
SECURITY ASSURANCE PROCESS FOR SERVICE

COMPONENT-ORIENTED APPLICATION LOGIC FOR SOCIAL

INTERACTION IN E-COMMERCE BANKING APPLICATIONS

A Thesis Submitted by

Faisal Nabi

MSc.e-BusMgmt

For the Award of

Doctor of Philosophy

2021

i

ABSTRACT

Application logic in e-commerce refers to features and behaviours unique to the

application. Each application has its own specific handling of user inputs, user

behaviour and communication with third-party components, while the weakness of

component business logic is unique, there are significant web vulnerabilities that are

common, impaction, and can be readily exploited. Usually, a logic weakness exists

when an intruder violates legitimate application-specific functionality, against

the intentions of developers.

In this research, we will investigate and discuss design flaw / logical flaw that

causes business logic attack in the service-component-oriented application, at

the n-tier architecture. The purpose of this research is to explore the causes of

application logical flaws in service component architectural- based applications.

There is clearly a need for a methodology able to deal with the logical flaws that

normally do not show attack patterns or signatures, which are thereby hard to

discover through automated techniques. Recent techniques to secure component-

oriented applications normally focus on technical vulnerability. This can rely on

security analysis and detection tools for vulnerability identification. The auditors

mostly follow such policies that are based on checking a limited list of security issues/

vulnerabilities. Therefore, we have observed that the technique of custom-developed

business logic often falls short in its ability to discover vulnerabilities. We have

also noticed a significant number of attacks recently classified as business logic attacks.

Many security techniques have been introduced for service component-oriented

architecture in recent years, but they are at the high level of service component-

oriented architecture and do not address the middle-tier (business-tier) in component-

oriented systems. The main focus is to research business logic vulnerability in

the service component-oriented applications using security breach scenarios (case-

study) in the banking domain, also examining the re-usability of design specification

in the component. Furthermore, this approach is supported by a taxonomy of logical

vulnerability in service component e-commerce, this taxonomy is validated by the

proposed model in Chapter 4 B and event attack modeling in service component

architecture in Chapter 5. It has a close relationship between the proposed

taxonomy and the projected scenario of event attack modeling. Keeping in view

this research further moves toward the logical solution of application logic.

ii

Therefore, we propose a secure design method as a security assurance methodology,

which uses social e-commerce as a modeling tool to demonstrate the features of this

methodology. This method will be validated through Integration using UML modeling

and system assurance process. This will be further reflected in a security feature-

based UML. Sec modeling as an example B2c ATM model, demonstrated in

social interactions of e-commerce component-based-application security modeling.

iii

CERTIFICATION OF THESIS

This Thesis is the work of Faisal Nabi except where otherwise acknowledged, with

the majority of the authorship of the papers presented as a Thesis by Publication

undertaken by the Student. The work is original and has not previously been

submitted for any other award, except where acknowledged.

Principal Supervisor: Professor. Jianming Yong

Associate Supervisor: Associate Professor. Xiaohui Tao

Student and supervisors' signatures of endorsement are held at the University

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my creator, Allah

- the most gracious, beneficial, and kind. Then, I'd want to convey my deepest gratitude

and admiration to Professor Jianming Yong, my principal supervisor, for his

invaluable assistance, intelligent suggestions, inspiration, and support during the

study. His contributions to my PhD studies have been essential. The constructive

criticism I received from him on a regular basis greatly improved the quality of my

PhD study. I'd also like to convey my heartfelt gratitude to Professor Xiaohui Tao,

my associate supervisor, who has always encouraged me to work hard and meet my

deadlines. His valuable feedback helped me enhance my work, and he also pushed me

to maintain the positive attitude I needed during the project. Moreover, two external

authors also participated in one publication, and the work done by them is only 10%

(Muhammad Farhan and Nauman Naseem). Without the University of Southern

Queensland's (USQ) funding [USQ International Fees Research Scholarship], the

research would not have been possible. In addition, I appreciated USQ's outstanding

working facilities, library resources, and cutting-edge logistical support. The author

would like to thank Peer Bukhari who so much supported me while completing the

thesis into one document. He is my religious teacher and great Sufi saint (Peer

Bukhari order).

v

STATEMENT OF CONTRIBUTION

The following detail is the agreed contribution of candidates and co-authors in the

presented publications in this thesis:

Article I:
Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2020) A security review of event-

based application function and service component architecture, IGI International

Journal of Systems and Software Security and Protection, 11 (2). pp. 58-70. ISSN

2640-4265.

The first paper's overall contribution of Faisal Nabi is 90% to the concept

development, data collection, research analysis and revising of the final submission.

Jianming Yong & Xiaohui Tao contributed 10%, assisted in designing the study,

supervised research analysis and review the research concepts, results, and final

manuscript approval.

Article II A:

Nabi, Faisal and Yong, Jianming and Tao, Xaiohui (2020) Classification of

logical vulnerability based on group attacking method. In: 11th International

Conference on Ambient Systems, Networks and Technologies (ANT 2020), 6-9 April

2020, Warsaw Poland.

The second paper's overall contribution of Faisal Nabi is 85% to the concept

development, data collection, research analysis and reviewing of current articles and

deciding the eligibility for inclusion drafting the paper. Dr Jianming Yong and

Xiaohui Tao contributed 15%, assisted in the review of the concept developed,

approve the idea, supervised research analysis, and review the research concepts,

results, and final manuscript approval.

Article II B:

Nabi, Faisal and Yong, Jianming and Tao, Xiaohui , Muhammad Farhan, Nauman

Naseem (2021) Organizing Classification of Application Logic Attacks in Component-

based E-Commerce Systems, Journal of computer science Q3 validated the proposed model

in Chapter 3 and developed a taxonomy for developers of J2EE platform. This helps to

improve the CVC database which is used for vulnerability reporting and information

http://eprints.usq.edu.au/39342/
http://eprints.usq.edu.au/39342/
http://eprints.usq.edu.au/39342/
http://eprints.usq.edu.au/37984/
http://eprints.usq.edu.au/37984/
https://orcid.org/0000-0002-0020-077X
https://orcid.org/0000-0002-0020-077X

vi

gathering. The second paper B’s overall contribution by Faisal Nabi is 80% to the

concept development, data collection, research analysis and designing system

modeling and tool selection to develop the final manuscript and drafting of the paper.

Jianming Yong and Xiaohui Tao contributed 10%, assisted in the review of the concept

developed, approve the idea, supervised research analysis, and review the research concepts,

results, and final manuscript approval. Whereas other authors in publication B just involved

in data gathering and survey so their contribution is only 5% each.

Article III:

Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2020) A novel approach for

component-based application logic event attack modeling. International Journal of

Network Security, 22 (3). pp. 437-443. ISSN 1816-353X

The third paper's overall contribution of Faisal Nabi is 90% to the concept

development, data collection, research analysis and designing system modeling and

tool selection to develop the final manuscript and drafting of the paper.

Jianming Yong and Xiaohui Tao contributed 10%, assisted in the review of the

conceptdeveloped, approve the idea, supervised research analysis, and review the

research concepts, results, and final manuscript approval.

Article IV

Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2021) Security aspects in

modern service component-oriented application logic for social e-commerce

systems. Social Network Analysis and Mining, 11 (1):22. ISSN 1869-5450.

The fourth paper's overall contribution of Faisal Nabi is 85% to the concept

development, data collection, research analysis and proposition of a conceptual

model design that follows system modeling and tool selection to develop the final

manuscript and drafting of the paper.

Jianming Yong and Xiaohui Tao contributed 15%, assisted in the review of the

conceptdeveloped, approve the idea, supervised research analysis, and review the

research concepts, results, and final manuscript approval.

http://eprints.usq.edu.au/37983/
http://eprints.usq.edu.au/37983/
http://eprints.usq.edu.au/41502/
http://eprints.usq.edu.au/41502/
http://eprints.usq.edu.au/41502/

vii

Article V

Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2021) An Approach of social

interaction with software connectors & the role of façade components for secure

application logic (under review).

The fifth paper's overall contribution of Faisal Nabi is 85% to the concept

development, data collection, research analysis and proposing a conceptual model

design that follows system modeling and tool selection to develop the final

manuscript and drafting of the paper.

Jianming Yong and Xiaohui Tao contributed 15%, assisted in the review of the

concept developed, approve the idea, supervised research analysis, and review the

research concepts, results, and final manuscript approval.

viii

TABLE OF CONTENTS
Page

i

iii

iv

v

viii

xiii

xv

xvi
xix

1

Contents
Abstract
Certification of Thesis
Acknowledgements
Statement of Contribution
Table of Contents
List of Figures
List of Tables
List of Abbreviations
List of Publications

Chapter 1. Introduction and Research Background
1 1.Introduction

1.1 The Scope of Research 8

1.1.2 Research Philosophy 9
1.2 Motivation and Problem Statement 10

1.2.1 Objects and Aims

1.2.2 Research Gap 12

1.2.3 Research Contribution 12

1.2.4 Structure of the thesis 13

Chapter 2. Literature Review & Problem Analysis 15

2.1 Current banking CBS-based system analysis 22

Chapter 3. A Security Review of Event-Based Application 25
Function and Service Component Architecture

25

26
26

Chapter 3 research findings & Introductory note
define the relationship between Chapter 1.2 and
Chapter 3
Abstract
3.1 Introduction
3.1.1 Motivation 27

28 3.1.2 Problem Statement
3.1.3 Research Method 28

3.2 Research Background 28

10

ix

29
29
30
30

3.2.1 Service Component Architecture
3.2.2 Specification of the Service Component
3.2.3 Security Properties in SCA
3.3 Related Work
3.4 Event Attack in Service Component and
Composite Application

31

31 3.4.1 Security Features of Event-Based System
3.5 A Review of Event-Based Security Modeling 32
3.5.1 Security by Design Event Control Modeling
3.5.2 Security Component-Based Modeling SCA Approach

32
33

3.5.3 Event Attack Modeling Approach 34
3.5.4 Comparison of Modeling Technique and Discussion
3.5.4.1 Attack Analysis Model

35

3.6 Conclusion 36

References 37

Chapter 4. (A) Classification of Logical Vulnerability Based on
Group Attacking Method

39

39

40

41

Research findings & Introductory note define the
relationship between Chapter 3 and Chapter 4
Abstract
4.1 Introduction
4.1.1 Objective 41

41

41

42

43

44

4.1.2 Method
4.2 Related work
4.3 Proposed Vulnerability Classification Model
4.3.1 Classification of Logical Vulnerability VS
Technical Vulnerability
4.3.2 Layer Based Software System Scenario
Attack Modeling
4.3.3 Classifying and Categorizing Logical
Vulnerabilities

46

4.4 Discussion
4.5 Conclusion

References

47

47

47

Chapter 4B. Organizing Classification of Application Logic 49

Attacks in Component-based E-Commerce Systems

Abstract 49

35

x

49

49
50
51
53
55

58

61

61

62
62
63
63
63
63
64
64
64
65
65
66
66
66
66
66
66

69

69

70
70
71

73

Research Findings and concluding note, as mentioned in
above Chapter * 4A*

Introduction
Research Methodology
Related Research Work and Taxonomic Properties
Previous Research Work and Classifications
Proposed Classification and Types of Logic Attacks
Conclusion

Chapter 5. A Novel Approach for Component-based Application
Logic Event Attack modeling

Research Findings & Introductory note define the
relationship between Chapter 4 and Chapter 5
Abstract
5.1 Introduction
5.2 Problem Statement

5.2.1 Research Philosophy
5.2.2 Research Gap
5.2.3 Current Approaches in Attack Modeling

5.3 Studying Case Profile & Event Attack Modeling
5.3.1 Component Application Logic Design Fault
5.3.1.1 Class of Vulnerability
5.3.2 Case Scenario Based Experimental Study
5.3.3 Theoretical Analysis of Proposed Approach
5.3.4 Systematical Comparison of the Proposed
Scheme
5.3.5 Discussion

5.4 Related Work
5.5 Conclusions

References

Chapter 6. Security aspects in modern service component-oriented
application logic for social e-commerce systems

Research Findings and Introductory note define
relation between Chapter 5 and Chapter 6
Abstract
6.1 Introduction
6.1.1 Problem statement
6.1.2 Objective and contribution

xi

72
73
73
74
74

74

75
77
77

79
78

80
80
82

82
84

86
87
87

89

89

91

91

93

94

95

96

97

98

99

100

6.2 Related work
6.3 Case study-based research method
6.3.1 The impact of flaws in application business logic
6.3.2 Case study-based research scope
6.4 A practical example: social commerce-based e-banking
case study
6.4.1 A composite application functionality and business
process
6.4.2 Exploitation
6.4.3 Security breach case summary
6.5 Proposed security assurance methodology
6.5.1 Security risk analysis
6.5.2 Threat modeling of application logic vulnerability
6.5.3 Taxonomic classification of software vulnerabilities
6.5.4 Component fault detection model
6.5.5 Modeling the application and its components
without fault
6.5.6 Designing security by design application modeling
6.6 A validation and verification of method integration
testing model
6.7 Discussion
6.8 Conclusion and future directions
References

Chapter 7. Social Interaction with Software Connectors &
the Role of Façade-Based Components for Secure
Application Logic

