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Abstract: We present numerical solutions of the semi-phenomenological model of self-propagating
fluid pulses (auto-pulses) in the channel branching into two thinner channels, which simulates
branching of a hypothetical artificial artery. The model is based on the lubrication theory coupled
with elasticity and has the form of a single nonlinear partial differential equation with respect
to the displacement of the elastic wall as a function of the distance along the channel and time.
The equation is solved numerically using the 1D integrated radial basis function network method.
Using homogeneous boundary conditions on the edges of space domain and continuity condition
at the branching point, we obtained and analyzed solutions in the form of auto-pulses penetrating
through the branching point from the thick channel into the thin channels. We evaluated magnitudes
of the phenomenological coefficients responsible for the active motion of the walls in the model.

Keywords: fluid; active elastic boundaries; branching channel flow; pulse; artificial artery

1. Introduction

The arterial systems are characterised by branching with a network of larger arteries splitting into
smaller arteries which continue to bifurcate into arterioles and then into the capillaries. Therefore,
in this paper we focus on simulation of pulses in branching channels. In our recent work [1] only
non-branching (single) channels were considered; this is the major difference between the two studies.
In addition, in the present paper we evaluate the empirical coefficients playing the key role in
our model.

We emphasize that the model simulates an artificial, not a real, artery. Note that the recent years
saw a remarkable progress in design and fabrication of artificial muscles. For example, Reference [2]
describes the fluid-driven and origami-inspired artificial muscles.

Arterial blood flows are usually modelled by the classical Navier-Stokes equations. However,
under certain conditions, non-Newtonian models are also used [3–5]. While some models consider
arteries with rigid walls [6], most models assume the walls to be elastic [7]. Roberts [8] presented a
simple argument why the elasticity of an artery is important: if arteries were not elastic then each
pump of the heart would cause an immediate rise in blood pressure throughout the body.

Our analysis is based on the model [9], which further developed the ideas of Roberts of channels
with active walls [8]. While Roberts considered the case of negligible viscous forces compared to inertia,
which is relevant to wider channels, we will consider the case when inertia is negligible compared to
viscous forces, which is relevant to narrow channels. In the previous paper of the current authors [1],
a variety of pulse solutions is obtained for a single channel. In the current paper we consider
branching channels and analyse the conditions under which a pulse can successfully propagate from
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a thick channel into a thin one through the branching point. Ultimately we aim to make our model
self-consistent that is to have characteristics that gurantee the propagation of the pulses over the entire
system of branching channels.

Strunin [9] considered the flow between infinite elastic walls, assuming symmetry with respect
to the plane, z = 0; hence it will suffice to analyse only half of the flow, 0 < z < H(t), (see Figure 1).
The mean flow is assumed to be in the x-direction, driven by the pressure gradient in that direction.
Adopting the lubrication theory for the flow [10] we equate the pressure gradient to the viscous friction.

∂2v
∂z2 =

1
η

∂p
∂x

, (1)

where v(x, z, t) is the flow velocity in the x direction, p(x, t) is the pressure and η the viscosity.

Figure 1. Fluid flow between elastic walls (half of the channel is shown).

Assuming p to be independent of z. we integrate Equation (1) twice with respect to z,

v =
1

2η

∂p
∂x

(
z2 − H2

)
+ v(x, H, t) . (2)

The mass flux Q is

Q =
∫ H

0
v dz = −H3

3η

∂p
∂x

+ v(x, H, t) H . (3)

Define the displacement, w(x, t), of the wall in the z direction from the neutral position, w = H0, by

H = H0 + w . (4)

Then the continuity equation becomes

∂w
∂t

+
∂Q
∂x

= 0 . (5)

Substituting (3) into (5) gives

∂w
∂t

=
∂

∂x

[
H3

3η

∂p
∂x
− v(x, H, t) H

]
. (6)

As we can see, the Equation (6) links the displacement of the flow boundary, coinciding with the
wall position, to the flow pressure. The elasticity theory [11,12] provides the reverse link from the
pressure to the displacement

p = D
∂4w
∂x4 −

∂

∂x

(
N

∂w
∂x

)
, (7)
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where

N =
Eh

1− ν2

[
∂u
∂x

+
1
2

(
∂w
∂x

)2
]

. (8)

In (7) and (8) u(x, t) is the wall’s displacement along the flow, D is the flexural rigidity of the wall,
E is Young’s modulus, h is the thickness of the wall, ν is Poisson’s ratio and N the force caused by
the displacements. Strunin [9] supposed that the walls exert extra pressure relative to (7),

p = D
∂4w
∂x4 −

∂

∂x

(
N

∂w
∂x

)
+ p1 , (9)

where p1 depends on w. He postulated that p1 is proportional to the 4th power of the
vertical displacement,

p1 = −αw4 , α > 0 . (10)

After further simplifying assumptions (for more details see Reference [9]), the model has the form

∂w
∂t

=
D
3η

∂

∂x

[
H3 ∂5w

∂x5

]
− α

3η

∂

∂x

[
H3 ∂

∂x

(
w4
)]

+ β
∂

∂x

(
H3w5

)
. (11)

Dynamically the term ∂x
(

H3∂5
xw
)

has dissipative effect, the nonlinear term, −∂x
[
H3∂x

(
w4)],

represents excitation and the nonlinear term ∂x(H3w5) transfers the energy from the excitation
to dissipation.

