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Abstract 

For a 3D orthogonal carbon fibre weave, geometrical parameters characterising the unit 

cell were quantified using micro-Computed Tomography and image analysis. Novel 

procedures for generation of unit cell models, reflecting systematic local variations in yarn 

paths and yarn cross-sections, and discretisation into voxels for numerical analysis were 

implemented in TexGen. Resin flow during reinforcement impregnation was simulated using 

Computational Fluid Dynamics to predict the in-plane permeability. With increasing degree 

of local refinement of the geometrical models, agreement of the predicted permeabilities with 

experimental data improved significantly. A significant effect of the binder configuration at 

the fabric surfaces on the permeability was observed. In-plane tensile properties of 

composites predicted using mechanical finite element analysis showed good quantitative 

agreement with experimental results. Accurate modelling of the fabric surface layers 

predicted a reduction of the composite strength, particularly in the direction of yarns with 

crimp caused by compression at binder cross-over points. 
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1. Introduction 

In thick composite components, multiple thin layers of fabrics with two-dimensional (2D) 

architectures can be replaced by thick three-dimensional (3D) fibrous structures as 

reinforcements. As discussed by Mouritz et al. [1], 3D textile processes, in particular highly 

versatile weaving processes, allow the near net-shape manufacture of reinforcements with 

complex geometries. 3D woven reinforcements consist typically of layers of aligned non-

crimp yarns with alternating orientation along the fabric weft and warp directions, and 

additional binder yarns, which follow paths through the fabric thickness and hold the non-

crimp layers together.  

In composites, the non-crimp yarns in each fabric layer show generally better axial 

mechanical properties than the crimped yarns in most 2D reinforcements. The presence of 

binder yarns provides toughness and resistance to delamination but tends to reduce 

mechanical in-plane properties compared to purely uni-directionally aligned layers. However, 

mechanical in-plane properties of composites were found to be higher for 3D woven 

reinforcements than for multi-layer plain weave reinforcement [2, 3]. For the case of 

frequently used 3D orthogonal woven reinforcements, the mechanical properties of 

composites have been addressed in detail in a variety of studies. The in-plane stiffness and 

strength have been investigated experimentally, analytically and numerically, e.g. by Tan et 

al. [4, 5]. Carvelli et al. [6] characterised the fatigue behaviour in tension. The response to 

static and impact transverse loading was studied, e.g. by Luo et al. [7]. Mohamed and Wetzel 

[8] described in detail the influence of the variation of fabric parameters on the properties of a 

component. 

Regarding reinforcement processing properties, forming of an orthogonal weave was 

characterised by Carvelli et al. [9] in terms of in-plane biaxial tension and shear behaviour. 

Due to increased thickness and the through-thickness fixation of the yarns, the drapability of 
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3D woven reinforcements, i.e. the formability to doubly-curved surfaces, tends to be reduced 

compared to 2D fabrics. However, this is less relevant, since the reinforcements can be 

manufactured to near net-shape [1]. On the other hand, the reinforcement compressibility is 

highly relevant, since it determines the fibre volume fraction in the reinforcement. This 

affects the reinforcement impregnation with a liquid resin system in Liquid Composite 

Moulding (LCM) processes, which are particularly suited for the manufacture of thick 

components with 3D woven reinforcements, and the mechanical properties of the finished 

component. Some data for a 3D fabric, suggesting significantly higher stiffness in 

compression than for a random mat, were given by Parnas et al. [10]. Potluri and Sagar [11] 

studied the compaction behaviour of several fabrics with interlacing weaving patterns in more 

detail and applied an energy minimisation technique to compaction modelling, which 

generally showed good agreement with experimental results. Endruweit and Long [12] 

observed experimentally that local reduction of the gap height between the fibre bundles is 

significant in compression of an angle-interlock weave with offset of layers. On the other 

hand, the main compression mechanism for an orthogonal weave was found to be compaction 

of the fibre bundles. This results in higher compressibility for the angle-interlock weave than 

for the orthogonal weave. 

The flow of liquid resin during fabric impregnation in LCM processes is more complex 

than in thin fibrous structures because of the presence of additional through-thickness yarns. 

Information on impregnation behaviour, characterised by the reinforcement permeability, is 

sparse for 3D reinforcements. Experimental data published by Parnas et al. [10] suggest that 

the in-plane and through-thickness permeabilities of 3D woven fabrics are in the same order 

of magnitude as those of 2D fabrics at similar fibre volume fractions. Elsewhere, it was 

suggested that 3D orthogonal woven fabrics have significantly higher in-plane permeability 

than 2D fabrics (woven and knitted) at identical fibre volume fraction [13]. Numerical 
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predictions of the permeability of an orthogonal weave by Ngo and Tamma [14] indicated 

that the in-plane permeability is high compared to the through-thickness permeability, and 

qualitative agreement with experimental observations was found. Song et al. [15] predicted 

the permeability tensor for a 3D braided textile (similar to an interlacing weave). While they 

also found higher values for the in-plane than for the through-thickness permeability, 

experimental results were overestimated by significant margins. Endruweit and Long [12] 

modelled the influence of inter-yarn gap widths and the pattern and dimensions of binder 

yarns on the in-plane permeabilities of 3D woven fabrics. Experimental data suggested that 

in-plane permeabilities reflect the reduction of inter-yarn gap spaces during fabric 

compaction. Through-thickness permeabilities were found to be enhanced by through-

thickness channels formed around the binder yarns.  