Research Findings & Introductory note define the relationship between
Chapter 6 and Chapter 7

Abstract

7.1 Introduction

7.2 Research Design

7.2.1 Research Motivation

7.3 Review of Existing Work

7.3.1 Component-based Application Logic

7.3.2 Taxonomy of Software Connector

7.3.3 Connector Architecture and Lifecycle

7.4 Designing a Secure Façade-based Connector

7.4.1 UML-based ATM Secure Façade-based Connectors Modeling

xii

102

105

105

106

107

108

111

111

119

120

121

7.4.2 Technical analysis of data transmission Packets in the

Proposed ATM Model

7.4.3 Centralized Security Session Façade

7.4.4 Security Analysis Using Session Façade

7.5.5 A Comparison of Software Connector Modeling Approaches

7.5 Discussion

7.6 Conclusion

References

Chapter 8. Research Results and Conclusion

8.1 Introduction-related thesis question and contribution to the research
8.2 Conclusion
8.2.1 Future Research Work

References

108

LIST OF FIGURES

Figure No. Figure name Page
number

Figure 1.1 Architectural model of banking application organizational process 2
Figure 1.2 Organizational process of component-oriented service-based application 3
Figure 1.3a Service Component Oriented Application Layer Model 5
Figure 1.3b Component-based Java Service-Oriented Architecture Layer Model 5
Figure 1.4: Architecture consists of components & services 8
Figure 1.5 Flowchart of Thesis by Publication 14
Figure 2.1 (a) Reusable component integration pattern 21
Figure 2.1 (b) Reusable components are binding in service integration 21
Figure 3.1 Events call application inter-communication process 28
Figure 3.2 Event request transaction diagram 32
Figure 3.3 Event-based business functional process 33
Figure 3.4 Service component architecture-based security component composite 34
Figure 3.5 Event-based subversion attack modeling 36
Figure 3.6 Analysis of attack event process model 42
Figure 4.1 The Proposed Vulnerability Classification Model 42
Figure 4.2 Classification of Vulnerability Scheme 42
Figure 4.3 Layer-Based Software System Attack Model 39
Figure 4.b.1 The Proposed Vulnerability Classification Model 42
Figure 4.b.2 Classification of Vulnerability Scheme 44
Figure 4.b.2 Layer Based Software System Attack Model 45
Figure 4.c.1 SVAM Model 51
Figure 4.c 2 Taxonomy of Software Vulnerabilities causes 53
Figure 4.c 3 Web attacks taxonomy 54
Figure 4.c 4 Application Logic Vulnerability Graph 55
Figure 4.c 5 Characterization of vulnerability 56
Figure 4.c 6 Logical vulnerabilities Vs technical vulnerabilities 57
Figure 4.c 7 Vulnerability mitigating in context software design assurance phase process 58
Figure 5.1 Component-based application logic event attack scenario 62
Figure 5.2 Attack graph with attack path against systems 64
Figure 5.3 C customer component code 65
Figure 5.4 Subversion attack event scenario 65
Figure 5.5 Event attack subversion logic scenario 66
Figure 5.6 Cyber-attack theory model 75
Figure 6.1 Customer information handling & reused component sociale-commerce in e-banking 75
Figure 6.2 Event-attack-modeling & system exploitation social e-banking 76
Figure 6.3 Subversion attack mapped through social commerce banking service flow 77
Figure 6.4 Security risk analysis model 78
Figure 6.5 Threat modeling of subversion attack 79
Figure 6.6 Taxonomic classification of software vulnerability 80
Figure 6.7 Component fault detection model (CFDM) 81
Figure 6.8 UML Sec 2.0 modeling fault detection of air control system 82
Figure 6.9 UML Sec 2.0 security by design approach multi-specification J2EE system

modeling
83

xiii

Figure 6.10 V &V integration model for security by design testing 84
Figure 6.11 V &V method for fault detection in component-oriented-service 85
Figure 6.12 Model-checking process to validate the proposed method ofV &V 86
Figure 7.1 Direct and Indirect component inter-communication model 93
Figure 7.2 Social ATM Network and Software Process Environment Model 94
Figure 7.3 Application Component with Business Logic 96
Figure 7.4 Connector Role in Component-Based System and Application Logic 97
Figure 7.5 Connector Model (a) Simple Architecture (b) CompoundArchitecture 99
Figure 7.6 Designing Façade-based Secure Connector 99
Figure 7.7 UML Base ATM Secure Façade Connector Design Model 101
Figure 7.8 ATM Network Transmission Packet Information 103
Figure 7.9 ATM Authentication Packet Transmission Process 104
Figure 7.10 Extracted Information from XML Schema Scenario Based Validation 105
Figure 8.1 Security Assurance Model Projection of Thesis Contribution 111

xiv

xv

LIST OF TABLES

Table No. Table name Page
Number

Table 1 Group Attacking Method ID and Vulnerability

Classification
43

Table 2 Attack pattern properties 52

xvi

ABBREVIATIONS

ATM Automated Teller Machine

ACL Access-Control List

API Application Programming Interface

BMI Body Mass Index

B2c Business-to-consumer

BCBS e business component-based-software

COTS Commercial off the shelf (Kind of Component)

CGI Common gateway interface

CVE Common Vulnerabilities and Exposures

CBS Component based Software

CBSD component- based-software developed

CORBA Common Object Request Broker Architecture

CFDM Component fault detection model

CSP Component Service Protocol

DFT Design for Test

EBS Enterprise Backup Solution

EJB Enterprise JavaBeans

ETC Event-triggered control

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

IBM International Business Machines Corporation

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

xvii

IDS Intrusion Detection system

IPS Intrusion Prevention System

IT Information Technology

J2EE Java Platform, Enterprise Edition

JSP Java Server Pages

JMS Java Message Service

Java RMI Java Remote Method Invocation

MOM Message-oriented middleware

OWASP Open Web Application Security Project

OASIS Organization for the Advancement of Structured Information
Standards

RDA Rapidly developed Architecture

RPC Remote Procedure Call

SOI Service Object Integration

SAML Security Assertion Markup Language

SCA service component architecture

SOAP Service-oriented Architecture protocol

SOA Service Oriented Architecture

SDLC Software Development Life Cycle

SRS Security Functional Requirement Specification

SEP Symantec Endpoint Encryption

SED Symantec Endpoint Decryption

UML Sec Unified Modeling Language Security

UML Unified Modeling Language

xviii

V&V model Verification and Validation Model

WS Web Services

XACML Extensible Access Control Markup Language

xix

LIST OF PUBLICATIONS USED IN THESIS

The work of this thesis is based on the following publications:

i. Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2020) A security review of

event-based application function and service component architecture. IGI

International Journal of Systems and Software Security and Protection, 11 (2). pp.

58-70. ISSN 2640-4265.

ii. Nabi, Faisal and Yong, Jianming and Tao, Xaiohui (2020) Classification of

logical vulnerability based on group attacking method. In: 11th International

Conference on Ambient Systems, Networks and Technologies (ANT 2020), 6-9

April 2020, Warsaw Poland.

iii. Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2020) A novel approach for

component-based application logic event attack modeling. International Journal of

Network Security, 22 (3). pp. 437-443. ISSN 1816-353\

iv. Nabi, Faisal and Yong, Jianming and Tao, Xiaohui, Muhammad Farhan, Nauman

Naseem (2021). Organizing Classification of Application Logic Attacks in

Component-based E-Commerce Systems, Journal of computer science Q3

v. Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2021) Security aspects in

modern service component-oriented application logic for social e-commerce

systems. Social Network Analysis and Mining, 11 (1):22. ISSN 1869-5450.

vi. Nabi, Faisal and Yong, Jianming and Tao, Xiaohui (2022) An Approach of social

interaction with software connectors & the role of façade components for secure

application logic, International Journal Network Security (Accepted for

Publication).

http://eprints.usq.edu.au/39342/
http://eprints.usq.edu.au/39342/
http://eprints.usq.edu.au/37984/
http://eprints.usq.edu.au/37984/
http://eprints.usq.edu.au/37983/
http://eprints.usq.edu.au/37983/
http://eprints.usq.edu.au/41502/
http://eprints.usq.edu.au/41502/
http://eprints.usq.edu.au/41502/
https://orcid.org/0000-0002-0020-077X
https://orcid.org/0000-0002-0020-077X
https://orcid.org/0000-0002-0020-077X

1

CHAPTER 1: INTRODUCTION AND RESEARCH BACKGROUND

1. Introduction

The field of software engineering has changed from using conventional enterprise

software application techniques to Service Component Architecture (SCA) for

distributed system applications. Over the last few years, this new age has evolved with

the rapid growth of component-based methods for system design. Despite these

advances, the implementation of existing protected technology software features in

realistic e-commerce distributed systems will do little to deter intruders. While most

studies have been carried out on web application services that largely use current

software, middle-tier component-based software (which rapidly develops application

logic), often introduces security risk opportunities (Wang et al., 2020).

Social means public interaction, in terms of technology. Current social e-commerce

practices are a subset of e-commerce that focus on security framework protocols such

as secure transactional protocols, cryptographic frameworks, and standards for

sanitization. These procedures are widely understood to ensure the security of social

media e-commerce applications. In terms of interaction through banking channels in

digital form by different mediums such applications are defined as mobile, internet,

ATM and mobile ATMs, which are part of social Banking. The popularity of such

applications in social e-commerce through e-banking made life so advanced and fast,

which made life for people more convenient. This is the reason why this study is more

interesting to researchers to focus on social interaction of people in the digitalized

modern world. The factor of this is the technological impact in a new area of digital

banking. On the other hand, the problems of such a domain are still a challenge for

researchers, this makes this study more considerable.

These are basic types of social e-banking applications medium, which is considered as

a sub-set of e-commerce, also known as social e-commerce.

The building blocks of such applications are software components, which are called

business components, based on Java technology, which is very widely used for social

banking applications. However, other technologies are also being used in the market

such as Dcom, .Net, but the main reason for the use of Java is that it is platform-

2

independent, which provides more highly fast service in business application solutions

in social banking.

These applications are connected through the main Banking applications, which are

integrated with other Banking services, such application solutions are based mostly on

Java component-oriented services through loosely coupled contacts based on offered

and used interfaces of every business component. This is the main integration process

of such application solutions are based on component connectors as exemplified in

Chapter 7.

Therefore, each type of social e-banking medium is connected through a pre-defined

interface, which is connected through the main service of the banking application.

The organizational process consists of business components, which are java based on

different technologies such as Java in the banking domain. The software composites

are EJB session bean and entity bean components as referenced in Chapter 6 Figure 9,

These are building blocks based on organizational processes. These have been defined

as architectural models as displayed in the following figure in the banking application

domain. This process is based on banking application integration, technology

integration and based on trust management.

Figure 1.1: Architectural model of banking application organizational process

3

The banking application-based system is based on an organizational model, which is based on

the following process; as displayed in Figure 1.2.

Figure 1.2: Organizational process of component-oriented service-based application

The key concern in the use of these approaches centres on software component flaws in

structure and integration, which are frequently ignored when considered for business use.

These issues can nullify the integrity of current information security. The weakest link in

social e-commerce banking applications is the logic subversion of the part on its server-

side. This occurs when the developer overlooks the business process at the time of

business component integration and reuses the design specification for the current

business logic (Algharabat, 2020).

Service-component-oriented social e-banking applications are being developed, with well-

specified software components that are readily accessible. These are the building blocks

used in-service component architecture to create services. It is necessary to follow an order

in the design process of service-component-oriented applications in the social e-banking

domain in which an application is designed as an organisational process once the design

process is defined, which can be implemented using modular components. Each modular

component is a service, which, by incorporating these services into a social e-banking

framework, explains its interfaces (Wang et al., 2020).

Service component-oriented banking domain applications are built or composed of

software components that are readily available and well specified. These are building

blocks in a service-oriented architecture for the development of services. Within the

service component-oriented application design process in the banking domain, if an

application's design process is determined as an organizational task, then tasks are

considered a modular components, and they need to be incorporated. Each modular element

is a service that explains its interfaces by integrating these services into the banking system.

The current business process relies on the integration of modules, having defined modular

components (Paik et al., 2017).

4

System integration is not easily understandable because it is one of the most complex

software design processes for complex systems, such as the banking system. The

complexity of banking system integration triggers the process of continual improvement in

technological and business attributes provided by the bank to satisfy the requirements of

its customers. Often developed and based on different component vendors, the banking

system consists of multiple platforms and design/architecture patterns. This is also due to

the additional difficulty of integrating a service-oriented component-based banking

application (Riad et al., 2018). Defective integration causes an attack on the business logic

underpinning the process of web-based banking and causes severe financial harm. This

research mainly examines business logic weaknesses in service component-oriented

applications, using a real-life banking security breach scenario while explaining the

component's re-usability design specification in a banking application.

The service-based architecture of components is a significant solution in modern banking,

in particular, the re-use of components when developing new applications as part of

distributed e-commerce systems, such as online banking services (Luhach et al., 2014).