Assuming w << H0 and replacing H by H = H0 + w ≈ H0 in Equation (11) we get

∂w
∂t

=
DH3

0
3η

∂6w
∂x6 −

αH3
0

3η

∂2

∂x2

(
w4
)
+ H3

0 β
∂

∂x

(
w5
)

. (12)

Now we non-dimensionalize Equation (12) using some relevant scales to the form

∂w
∂t

= A
∂6w
∂x6 − B

∂2

∂x2

(
w4
)
+ C

∂

∂x

(
w5
)

, (13)

where the coefficients A, B and C are non-dimensional.

2. Numerical Experiments

To solve Equation (13) numerically we used the one-dimensional integration radial basis
function network (1D-IRBFN) method in conjunction with one-step Picard iteration (PI1) scheme [13].
This method is more efficient than the original IRBFN method presented by Mai-Duy and
Tran-Cong [14]. The purpose of using integration instead of conventional differeniation to construct
the Radial Basis Function (RBF) approximations is to improve the stability and accuracy of the
numerical solution. In the present paper, we use the following notations: [̂ ] for a vector/matrix [ ] that
is associated with a grid line and [ ](n) to denote selected components of the vector[ ]. In this method,
the highest-order derivative, 6th order, is approximated by radial basis functions. The lower-order
derivatives and function itself are then obtained by integration.

∂6w(x, t)
∂x6 =

N

∑
i=1

ui(t)Gi(x) =
N

∑
i=1

ui(t)H(i)
6 (x) , (14)

∂5w(x, t)
∂x5 =

N

∑
i=1

ui(t)H(i)
5 (x) + c1 , (15)
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∂4w(x, t)
∂x4 =

N

∑
i=1

ui(t)H(i)
4 (x) + c1x + c2 , (16)

∂3w(x, t)
∂x3 =

N

∑
i=1

ui(t)H(i)
3 (x) +

c1

2
x2 + c2x + c3 , (17)

∂2w(x, t)
∂x2 =

N

∑
i=1

ui(t)H(i)
2 (x) +

c1

6
x3 +

c2

2
x2 + c3x + c4 , (18)

∂w(x, t)
∂x

=
N

∑
i=1

ui(t)H(i)
1 (x) +

c1

24
x4 +

c2

6
x3 +

c3

2
x2 + c4x + c5 , (19)

w(x, t) =
N

∑
i=1

ui(t)H(i)
0 (x) +

c1

120
x5 +

c2

24
x4 +

c3

6
x3 +

c4

2
x2 + c5x + c6 , (20)

where x is the input vector, N is the number of nodes on the x-axis, {ui(t)}N
i=1 are RBF weights

to be determined; {Gi(x)}N
i=1 = {H(i)

6 (x)}N
i=1 are known RBFs, for example, for the case of

multiquadrics (MQ)

Gi(x) =
√
(x− ci)

2 + ai
2 ,

where ci and ai are the centre and width of the ith MQ-RBF, respectively. The set of centres is chosen to be
the same as the set of collocation points and the RBF width is determined as ai = bdi, b > 0 is a factor
(presently b = 1) and di is the distance from the i-th centre to the nearest; H(i)

5 (x) =
∫

H(i)
6 (x)dx;

H(i)
4 (x) =

∫
H(i)

5 (x)dx; H(i)
3 (x) =

∫
H(i)

4 (x)dx; H(i)
2 (x) =

∫
H(i)

3 (x)dx; H(i)
1 (x) =

∫
H(i)

2 (x)dx;

H(i)
0 (x) =

∫
H(i)

1 (x)dx; {ci}6
i=1 the set of constants arising from the integration process. The new basis

functions H(i)
5 (x), H(i)

4 (x), H(i)
3 (x), H(i)