A major challenge in predicting the processing and performance characteristics of 

composite materials is the complex hierarchical structure and its local variation, in particular 

if 3D woven reinforcements are used. This is reflected in growing research efforts for meso-

scale geometry characterisation [16-19] and modelling [20-23]. This study aims at 

experimental quantification of representative geometrical parameters for a 3D woven fabric 

and generation of unit cell models at a high level of geometrical detail, including systematic 

local variations in yarn paths and yarn cross-sections. Based on these models, numerical 

methods are implemented to predict the reinforcement permeability and the mechanical 

performance of the finished composite. 

2. Geometrical characterisation 

As an example, a carbon fibre orthogonal weave with the specifications listed in Table 1 

was characterised in this study. The internal geometry of the fabric was characterised at 

different compaction levels by X-ray micro-Computed Tomography (-CT) analysis. A 

Phoenix Nanotom (GE Sensing & Inspection Technologies GmbH) was used for µ-CT 
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scanning of small samples, which were slightly larger than unit cell size of the 3D woven 

reinforcement. While the dry fabric was scanned at no compaction, composite specimens 

were produced to allow the deformed geometry in the compressed fabric to be captured. To 

obtain good image contrast for carbon fibre composites, which show low X-ray energy 

absorption, the power was set to a voltage of 40 keV and a current of 240 µA, and a 

Molybdenum target (emitting radiation at a relatively small wavelength, which is absorbed by 

low-density materials) was used. The image resolution is between 7 µm and 20 µm, 

depending on the geometrical dimensions of the scan sample. 

While the 3D image data can be analysed by taking measurements manually slice by slice, 

contrast-based image processing (as illustrated in Fig. 1) and quantitative evaluation was 

automated using the MatLab® Image Toolbox. To determine shapes and dimensions of yarns 

and inter-yarn gaps in Fig. 1E, the images are segmented into square cells, allowing focusing 

on individual gaps as in Fig. 1A. Filtering techniques are applied to reduce noise and 

suppress small-scale features (Fig. 1B). The resulting greyscale image is then converted into 

a binary image (Fig. 1C), implying that information on defects such as trapped air or cracks 

caused by thermal shrinkage may be lost. The final stage is to remove features unrelated to 

gaps by assessing the size, roundness, aspect ratio and position of segmented objects (Fig. 

1D). The result is a black and white image showing the inter-yarn gaps in cross-section (Fig. 

1F). For each identified gap, continuity throughout the entire range of slices can be tracked.  

Quantitative evaluation of the images includes measurement of area, Ac, and height, h, of 

gaps in a cross-section, and yarn spacing, l, i.e. the distance between the centroids of two 

neighbouring gaps. At given filament radius, r, and number of filaments, N, in each yarn, the 

fibre volume fraction in each yarn cross-section can be calculated according to  
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To measure gaps in weft and warp directions, the 3D images are re-sliced and analysed in 

each direction. Data for composites at two different fibre volume fractions, i.e. thicknesses, 

H, are listed in Table 2. 

3. Geometrical modelling  

3.1 General considerations 

Reliable numerical analysis of reinforcement processing properties and composite 

mechanical performance requires accurate description of the reinforcement geometry. Since 

detailed modelling of full-size fabric specimens is not realistic, the fabric architecture is 

represented by a unit cell, by definition the smallest repetitive (by translation) unit in a fabric. 

Since yarns in a fabric are not perfectly fixated but have some mobility, all textiles tend to 

exhibit some degree of stochastic variability. Thus, unit cell modelling always implies 

idealised approximation of the exact geometry. Here, image analysis indicates that the degree 

of geometric variability in the 3D woven reinforcement is relatively low (Table 2), at similar 

level as observed by Desplentere et al. [24]. Thus, unit cell modelling can be expected to give 

a relatively accurate approximation of the actual (local) architecture. 

To take experimentally observed variabilities into account, Desplentere et al. [24] used 

series of unit cell models with standardised geometry and varying dimensions as input for 

Monte-Carlo simulations of mechanical properties. This study aims to identify the dominant 

geometrical features in the 3D woven reinforcement and deduce a generic set of rules to 

generate input parameters for the unit cell model. The fundamental steps of textile geometry 

modelling and mesh generation for numerical analysis using the software TexGen [25, 26] 

will be discussed in the following. 