The separation of business logic (business integration logic) from implementation is the

main purpose of service component architecture so that the developer can easily assemble

integrated applications without knowing the implementation details. In order to achieve

this, service components are constructed to allow the implementation of each service

needed by business processes. Therefore, the architecture consists of 3 layers: the first is

the business integration logic; the second is the service components, and the third is

implementation. Business logic components are assembled independently of their

implementation, even though the logic allows for implementation. In this way, the service

interface remains open/available (Nurcan & Schmidt, 2015). Service component-oriented

architecture infrastructure consists of the registry, a message bus, firewalls, web servers,

application servers and a database. These items must be secured in a reliable service-

oriented banking system. An application builder can build from existing services by using

a service broker. In this process, the application builder needs to focus on the business

logic, rather than the programming logic or implementation (Amirpour et al., 2016).

The service-oriented architecture is a module software development approach, whose basic

artefacts are distributed, replaceable and loosely coupled components that communicate

with each other using a standard contract interface, and are implemented as web services

(Janssen et al. 2014; Gbaffonou et al., 2015). For security purposes, an authentication logic

is not normally reusable, especially when operating with another application logic (Karimi,

2011).

5

Figure 1.3 a: Service Component Oriented Application Layer Model (Gbaffonou et al.,
2015)

Figure 1.3 b: Component-based Java service-oriented architecture layer model (Amirpour et al.,
2016)

6

Figure (1.3 b) explains the service component-based architecture model that clearly

expresses each layer function and java beans-based business application logic. This

defines the business rules, which makes application-based business logic.

As explained in the above paragraph, security is the foremost issue within the service

component architecture environment. It needs to be considered carefully because

components are loosely coupled. While there are several existing approaches and

technologies for service security, such as WS-Security, and SAML, none of these

addresses security assurance requirements for all layers within the architecture,

especially at the business layer, where business logic components reside (Paik et al.,

2017).

A service component-oriented architecture causes more security problems at the

architecture level. Security is always a concern in the deployment of new

applications, while reusability of service (components) from an existing logic of

service-oriented distributed system at lower levels of system design is nevertheless

always considered. However, security risks such as “design flaws” are always an

issue. Security aspects are too often ignored during the development of reusable

service component integration and application, causing design flaws (Amirpour et

al., 2016).

Service-oriented architectures use XML-based web services, which are vulnerable to

XML Signature Wrapping Attack, Coercive paring, Oversize payload, SOAP Action

Spoofing, and XML injection into SOAP middleware Hijacking. All security

configuration and deployment are done at the highest level of the application. Many

security tools widely in use validate the security configuration at the highest level in

service-oriented online web-based banking distributed systems. In an n-tier service-

component-oriented architecture, security is deployed at the client-to-web server

layer, using cryptography schemes. This allows secure access control and SSL /TSL-

based secure transmission of data from client to web service, but at the business layer

in the middle-tier, where application logic resides. It is therefore completely lacking

in systematic protection or security assurance (Luhach et al., 2014).

Current techniques are based on XML Key management specification, web services

trust, XACML, Web services security, XML Digital Signature, and XML encryption.

They do provide strong security at client-server level (web-tier), that is, at layer 1 to

layer 2 of the web server. They nevertheless fall short of providing a methodology

that can secure middle-tier service-component oriented application logic at the

business/application layer, where components are coupled, and where open contracts

and designed interfaces using component offered and used interface contact design

based on application logic (Wang et al., 2020 ; Nabi et al., 2020).

These security techniques (addressed above) offer only high-level service

component-oriented architecture. The service component architecture has strong

features like loose coupling and reusability that allow modification at run-time, while

changing its system components. The drawback is, however, that services are not

secured and therefore not reliable at a low level (Wang et al., 2020; Nabi et al., 2020).

The composability (CAUSE) is the best security feature provided by service-

component-oriented architecture but is not secure. Therefore, any non-secure use of

a service increases the risk of a security incident (Malohlava et al., 2013).

In loosely coupled services, a component or application’s logic is, in practice, widely

reused at the enterprise level 9 (Nabi et al., 2019). However, security becomes a

significant challenge at the application server level where business components offer

services: each service is its own unit of logic. The components are in a tighter and more

direct coupling, which in return offers a high level of performance, as compared with the

services; those are loosely coupled and usually communicate through a network, using

standard protocols such as SOAP (Jiang & Willey, 2005).

7

Figure 1.4: Architecture consists of components & services (Jiang & Willey, 2005).

Service component-oriented architecture opens many access points for enterprise systems -

and increases vulnerabilities to the site because many of these points can be accessed through

the internet. As enterprise-level security standards have changed with the advancement of

security technology, the need has increased for mechanisms or methodologies that can cover

core service logic security at application servers where components reside as independent

services (Nabi et al., 2020).

The main example of a component-based application logic flaw is given in Chapter 6 and

Chapter 4 in the form of published papers. However, subversion of logic in component-based

applications may vary subject to the application domain. In banking applications, especially

in social e-commerce and e-banking, the flaw is mostly caused by the reuse of component

functional logic a classical example is given in Chapter 6 through a published paper that

shows a real-time application logic case.

1.1 The Scope of Research

This research has significant scope in the field of a component-based banking application

and security architecture, focussing especially on the middle tier where application logic

security uses (SCA) design pattern. Security violation in the middle tier is a real concern and

is based on a mismatch of component-design specifications within the existing logic of

banking application, which may cause of subversion attack while re-using the component

from existing logic to build new services (Ghassan et al., 2020; Nabi et al., 2020). It indicates

8

9

a serious violation of application integrity & security. Service-oriented component software

uses two sorts of components to develop web-based banking application logic. These two

components are Custom-Developed and commercial off the shelf (COTS). It is possible that

they may have flaws in the design of software applications, that became apparent during the

business logic integration. The CBS-based solution causes software risks that lead to logical

vulnerabilities such as a component’s logic subversion attack, misuse of application logic

and circumvention of a component’s business logic flow. All these factors together temper

the application’s functionality steps. In light of the research problem, we will focus on

security breach subversion in an attack scenario (using the case-study method in the context

of social e-commerce) related to web-based banking systems that re-use design specifications

while developing new services from existing service component logic based on integration

SOI methods, causing business logic vulnerability in the middle-tier of the banking

architecture (Nabi et al., 2021).

1.1.2 Research Philosophy

The philosophy of research is drawn from applied science. We apply current scientific

knowledge to technology, specifically, component-based software engineering theory. To

ensure it is state-of-the-art, the research uses theory, knowledge, method and technique

(Yaghmaie, 2017). The research philosophy also describes and explores state-of-the-art

technology in component-based software design. In formulating it, we have adopted the

solution for business logic weakness from applied science philosophy. At this stage, it is

very important to recognise that, in the light of the research philosophy, design questions

help direct research in the field of e-commerce security by ensuring that the work of the

researcher is moving in the right direction and that their work is thorough and informative.

Why is a case study used as a philosophical paradigm?

The case study method is useful as a philosophical paradigm in e-commerce and it’s a subset

social e-commerce security studies (Laukkanen et al., 2018). This single research paradigm

is particularly helpful in narrowing down a specific topic and its scope, thereby supporting

philosophical investigation (Hassard & Kelemen, 2012). We have taken this approach in our

research philosophy by using as a bank case study as a single research paradigm. The method

used in this process is exploratory research-based case analysis as a technique to formulate

the solution to business logic vulnerability phenomena. The research philosophy also

improves the quality of research work.

10

1.2 Motivation and Problem Statement

In the service component-oriented application or enterprise approach, the application can be

a combination of components that are integrated to form a particular business service or

function. In service component-oriented applications, Business Process Integration (BPI)

consists of business functional concern for component logic; therefore, it cannot be handled

only through technical considerations, because the integration is not only based technical in

nature, and mostly refers to a specific component model. However, the issue identified is the

business process of component functional logic-based design solution, which is related to

business components and their integration. At this stage, the focus is to consider the logical

structure, where the logical problem takes place. Poor attention to design-based detecting

flaws for logical structures is called business logic vulnerability (Nabi et al., 2021). We

propose secure application functional process logic for e-commerce component-based

applications based on security requirements of e-process and security assurance logical

component behaviour specification approach to formulate and design a solution for business

logic vulnerability phenomena. The first section of the methodology follows security risk

analysis in the CBSD rapid business logic and defensive strategy. In addition to this, we also

propose in the second section, “A security Assurance Model process” to deal with logical

component-ware reusing risks in the application logic that cause logical vulnerability in e-

commerce systems to encounter in such situations while reusing components from its

existing application logic. This would contribute to solving identified problems. Application

logic represents the translation of domain business logic that, in component-based developed

application logic interoperates business processes for particular domain problems.

Therefore, it is imperative to design a solution-based methodology that will tackle and work

as a security-by-design method approach for service component-oriented e-commerce

applications, while considering a social e-commerce banking case study, and using a

modeling methodology that helps to generate and automate vulnerability through attack

scenario modeling (UML Sec & Uppaal Tool).

1.2.1 Research Objects and Aims

What sorts of problems is the research finding, in line with the research philosophy? Why is

this project important, and worth doing?

The main research objects are in defining CBS-based application logical flaws in the banking

system, especially when existing components-based business logic is reused.

11

Hence, design specification of component behaviour at the time of integration process.

Main Question: The thesis examines how to detect whether an online-based banking

application service contains logical flaws in its component integration design specification.

This highlights the main object and aim that leads to the scope of this research study is to

focus on investigating software application logic problems and identifying vulnerabilities

that are due to a mismatch between business process specification and component ware

specification at the design/architecture level while using rapid development business

component-based-software approach for business application logic in e-commerce systems.

Our attack patterns are more specific to what components can pinpoint vulnerability in a

system design. We will only target business application Logic vulnerabilities, as explained

given below questions.

Sub-Questions:

Question 1 asks how to detect design flaw-based subversion attacks in banking applications,

which cause business logic vulnerability and which weaken the security of social

e-commerce systems in the banking domain.

Question 2 asks how to classify and characterize two different categories of vulnerability: ie,

logical and technical, that leads to a taxonomy.

Question 3 asks how to define and classify an event-attacking method revealing logical

vulnerability-related flaws in service component applications at the business logic layer.

Question 4 what is the level of social interaction in component-based application logic when

component design specification is reused.

Question 5 social interaction in banking application logic when subversion occurs based on

black-box techniques especially social banking mediums such as ATMs?

This research addresses a burning issue in component-based service-oriented application

logic security. The questions outlined above define areas, which need to be explored, yet

have not been researched elsewhere, thereby indicating a clear research gap. Noting the

technicality of the proposed work, findings will offer significantly increased integrity in the

domain of components and service-based solutions, and therefore increased levels of

assurance in security-by-design.

12

1.2.2 Research Gap

This research will allow us to improve the security of application business logic (Design

Flaw) in-service component-oriented e-commerce applications, composed of integrated

components, and responds to the research gap identified in recent research reviews (Wang et

al., 2020; Nabi & Nabi, 2017; Seinturier et al., 2017). The research highlighted the

significance of application logic vulnerability (allowing subversion attack, caused by design

default), and the inability of vulnerability analysis or detection tools to automate this

vulnerability. This project is therefore worth doing because there has been no identification

of the development of a taxonomic structure of logical vulnerabilities in the middle tier of

service-component oriented service. The absence of this structure often causes flaws, which

COTS or home-made software components (these components are java oriented service

based entity bean as shown in Figures 2.1a and 1.3b) for service integration do not address.

We will investigate the problem of business logic vulnerability in the component-based rapid

development of e-commerce applications while reusing the design specification of

components. We propose secure application functional processing Logic Security technique

for component-based e-commerce application, based on security requirement of e-business

process and security assurance logical component behaviour specification approach to

formulate and design a solution for business logic vulnerability phenomena. This is justified

in Chapter 2 - Literature Review to explain the problem of design flaws in component

integration. Moreover, the problem statement also explains the main issue in this domain to

explain the extent of the research gap in service oriented business logic security.

1.2.3 Research Contribution

The research will propose a security assurance methodology for service-component-oriented

business logic while reusing core service logic. The research will bridge the difference

between conventional perspectives and security requirements of e-process in component-

based banking systems in the context of social e-commerce. Adopting such practice will

enhance security assurance embedded in the design of service component-oriented

applications within the e-commerce domain, by using currently available components

through the deployment of business logic into service-based systems. The second point of

research contribution is to identify and propose a new classification based on the taxonomic

structure of logical vulnerabilities in service component-based service in the middle-tier,

which often cause design flaws due to COTS or in-house software components for service

integration. The third point of contribution is to offer attack modeling in the scenario of a

logical attack through event-based attack trigger component detection. The fourth

contribution is to use the Sec UML modeling technique to test the methodology outlined in

13

Paper 5. The fifth contribution is to be further reflected as a security feature based on UML

Sec modeling, exemplified by a B2c ATM model demonstrated in the context of social

interaction during e-commerce software security modeling in Paper 6.

1.2.4 Structure of the thesis

Chapter 1 includes the research introduction and literature review, in the context of the

analysis, the problem statement, the research gap that the thesis discusses, the aims and

questions for research, the scope of research and the research contribution.

Chapter 2 is related to the literature review which is connected with the upcoming chapter

in the sequence of this thesis order that has been demonstrated in the flowchart at the of this

thesis. The purpose of this chapter is to highlight the main issue in-service component

architecture-based rapid development application logic and related loopholes. Therefore this

chapter provides ACS-based event attack connectivity with application logic.