2 (x) and H(i)
1 (x) are obtained from integrating the multiquadrics

as follows,

H(i)
5 (x) =

r
2

√
r2 + ai

2 +
ai

2

2
ln
∣∣∣∣r +√r2 + ai

2
∣∣∣∣ ,

H(i)
4 (x) =

(
r2

6
− ai

2

3

)√
r2 + ai

2 +
ai

2r
2

ln
∣∣∣∣r +√r2 + ai

2
∣∣∣∣ ,

H(i)
3 (x) =

(
r3

24
− 13ai

2r
48

)√
r2 + ai

2 +

(
ai

2r2

4
− ai

4

16

)
ln
∣∣∣∣r +√r2 + ai

2
∣∣∣∣ ,

H(i)
2 (x) =

(
r4

120
− 83ai

2r2

720
+

ai
4

45

)√
r2 + ai

2 +

(
ai

2r3

12
− ai

4r
16

) ln
∣∣∣∣r +√r2 + ai

2
∣∣∣∣) ,

H(i)
1 (x) =

(
r5

720
− 97ai

2r3

2880
+

113ai
4r

5760

)√
r2 + ai

2

+

(
ai

2r4

48
− ai

4r2

32
+

ai
6

384

)
ln
∣∣∣∣r +√r2 + ai

2
∣∣∣∣ ,

H(i)
0 (x) =

(
r6

5040
− 253ai

2r4

33600
+

593ai
4r2

67200
− ai

6

1575

)√
r2 + ai

2

+

(
ai

2r5

240
+

ai
6r

384
− ai

4r3

96

)
ln
∣∣∣∣r +√r2 + ai

2
∣∣∣∣ ,

where r = x− ci. After discretization, Equations (14)–(20) can be written in a compact form as

∂̂6w
∂x6 = Ĥ(i)

6 α̂ ,
∂̂5w
∂x5 = Ĥ(i)

5 α̂ ,
∂̂4w
∂x4 = Ĥ(i)

4 α̂ ,

∂̂3w
∂x3 = Ĥ(i)

3 α̂ ,
∂̂2w
∂x2 = Ĥ(i)

2 α̂ ,
∂̂w
∂x

= Ĥ(i)
1 α̂ , ŵ = Ĥ(i)

0 α̂ , (21)
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where

Ĥ(i)
6 =


H(1)

6 (x1) H(2)
6 (x1) . . . H(N)

6 (x1) 0 0 0 0 0 0

H(1)
6 (x2) H(2)

6 (x2) . . . H(N)
6 (x2) 0 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H(1)
6 (xN) H(2)

6 (xN) . . . H(N)
6 (xN) 0 0 0 0 0 0

 ,

Ĥ(i)
5 =


H(1)

5 (x1) H(2)
5 (x1) . . . H(N)

5 (x1) 1 0 0 0 0 0

H(1)
5 (x2) H(2)

5 (x2) . . . H(N)
5 (x2) 1 0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H(1)
5 (xN) H(2)

5 (xN) . . . H(N)
5 (xN) 1 0 0 0 0 0

 ,

. . . ,

Ĥ(i)
0 =


H(1)

0 (x1) H(2)
0 (x1) . . . H(N)

0 (x1) x5
1/5! x4

1/4! x3
1/3! x2

1/2! x1 1

H(1)
0 (x2) H(2)

0 (x2) . . . H(N)
0 (x2) x5

2/5! x4
2/4! x3

2/3! x2
2/2! x2 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H(1)
0 (xN) H(2)

0 (xN) . . . H(N)
0 (xN) x5

N/5! x4
N/4! x3

N/3! x2
N/2! xN 1

 ,

where {xi}N
i=1 is the set of nodal points, ŵ = (w1, w2, w3, ..., wN)

T, wi = w(xi, t), û = (u1, u2, u3, ..., uN)
T

and ĉ = (c1, c2, c3, c4, c5, c6)
T . We denote α̂ = (u1, u2, u3, ..., uN , c1, c2, ..., c6)

T . Equation (13) is
discretized with respect to both time and space variables. Firstly, the time interval [0, T] is partitioned
into N subintervals [t(n), t(n+1)] of length ∆t = T/N with t(0) = 1 and t(N+1) = T. The temporal
discretization is then accomplished by a time-stepping scheme, followed by the spatial discretization
based on the IRBFN method. Among the many possible time-stepping schemes, the standard
θ-scheme [15], 0 ≤ θ ≤ 1 is used in this work. The extreme cases θ = 0 and θ = 1 correspond
to the well-known forward (fully explicit) and backward (fully implicit) Euler schemes, respectively.
The scheme with θ = 1/2 is known as the (semi-implicit) Crank-Nicolson method which is
second-order accurate. We re-write Equation (13) as

∂w
∂t

= f (w) , (22)

where

f (w) = A
∂6w
∂x6 − B

[
12w2

(
∂w
∂x

)2
+ 4w3 ∂2w

∂x2

]
+ 5Cw4 ∂w

∂x
. (23)

Applying the standard θ-scheme with θ = 1/2 Equation (22) is discretized as

w(n+1) − w(n)