3.2 Yarn paths and crimp 

Yarn paths are modelled in TexGen by interpolating a number of appropriately positioned 

master nodes using cubic Bézier splines to ensure the periodic continuity of yarn paths in a 
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unit cell. In an orthogonal weave, paths for non-crimp warp and weft yarns can be treated as 

straight parallel lines at constant spacing. Exceptions are the surface layers of weft yarns, 

where crimp is introduced as the fabric compaction level increases (Fig. 2). The magnitude of 

crimp in the weft yarns at crossover points with the binder corresponds to the local thickness 

of the compressed binder yarn, modelled in TexGen by offsetting the through-thickness 

coordinate of the corresponding master node on the weft yarn.  

The path of the binder yarn varies considerably with increasing compaction level as 

illustrated in Fig. 2. For uncompressed fabric, the binder has slight S-shaped curvature (Fig. 

2A). At low compaction levels, the total fabric thickness is reduced, resulting in increased 

curvature of the binder (Fig. 2B). At high compaction levels, warp and weft yarns are 

flattened and widened, reducing inter-yarn gap spaces. This imposes geometrical constraints 

for the binder yarn, which is straightened in the fabric, and, since the total length does not 

change, forms loops in the surface layers of weft yarns (Fig. 2C). 

To take into account the different constraints for the binder yarn path in TexGen, a number 

of reference nodes are placed on the periphery of weft yarns in different layers. As illustrated 

in Fig. 3, 9 nodes are placed at a distance of half the thickness of the binder yarn from the 

perimeter of the weft yarns. The distance of nodes on the binder yarn path to the weft yarns 

cannot be smaller than the distance of these reference nodes. For uncompressed fabric (Fig. 

2A), only nodes on the surface weft yarns are needed to define the binder yarn path. For 

highly compressed fabric as in Fig. 2C, the shape of the binder yarn includes the corner nodes 

of weft yarns on each internal layer.   

3.3 Yarn cross-section 

The cross-sectional shape of a multifilament yarn is determined by interaction with 

neighbouring yarns. Of particular significance is the influence of the binder yarn on the 

surface layers of weft yarns, which results in different dimensions and shape of yarns on the 
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fabric surfaces and the internal layers (Table 2). This is also reflected in the differences in Vf 

for the surface layers and internal layers observed by Karahan et al. [17]. In TexGen, yarn 

cross-sections are approximated by power-ellipses, special cases of a superellipse [27], which 

are described by points (x, y) with 
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Here, the exponent, n, describes the shape of the power-ellipse, w is the yarn width, h is the 

yarn height, and the parameter  indicates the angular coordinate at the ellipse centre relative 

to the major axis.     

The characteristics of power-ellipses are shown in Figure 4A for different values of n, 

resulting in circular, elliptical, rounded rectangular and lenticular shapes. In real fabrics, yarn 

cross-sections are often asymmetric. To address this issue, hybrid cross-sections can be 

generated in TexGen, allowing different curve sections to be joined. An example is given in 

Fig. 4B, where a hybrid of two power-ellipses is fitted to an actual yarn cross-section. The 

upper (0    0.5) and lower (0.5    1) halves of the cross-section share the same width, 

w, but differ in height, h, and power, n. The parameters in Eqs. (2) and (3) are determined by 

measuring 6 points, P1 to P6. The intersection between lines P1P2 and P3P4 is the origin of its 

Cartesian coordinate-system, O. The distance P1P2 corresponds to the width, w. The distances 

OP3 and OP4 are half the heights of respective upper and lower power-elliptical sections. The 

points P5 and P6 are defined on the curves such that the tangents include angles of 

approximately 45 or 135 with the major axis. Using the measured (x, y) either at point P5 or 

P6, the respective exponents can be determined according to 
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3.4 Unit cell 

While the fabric architecture is defined by the parameters listed in Table 1, the input 

parameters for generating a unit cell model are specified in Table 2. The basic structure of the 

yarn paths can be generated automatically using the “3D wizard” in TexGen. A series of 

dialogs allow entry of number of warp and weft yarns, as well as the number of layers of each 

and the ratio of binder to warp yarns. The width, height, spacing and cross-sectional shape 

can be specified for each set of yarns. A weave pattern dialog allows specification of the 

weave pattern, and then the fabric is automatically generated with nodes on the yarn paths at 

each crossover point between warp or binder yarns and weft yarns. Extra nodes are 

positioned along the binder yarns to follow the contour of the outer weft yarns as described in 

Section 3.2.  

The geometric definitions of the yarn paths and cross-sections described in Sections 3.2 

and 3.3 were implemented manually as refinements for the models used to generate the 

results shown in the following sections. For simplification, it was assumed that all yarns other 

than weft yarns on the fabric surfaces, which were refined locally by introducing crimp and 

variable cross-sections at crossover points with binder yarns, have constant cross-section and 

constant spacing along the yarn axes. 