Chapter 3 is a book review article that provides details of service component architecture

(SCA) based application logic design and event-based attack in-service composite

applications. This goal is accomplished by investigating and evaluating security concerns,

and modeling techniques in the application of service modules, when applications create,

consume and process a particular event in the application logic.

Chapter 4 is a research article that details a group-attacking method and classifies two

groups of vulnerability (Technical vs Logical) in e-commerce component-based-application.

This chapter consists of two sections - parts A and B, and this Paper validates the proposed

model in Part A (publication).

Chapter 5 is a research article that addresses event-attack modeling in the scenario of a

banking application domain. The proposed approach is based on an event-attack modeling

technique that uses the Uppaal Tool to detect design flaws in e-commerce component-based

applications while reusing the design specification of an existing application logic of the

system.

Chapter 6 is a Paper, a research article providing a detailed case study based on problems

and solutions in the context of social commerce. This is done through the use of a case study,

which is a tool that allows us to reach our specialized targeted audience, and the banking

case study and proposed methodology is tested through a modeling technique related to the

application logic.

14

Chapter 7 is a research article that is designed in the context of a research-based paper that

targets the modeling technique by using and incorporating security-modeling features into

component service architecture in relation to expanding the research work in Paper 5. This

will be further reflected as a part of security feature-based UML Sec modeling for an example

B2c ATM model demonstrated in the context of social interaction of e-commerce software

security modeling that justifies the secure application logic.

Chapter 8 provides the discussion and conclusion of the thesis and sets out the research

findings.

Figure 1.5 Flowchart of Thesis by Publication

15

CHAPTER 2: LITERATURE REVIEW AND PROBLEM ANALYSIS

In social e-commerce (a subset of e-commerce), security and privacy issues are

important topics for discussion between users. E-commerce capability is one

requirement of the business model of information system architecture, and its use has

become increasingly prevalent. Users may, however, find themselves somewhat

reluctant to engage, due to security and privacy risks. Social e-commerce has prompted

a new era of information security in the banking industry (Nabi et al., 2021). Business

logic development, which reuses component design specifications, is a real concern in

e-commerce applications in this domain because it is mostly based on service

component architecture (SCA) (Paik et al., 2017; Nabi et al., 2019; Nabi et al., 2020).

There is no clear difference between service component architecture and component-

based software architecture in terms of their implementation. They both contain

enhanced components, in the sense that single components have service capability, and

are connected to develop new business logic (Agirre et al,. 2012).

In service-component-oriented systems, the business process layer is less secure

because the focus is on high-level abstraction security. This gives intruders the chance

to bypass security checks in vulnerable business application logic. The service-

component-oriented application contains at the middle-tier layer two building blocks:

business logic & process logic (Nabi et al., 2019).

A business application is decomposed into a number of services, each of which wraps

a reusable business components function and has a well-defined interface that specifies

how the service may be used to perform an operation (Paik et al. 2017).

The term “business logic” refers to a particular “service”. This service can be a

withdraw-payment service. The service is defined by the business component class

“withdraw-payment”, which is handled through the component class business logic.

Each component has business logic offered by a business component that resides

within the business domain. A logical component can be defined as a sub-component

or part of a sub-system; in both cases, the component keeps its own integrity. Certain

steps need to be followed in order to perform a predefined action by application logic

to operate the business process (Malohlava et al., 2013; Nabi et al., 2020).

16

The logical component-ware supports the process of application logic and of each

component’s business logic to develop a set of functionalities, which are then further

translated into the component’s business processing logic when these components are

integrated into the n-tier architecture (Jiang & Willey, 2005; Agirre et al., 2012; Nabi

& Nabi, 2017).

The service component architecture is a way or method by which software can be

designed, in which services are provided to the components by application

components. A web-based banking system is basically constructed /developed using

two sorts of components at the business logic layer of the application. These two kinds

of components are (1) business processing components, and (2) business entity

components. The first category of components deals with a service requested by end

users through the published user interface (Agirre et al., 2012; Nabi & Nabi, 2017).

They determine which function of business entity components will be called or

invoked and operated. They are persistent components that keep their state stored by

the application and are part of the application domain (Rodriguez et al. 2016). The

coupling influences interoperability because integration impacts distributed

functionality (Kalantari et al., 2013).

The research explains that recent models of web-based banking systems critically lack

security properties, such as logical security. The key reasons for this are poor design

and the threat of highly skilled intruders.

Recent security reference models (such as IBM’s service-oriented architecture 2021)

also fail to provide comprehensive security to business processes at the layer of

business application logic, where services are developed through the business

components (each component contains core service logic). This security model only

provides authentication before gaining access to business service components, which

normally occurs through the HTTP web server. Current security techniques used

include model authentication, sanitization, database encryption, (IDS) and (IPS).

Service-oriented component software uses two sorts of components to rapidly develop

17

application logic. These two components are custom-developed and commercial of the

shelf (COTS) (Jakoubi et al. 2011). It is possible that they may have flaws within the

design or software application. The CBS-based software solutions can lead to logical

vulnerabilities such as component’s logic subversion attack, misuse of application

logic and circumvention of the component’s business logic flow, all of which temper

the application’s functionality (Nabi et al., 2020).

There are three categories of software practice vulnerability in service-component-

oriented web-based banking applications (Woody, 2015; Novak & Švogor, 2016):

(1) Flaw in design

(2) Coding-based fault or weakness

(3) Integration Faults of components.

Our research considers the operational vulnerabilities (middle tier) of a service-

component-oriented banking application, based on the composition of components,

rather than on traditional techniques of software development (Nabi et al., 2021). As

we have noted, within the categories of operational vulnerability, the focus of

consideration is business application logic vulnerability (which may cause design-

based weaknesses), and integration faults which often circumvent a component’s

business logic flow operation (Nabi et al., 2020).

Unfortunately, a single flaw within sophisticated middleware can allow an intruder to

bypass a strong security authentication scheme. However, we have noticed that most

front-end & back-end systems contain COTS packages. Therefore, it is necessary to

custom-develop software packages in middle-ware, in order to design secure business

application logic (Nabi, 2005; Bentounsi et al., 2016; Nabi & Nabi, 2017). The custom

developed and commercial of the shelf components example is presented in java EJB

session bean and entity bean components, which are mostly made of Microsoft and

Sun Java technology these, are mostly the middle tier consisting of business logic.

However, such component packages are beads on the functional logic of each

component that develops business logic.

The above-mentioned Diagram 2.1 depicts and illustrates the process of the

functionality of java bean in business processes, as stated above in the introduction,

18

(Figure 1.3 b).

In recent years, we have observed that the weakest link in the server-side systems is

middle-ware. A secure component-based platform regulates programme execution and

manages events, while the security of interactions between application components

must also be ensured. A component-based approach that addresses a variety of

information system application requirements also supports the entire lifecycle of such

applications, including the design, and execution phases, with a focus on their security

and safety requirements, which the application integrator can define during the design

phase (Nabi et al., 2019; Raed & Nripendra, 2020).

Recent innovations in the field of e-Commerce-based social media software

technologies, according to Nabi et al. (2021), have offered many benefits; however,

design processes often lead to a variety of challenges, from the design phase to the

implementation phase. Software flaws and faults exacerbate reliability and security

issues.

In component-based banking applications, banks compete by using social e-

commerce-based e-banking to boost customer loyalty, gain market share, improve

services and offer value-added services, increase efficiency, and cut expenses. At the

same time, they must deal with security and privacy concerns relating to consumer

relationships (Laukkanen et al., 2018).

When connecting with component-based banking applications, for these services

security considerations are sometimes overlooked, potentially allowing unwanted

access to the service. Another factor to consider is that the re-use of service logic can

occasionally result in security failure (Ghassan et al., 2020).

Over here, it is important to discuss the function of components in the application logic

forming state that refers to the re-use of existing logic of any component within the

application in the banking domain and its security issues, especially in the context of

social e-commerce-based banking.

The current development method in CBSE is a software development process that

advocates building software systems from existing software components rather than

creating them from the ground up. CBSE's mission is to reduce costs while delivering

higher quality, systems that are more reliable. “A unit of composition with

19

contractually established interfaces and explicit context dependencies only,” is called

the software component (Alrubaee et al., 2020).

A component model in CBD defines a set of programmes called component and

composition mechanisms that combine smaller components to form larger composite

components. The composing mechanism determines the behaviour and structure of

this larger unit. If the composition process is algebraic, that is, the composition of two

or more components, a larger system can be constructed (Chicote et al., 2018).

To define a component in containment, at least two components must be combined for

the composite. A composite is defined by combining the behaviour of two or more

existing components (Chicote et al., 2018).

The interactions between two components are defined by a connection mechanism; a

connection can be used to pass messages directly or indirectly. A third coordinated

component is used to construct a composite of two components (Rana & Baz, 2020).

Component-Based Software Development (CBSD) tries to encourage software reuse

in order to drastically save development time and costs. Existing solutions are wrapped

in well-defined components with clear (needed and given) interfaces that allow them

to connect to and interact with one another. When putting together a system from

components, it is important to consider both functional and non-functional factors

(Rana & Baz., 2020; Chicote et al., 2018).

Timing, dependability, safety, and resource consumption are examples of non-

functional qualities. Despite their relevance, only a few component models explicitly

support non-functional property specification and administration throughout the

development process (Chicote et al., 2018).

In most circumstances, this assistance is limited, and unlike the well-established

approach of incorporating functional qualities into interfaces, no consensus has arisen

on how to manage non-functional attributes at the component and system levels

(Rana & Baz., 2020).

20

One of the most significant characteristics of a software component is that it can be

considered a sub-system that can be directly installed and run. To do this, a component

must adhere to the standards of a component model and meet the requirements of a

specification. Commonly acknowledged standards to explain composition and

interaction are required to enable composition between separately generated

components to develop application logic (Rana & Baz., 2020; Lau & Cola, 2017).

The effort required for design and execution is minimised when existing components

are used in CBSE. Additional processes, such as component assessment and

adaptation, are introduced to the development process. Searching for candidate

components that may satisfy needed characteristics, selecting the most acceptable

components from these candidates, and confirming their functionality are all part of

the component evaluation (Johan & Mishra, 2019).

In software engineering, the reuse of existing work is greatly desired to save

development costs and achieve high-quality software. CBD develops basic and

composite components for reuse, and reuse creates composite components and systems

(Johan & Mishra, 2019).

Interactions between components in a CBD system are an essential factor that can aid

in the discovery of new ways to combine components. CBD-based development,

which uses and reuses secure components, requires the most up-to-date development

approaches for CPS building. These systems may be made up of a variety of soft and

hard components that are dispersed throughout the system (Alrubaee et al., 2020).

Due to the rising scale and complexity of component-based systems, developing high-

quality, dependable and on-time secure software systems is difficult. Because

traditional software development methodologies are not up to the task, numerous

alternatives have been proposed to boost productivity and reusability during the

software development process and security, but still lack automated security at the

design phase. This targets the gap in security research techniques that follows a

methodology for secure designing of component-based applications in the banking

sector. That is free from design flaws (Johan & Mishra, 2019).

21

The main problem in this context is referred as a design flaw in component integration,

which mostly consists of COTS and custom-made components. A real example of

such binding is based on the interconnection of business components. Therefore, as a

solution to this problem, service-oriented component integration places emphasis

systems through the use of reusable components. The main problem of components

integration is created in this architecture to solve a specific business problem. Java

business component integration example is presented given below.

Figure 2.1 (a) reusable component integration pattern

Figure 2.1 (b) reusable components are binding in service integration

They provide some generic functionality. These components can then be threaded,

linked, or integrated into a specific order or configuration to meet a specific business need.

There is no need to create a new computer programme if the business

requirement changes. Instead, the system can be reconfigured to meet the new business

requirement.

The functionality of software systems is heavily reliant on software components. The

current and reusable components of a software system that has been previously

debugged, validated, and rehearsed are referred to as software components. Using such

components in a newly designed software system can save time, effort, and a lot of

money. Security is on the rise as a result of the habit of using components in new

projects. For the researchers to understand the approaches, they must first learn about the

existing approaches and techniques employed for security purposes to address this problem

(Migault et al., 2017).

22

Since no taxonomy is developed related to the business logic flaw in component

integration, it is represented in Chapter 4 as a publication, which gives a

comprehensive contribution to the validity of the design flaw problem in application

business logic.

2.1: Current banking CBS-based system analysis

The current banking industry is getting benefits from this medium by using social e-

commerce component-based applications. On the other hand, the re-use of component

business logic is always a concern in terms of its capacity to cause logical vulnerability

in such systems.

The design flaw, which causes application logic vulnerability in such systems always

attracts the attention of intruders. The main reason for this is that application logic

design flaws cannot be automated through traditional approaches (Nabi et al., 2020;

Raed & Nripendra, 2020; Jürjens et a.2019: Rotella, 2018).

Any component-based software system's design must be well thought out and certain

aspects must be taken into account from the start. There is a better chance of the system

being successful if specific quality attributes of component specification match with

the system application logic based on business process and designed into the

architecture. There are several important characteristics to consider when designing a

bank system. First and foremost, the system's performance must be excellent. Bank

employees, ATM users, and bank administrators will all interact with other systems,

so the new system must be fast enough to allow everyone to complete their tasks.

