez, 1994) (Leong & Mazierska, 2002),

the effect of coupling loss is taken into account. With no coupling loss the response

circle should touch the outer circumference of the smith chart. Any gap at this point

shows the degree of coupling loss. In the measurements performed in Chapter 5 this gap
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was always very small when using a lightly coupled probe (see Figures C.2 and C.3).

The more precise methods complicate the computation of Q and were not considered

necessary in the current work considering the magnitude in the uncertainty of estimated

losses such as surface roughness (Morgan, 1949) and flange losses (Somlo, 1979).

One advantage of this method over the linear fractional method developed by Kajfez

(1994) is that the resonant frequency is calculated explicitly at the first attempt.



Appendix D

Guide to Thesis Companion Disk

The following is a guide to the companion CD-ROM with this thesis. It contains a

copy of the dissertation and a basic cross-section of the main computer programs for

the coaxial resonator of Chapter 3, the rectangular shielded dielectric rod of Chapter 4

and for the rectangular shielded dielectric rod attenuation in Chapter 5. The programs

are written using Matlab version 6.1 and may not be compatible with earlier versions.

To run a program it is recommended that the entire directory containing the files be

copied to the users hard drive. This will ensure that all the necessary input files are

available for the program, and that the program can save results to disk if required.

NOTE: When files are copied from CD-ROM to hard disk, each file is marked ‘read-

only’ by default. It is strongly recommended that all files be changed to ‘read-write’

before attempting to run any of the programs from the companion CD-ROM.

The programs on the CD-ROM are edited versions of a small number of those used in the

project and are meant as an explanatory guide to program descriptions in the relative

chapters. For example only the programs for propagating and evanescent modes, using

EO symmetry, are shown for the shielded rectangular dielectric rod waveguide. However

the basic layout of the program is the same for all symmetries and could be modified

173
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by changing the basis functions and wavenumber equations, as shown in Appendix B,

for the symmetry required.

To aid in initial understanding of the use of the programs, example inputs marked in

square brackets, are provided.

Chapter 3 Software

Coaxial Resonator

Program Name: CoaxResonator.m

Associated Functions: CoaxResCoeff.m, CoaxResFieldDisp.m, circleplotIP.m,

lineMatlabCombIP.m, oxmodesIP.m

Location: \CoaxResonator\CoaxResonator.m

Platform: Matlab V6.1

Description: Finds the TEM resonant frequencies of a coaxial resonator, the unknown

coefficients of the basis functions and plots some of the fields in the x-z and x-y planes.

Chapter 4 & 5 Software

Rectangular Shielded Dielectric Rod Waveguide

Program Name: EOBzIPVer.m

Associated Functions: By2QIP.m, EO OOIntegralsIP.m, EOCoeffIP.m,

EODieLossIP.m, EOEqIP.m, EOLossesIP.m, EOWallLossIP.m, oddsprogIP.m, WavNumXIP.m,

EOBzCmplxIP.m, EOEqCmplxIP.m, xylinesRecDQSIP.m, YTEooeoEq.m, YTMooeoEq.m,

RowInsert.m

Location: \RectShDielRodRes\EOBzIPVer.m
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Platform: Matlab V6.1

Description: Finds the propagation coefficients of propagating, evanescent and com-

plex modes, with EO symmetry, of the shielded rectangular dielectric rod waveguide.

Also found for propagating modes are the unknown coefficients of the basis functions,

the attenuation for a selected mode in the waveguide and plots of the vector fields in

the x-y plane.