Subsequent to the results obtained using these manual refinements, a ‘refine’ option has 

been developed in TexGen to implement the refinements automatically. An additional 

parameter, target fabric thickness, is specified after which the TexGen software adjusts the 

yarns, following the process shown in the flowchart in Fig. 5. Throughout the process, the 

volume fractions of the yarns are monitored so that they are maintained within realistic limits.  

Intersections in the model are also minimised by the process which constrains yarns to the 
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areas available and shapes the binder yarns to follow the contour of the outer weft yarns. The 

fabrics generated using this automatic refinement with the data given in Tables 1 and 2 are 

shown in Fig. 6. Figure 6A shows the orthogonal weave with the refine option selected but no 

change to the initial fabric thickness of 6.32 mm. The refinement here is limited to the binder 

yarns and the outer weft yarns. Figures 6B and 6C show the fabric compacted to thicknesses 

of 5.03 mm and 4.43 mm. Figure 6C shows the addition of a small amount of crimp in the 

outer weft yarn, necessary to achieve this degree of compaction. This is also observed 

experimentally, e.g. in the -CT image in Fig. 7B. Comparison with the µ-CT images shows 

that TexGen is capable of automatically modelling the geometry realistically down to a fabric 

thickness of 5.03 mm (Vf  = 0.55). At a higher compaction level (thickness 4.43 mm), 

deviations between the automatically generated TexGen model and the real geometry occur, 

noticeably in the surface yarn cross-sections. The refine option is available as part of the 

release version of the TexGen software but does still require validation for a larger range of 

3D fabrics. 

3.5 Discretisation 

In unit cell models of textile fabrics, discretisation for numerical analysis is relatively 

straightforward for yarns. However, inter-yarn spaces, which represent the main flow 

domains in analysis of impregnating resin flow and resin-only zones in mechanical analysis 

of composite performance, tend to have complex geometries. Particular problems are caused 

by very small inter-yarn spaces, which can have a significant effect on the properties and thus 

are not negligible. These geometries are hard to discretise by conformal meshing. Thus, 

TexGen was used for automated voxel meshing of the unit cell domain, i.e. the domain was 

discretised into a regular hexahedral grid, where properties of either yarns or gaps were 

assigned to voxels depending on the centre point locations. While previous studies for 

prediction of fabric permeability based on Computational Fluid Dynamics (CFD) [28-30] and 
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analysis of composite mechanical properties [31, 32] proved the robustness of voxel meshing, 

it was also shown that uniform meshing may result in computational inefficiency and that the 

solution may be mesh-dependent. In this study, minimum mesh densities for analysis of 

permeabilities and mechanical properties were chosen based on convergence tests. 

4. Fabric permeability analysis  

4.1 Flow modelling 

To analyse resin flow during reinforcement impregnation in composites processing, 

steady-state laminar flow of an incompressible Newtonian fluid was simulated on the domain 

of the unit cell of the 3D weave. Flow through inter-yarn gaps was modelled as Navier-

Stokes flow, while flow in yarns, modelled as porous media, was assumed to be governed by 

Darcy’s law. For the latter case, axial and transverse yarn permeabilities as input parameters 

were calculated using Gebart’s analytical model for hexagonal fibre packing [33]. The 

filament diameter was assumed to be 7 m.  

At all permeable interfaces, conservation of fluid mass and momentum was ensured. At the 

interfaces between porous yarns and inter-yarn flow channels, where the problem of coupling 

Navier-Stokes flow and Darcy flow occurs, fluid pressure and the normal component of the 

flow velocity were assumed to be continuous. The component of the fluid velocity tangential 

to the yarn surface was also assumed to be continuous (no-slip boundary), which is justified 

since inter-yarn gap spaces are approximately one order of magnitude larger than pore spaces 

in the yarns [34]. Use of a slip boundary condition (Beavers-Joseph boundary condition [35]) 

would be essential if the dimensions of inter-yarn gaps were comparable to the dimensions of 

intra-yarn pores. In this case, slip at the yarn surface would contribute to the permeability of 

the fabric, which would be implied to be extremely tightly woven. However, this effect is 

negligible for typical textile reinforcements. Translational periodic constraints, applied 

together with a flow-driving pressure drop, were set on opposite boundary faces of the textile 
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unit cell domain in weft and warp direction to represent a continuous reinforcement. No-slip 

wall boundary conditions were specified at the impermeable top and bottom faces of the 

domain to simulate flow along the mould surfaces during in-plane fabric impregnation. The 

fluid was assumed to be incompressible with constant viscosity. 