Furthermore, the system's dependability and security are two of the most important

considerations. As a result, the system must be dependable. According to NIST USA,

2021, the recent cases that have emerged about this issue that is being faced by the

banking industry, while getting benefits from social interaction in component-based

banking applications (NIST, 2021 https://csrc.nist.gov/Projects/ssdf).

Therefore, component-based software security, especially in the case of reuse design

specification, while reusing existing application logic. On the other hand, there is a

serious need for such a methodology that can tackle these issues, while considering

https://csrc.nist.gov/Projects/ssdf

23

social e-commerce in the context of a sub-set of e-commerce component-based

applications (Nabi et al., 2020; Raed & Nripendra, 2020)

Therefore, it is necessary to plan for strong risk management that particularly provides

in-depth software security assurance, which also deals with middle-ware software.

Software security problems start from design flaws, which cause system integration

faults. Such flaws allow security bypass by the user when the software maliciously or

accidentally gives system access that the programme does not permit (Nabi & Nabi,

2017; Ghassan et al., 2020; Nabi et al., 2021).

Security and privacy issues in the field of social media-based e-Commerce are

important topics for debate among the users concerned. E-Commerce is one part of the

information system architecture business model and its use has become increasingly

common. However, the users may find.

The applications themselves are somewhat unwilling to suffer from risks to their

security and privacy. In the banking industry, social media-based e-Commerce has

prompted a new age of information security. However, the risks associated with these

issues make e-commerce banking difficult. There is also no customer trust, and no

visitor shops on the website and these sites will not function unless these privacy and

security risks are removed. Security and privacy have social, organisational,

technological, and economic implications (Raed and Nripendra 20202020: Wang et al.

2020).

Service-oriented applications in the social e-banking domain are developed with well-

defined, readily available software components. These are the building blocks used to

develop the services in service component architecture. It is important for the design

process of service-oriented applications in the social e-banking domain to follow an

order where once the design process of an application is determined as an

organizational task, and then it is considered as modular components that need to be

integrated. Each modular component is a service that explains its interfaces by

incorporating these services into a social e-banking system.

New business processes rely on the integration of modular components that have been

24

identified (Nabi et al. 2020).

Researchers and developers can clearly understand that system composition and

integration are the most difficult processes in software design, especially when

devising complex operations such as the integration process into the social e-banking

system. The complications that arise during the integration of these e-banking systems

may result in a process of continuous change in the technical and business attributes

provided by the bank to its customers in order to] meet their needs (Nabi et al. 2019).

Social e-banking systems are frequently designed and built on a variety of component

vendors with varying platforms and design/development capabilities patterns in

architecture. Ongoing changes can introduce additional complexity when integrating

banking applications based on service-oriented components, as design flaws in the

integration process can open the door to business logic attacks, and cause severe

financial damage (Nabi et al. 2020).

Therefore, there is a clear need for a methodology that is able to deal with the logical

flaws that do not show attack signature and patterns and are therefore hard to discover

using traditional techniques and security software tools. A modeling methodology is

therefore needed that helps to generate and automate the vulnerability through attack

scenario modeling (UML Sec & Uppaal Tool). This will help to deal with component

design specification-based business logic and identify any design flaw that may cause

a security breach in banking applications while the re-use of component business logic

and avoid duplication.

25

CHAPTER 3: A SECURITY REVIEW OF EVENT-BASED APPLICATION

FUNCTION AND SERVICE COMPONENT ARCHITECTURE

Introduction and Findings: Logical Relationship between Chapter 2 and Chapter 3

Introduction to Chapter 3

Chapter 2 features an introduction to the research and its background in the context of the

analysis that follows, the problem statement, the literature gap that the thesis discusses, the

aims and questions for research, and the scope of research, targetting the main question posed

by the thesis. Chapter 3 covers and provides details of (SCA) service component

architecture-based application logic design and event-based attacks on in-service composite

applications. The purpose of this chapter is accomplished by evaluating, investigating

security concerns and modeling techniques in the application of service modules when

applications create, consume and process a particular event in application logic. This chapter

fits logically into the thesis, because it provides the base for further research chapters that

support this thesis. It explains the (SCA) service component architecture-based application

logic design and event-based attack in-service composite applications.

Findings:

This chapter’s findings are related to previously conducted work in component-based

software rapid development that considers the security concern which put the foundation to

the above title chapter and provides connectivity in terms of event-based attack modeling as

a technique that is explained in the next chapter.

This paper is published in the International Journal of Systems and Software Security and

Protection Volume 11 • Issue 2 • July-December 2020 IGI.

DOI: 10.4018/IJSSSP.2020070104

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

﻿
Copyright﻿©﻿2020,﻿IGI﻿Global.﻿Copying﻿or﻿distributing﻿in﻿print﻿or﻿electronic﻿forms﻿without﻿written﻿permission﻿of﻿IGI﻿Global﻿is﻿prohibited.

﻿

58

A Security Review of Event-Based
Application Function and Service
Component Architecture
Faisal Nabi, University of Southern Queensland, Australia

Jianming Yong, University of Southern Queensland, Australia

Xiaohui Tao, University of Southern Queensland, Australia

ABSTRACT

The﻿ term﻿ service﻿ component﻿ is﻿ derived﻿ from﻿ SCA﻿ (service﻿ component﻿ architecture)﻿ for﻿ event﻿
based﻿distributed﻿system﻿design.﻿Although﻿service﻿component﻿pattern﻿offers﻿composite﻿application﻿
development﻿ and﻿ support﻿ application﻿ reusability﻿ functionality.﻿ However,﻿ security﻿ in﻿ event﻿ based﻿
communication﻿ in﻿components﻿ interaction﻿model﻿mostly﻿discussed﻿on﻿upper﻿ layer﻿ in﻿SCA﻿while﻿
developing﻿service﻿oriented﻿component﻿application﻿logic.﻿This﻿layer﻿is﻿called﻿application﻿business﻿
process﻿logic﻿layer,﻿which﻿produces﻿the﻿application’s﻿rendering﻿logic,﻿having﻿being﻿authenticated﻿
from﻿ACL.The﻿need﻿for﻿such﻿a﻿comprehensive﻿security﻿review﻿is﻿required﻿in﻿this﻿field﻿that﻿could﻿
possibly﻿elaborate﻿the﻿issues﻿in﻿composite﻿application﻿and﻿Event﻿based﻿attack﻿in﻿service﻿component﻿
architecture﻿ model.﻿ The﻿ paper﻿ achieves﻿ this﻿ target﻿ by﻿ analysing,﻿ reviewing﻿ the﻿ security﻿ issues,﻿
modelling﻿techniques﻿in﻿service﻿component﻿application﻿functionality,﻿while﻿application﻿components,﻿
that﻿produces,﻿consume,﻿and﻿processing﻿events.

KEywoRd
Business Processing Logic Layer, Event Attack, Reusability Component, Security, Service Component Architecture

1. INTRodUCTIoN

The﻿Architecture﻿of﻿Service﻿Components﻿(SCA)﻿framework﻿offers﻿a﻿component-based﻿model﻿with﻿
a﻿consistency,﻿design﻿and﻿efficiency﻿approach﻿to﻿loose﻿coupling,﻿(Service﻿Component﻿Architecture.﻿
https://www.osoa.org/display/Main/Home).﻿ A﻿ SCA﻿ part﻿ has﻿ two﻿ types﻿ of﻿ interfaces,﻿ interfaces﻿
supported﻿and﻿demanded.﻿These﻿are﻿used﻿for﻿the﻿incorporation﻿of﻿the﻿service﻿into﻿other﻿components﻿
and﻿inter-service﻿event﻿based﻿communication.

Component﻿ construction﻿ takes﻿ place﻿ by﻿ service﻿ interface﻿ and﻿ reference﻿ wiring.﻿ Design﻿
(Development﻿of﻿Individual﻿Components),﻿Structure﻿(Composition﻿of﻿Components﻿ into﻿Systems)﻿
and﻿Assembly﻿(Structure﻿of﻿Composite﻿Services﻿or﻿Service﻿Networks)﻿are﻿the﻿key﻿elements﻿of﻿SCA﻿
that﻿provide﻿design﻿stability﻿to﻿shape﻿structure﻿of﻿components﻿and﻿service﻿networks.

The﻿ event-based﻿ communication﻿ model﻿ is﻿ being﻿ used﻿ more﻿ and﻿ more﻿ commonly﻿ for﻿ the﻿
development﻿of﻿loosely﻿connected,﻿distributed﻿systems﻿for﻿many﻿different﻿industry﻿domains,﻿such﻿as﻿

26

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

59

composite﻿applications﻿based﻿on﻿SCA.﻿The﻿Event-based﻿systems﻿range﻿from﻿distributed﻿sensor-based﻿
systems﻿to﻿Comprehensive﻿business﻿information﻿services,﻿OASIS﻿Service﻿Component﻿Architecture﻿/﻿
Assembly,﻿SCA-Assembly﻿(2018).﻿Compared﻿to﻿synchronous﻿communication﻿using﻿remote﻿procedure﻿
calls﻿(RPC),﻿for﻿example,﻿event-based﻿communication﻿between﻿components﻿offers﻿many﻿advantages﻿
such﻿as﻿high﻿scalability﻿and﻿extensibility,﻿OASIS﻿Service﻿Component﻿Architecture﻿/﻿Assembly,﻿SCA-
Assembly﻿(2018).﻿Being﻿asynchronous﻿in﻿nature,﻿it﻿allows﻿a﻿send-and-forget﻿approach,﻿i.e.,﻿a﻿component﻿
that﻿sends﻿a﻿message﻿can﻿continue﻿its﻿execution﻿without﻿waiting﻿for﻿the﻿recipient﻿to﻿respond﻿to﻿it.﻿In﻿
addition,﻿the﻿loose﻿coupling﻿of﻿components﻿achieved﻿through﻿the﻿mediating﻿middleware﻿framework﻿
leads﻿to﻿increased﻿system﻿modularity﻿as﻿components﻿can﻿be﻿quickly﻿added,﻿removed﻿or﻿replaced.

The﻿development﻿of﻿event-based﻿system﻿(EBS)﻿has﻿become﻿one﻿of﻿the﻿popular﻿method﻿in﻿terms﻿
of﻿service﻿component﻿architecture,﻿there﻿are﻿number﻿of﻿reason﻿such﻿as﻿the﻿high﻿quality﻿pliability,﻿
scalability﻿and﻿quality﻿to﻿being﻿able﻿to﻿adjust﻿properties﻿of﻿new﻿condition.﻿The﻿communication﻿system﻿
makes﻿such﻿advantages—﻿implied﻿invocation﻿and﻿inferred﻿competition﻿between﻿components.﻿The﻿
event﻿management﻿is﻿non-determinism﻿on﻿the﻿base﻿of﻿coordination﻿structure﻿in﻿event﻿management﻿
that﻿is﻿possibly﻿cause﻿to﻿produce﻿relatively﻿inborn﻿vulnerabilities﻿in﻿a﻿process﻿of﻿event﻿attack.

In﻿composite﻿application﻿functionality,﻿the﻿Event﻿Attacks﻿are﻿mostly﻿some﻿different﻿type﻿of﻿attacks,﻿
which﻿by﻿manipulating﻿the﻿event-based﻿communication﻿model﻿of﻿the﻿system.﻿This﻿can﻿misuse,﻿trigger﻿
and﻿affect﻿a﻿target﻿model.﻿The﻿Event﻿Attacks﻿are﻿harder﻿to﻿prevent﻿because﻿they﻿are﻿treated﻿in﻿a﻿way﻿
that﻿is﻿not﻿different﻿from﻿typical﻿normal﻿conditions﻿in﻿event-based﻿communication.

There﻿is﻿extensive﻿use﻿of﻿event-based﻿systems﻿that﻿are﻿introduced﻿utilise﻿the﻿MOM﻿frameworks.﻿
Various﻿types﻿of﻿MOM﻿frameworks﻿including﻿Prism-MW,﻿Java﻿Message﻿System,﻿Java﻿Message﻿Service﻿
(JMS),﻿(2016),﻿introduce﻿these﻿and﻿Carzaniga,﻿Rosenblum,﻿&﻿Wolf,﻿(2001),﻿in﻿applications﻿such﻿as﻿
web﻿based﻿applications﻿or﻿service﻿oriented﻿architecture-driven﻿systems.﻿EBSs﻿have﻿become﻿popular﻿
because﻿of﻿its﻿high﻿versatility,﻿scalability﻿and﻿adaptability.﻿Such﻿benefits﻿are﻿allowed﻿by﻿relying﻿on﻿
component﻿call﻿by﻿invoking﻿implicitly﻿and﻿implied﻿competition.﻿In﻿a﻿particularly﻿case﻿specifically,﻿
components﻿in﻿event-based﻿systems﻿possibly﻿not﻿be﻿aware﻿of﻿the﻿events﻿they﻿publish﻿by﻿customers﻿
or﻿they﻿may﻿not﻿necessarily﻿know﻿producers.