∆t
=

1
2
[ f (w)](n+1) +

1
2
[ f (w)](n) (24)

where 4t = t(n+1) − t(n) is the physical time step; and the superscripts (n) and (n + 1) denote the
previous and current physical time levels, respectively. Note that [ f (w)](n+1) in Equation (24) consists
of nonlinear terms. The one-step Picard iteration uses the solution at the previous time level to linearize
the nonlinear terms. Equation (24) becomes

w(n+1)

∆t
− 1

2

{
A
(∂6w

∂x6

)(n+1)
+ 5C

(
w4
)(n) (∂w

∂x

)(n+1)

−B
[

12w(n)
((∂w

∂x

)2)(n)
w(n+1) + 4

(
w3
)(n) (∂2w

∂x2

)(n+1) ]}
=

w(n)

∆t
+

1
2
[ f (w)](n) (25)
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After inserting appropriate values of w and its derivatives using (21), Equation (25) is written as Ĥ0
∆t −

1
2


AĤ6 + 5C

(
Ĥ0α̂(n)

)4
Ĥ1

−B
[

12Ĥ0α̂(n)
(

Ĥ1α̂(n)
)2

Ĥ0 + 4
(

Ĥ0α̂(n)
)3

Ĥ2

]

 α̂(n+1) =

 Ĥ0
∆t +

1
2


AĤ6 + 5C

(
Ĥ0α̂(n)

)4
Ĥ1

−B
[

12Ĥ0α̂(n)
(

Ĥ1α̂(n)
)2

Ĥ0 + 4
(

Ĥ0α̂(n)
)3

Ĥ2

]

 α̂(n)

(26)

For simplicity, the above equation can be written as,

E1α̂(n+1) = RHS1 (27)

and the boundary conditions as
E2α̂(n+1) = RHS2 . (28)

The system of Equations (27) and (28) is solved simultaneously at each time step for α̂(n+1) until
the prescribed time T is reached. Numerical experiments are conducted on a computer with an Intel i7,
3.60 GHz processor and 16 GB RAM using Matlab-R2017b software. The following subsections present
the numerical results.

2.1. Two-Channel Experiment

In this numerical experiment we consider a thick channel branching into two thin channels as
shown in Figure 2. In the state of rest each of the thin channels has half the width of the thick channel.

Figure 2. Branching channels (in the state of rest).

The displacement of the channel walls satisfy the equations

∂w1

∂t
=

D
3η

H3
0

∂6w1

∂x6 −
α

3η
H3

0
∂2

∂x2

(
w4

1

)
+ βH3

0
∂

∂x

(
w5

1

)
, (29)

∂w2

∂t
=

D
3η

(
H0

2

)3 ∂6w2

∂x6 −
α

3η

(
H0

2

)3 ∂2

∂x2

(
w4

2

)
+ β

(
H0

2

)3 ∂

∂x

(
w5

2

)
. (30)

where we assume that the parameters αi (and βi) may be different between the channels. The boundary
conditions are chosen homogeneous, namely zero values of the function and its first two derivatives at
the edges, x = xl (l stands for “left”) and x = xr (r stands for “right” ),

w1(xr) = 0,
∂w1

∂x
(xr) = 0,

∂2w1

∂x2 (xr) = 0 ,
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w2(xl) = 0,
∂w2

∂x
(xl) = 0,

∂2w2

∂x2 (xl) = 0 .

In the experiments we used xr = 0 and xl = −45 (see Figures 3–10). For the branching (contact)
point the following boundary conditions are set. The kinematic condition expresses continuity of the
wall displacement,

w1(xc) = w2(xc) , (31)

where c stands for “contact”, see Figure 2. The next conditions ensure continuity of the pressure
(see (7)),

∂w1

∂x
(xc) =

∂w2

∂x
(xc),

∂2w1

∂x2 (xc) =
∂2w2

∂x2 (xc),

∂3w1

∂x3 (xc) =
∂3w2

∂x3 (xc),
∂4w1

∂x4 (xc) =
∂4w2

∂x4 (xc) . (32)

We used xc = −25 (see Figures 3–10). The last condition will ensure continuity of the mass flux.
According to (3), the flux for the thick channel is

Q1 = −
H3

0
3η

∂p1

∂x
+ v1(x, H0, t) H0 . (33)

As the width of the thin channel is H0/2, from Equation (33) the mass flux for the thin channel is

Q2 = − (H0/2)3

3η

∂p2

∂x
+ v2

(
x,

H0

2
, t
)

H0

2
. (34)

The continuity of the flux requires
Q1 = 2Q2 , (35)

Therefore, using (33), (34) we get

− (H0/2)3

3η

∂p2

∂x
+ v2

(
x,

H0

2
, t
)

H0

2
= −

H3
0

6η

∂p1

∂x
+ v1 (x, H0, t)

H0

2
. (36)

Assuming continuity of the velocity in (36) we have

4
∂p1

∂x
=

∂p2

∂x
. (37)