The equations describing the flow problem were solved using the CFD code ANSYS® 

CFX 12.0 on a hexahedral voxel mesh, where properties of either the flow channel domain or 

yarn volume were attributed to the voxels. The saturated in-plane permeability in warp and 

weft direction as well as the saturated through-thickness permeability was calculated based 

on Darcy’s law from the average pressure drop across the unit cell and the flow rate obtained 

from the CFD simulation of flow in the respective directions, implying a process of 

volumetric homogenisation. The sensitivity of the CFD calculations to the mesh density was 

assessed based on convergence of the predicted in-plane permeability for the 3D weave at 25 

× 25 × 25 voxels (warp × weft × thickness), 50 × 50 × 50 voxels, 100 × 100 × 100 voxels, 

and 200 × 200 × 200 voxels. To obtain a reasonable balance between computation time and 

accuracy, the number of voxels was chosen as 50 × 50 × 50 for the unit cell mesh. It was also 

observed that flow velocities are typically three orders of magnitude smaller in the yarns than 

in the inter-yarn gaps, suggesting that flow in the gaps dominates the permeability for this 

material.  

4.2 Results and discussion 

To assess the sensitivity of permeability prediction to the level of detail in geometrical 

textile modelling, unit cell models for a given fibre volume fraction (H = 5.0 mm, Vf = 0.55) 

were refined incrementally as described in Section 3. The geometrical variations considered 

in modelling are illustrated in Fig. 7. As a starting point, a unit cell of the orthogonal weave 

was generated with straight yarns and constant elliptical cross-sections (average dimensions 

based on data in Table 2). Successively, varying binder cross-sections (Fig. 7A), deformation 
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of weft yarns on the fabric surface (“dimples”, Fig. 7B), and different yarn cross-sections in 

warp and weft direction (Fig. 7C) were introduced. The permeabilities derived from CFD 

simulations at different level of refinement are plotted together with experimental data [12] in 

Fig. 8, which illustrates how local geometrical refinement tends to improve the accuracy of 

permeability prediction. The effect is particularly strong for the permeability in the warp 

direction. This is overestimated by a significant amount if deformation of weft yarns on the 

fabric surfaces and changes in bundle shape are not considered, and artificial gaps between 

the fabric surfaces and the tool surfaces are generated in the model. Also in warp direction, 

the subtle refinement in yarn cross-section (Fig. 7C) allows more accurate representation of 

flow channel interruption due to tight contact between warp and binder yarns, leading to a 

significant drop in prediction which approaches the measured permeability (Fig. 8). The 

selected voxel mesh density proved sufficient to capture this important geometry refinement. 

The same principles for geometrical unit cell modelling were applied to the reinforcement at 

a higher fibre volume fraction, Vf = 0.67, although details of the complex deformation of the 

highly compacted binder yarn (as in Fig. 6C) are difficult to reproduce accurately.  

Figure 9 shows a comparison of in-plane permeability data derived from CFD simulations 

with experimental data at different Vf. While the experimental data [12] show large scatter, 

particularly at low Vf, they suggest that there is a sharp reduction in the permeability at a fibre 

volume fraction of approximately 0.60, in particular for K1 (along the weft direction). This is 

supported by the ratio K1/K2. For Vf > 0.60, it is approximately constant, as implied by a 

frequently used analytical model for permeability estimation [36], at a mean value of 2.7 with 

a standard deviation of 0.3. On the other hand, its values are widely scattered between 4.1 and 

8.2 for Vf < 0.60. This apparent change in properties coincides with an observed change in 

fabric geometry, suggesting causality between both. For Vf < 0.60, the weft yarns on the top 

and bottom surface (Fig. 10A) are not fully compacted, and V-shaped gaps between the weft 
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yarns, the binder yarns and the tool surfaces facilitate flow. Lack of compaction also allows 

relatively high variability in gap configuration, resulting in a large scatter in permeability 

values. At higher Vf, the fabric is completely compacted, and the gaps are closed by 

deformation of the weft yarns and of the binder yarns (Fig. 10B). This may explain the 

significant reduction in K1, which is oriented along the fabric weft yarns and thus is sensitive 

to reductions in the gap space in this direction.  

As the local yarn geometries were defined with high accuracy, the predictions based on the 

CFD simulations at Vf = 0.55 and Vf = 0.67 show better quantitative agreement with 

experimental data than those reported by Song et al. [15] in the only comparison between 

predicted and measured values for 3D textiles found in the literature. Comparison of the 

experimental data with fitted analytical curves based on a Kozeny-Carman type relation [36] 

indicates that the apparent strong dependence of K1 on Vf for this fabric is not described by 

analytical permeability models which assume unchanging geometrical yarn configuration 

with increasing Vf. More detailed numerical analysis is required to account for the observed 

change in binder configuration on the fabric surface and its effect on the permeability. 

5. Composite mechanical analysis 

5.1 Method 

At the unit cell level, textile composites are modelled with two constituents, transversely 

isotropic composite yarns (i.e. filaments at a given packing density in a matrix of cured resin) 

and an isotropic elastic matrix in inter-yarn gaps. Modelling is based on the nominal 

properties of a cured epoxy resin (Gurit Prime 20LV) and of a carbon fibre (Torayca T300) as 

listed in Table 3. The transverse modulus of the carbon fibre, which is not given by the 

supplier, was assumed to be 15 GPa. Whilst this value is taken from published experimental 

data [37] for a similar type of carbon fibre, the sensitivity of the transverse modulus of the 
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composite to variations in the transverse modulus of filaments can be estimated to be 

relatively small [37]. 