In﻿service﻿component﻿based﻿composite﻿application﻿the﻿communication﻿method,﻿however,﻿it﻿is﻿
consist﻿on﻿non-deterministic﻿in﻿the﻿handling﻿of﻿events,﻿which﻿may﻿introduce﻿inherent﻿vulnerabilities﻿
in﻿a﻿system﻿called﻿event﻿attacks.﻿For﻿instance,﻿developers﻿can﻿create﻿EBSs﻿using﻿externally﻿developing﻿
malicious﻿code﻿components﻿and﻿users﻿can﻿use﻿malicious﻿code﻿component﻿EBSs.﻿In﻿those﻿instances,﻿
malicious﻿components﻿may﻿cause﻿unintended﻿behaviour,﻿ such﻿as﻿by﻿ sweeping﻿events﻿ in﻿order﻿ to﻿
obtain﻿unauthorized﻿information﻿or﻿by﻿manipulating﻿data﻿in﻿events﻿to﻿compromise﻿the﻿functionality﻿
of﻿the﻿event-based﻿system.

1.1. Motivation
Existing﻿system﻿analytics﻿focused﻿on﻿the﻿service﻿component﻿do﻿not﻿concentrate﻿on﻿event﻿attacks﻿or﻿
correctly﻿identify﻿vulnerabilities﻿component﻿by﻿component,﻿explained﻿by﻿SonarQube,﻿(2017).﻿OWASP﻿
_Orizon_Project,﻿(2017)﻿and﻿Xanitizer,﻿(2017).

Li,﻿Bartel,﻿Bissyandé,﻿Klein,﻿Traon,﻿Arzt,﻿Rasthofer,﻿Bodden,﻿Octeau﻿and﻿Mcdaniel﻿(2015)﻿showed﻿
that﻿in﻿specific,﻿current﻿system﻿flow,﻿analysis﻿methods﻿do﻿not﻿specifically﻿call﻿for﻿components﻿or﻿are﻿
not﻿feasible﻿in﻿order﻿to﻿evaluate﻿vast﻿quantities﻿of﻿components﻿in﻿structure.﻿It﻿is﻿further﻿investigated﻿
by﻿ the﻿ researchers﻿ that﻿vulnerabilities﻿ that﻿uncover﻿Android﻿applications﻿ to﻿event﻿attacks﻿are﻿not﻿
specifically﻿applicable﻿to﻿other﻿Event﻿based﻿system﻿styles﻿since﻿Android﻿is﻿using﻿system-specific﻿
models,﻿such﻿as﻿APIs,﻿and﻿life-cycle﻿components﻿(Lu,﻿Li,﻿Wu,﻿Lee﻿&﻿Jiang,﻿2012,﻿p.﻿231).

The﻿Research﻿needs﻿ for﻿ such﻿a﻿comprehensive﻿ security﻿ review﻿ that﻿ could﻿possibly﻿elaborate﻿
the﻿issues﻿in﻿composite﻿application﻿and﻿service﻿component﻿architecture﻿model.﻿This﻿can﻿be﻿derived﻿
through﻿the﻿reviewing﻿security﻿issues﻿of﻿service﻿component﻿application﻿functional﻿and﻿reusability﻿
modelling﻿techniques.﻿Those﻿are﻿used﻿in﻿system﻿design﻿from﻿existing﻿application﻿components,﻿that﻿
produces,﻿consume﻿and﻿processing﻿events.

27

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

60

1.2. Problem Statement
In﻿this﻿research,﻿it﻿is﻿found﻿that﻿current﻿security﻿efforts﻿do﻿not﻿concentrate﻿on﻿event﻿attacks﻿or﻿correctly﻿
detect﻿component-by-component﻿inter-communication﻿event﻿model.﻿This﻿is﻿the﻿required﻿approach﻿
simulation﻿and﻿modelling﻿technique﻿that﻿is﻿needed﻿for﻿composite﻿application﻿and﻿service﻿component﻿
architecture﻿model.

1.3. Research Method
The﻿ research﻿ consists﻿ on﻿ the﻿ empirical﻿ review﻿ of﻿ security﻿ methods﻿ in﻿ Event-based﻿ application﻿
functionality.﻿This﻿method﻿analysis﻿and﻿review﻿comprehensive﻿security﻿issue﻿in﻿the﻿service﻿component﻿
architecture,﻿which﻿is﻿based﻿on﻿existing﻿methods,﻿to﻿examine﻿the﻿contribution﻿of﻿suitable﻿approach﻿
for﻿event﻿based﻿attack﻿solution﻿through﻿the﻿three﻿modelling﻿techniques.

2. RESEARCH BACKGRoUNd

There﻿ is﻿ no﻿ clear﻿ difference﻿ between﻿ service﻿ component﻿ architecture﻿ vs﻿ component-based﻿
software﻿architecture﻿because﻿by﻿rule﻿of﻿implementation,﻿it﻿is﻿enhancement﻿of﻿Components,﻿
where﻿ single﻿ components﻿ are﻿ represented﻿ as﻿ service,﻿ which﻿ is﻿ connected﻿ to﻿ develop﻿ new﻿
business﻿ logic﻿ (Agirre,﻿ Marcos﻿ &﻿ Estevez,﻿ 2012,﻿ p.﻿ 19).﻿ In﻿ Event﻿ based﻿ service﻿ oriented﻿
systems,﻿business﻿process﻿layer﻿is﻿more﻿unsecure﻿because﻿the﻿focus﻿is﻿on﻿high﻿level﻿abstraction﻿
security,﻿ this﻿ is﻿ reason﻿ why﻿ intruders﻿ get﻿ chance﻿ to﻿ bypass﻿ security﻿ checks﻿ and﻿ vulnerable﻿
business﻿application﻿logic.﻿The﻿service﻿component﻿Application﻿contains﻿at﻿middle-tier﻿layer﻿two﻿
building﻿blocks,﻿Business﻿Logic﻿&﻿process﻿logic,﻿which﻿produces﻿Events﻿to﻿call﻿components﻿
inter-communication﻿process.﻿The﻿given﻿below﻿Figure﻿1﻿explains﻿the﻿process﻿of﻿application﻿
service﻿function﻿through﻿the﻿interface﻿that﻿serve﻿in﻿the﻿case﻿of﻿a﻿trigger/flow﻿to﻿assign﻿internal﻿
behaviour,﻿in﻿the﻿result﻿of﻿this﻿triggered﻿flow﻿the﻿application﻿Event﻿is﻿generated﻿that﻿correspond﻿
the﻿component﻿application﻿logic﻿as﻿output.

Figure 1. Events call application inter-communication process

28

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

61

The﻿term﻿define﻿business﻿logic﻿is﻿to﻿refer﻿a﻿particular﻿“service”,﻿that﻿is﻿generated﻿through﻿an﻿
Event﻿process﻿this﻿service﻿can﻿be﻿withdraw﻿payment﻿component,﻿in﻿which﻿an﻿Event﻿call﻿business﻿
process.﻿This﻿is﻿defined﻿by﻿the﻿business﻿component﻿class﻿withdraw﻿payment,﻿that﻿is﻿handled﻿through﻿
component﻿class﻿business﻿logic.﻿Each﻿component﻿has﻿business﻿logic﻿offered﻿by﻿business﻿component﻿
that﻿is﻿resided﻿in﻿business﻿domain.﻿The﻿concept﻿of﻿logical﻿component﻿can﻿be﻿defined﻿as﻿sub-component﻿
or﻿part﻿of﻿sub-system,﻿in﻿both﻿conditions﻿component﻿keeps﻿its﻿own﻿right.﻿There﻿are﻿some﻿certain﻿
steps﻿need﻿to﻿be﻿followed﻿or﻿required﻿in﻿order﻿to﻿perform﻿a﻿predefined﻿action﻿by﻿application﻿logic﻿to﻿
operate﻿business﻿process﻿(Nabi,﻿2011,﻿p.﻿32).﻿The﻿logical﻿component-ware﻿supports﻿the﻿process﻿of﻿
application﻿logic﻿and﻿each﻿component’s﻿business﻿logic﻿to﻿develop﻿set﻿of﻿functionalities,﻿which﻿then﻿
further﻿translate﻿it﻿into﻿component’s﻿Event﻿processing﻿logic﻿by﻿integrating﻿these﻿components﻿in﻿the﻿
n-tier﻿architecture﻿(Nabi,﻿2011,﻿p.﻿32),﻿(Nabi﻿&﻿Nabi,﻿2017).

The﻿service﻿component﻿architecture﻿(SCA)﻿is﻿a﻿way﻿or﻿method﻿by﻿using﻿that﻿a﻿software﻿can﻿be﻿
designed,﻿in﻿which﻿services﻿are﻿provided﻿to﻿the﻿components﻿by﻿application﻿components.﻿Web﻿based﻿
e-commerce﻿systems﻿are﻿constructed﻿/developed﻿using﻿two﻿sort﻿of﻿components﻿at﻿business﻿logic﻿layer﻿
in﻿the﻿composite﻿application.﻿These﻿two﻿kind﻿of﻿components﻿are﻿Business﻿Processing﻿components﻿
and﻿Business﻿Entity﻿Components.﻿Rodríguez,﻿Zalama﻿and﻿González﻿(2016)﻿demonstrated﻿that﻿the﻿
first﻿category﻿of﻿components﻿deals﻿with﻿service﻿that﻿is﻿requested﻿by﻿end-users﻿through﻿the﻿published﻿
user-interface.﻿They﻿decide﻿ the﻿ function﻿of﻿business﻿entity﻿components,﻿which﻿definitely﻿will﻿be﻿
called﻿or﻿invoked﻿and﻿operated﻿through﻿inter-component﻿Event﻿based﻿process.﻿They﻿are﻿persistent﻿
components,﻿who﻿keep﻿their﻿state﻿stored﻿by﻿the﻿application﻿and﻿part﻿of﻿composite﻿application﻿domain.

2.1. Service Component Architecture
Service﻿component﻿architecture﻿offers﻿a﻿programming﻿model,﻿based﻿on﻿a﻿service﻿component﻿model,﻿
for﻿building﻿applications﻿and﻿solutions.﻿It﻿is﻿based﻿on﻿the﻿idea﻿that﻿business﻿operation﻿is﻿delivered﻿as﻿
a﻿set﻿of﻿resources,﻿which﻿are﻿combined﻿to﻿create﻿solutions﻿that﻿meet﻿a﻿specific﻿business﻿need.﻿Such﻿
hybrid﻿programmes﻿can﻿include﻿both﻿new﻿services﻿created﻿specifically﻿for﻿the﻿product﻿as﻿well﻿as﻿
business﻿function﻿from﻿existing﻿systems﻿and﻿replicated﻿software﻿as﻿part﻿of﻿the﻿synthesis.﻿SCA﻿includes﻿
a﻿blueprint﻿for﻿both﻿programme﻿design﻿and﻿service﻿feature﻿development,﻿including﻿reuse﻿of﻿existing﻿
application﻿function﻿within﻿SCA﻿composites.﻿(Memon,﻿Hafner,﻿&﻿Breu,﻿2013)﻿and﻿OASIS﻿Service﻿
Component﻿Architecture﻿/﻿Assembly﻿(SCA-Assembly﻿2018).

Therefore,﻿SCA﻿also﻿offers﻿a﻿blueprint﻿to﻿coordinate﻿modules﻿that﻿produce﻿and﻿consume﻿Events﻿
and﻿process﻿the﻿Events.

The﻿SCA﻿assembly﻿model﻿consists﻿of﻿a﻿set﻿of﻿objects﻿that﻿characterise﻿the﻿structure﻿of﻿an﻿SCA﻿
environment﻿in﻿terms﻿of﻿composites﻿comprising﻿service﻿component﻿assemblies﻿and﻿artefacts﻿connected﻿
to﻿the﻿interface﻿explain﻿how﻿they﻿are﻿linked﻿together.

The﻿SCA﻿model﻿contains﻿following﻿properties:

•﻿ In﻿service﻿component﻿assembly﻿model﻿the﻿services﻿are,﻿both﻿tightly﻿and﻿loosely﻿coupled;
•﻿ A﻿model﻿for﻿the﻿deployment﻿of﻿infrastructure﻿capabilities﻿to﻿service﻿communication,﻿including﻿

security﻿and﻿transactions;
•﻿ A﻿pattern﻿ for﻿Event﻿management﻿ including﻿Published﻿and﻿Subscribed﻿–﻿a﻿particular﻿ style﻿of﻿

grouping﻿components﻿that﻿produce﻿and﻿consume﻿Events﻿in﻿which﻿the﻿processing﻿component﻿is﻿
decoupled﻿from﻿the﻿consuming﻿components.

2.2. Specification of the Service Component
Component﻿interactions﻿may﻿also﻿be﻿defined﻿by﻿one﻿component﻿and﻿use﻿by﻿another﻿one﻿service,﻿one﻿
component﻿provides﻿for﻿one﻿service﻿(function﻿or﻿computation)﻿to﻿the﻿other,﻿services﻿requested﻿from﻿
the﻿other﻿component﻿and﻿interactions﻿details﻿on﻿which﻿these﻿provisions﻿and﻿requests﻿are﻿rendered﻿can﻿
be﻿described﻿as﻿Component﻿Service﻿Specifications.﻿The﻿assumptions﻿that﻿a﻿provider﻿component﻿has﻿on﻿

29

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

62

its﻿contractual﻿obligations﻿to﻿use﻿its﻿services,﻿as﻿well﻿as﻿the﻿preconditions﻿or﻿contingent﻿specifications﻿
that﻿it﻿intends﻿such﻿components﻿to﻿enforce﻿upon﻿it,﻿are﻿explicitly﻿stated﻿in﻿the﻿service﻿specification.﻿
(Denney﻿&﻿Fischer,﻿2009).