Substituting (9) into (37), we obtain

4
[

D
∂5w1(xc)

∂x5 − ∂2

∂x2

(
N

∂w1(xc)

∂x

)
− α

∂

∂x
w4

1(xc)

]
=

[
D

∂5w2(xc)

∂x5 − ∂2

∂x2

(
N

∂w2(xc)

∂x

)
− α

∂

∂x
w4

2(xc)

]
, (38)

and, inserting (8) into (38),

4
[

D
∂5w1(xc)

∂x5 − α
∂

∂x
w4

1(xc) −
Eh

1− ν2
∂2

∂x2

(
∂u
∂x

∂w1(xc)

∂x
+

1
2

(
∂w1(xc)

∂x

)3
)]

=

[
D

∂5w2(xc)

∂x5 − α
∂

∂x
w4

2(xc) −
Eh

1− ν2
∂2

∂x2

(
∂u
∂x

∂w2(xc)

∂x
+

1
2

(
∂w2(xc)

∂x

)3
)]

. (39)
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Assuming u small and negligible the Equation (39) becomes

4D
∂5w1(xc)

∂x5 − 4α
∂

∂x
w4

1(xc)−
4Eh

2(1− ν2)

∂2

∂x2

(
∂w1(xc)

∂x

)3

= D
∂5w2(xc)

∂x5 − Eh
2(1− ν2)

∂2

∂x2

(
∂w2(xc)

∂x

)3

− α
∂

∂x
w4

2(xc) . (40)

Using the conditions (31) and (32) in Equation (40), we get

4D
∂5w1(xc)

∂x5 − 3
Eh

2(1− ν2)

∂2

∂x2

(
∂w1(xc)

∂x

)3

− 3α
∂

∂x
w4

1(xc) = D
∂5w2(xc)

∂x5 . (41)

Prior to the numerical experiment we non-dimensionalized all the equations (see Section 3 for
details) and the values of A, B and C were chosen such that A = 1, B = 1 and C = 1. The size of spatial
domain in each numerical experiment is chosen such that: (1) the experiment does not last too long
before a settled stage is reached and (2) the pulses are satisfactoryly resolved in space. The number
of nodes is 100, the time step 0.001 and the size of the domain xr − xl = 45. In the first experiment,
we assumed that α2 = α1 and β2 = β1. After non-dimensionalizing the thick channel equation to
the form

∂w1

∂t
= A

∂6w1

∂x6 − B
∂2

∂x2

(
w4

1

)
+ C

∂

∂x

(
w5

1

)
(42)

the non-dimensional thin channel equation becomes

∂w2

∂t
= a

∂6w2

∂x6 − b
∂2

∂x2

(
w4

2

)
+ c

∂

∂x

(
w5

2

)
, (43)

where a = b = c = 1/8. We set the initial condition in the thick channel as w1(x, 0) =

1.2. exp
[
−0.25(x + 2.5)2] and in the thin channel w2(x, 0) = 0 as shown in Figure 3.

 x

-45 -40 -35 -30 -25

 w
(x

,0
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Thin channel

 x

-25 -20 -15 -10 -5 0

 w
(x

,0
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Thick channel

t=0

Figure 3. The initial condition initiating the pulse in the thick channel.

From Figure 4, we see that in this particular experiment the pulse in the thick channel is not
propagating to the thin channel. In the second experiment, in an attempt to make the pulse propagate
into the thin channel we increased the value of β2 (the thin channel parameter) by the factor of eight
(a = 1/8, b = 1/8, c = 1).



Fluids 2019, 4, 160 9 of 15

-45 -40 -35 -30 -25

 x

-1

-0.5

0

0.5

1

1.5

2

2.5

 w
(x

,t
)

Thin channel

-25 -20 -15 -10 -5 0

 x

-1

-0.5

0

0.5

1

1.5

2

2.5

 w
(x

,t
)

Thick channel

t=1

t=5

t=7.5

t=9

t=10

t=11

t=12

t=13

t=14

t=15

Figure 4. The solution from t = 1 to t = 15.