The data in Table 3 were used as input for mechanical analysis based on an idealised 

hexagonal single filament model. Under the assumption that the global fibre volume fraction 

in the unit cell is Vf = 0.55, i.e. the composite has a thickness H = 5.0 mm, the fibre volume 

fraction in the yarn was set to the corresponding value Vf = 0.66. The elastic constants for a 

composite yarn were derived from solving the six load cases for principal tensile and shear 

stresses using the implicit static finite element (FE) code ABAQUS®. While application of 

micromechanics equations, as compiled e.g. by Murthy and Chamis [38], should give 

equivalent results, the single filament FE model was used since it will allow additional 

simulation of viscoelastic effects and defect inclusion in future work. 

In addition, the longitudinal strength of the composite yarn is identified as the stress at 

fracture of the fibre (at a strain of 1.5 %, Table 3). The transverse tensile strength of the 

composite yarn was assumed to be equal to the tensile strength of cured resin, while the 

longitudinal shear strength was equal to the interlaminar shear strength (Table 3). The 

effective yarn properties are summarised in Table 4. 

Based on these data, a continuum damage model introduced by Ruijter [39] was 

implemented to reduce the yarn stiffness gradually by defining the modulus (in any direction) 

as 

 )001.0,max(0 PEE    , (5) 

where E0 is the initial value and P represents a penalty function. The chosen continuum 

damage mechanics model describes stiffness degradation similar to Puck's phenomenological 

failure theory [40] instead of utilising an approach based on fracture mechanics. The latter 

approach would require values of fracture toughness and energy release rate as additional 

input data, the determination of which requires extensive experimental work, while the model 
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implemented here requires only one phenomenological parameter. The usefulness of this 

model was proven through application for accurate prediction of the performance of a 

composite with a plain weave fabric as reinforcement [41]. In axial loading, yarn failure is 

dominated by the brittle properties of the fibres, such that 
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The axial damage parameter, D1, is determined from the maximum stress according to 
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In transverse or shear loading, the yarn stiffness is reduced gradually due to matrix failure. 

The penalty function is modelled as  
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 = 13 are empirical constants, and the damage parameter, D, can have 

values D2 or D3 (for shear or transverse loading, respectively). In shear, damage is derived 

from the partial distortion energy 
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while the maximum principal stress criterion 
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is applied for transverse loading.  

In inter-yarn gaps, failure of the resin matrix was described based on the von Mises 

criterion. Degradation of the matrix stiffness follows the same law as for the transverse yarn 

stiffness, which is described in Eq. (8). 
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5.2 Results and discussion 

For FE analysis to predict the mechanical in-plane properties of composites with the 

orthogonal weave as reinforcement (one fabric layer at H = 5.0 mm, i.e. Vf = 0.55), composite 

yarn or matrix properties as discussed in Section 5.1 were assigned locally at the appropriate 

orientations to a voxel mesh of the composite unit cell (Fig. 11). Loading of the unit cell 

beyond failure (maximum strain 2 %) was simulated by setting appropriate periodic boundary 

conditions [42] in the warp and weft direction and free boundaries for the top and bottom 

surfaces.  

Preliminary simulations using the same voxel mesh as used for the flow simulations in 

Section 4 indicated that local misassignment of properties, in particular near points of contact 

between binder yarns and weft yarns, resulted in artificially reduced failure strain (at 

approximately 1 %). Thus, the mesh was refined by doubling the number of elements in the 

fabric warp direction. In addition, manual corrections were made to the mesh to ensure that 

no local misassignment of properties to the voxels occurred. Assessing several mesh densities 

indicated that a convergent solution with the results plotted in Fig. 12 and listed in Table 5 

was obtained for this model (with maximum allowed time increment in the implicit solution 

for static stress analysis in ABAQUS® set to 2.5×10-3). For tensile loading in both fabric 

directions, reasonable agreement between simulated and corresponding experimental values, 

measured according to European Standard EN ISO 527-4:1997 using specimens made by 

Resin Transfer Moulding, was found for tensile strength and modulus. While conformal 

meshing of realistic unit cell geometries is unattainable, it is to be noted that the voxel mesh 

approach may introduce artificial sharp edges at yarn/matrix interfaces resulting in stress 

concentrations. A voxel smoothing approach was proposed by Potter et al. [43] as a possible 

solution. However, for the case of the 3D orthogonal weave studied here, the yarns have 

largely rectangular tow cross-sections and follow straight paths. In this particular case, the 
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voxel mesh represents the geometry with sufficient accuracy while avoiding artificial stress 

concentrations. However, for loading in weft direction, the predicted onset of unit cell 

stiffness reduction at a strain of 0.7 % is not reflected in the experimental data (Fig. 12B). It 

can be speculated that this difference is related to the boundary conditions in testing (in 

particular imperfect alignment), which may result in successive rather than simultaneous 

failure of all unit cells in actual tensile specimens.  