2.3. Security Properties in SCA
In﻿order﻿to﻿be﻿considered﻿reliable,﻿Service﻿component﻿based﻿software﻿must﻿have﻿three﻿properties:

1.﻿﻿ Dependability:﻿Dependable﻿software﻿performs﻿reliably﻿and﻿functions﻿correctly﻿in﻿all﻿conditions,﻿
even﻿hostile﻿conditions,﻿such﻿as﻿when﻿the﻿software﻿is﻿attacked﻿or﻿runs﻿on﻿a﻿malicious﻿host;

2.﻿﻿ Trustworthiness:﻿Trustworthy﻿software﻿incorporates﻿few,﻿if﻿any,﻿vulnerabilities﻿or﻿flaws﻿which﻿
may﻿be﻿deliberately﻿explicit.﻿(Kung-Kiu﻿&﻿Ukis,﻿2007).

Therefore,﻿to﻿be﻿called﻿trustworthy,﻿the﻿programme﻿must﻿not﻿include﻿any﻿malicious﻿reasoning﻿
that﻿allows﻿it﻿to﻿act﻿in﻿a﻿malicious﻿manner;

3.﻿﻿ Survivability (also referred to as “Resilience”):﻿ Survivable﻿ —﻿ or﻿ resilient﻿ —﻿ software﻿ is﻿
software﻿that﻿is﻿adequately﻿robust﻿to﻿(1)﻿either﻿withstand﻿(i.e.,﻿secure﻿itself﻿against)﻿or﻿accept﻿
(i.e.,﻿continue﻿to﻿function﻿efficiently﻿despite)﻿the﻿plurality﻿of﻿known﻿attacks.

3. RELATEd woRK

In﻿EBSs,﻿defence﻿was﻿based﻿on﻿various﻿approaches﻿(Aniello,﻿Baldoni,﻿Ciccotelli,﻿Luna,﻿Frontali,﻿
&﻿Querzoni,﻿2014),﻿(Petroni,﻿Querzoni,﻿Beraldi﻿&﻿Paolucci,﻿2016),﻿(Shand,﻿Pietzuch,﻿Papagiannis,﻿
Moody,﻿Migliavacca,﻿Eyers﻿&﻿Bacon,﻿2011),﻿(Srivatsa,﻿Liu﻿&﻿Iyengar,﻿2011)﻿and﻿(Xenitellis,﻿2002,﻿
p.﻿149).﻿Simeon﻿et﻿al﻿have﻿studied﻿and﻿identified﻿the﻿vulnerabilities﻿in﻿EBS﻿that﻿cause﻿of﻿security﻿
concerns.﻿Systems﻿based﻿on﻿events,﻿typically,﻿existing﻿solutions﻿for﻿EBS﻿security﻿use﻿encryption,﻿
static﻿code﻿detection﻿and/or﻿executive﻿access﻿evaluation.﻿Encryption﻿is﻿not﻿only﻿a﻿common﻿software﻿
system﻿but﻿also﻿EBS﻿systems﻿used﻿widely﻿ for﻿securing﻿Events.﻿Srivatsa,﻿Liu﻿and﻿Iyengar﻿ (2011)﻿
mentioned﻿that﻿Guard﻿provides﻿solution﻿that﻿states﻿the﻿computes﻿encryption﻿systems﻿in﻿a﻿way﻿that﻿
each﻿component﻿encrypts﻿events﻿through﻿network﻿of﻿event﻿broker.

The﻿process﻿of﻿sign﻿and﻿encrypt﻿events﻿is﻿made﻿via﻿random﻿token,﻿whereas﻿signature﻿itself﻿is﻿
authenticated﻿and﻿added﻿to﻿the﻿event﻿with﻿a﻿unique﻿subject﻿address.﻿Encryption﻿strategies﻿however﻿
decrease﻿the﻿risk﻿of﻿keys﻿to﻿be﻿stolen﻿and﻿can﻿contribute﻿to﻿inacceptable﻿overhead﻿efficiency.﻿In﻿addition,﻿
when﻿the﻿component﻿of﻿the﻿system﻿is﻿not﻿determined,﻿it﻿is﻿appropriate﻿to﻿provide﻿a﻿key﻿distribution.

Static﻿code﻿analysis﻿ is﻿ a﻿popular﻿method﻿ for﻿analysing﻿security﻿defects﻿of﻿ the﻿ target﻿ system.﻿
Reimer,﻿Schonberg,﻿Srinivas,﻿Srinivasan,﻿Alpern,﻿Johnson,﻿Kershenbaum﻿and﻿Koved﻿(2004)﻿stated﻿
that﻿SABER﻿is﻿a﻿tool﻿for﻿static﻿analytics﻿that﻿identifies﻿recurring﻿design﻿errors﻿based﻿on﻿instantiation﻿
of﻿error﻿pattern﻿templates.﻿(Tripp,﻿Pistoia,﻿Cousot,﻿Cousot﻿&﻿Guarnieri,﻿2013)﻿stated﻿that﻿Andromeda﻿
reviews﻿the﻿propagation﻿of﻿data-flow﻿on﻿demand﻿by﻿Java,﻿NET﻿and﻿JavaScript﻿support﻿programmes.﻿
Xanitizer﻿(2017)﻿uses﻿software﻿to﻿defects,﻿like﻿spikes﻿and﻿privacy﻿leaks,﻿to﻿automatously﻿detect﻿them.﻿
Owasp﻿Orizon﻿is﻿a﻿computer﻿code﻿detector﻿that﻿uses﻿a﻿template﻿to﻿find﻿bugs﻿for﻿J2EE﻿web-based﻿
applications.﻿In﻿order﻿to﻿identify﻿software﻿vulnerabilities﻿Sonar﻿qube(2017)﻿is﻿an﻿open-source﻿code﻿
quality﻿control﻿tool.﻿Another﻿popular﻿method﻿for﻿protecting﻿EBSs﻿is﻿runtime﻿access﻿management.﻿
Wun﻿and﻿Jacobsen﻿(2007)﻿have﻿suggested﻿the﻿regulation﻿model﻿and﻿mechanism﻿for﻿content-based﻿
publishing﻿/﻿subscription﻿schemes.

Pietzuch﻿(2011)﻿mentioned﻿that﻿DEFCon﻿is﻿a﻿software﻿functionality﻿ that﻿uses﻿a﻿flow﻿control﻿
model﻿ to﻿ monitor﻿ the﻿ dynamic,﻿ heterogeneous﻿ event﻿ processing﻿ system﻿ and﻿ prevent﻿ unintended﻿
event﻿flows,﻿which﻿may﻿violate﻿security﻿measures.﻿Nonetheless,﻿the﻿above﻿approaches﻿rely﻿more﻿on﻿
security﻿issues﻿other﻿than﻿incident﻿attacks.﻿In﻿fact,﻿because﻿those﻿approaches﻿do﻿not﻿help﻿event-based﻿

30

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

63

interactions﻿structures﻿in﻿their﻿entirety,﻿the﻿study﻿of﻿large﻿web﻿apps﻿with﻿a﻿number﻿of﻿components﻿
may﻿have﻿unreliable﻿and﻿scaling﻿issues.

4. EVENT ATTACK IN SERVICE CoMPoNENT ANd CoMPoSITE APPLICATIoN

Event﻿attacks﻿are﻿the﻿security﻿issues,﻿which﻿exploit﻿the﻿model﻿of﻿event-based﻿communication.﻿So﻿far,﻿
the﻿work﻿has﻿reported﻿the﻿following﻿types﻿of﻿attacks.﻿(Lee,﻿Nam,﻿&﻿Medvidovic,﻿2019):

•﻿ Spoofing:﻿An﻿event﻿that﻿spoofs﻿a﻿target﻿component﻿to﻿manipulate﻿the﻿features﻿or﻿data﻿of﻿that﻿
object﻿may﻿be﻿sent﻿by﻿the﻿malicious﻿component;

•﻿ Interception:﻿A﻿malicious﻿component﻿may﻿intercept﻿an﻿event﻿to﻿be﻿sent﻿by﻿other﻿components﻿
and﻿may﻿return﻿inappropriate﻿messages;

•﻿ Eavesdropping:﻿ An﻿ incident﻿ with﻿ sensitive﻿ data﻿ that﻿ should﻿ be﻿ available﻿ only﻿ to﻿ specific﻿
components﻿may﻿be﻿evoked﻿in﻿a﻿malicious﻿component;

•﻿ Confused Deputy:﻿A﻿Malicious﻿components﻿can﻿indirectly﻿access﻿a﻿target﻿component﻿through﻿
access﻿to﻿the﻿other﻿components﻿that﻿can﻿have﻿access﻿to﻿the﻿target﻿event﻿consumer;

•﻿ Collusion:﻿More﻿than﻿two﻿malicious﻿components﻿may﻿be﻿merged﻿to﻿take﻿advantage﻿of﻿targets﻿
component﻿functionalities﻿or﻿services.

4.1. Security Features of Event-Based Systems
There﻿are﻿four﻿Types﻿of﻿Event﻿based﻿communication﻿security﻿features﻿that﻿focus﻿on﻿security﻿challenges﻿
in﻿service﻿component﻿applications:

•﻿ Event Communication Channel Analysis:﻿The﻿Implicit﻿referencing﻿and﻿vague﻿interfaces﻿in﻿
EBS﻿obstruct﻿the﻿extraction﻿of﻿channels﻿of﻿event﻿communication﻿through﻿which﻿events﻿are﻿shared﻿
between﻿components.﻿In﻿particular,﻿it﻿is﻿difficult﻿to﻿determine﻿where﻿each﻿occurrence﻿flows﻿into﻿
an﻿implicit﻿request,﻿and﻿ambiguous﻿interfaces﻿are﻿difficult﻿to﻿identify﻿explicitly.﻿Since﻿each﻿MOM﻿
system﻿offers﻿different﻿types﻿of﻿event﻿interfaces,﻿a﻿comprehensive﻿review﻿is﻿needed﻿to﻿identify﻿
the﻿channels﻿of﻿events;

•﻿ Extendable Flow Analysis:﻿Analyses﻿of﻿control﻿data﻿flows﻿on﻿each﻿variable﻿are﻿necessary﻿to﻿
check﻿if﻿sensitive﻿data﻿leak﻿or﻿accidental﻿access﻿to﻿sensitive﻿operations﻿could﻿occur.﻿Nonetheless,﻿
flow﻿analysis﻿on﻿each﻿component﻿may﻿not﻿be﻿scalable﻿for﻿EBSs﻿consisting﻿of﻿a﻿large﻿number﻿of﻿
components﻿with﻿a﻿number﻿of﻿methods.﻿According﻿to﻿(Safi,﻿Shahbazian,﻿Halfond﻿&﻿Medvidovic,﻿
2015)﻿total﻿EBSs﻿on﻿average﻿include﻿more﻿than﻿35﻿methods﻿to﻿be﻿evaluated﻿and﻿studied﻿for﻿a﻿few﻿
hours.﻿Although﻿several﻿methods﻿of﻿flow﻿analysis﻿for﻿Android﻿apps﻿have﻿been﻿suggested,﻿given﻿
that﻿mobile﻿platforms﻿restrict﻿apps﻿(https://developer.android.com/google/play/expansion-files.
html,﻿2017),﻿EBS﻿may﻿be﻿larger﻿than﻿traditional﻿mobile﻿apps﻿in﻿size﻿and﻿complexity;

•﻿ Irregular Sensitive APIs:﻿The﻿study﻿of﻿insecure﻿flows﻿relies﻿on﻿a﻿given﻿set﻿of﻿APIs﻿that﻿
can﻿ handle﻿ private﻿ data﻿ or﻿ sensitive﻿ features.﻿ Although﻿ prior﻿ work﻿ has﻿ defined﻿ a﻿ set﻿ of﻿
sensitive﻿Android﻿APIs﻿based﻿on﻿the﻿supervised﻿machine-learning﻿approach﻿(Lee,﻿Nam,﻿&﻿
Medvidovic,﻿2019),﻿the﻿set﻿is﻿not﻿equally﻿valid﻿in﻿other﻿EBS﻿domains﻿as﻿each﻿framework﻿
can﻿use﻿different﻿types﻿of﻿APIs;

•﻿ Irregular Trusted Boundaries:﻿ The﻿ trust﻿ boundary﻿ between﻿ components﻿ is﻿ defined﻿
according﻿to﻿the﻿trust﻿level﻿of﻿each﻿component﻿(i.e.﻿all﻿components﻿of﻿the﻿same﻿trust﻿boundary﻿
have﻿ the﻿ same﻿ trust﻿ level)﻿and﻿event﻿attacks﻿ take﻿place﻿ through﻿different﻿confidence﻿and﻿
trust,﻿(Lee,﻿Nam,﻿&﻿Medvidovic,﻿2019).﻿Many﻿EBSs﻿may﻿be﻿using﻿a﻿constant﻿type﻿of﻿trust﻿
boundary﻿(i.e.,﻿Android﻿application),﻿but﻿depending﻿on﻿the﻿system﻿configuration,﻿EBSs﻿may﻿
have﻿types﻿of﻿trust﻿boundaries.