As a result, we observed the dynamics shown in Figure 5. The pulse propagates from the right
end of the thick channel towards its left end as time goes. The evolution of the pulse starts from a
single hump in the thick channel. After a while, the solution takes a familiar pulse-like form moving
towards the contact point. The homogeneous boundary conditions were used at the left end of the thin
channel and right end of the thick channel. At t = 12, the pulse reaches the contact point (x = −25).
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Figure 5. Pulse propagation through the contact point showing the (top) early and (bottom) late stages
(1 < t < 19).
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Despite the pulse does make it into the thin channel and spends some time propagating through it,
its height rapidly decreases and the pulse eventually decays without reaching the end of the channel.
Looking at the mathematical structure of the governing equations, the only difference is the factor 1/8
in the right-hand side of the thin-channel equation compared to the thick-channel equation. Hence,
the pulse solution definitely exists for the thin channel. But, as opposed to the way the pulse is started
in the thick channel, within the thin channel we do not have freedom to choose the way the pulse
is started, because it is already shaped by previous dynamics. In order to support the propagation
in the thin channel we decided to increase the excitation coefficient α2 in the thin channel, so that
the thin channel non-dimensional parameters a = 1/8, b = 1/4, c = 1 (Figure 6). An interesting
question is what is the minimum (critical) value of b in the thin channel to guarantee the pulse
survival. We increased the excitation coefficient b in the thin channel from experiment to experiment
by increments (Figures 6–9) until the pulse survived. Observe from Figure 6 that at a relatively low
excitation level in the thin channel the pulse only travels to the mark of just over 30. At a higher
excitation rate, as illustrated in Figure 7, the pulse travels further, namely to the mark of over 35. For an
even higher excitation, see Figure 9, the pulse manages to propagate through the entire length of the
thin channel.
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Figure 6. The experiment with α2 = 2 α1 (a = 1/8, b = 1/4, c = 1); the time ranges from t = 1 to 19.
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Figure 7. The experiment with α2 = 4 α1 (a = 1/8, b = 1/2, c = 1); the time ranges from t = 1 to 26.
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Figure 8. The experiment with α2 = 4.5 α1 (a = 1/8, b = 4.5/8, c = 1); the time ranges from t = 1 to 21.
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Figure 9. The experiment with α2 = 4.9 α1 (a = 1/8, b = 4.9/8, c = 1); the time ranges from t = 1
to 18.8.

The pulse finally disappears after hitting the left boundary of the thin channel as shown in
Figure 10.
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Figure 10. Continuation from Figure 9. t = 22, 30.
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We determined that the critical value of the excitation coefficient in the thin channel is
approximately b = 0.6.

2.2. Three-Channel Experiment

In this numerical experiment, we consider a three-channel configuration where a thick channel
branches out into two thin channels and each of them in turn branches out into two even
thinner channels. In the state of rest each of the thinner channels has half the width of the thicker
channel with which it is in contact. The boundary conditions and the initial condition are the same as
in the previous experiment. The displacement of the thinnest channel wall, w3 , satisfies the equation

∂w3

∂t
=

D
3η

(
H0

4

)3 ∂6w3

∂x6 −
α3

3η

(
H0

4

)3 ∂2

∂x2

(
w4

3

)
+ β3

(
H0

4

)3 ∂

∂x

(
w5

3

)
. (44)

Now we non-dimensionalize Equation (44) to the form

∂w3

∂t
= a1

∂6w3

∂x6 − b1
∂2

∂x2

(
w4

3

)
+ c1

∂

∂x

(
w5

3

)
. (45)

where the non-dimensional coefficient a1 = 1/46, b1 = 4.9/46, c1 = 1/8. We run the numerical
experiments in the similar fashion to the two-channel experiments, until the pulse survived in the
thinnest channel as shown in Figure 11.
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Figure 11. The experiment with α3 = 4.9 α2; the time ranges from t = 1 to 56.

Figure 12 shows that the pulse decays after hitting the left boundary of the thinnest channel.
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Figure 12. Continuation from Figure 11. t = 60, 70.
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We then determined that the critical value of the non-dimensional excitation coefficient in the
thinnest channel is approximately 0.38.

3. Evaluation of the Model Coefficients

In this section, we evaluate the coefficients α and β, which were introduced in the original
model [9] empirically. The idea is to select α and β in such a way that the dimensional amplitude and
dimensional velocity of the pulse have realistic values, that are values typical for a human artery (by the
order of magnitude). Let us re-scale the main dimensional Equation (12) in two steps. In step one,
we non-dimensionalize the equation using H0 as the spatial scale and η/E as the time scale. Then,
in step two, we re-scale w, t and x using the yet-to-be-determined non-dimensional scaling factors W,
T and X, respectively. Thus,

w = H0w3 , w3 = Ww4 ,

x = H0x1 , x1 = Xx2 ,

t = ηt1/E , t1 = Tt2 .