To understand mechanisms of damage initiation, failed tensile specimens were 

investigated using Scanning Electron Microscopy (SEM). It was observed (Fig. 13) that, for 

in-plane loading in the warp or weft direction, the fracture surfaces were always located in 

planes containing binder yarns travelling through the reinforcement thickness, indicating that 

damage was initiated around the binders. Similar fracture initiation and subsequent damage 

development was predicted by the simulations, despite using a voxel mesh and 

implementation of a simple failure model. The reasonable quantitative accuracy of 

predictions for the in-plane tensile strength can be attributed mainly to the realistic models 

with high level of geometrical detail. As pointed out by Mouritz and Cox [44], local fibre 

misalignment because of the presence of the binder may give rise to local axial shear stresses 

and may cause plastic strain as irreversible matrix deformation. Further studies are required 

to investigate in more detail the relation between composite strength at the unit cell scale and 

fabric architecture.     

Comparison of calculated properties in warp and weft direction indicates that the failure 

strain, which is dominated by the brittle fibres, is similar in both directions at 1.31 % and 

1.26 %, respectively. For the strength in both fabric directions, the ratio Fweft/Fwarp would be 

expected to be 1.03, reflecting the ratio of fibre volume fractions for 7 layers in weft direction 

and 6 layers in warp direction, if all yarns were perfectly straight. The actual ratio, Fweft/Fwarp 

= 0.76, is similar to the ratio of fibre volume fractions, Vfweft/Vfwarp = 0.74, for 5 layers in weft 
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direction and 6 layers in warp direction. This implies that the two crimped surface layers in 

weft direction contribute little to the composite strength.  

 

 

6. Conclusions 

For the example of a 3D orthogonal weave reinforcement, representative geometrical 

parameters were quantified experimentally at different compaction levels by detailed -CT 

image analysis. Unit cell models at high level of geometrical detail, including systematic 

local variations in yarn paths and yarn cross-sections, were generated in TexGen in a novel 

semi-automated manner and discretised into voxels. Based on these models, CFD simulation 

of impregnating flow and static mechanical analysis were carried out for prediction of the in-

plane permeability of the fabric and in-plane tensile properties of finished composites, 

respectively. With inclusion of local variations in geometrical modelling, the predictions of 

fabric permeability improved significantly compared with the experimental data. The results 

indicated that the binder configuration on the fabric surfaces, which changes with increasing 

degree of fabric compression, has a significant effect on the permeability, in particular in weft 

direction. Composite in-plane strength predictions based on static mechanical analyses 

showed good quantitative agreement with experimental results. Reduced strength in weft 

direction compared to the warp direction is caused mainly by crimp in the fabric surface 

layers, which is related to localised yarn compression at cross-over points with the binder. 
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Table 1. Specifications of 3D reinforcement characterised here. 

Fabric style Orthogonal weave 

Areal density / kg/m2 4.775 

Number of warp layers 6 

Warp yarn 12K 

Warp yarn linear density / g/km 800 

Number of weft layers 7 

Weft yarn 6K × 2 

Weft yarn linear density / g/km 800 

Binder yarn 1K 

Binder yarn linear density / g/km 67 

 

Table 2. Geometry parameters measured for the orthogonal reinforcement at different compression levels; 

average value, standard deviation and coefficient of variation (standard deviation / average) are given where 

appropriate. 

 Number of 

measurements 

Yarn width / 

mm 

Yarn height / 

mm 

n in power 

ellipse (Eq. 3) 

Yarn gap / mm 

H = 5.0 mm, Vf = 0.55 

Warp 10755 1.88  0.04 

( 2 %) 

0.41  0.05 

( 11 %) 

0 0.33  0.05 

( 14 %) 

Surface layer 

weft 

39 2.13  0.06 

( 3 %) 

0.39  0.03 

( 8 %) 

1.4 / 0 0.32  0.07 

( 22 %) 

Internal layer 

weft  

4299 2.09  0.08 

( 4 %) 

0.35  0.06 

( 16 %) 

0.1 0.28  0.06 

( 16 %) 

Surface section 

binder 

4 0.62  0.05 

( 9 %) 

0.15  0.02 

( 10 %) 

1  

Internal section 

binder 

119 0.34  0.05 

( 15 %) 

0.21  0.03 

( 13 %) 

0  

H = 4.1 mm, Vf = 0.67 

Warp 7319 1.90  0.02 

( 1%) 

0.33  0.02 

( 7%) 

0 0.14  0.02 

( 17 %) 

Surface layer 

weft 

23 2.32  0.10 

( 4 %) 

0.29  0.20 

( 8 %) 

1.2 / 0.5 0.08  0.02 

( 25 %) 

Inner layer weft  5264 2.24  0.06 

( 3 %) 

0.27  0.02 

( 6 %) 

0 0.16  0.04 

( 25 %) 

Surface section 

binder 

6 0.89  0.06 

( 7 %) 

0.07  0.01 

( 10 %) 

0  

Internal section 

binder 

116 0.25  0.02 

( 8 %) 

0.23  0.03 

( 12 %) 

0  
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Table 3. Nominal properties of resin matrix and fibres. 

