

Australian Government

Cotton Research and Development Corporation

Development of a sensing system for automated cotton fruit load and vegetation estimation

Dr Alison McCarthy and Associate Professor Nigel Hancock National Centre for Engineering in Agriculture mccarthy@usq.edu.au

VARIwise control framework

VARIwise:

simulates and develops sitespecific irrigation control strategies

- Steps for model-based strategies:
 - Calibrate crop production model using input soil/plant parameters
 - 2. Repeatedly execute model with different irrigation volumes and timing to determine irrigation that produces the desired performance objective

Legend EM38 May 2010

GDA 94

Plant parameters required to calibrate model: leaf area index, square count, boll count and plant density

Cotton plant sensing

Plant condition from visual attributes

vegetative growth, leaf area, flowering timeframe, boll capacity, plant density

Plant density influences micro-climate

- soil moisture extraction, light interception, humidity and wind movement
- ...which also influences:
 - plant height, branch development, fruit location and size

Beneficial to automated irrigation control systems

Sensing systems for field crops

Commercially-available:

Light sensors to measure leaf area index

Research tools:

- Distance sensors to measure height and estimate leaf area index
- Image analysis of camera images to determine internode length, nitrogen status and plant size
- Multispectral properties using narrowband imaging

Spectral response of cotton structures

Flowers could be distinguished from leaf material in red wavelengths 450-700 nm

At 450-950 nm small bolls have highest reflectance but large bolls not distinguishable

Source: McCarthy, C (2009) Automatic non-destructive dimensional measurement of cotton plants in real-time by machine vision. PhD Thesis

Plant density

Infrared filter increased contrast between leaves, soil, stubble
Visible:

Image analysis:

Identify potential plants

1. Identify leaf (bright) pixels

2. Assign each leaf pixel to a potential plant number index if connected to another leaf pixel

Size analysis

- 1. Count pixels in each potential plant identified
- 2. If count within threshold then a plant is detected and accumulate plant count

Square count

Square spectral response is similar to leaves

- 21 days from first formation of pinhead square to white bloom, flowers last for 7 days
- Image analysis as for plant density but bright pixels are flowers

Visible:

Red only:

A Research Centre of the University of Southern Queensland

fulfilling lives

Boll count

Boll shape can be distinguished from leaves

Image analysis:

Identify potential bolls from brighter pixels

Shape analysis

- 1. Count width and height of each potential boll
- 2. If dimensions within thresholds then potential boll
- Size analysis as for plants and flowers

Infrared:

A Research Centre of the University of Southern Queensland

UNIVERSITY OF SOUTHERN QUEENSLAM

fulfilling lives

Platforms for surface irrigation

Evaluated in the 2010/11, 2011/12 and 2012/13 cotton growing seasons

Ground-based platform for surface irrigation

Vehicle-based platform for surface irrigation

SOUTHERN QUEENSLAND

Irrigation machine mounted platform

Evaluated in the 2012/13 cotton growing season

Overhead-mounted platform for centre pivots/lateral moves

Sensor validation – density and height

- Plant density generally overestimated from falsely identifying weeds or stubble in the image as small cotton plants
- Accuracy of distance sensor was ±6 cm (±4 cm in specification)

Sensor validation – flowers and bolls

- Underestimated flower count from occlusion by cotton leaves
- Boll count was underestimated because bolls lower on the plant were fully occluded in a top view of the crop

A Research Centre of the University of Southern Queensland

OUTHERN QUEENSLAND

Conclusion

- Plant density and flower and boll count estimation was achieved with simple image analysis in red and infrared wavebands
- Plant height estimation using height sensors
- Sensing platform is suitable for on-the-go sensing of cotton plant parameters at high spatial resolution
- Additional side cameras required for improved boll detection
 - Potential use for estimating plant parameters in an automated irrigation system

Acknowledgements

Cotton Research and Development Corporation

Nigel Hopson and Lindsay Evans for providing field trial sites

fulfilling lives

Australian Government

Cotton Research and Development Corporation

Development of a sensing system for automated cotton fruit load and vegetation estimation

Dr Alison McCarthy and Associate Professor Nigel Hancock National Centre for Engineering in Agriculture mccarthy@usq.edu.au