The resulting non-dimensional equation is

∂w4

∂t2
= A

∂6w4

∂x6
2
− B

∂2

∂x2
2

(
w4

4

)
+ C

∂

∂x2

(
w5

4

)
, (46)

where

A =
DT

3EH3
0 X6

, B =
αH4

0 TW3

3EX2 , C =
βηH6

0 TW4

EX
. (47)

In fact, (46) is the non-dimensional Equation (13) which we solved numerically.
In the numerical experiments we used

A = 1 , B = 1 , C = 1 . (48)

Using the settled single-pulse solution in say the thinnest channel (before the pulse hit the
boundary), we can measure the non-dimensional amplitude of the pulse ∆w4 and the non-dimensional
pulse speed ∆x2/∆t2. Returning to the dimensional quantities, we have, for the dimensional
pulse amplitude,

∆w = H0W∆w4 (49)

and, for the dimensional pulse speed,

v =
∆x
∆t

=
H0XE

ηT
∆x2

∆t2
. (50)

We require that the coefficients α and β lead to realistic orders of magnitude for ∆w and v in (49)
and (50). Of course we remember that our hypothetical channels do not have realistic cylindrical shape
but the methodology of evaluation of α and β is applicable to any version of the model including
possible future versions with cylindrical configuration. From the literature, by the order of magnitude,
v = 4 m/s [16,17] and ∆w = 1 mm. The three Equations (48) (where A, B and C are given by (47)) and
Equations (49) and (50) form a system of five equations with respect to the five parameters W, X, T,
α and β that are to be determined. We find

W =

(
∆w
∆w4

)
H−1

0 ,

X = D1/5(3η)−1/5 v−1/5H−2/5
0

(
∆x2

∆t2

)1/5
,
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T = ED1/5H3/5
0 3−1/5 (vη)−6/5

(
∆x2

∆t2

)6/5
,

α = H−12/5
0

(
∆x2

∆t2

)−4/5
D1/5(3η)4/5

(
∆w4

∆w

)3
v4/5 ,

β =

(
∆x2

∆t2

)−1 (∆w4

∆w

)4
v H−3

0 .

As we noted, ∆x2/∆t2 and ∆w4 are measured from the numerical experiments (Figure 11):
∆x2/∆t2 = 0.4 and ∆w4 = 1 approximately. The other parameters have the following approximate
values: H0 = 0.5 cm, the Young’s modulus E = 3× 105 Pa [18], the Poisson ratio ν = 0.5 [19–24],
the blood viscosity η = 0.004 Pa · s [22] and the wall thickness h = 0.1 cm [24]. Therefore, the flexural
rigidity D = Eh3/[12(1 − ν2)] = 0.002 Pa · cm3. Based on these figures, we have, by the order
of magnitude,

α = 1.1× 104 Pa · cm−4

and
β = 8× 107 cm−6 · s−1 .

4. Conclusions

We applied the 1D-IRBF numerical method to solve the model of the flow between active walls
adapted for a branching channel. We used homogeneous boundary conditions at the edges and
continuity conditions at the branching (contact) point. We obtained and analyzed solutions in
the form of auto-pulses penetrating through the branching point from the thick channel into the
thin channel. The numerical experiments showed that the pulse decays while moving through the
thin channel unless the excitation coefficient in the thin channel is increased. Therefore, we conducted
a series of experiments using larger values of the excitation coefficient α in the thin channel until
the pulse “survived.” The numerical results indicated that the thinner the channel the larger the
excitation coefficient α needs to be in order to guarantee the pulse propagation. Based on the
numerical experiments, we evaluated the empirical parameters α and β responsible for the active
component of the wall dynamics. So far we explored the branching configuration with only two
branching points as maximum. In the future, it would be interesting to study a system of multiple
vessels with three or more branching points.

Author Contributions: Conceptualization, D.S.; Formal analysis, F.A.; Investigation, D.S. and F.A.; Methodology,
D.S.; Visualization, F.A.; Writing – original draft, F.A.; Writing – review and editing, D.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ahmed, F.Z.; Mohammed, M.G.; Strunin, D.V.; Ngo-Cong, D. Simulations of autonomous fluid pulses
between active elastic walls using the 1D-IRBFN method. Math. Model. Nat. Phenom. 2018, 13, 47. [CrossRef]

2. Li, S.; Vogt, D.M.; Rus, D.; Wood, R.J. Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad.
Sci. USA 2017, 114, 13132–13137. [CrossRef] [PubMed]

3. Bessonov, N.; Sequeira, A.; Simakov, S.; Vassilevskii, Y.; Volpert, V. Methods of blood flow modelling.
Math. Model. Nat. Phenom. 2016, 11, 1–25. [CrossRef]

4. Robertson, A.M.; Sequeira, A.; Owens, R.G. Rheological models for blood. In Cardiovascular Mathematics;
Springer: Milano, Italy, 2009; pp. 211–241.

5. Robertson, A.M.; Sequeira, A.; Kameneva, M.V. Hemorheology. In Hemodynamical Flows; Birkhäuser: Basel,
Switzerland, 2008; pp. 63–120.