 
E / GPa 

Tensile strength / 

MPa 

Tensile failure 

strain / % 

Interlaminar shear 

strength / MPa 

Cured resin 3.5 73 3.5 47 

Fibre: Torayca T300 230 3450 1.5 - 

 

 

 

 

Table 4. Composite yarn properties derived from FE analysis, Vf = 0.66. 

E11 / 

GPa 

E22, E33 / 

GPa 

G12, G13 / 

GPa 

G23 / 

GPa 
ν12, ν13 ν23 

F11 / 

MPa 

F22 / 

MPa 

F12 / 

MPa 

152.60 8.15 3.02 2.90 0.300 0.345 2289 73 47 

 

 

 

 

 

Table 5. Comparison of experimentally determined and calculated strength, F, and modulus, E, of composite 

under tensile loading in warp and weft direction; average values and standard deviations are given where 

appropriate. 

 warp weft 

F / MPa E / GPa F / MPa E / GPa 

simulation 833 66 632 59 

experiment 791  38 60  2 710  21 58  3 
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Figure 1. Identification of yarns and inter-yarn gaps in 3D carbon fibre reinforcement; A-D: progressive image 

operations to isolate gap regions; E: labelled gaps in original -CT image; F: binary image of gaps. 

 

 

    

 

Figure 2. Change in yarn geometry under fabric compaction; A: dry fabric at no compression, thickness H = 6.0 

mm; B: composite panel at H = 5.0 mm, Vf = 0.55; C: composite panel at H = 4.1 mm, Vf = 0.67.  

 

 

 

 

 

 

A B C 
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Figure 3. Definition of binder yarn path for 3D orthogonal weave in TexGen. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Power-ellipse representing yarn cross-section in 3D orthogonal carbon reinforcement; A: 

characteristics of power ellipse function at different values of n; B: example for hybrid cross-section. 

 

 

 

 

 

 

A B 
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Figure 5. Flowchart for generation of 3D orthogonal weave model with refinement. 

 

 

Orthogonal Weave Build Textile 

Create warp and binder yarns and assign node 

positions 

Create weft yarns and assign 

node positions 

Assign cross sections and 

properties to yarns 

Add repeats and set to Bezier 

interpolation 

Refining yarn? 

Check binder widths: calculate maximum width 

and height for through thickness binder yarns 

Adjust warp and weft layer heights 

(excluding outer weft yarns) 

Exceeded maximum yarn 

volume fraction? 

Adjust outer weft yarns: change to hybrid sections & adjust dimensions 

to maintain area or reduce area without exceeding max Vf 

Adjust binder yarns: change to hybrid section, increase width & reduce 

height to attain target thickness. Introduce crimp in weft if necessary 

Shape binder yarns to fit shape of top weft yarn 

Return 

No 

Yes 

Yes 

No 



27 

 

 

Figure 6. Orthogonal weave generated automatically using TexGen 3DWizard refine option; A: original fabric 

thickness, H = 6.32 mm; B: H = 5.03 mm; C: H = 4.43 mm; arrows indicate crimp in outer weft yarns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Local geometry variations observed in 3D -CT images; A: different binder cross-sections; B: 

formation of dimples on surface; C: rectangular cross-sections of warp yarns, more rounded cross-sections of 

weft yarns. 
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Figure 8. Permeability predictions with incremental local geometry variations, H = 5.0 mm, Vf = 0.55, 

compared to experimental data; error bars on experimental data indicate standard deviation. 
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Figure 9. Principal permeability values, K1 and K2, as a function of the fibre volume fraction, Vf; square 

symbols: CFD results; diamond symbols: experimental data; analytical trend lines [34] are also indicated .  

 

 

 

Figure 10. Details of binder and weft yarn configurations on fabric surface at different compaction levels; white 

lines indicate tool surface; A: H = 5.0 mm, Vf = 0.55; B: H = 4.2 mm, Vf = 0.65.      
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Figure 11. Voxel mesh of fabric unit cell for mechanical analysis; voxels representing resin only are not shown. 
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Figure 12. Comparison of experimental and simulated stress-strain curves; A: tensile load in warp direction; B: 

tensile load in weft direction. 

 

                

Figure 13. SEM images of fracture surfaces; A: tensile load in warp direction; B: tensile load in weft direction. 
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