6. Quarteroni, A.; Veneziani, A.; Zunino, P. Mathematical and numerical modeling of solute dynamics in blood
flow and arterial walls. SIAM J. Numer. Anal. 2002, 39, 1488–1511. [CrossRef]

http://dx.doi.org/10.1051/mmnp/2018058
http://dx.doi.org/10.1073/pnas.1713450114
http://www.ncbi.nlm.nih.gov/pubmed/29180416
http://dx.doi.org/10.1051/mmnp/201611101
http://dx.doi.org/10.1137/S0036142900369714


Fluids 2019, 4, 160 15 of 15

7. Alastruey, J.A. Numerical Modelling of Pulse Wave Propagation in the Cardiovascular System: Development,
Validation and Clinical Applications. Ph.D. Dissertation, University of London, London, UK, 2006.

8. Roberts, A.J. A One-Dimensional Introduction to Continuum Mechanics; World Scientific: Singapore, 1994.
9. Strunin, D.V. Fluid flow between active elastic plates. ANZIAM J. 2009, 50, 871–883. [CrossRef]
10. Huang, R.; Suo, Z. Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 2002, 91, 1135–1142.

[CrossRef]
11. Landau, L.D.; Lifshitz, E.M. Theory of Elasticity; Pergamon: London, UK, 1959; pp. 57–60.
12. Timoshenko, S.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1987.
13. Ahmed, F.Z.; Strunin, D.V.; Mohammed, M.G.; Bhanot, R.P. Numerical solution for the fluid flow between

active elastic walls. ANZIAM J. 2016, 57, 221–234. [CrossRef]
14. Mai-Duy, N.; Tran-Cong, T. Numerical solution of differential equations using multiquadric radial basis

function networks. Neural Netw. 2001, 14, 185–199. [CrossRef]
15. Quarteroni, A.; Valli, A. Numerical Approximation of Partial Differential Equations; Springer: New York, NY,

USA, 1997.
16. London, G.M.; Pannier, B. Arterial functions: how to interpret the complex physiology. Nephrol. Dial. Transpl.

2010, 25, 3815–3823. [CrossRef] [PubMed]
17. Lehmann, E.D. Clinical value of aortic pulse-wave velocity measurement. Lancet 1999, 354, 528–529.

[CrossRef]
18. Zhang, X.; Kinnick, R.R.; Fatemi, M.; Greenleaf, J.F. Noninvasive method for estimation of complex elastic

modulus of arterial vessels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 642–652. [CrossRef]
[PubMed]

19. Olufsen, M.S.; Peskin, C.S.; Kim, W.Y.; Pedersen, E.M.; Nadim, A.; Larsen, J. Numerical simulation and
experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng.
2000, 28, 1281–1299. [CrossRef] [PubMed]

20. Matthys, K.S.; Alastruey, J.; Peiró, J.; Khir, A.W.; Segers, P.; Verdonck, P.R.; Parker, K.H.; Sherwin, S.J.
Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations
against in vitro measurements. J. Biomech. 2007, 40, 3476–3486. [CrossRef] [PubMed]

21. Surovtsova, I. Effects of compliance mismatch on blood flow in an artery with endovascular prosthesis.
J. Biomech. 2005, 38, 2078–2086. [CrossRef] [PubMed]

22. Avolio, A.P. Multi-branched model of the human arterial system. Med Biol. Eng. Comput. 1980, 18, 709–718.
[CrossRef] [PubMed]

23. Kalita, P. Shell Models of the Artery Wall. Schedae Inform. 2004, 13, 104–122.
24. Quarteroni, A.; Tuveri, M.; Veneziani, A. Computational vascular fluid dynamics: problems, models and

methods. Comput. Vis. Sci. 2000, 2, 163–197. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.21914/anziamj.v50i0.1452
http://dx.doi.org/10.1063/1.1427407
http://dx.doi.org/10.21914/anziamj.v57i0.10453
http://dx.doi.org/10.1016/S0893-6080(00)00095-2
http://dx.doi.org/10.1093/ndt/gfq614
http://www.ncbi.nlm.nih.gov/pubmed/20947536
http://dx.doi.org/10.1016/S0140-6736(99)00179-8
http://dx.doi.org/10.1109/TUFFC.2005.1428047
http://www.ncbi.nlm.nih.gov/pubmed/16060513
http://dx.doi.org/10.1114/1.1326031
http://www.ncbi.nlm.nih.gov/pubmed/11212947
http://dx.doi.org/10.1016/j.jbiomech.2007.05.027
http://www.ncbi.nlm.nih.gov/pubmed/17640653
http://dx.doi.org/10.1016/j.jbiomech.2004.09.004
http://www.ncbi.nlm.nih.gov/pubmed/16084208
http://dx.doi.org/10.1007/BF02441895
http://www.ncbi.nlm.nih.gov/pubmed/7230917
http://dx.doi.org/10.1007/s007910050039
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Numerical Experiments
	Two-Channel Experiment
	Three-Channel Experiment

	Evaluation of the Model Coefficients
	Conclusions
	References