31

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

64

5. A REVIEw oF EVENT BASEd SECURITy ModELING

Therefore,﻿keeping﻿in﻿view﻿the﻿above-mentioned﻿scenario﻿the﻿research﻿review﻿presents﻿three﻿modelling﻿
techniques﻿to﻿analyse﻿the﻿best﻿solution﻿that﻿deal﻿with﻿Event﻿Attack﻿Modeling.﻿The﻿first﻿approach﻿is﻿
Event-Based﻿Control﻿Modelling﻿technique.﻿This﻿model﻿helps﻿to﻿control﻿the﻿Event﻿based﻿attack﻿in﻿
service﻿component﻿designed﻿composite﻿applications,﻿which﻿follows﻿security﻿by﻿design﻿technique.

Moreover,﻿ also﻿ discuss﻿ the﻿ second﻿ approach﻿ of﻿ security﻿ component﻿ composite﻿ in﻿ service﻿
component﻿architecture.﻿This﻿illustrative﻿the﻿layer﻿based﻿security﻿for﻿authentication,﻿authorization﻿
and﻿auditing﻿security﻿component﻿services﻿to﻿composite﻿applications.

It﻿ is﻿ further,﻿ reviewed﻿with﻿most﻿ recent﻿ third﻿ research﻿approach﻿ in﻿ the﻿ field﻿of﻿Event﻿Attack﻿
modelling﻿related﻿to﻿business﻿logic﻿subversion﻿life﻿cycle,﻿due﻿to﻿flaw﻿in﻿component-based﻿software﻿
integration﻿oriented﻿business﻿process﻿layer.

5.1. Security by design Event Control Modelling
Over﻿the﻿last﻿decade,﻿event-triggered-control﻿in﻿real-time﻿systems﻿has﻿been﻿gaining﻿increased﻿attention.﻿
One﻿of﻿the﻿most﻿striking﻿features﻿is﻿that﻿Event-Triggered﻿Control﻿provides﻿a﻿strategy﻿for﻿exercising﻿
control﻿only﻿if﻿required.﻿Compared﻿to﻿traditional﻿time-control﻿systems﻿ETC﻿can﻿cut﻿the﻿number﻿of﻿
control﻿tasks﻿effectively﻿while﻿retaining﻿the﻿optimal﻿closed﻿loop﻿output.

A﻿simulation﻿ technique﻿based﻿on﻿the﻿finite﻿automate﻿notation﻿can﻿be﻿compared﻿to﻿ the﻿Event﻿
Control﻿System﻿modelling﻿with﻿UML﻿as﻿shown﻿in﻿Figure﻿1,﻿suitable﻿to﻿integrate﻿certain﻿logic﻿forms﻿
that﻿require﻿potential﻿transformations﻿between﻿different﻿states.﻿Every﻿occurrence﻿is﻿the﻿defining﻿in﻿
time﻿and﻿space﻿for﻿an﻿important﻿event.﻿The﻿necessity﻿receives﻿it﻿for﻿a﻿small﻿number﻿of﻿entries,﻿trigging﻿
a﻿set﻿of﻿elementary﻿measures﻿and﻿producing﻿a﻿state﻿change﻿as﻿a﻿result,﻿can﻿be﻿called﻿an﻿invitation﻿to﻿
a﻿programme﻿or﻿task﻿module﻿(Bastos﻿&﻿Castro,﻿2008).

Figure﻿2﻿demonstrates﻿a﻿bank﻿system﻿interaction﻿through﻿the’﻿Demand﻿Open﻿Account﻿‘﻿event.﻿
The﻿programme﻿returns﻿the﻿result﻿“opened﻿account”﻿after﻿a﻿series﻿of﻿business﻿transactions﻿has﻿been﻿
processed.﻿Customer﻿Profile﻿Transactions﻿can﻿be﻿triggered﻿by﻿the﻿“Demand﻿Open﻿Account”﻿event﻿
with﻿two﻿other﻿business﻿transactions﻿of﻿the﻿account﻿control﻿module:﻿the﻿“Process﻿Open﻿Account”﻿
and﻿the﻿“Process﻿Deposit﻿Account.”﻿Notice﻿that﻿the﻿module﻿of﻿the﻿customer’s﻿business﻿transaction﻿

Figure 2. Event request transaction diagram

32

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

65

“Profile﻿of﻿the﻿customer﻿operation”﻿can﻿be﻿triggered﻿by﻿the﻿event﻿“Profile﻿of﻿the﻿customer﻿request”﻿
or﻿the﻿event﻿“Open﻿account﻿request.”

The﻿Event﻿Control﻿technique﻿involves﻿the﻿static﻿and﻿dynamic﻿features﻿of﻿a﻿programme,﻿such﻿as﻿
the﻿Event﻿reflecting﻿a﻿financial﻿movement;﻿the﻿Item﻿deciding﻿the﻿collection﻿of﻿products﻿of﻿the﻿business﻿
(e.g.,﻿checking﻿account,﻿banking﻿account,﻿local﻿properties,﻿or﻿investment);﻿the﻿user﻿representing﻿the﻿
person﻿ordering﻿or﻿triggering﻿the﻿Event﻿(e.g.,﻿a﻿client﻿or﻿a﻿bank﻿branch).﻿The﻿Business﻿Principle﻿used﻿
to﻿determine﻿behaviour﻿patterns﻿for﻿each﻿movement﻿of﻿events;﻿and﻿the﻿Business﻿Transactions﻿that﻿are﻿
commodity﻿transactions,﻿identified﻿as﻿system﻿procedures,﻿carried﻿out﻿whenever﻿an﻿event﻿is﻿discharged.

Hence,﻿the﻿productivity﻿of﻿this﻿model﻿enhance﻿the﻿security﻿by﻿design﻿technique﻿and﻿component﻿
service﻿oriented﻿ feature﻿ for﻿ reuse﻿of﻿ component﻿based﻿application﻿ functionality.﻿Figure﻿3﻿clearly﻿
illustrate﻿the﻿business﻿event﻿functional﻿communication﻿among﻿the﻿inter-component﻿event﻿produce﻿
and﻿consume﻿such﻿a﻿processing﻿events.

It﻿is﻿derived﻿the﻿modelling﻿example﻿as﻿shown﻿above﻿that﻿Event﻿Control﻿Modelling﻿technique﻿
promotes﻿ the﻿ service﻿ component﻿ oriented﻿ application﻿ functionality﻿ and﻿ reusability﻿ of﻿ service﻿
components﻿ while﻿ system﻿ design﻿ from﻿ existing﻿ application﻿ components.﻿ The﻿ security﻿ by﻿ design﻿
technique﻿improves﻿the﻿idea﻿of﻿reusability﻿of﻿service﻿component﻿and﻿inter-component﻿event-based﻿
communication﻿ process﻿ model.﻿ This﻿ model﻿ enhance﻿ the﻿ security﻿ engineering﻿ at﻿ design﻿ stage﻿ to﻿
maintenance﻿of﻿service﻿component﻿oriented﻿system.

5.2. Security Component Based Modeling SCA Approach
According﻿to﻿the﻿Memon﻿Hafner﻿and﻿Breu﻿(2013),﻿approach﻿to﻿the﻿design﻿of﻿the﻿security﻿Component﻿
Authorizations,﻿and﻿Auditing﻿addresses﻿the﻿incorporation﻿of﻿these﻿components﻿into﻿a﻿security﻿service﻿
composite.﻿Service﻿Component﻿Architecture﻿for﻿security﻿components.﻿For﻿instance,﻿the﻿Single﻿Sign-
on﻿Authentication﻿ component﻿ implements﻿ the﻿Sign-on﻿protocol,﻿ and﻿ the﻿Authorization﻿Protocol.﻿
Apache-Tuscany﻿recently﻿provided﻿an﻿API﻿for﻿applying﻿the﻿SCA﻿for﻿writing﻿composites﻿from﻿Java﻿
or﻿C++﻿components,﻿Service﻿Component﻿Architecture.﻿https://www.osoa.org/display/Main/Home.

Figure 3. Event based business functional process

33

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

66

Open﻿SOA﻿offers﻿a﻿SCA﻿Policy﻿Platform.﻿The﻿architecture﻿provides﻿elements﻿with﻿security﻿
services,﻿using﻿Security﻿Intents.﻿Our﻿approach﻿to﻿providing﻿security﻿varies﻿from﻿that﻿introduced﻿
through﻿ the﻿ SCA-Policy﻿ Framework﻿ of﻿ open﻿ SOA.﻿ Because﻿ the﻿ components﻿ referred﻿ to﻿ these﻿
requirements,﻿provide﻿ functionality﻿ for﻿ the﻿application,﻿whereas﻿we﻿are﻿using﻿components﻿ that﻿
provide﻿protection﻿functionality.

The﻿SCA-Policy﻿Framework﻿also﻿considers﻿the﻿implementation﻿of﻿security﻿purpose﻿as﻿WS﻿Policy﻿
only.﻿Alternatively,﻿we﻿find﻿the﻿implementations﻿best﻿suited﻿to﻿the﻿target﻿programme﻿and﻿runtime﻿
environment﻿(i.e.﻿WS-Security﻿Policy,﻿J2EE﻿Deployment﻿Descriptor,﻿etc.).﻿Safety﻿composites﻿may﻿
be﻿written﻿in﻿Service﻿Composition﻿Definition﻿Language﻿(SCDL)﻿based﻿on﻿XML,﻿(Memon﻿Hafner﻿
&﻿Breu,﻿2013).

5.3. Event Attack Modelling Approach
Nabi,﻿Yong﻿and﻿Xiaohui﻿(2020)﻿proposed﻿the﻿idea﻿of﻿Event-Attack﻿Modelling﻿Technique﻿based﻿
on﻿ Uppsala﻿ Tool.﻿ Faisal﻿ modelled﻿ the﻿ Event﻿ oriented﻿ subversive﻿ attack﻿ life﻿ cycle﻿ showing﻿ a﻿
small﻿ inter-component﻿ communication﻿ application﻿ model﻿ that﻿ dependent﻿ on﻿ chain﻿ of﻿ business﻿
component’s﻿processing﻿logic,﻿triggered﻿by﻿component-based﻿software﻿(CBS)﻿faults.﻿The﻿Event-
oriented﻿subversion﻿life﻿cycle.

Figure 4. Service component architecture based security component composite, (Memon Hafner & Breu, 2013)

Figure 5. Event based subversion attack modelling, Nabi (2020)

34

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

67

Figure﻿ 5﻿ indicates﻿ an﻿ example﻿ for﻿ an﻿ attack﻿ event﻿ model;﻿ the﻿ class﻿ is﻿ a﻿ subversion﻿
attack﻿based﻿on﻿component﻿functionality﻿that﻿could﻿be﻿faulty﻿in﻿CBS.﻿This﻿fault﻿could﻿affect﻿
service﻿calls﻿and﻿ the﻿ functional﻿ flow﻿ that﻿ is﻿depending﻿on﻿event-based﻿communication﻿ to﻿
other﻿objects﻿in﻿the﻿system.﻿As﻿shown﻿in﻿Figure﻿4,﻿C﻿is﻿a﻿state,﻿which﻿must﻿suit﻿component﻿
D﻿ in﻿ order﻿ to﻿ proceed﻿ with﻿ the﻿ E﻿ before﻿ processing﻿ to﻿ the﻿ standard﻿ flow﻿ logic.﻿ The﻿ D﻿
component﻿is﻿therefore﻿a﻿logic﻿flaw,﻿which﻿does﻿not﻿allow﻿the﻿service﻿to﻿run﻿in﻿accordance﻿
with﻿the﻿normal﻿flow﻿of﻿the﻿CBS﻿call﻿service,﻿which﻿is﻿why﻿the﻿automated﻿code﻿&﻿system﻿
vulnerability﻿Scan﻿tools﻿cannot﻿find﻿such﻿defects﻿and﻿these﻿defects﻿or﻿faults﻿fall﻿within﻿the﻿
logical﻿vulnerability﻿classification.﻿This﻿method﻿will﻿help﻿detect﻿weakness﻿at﻿(SDLC)﻿early﻿
on﻿during﻿the﻿design﻿stage.

5.4. Comparison of Modeling Technique and discussion
During﻿the﻿security﻿review﻿of﻿the﻿represented﻿techniques,﻿it﻿is﻿noticed﻿that﻿each﻿technique﻿has﻿
a﻿valid﻿reason﻿to﻿justify﻿the﻿claim﻿that﻿corresponds﻿the﻿issue﻿mentioned﻿in﻿this﻿paper.﻿Analysis﻿
of﻿security﻿flaws﻿are﻿discussed﻿in﻿this﻿section﻿covers﻿the﻿basic﻿idea﻿of﻿current﻿problem﻿solutions﻿
(Event﻿ based﻿ attack),﻿ which﻿ is﻿ being﻿ faced﻿ by﻿ the﻿ security﻿ auditors﻿ and﻿ administrator.﻿ The﻿
critical﻿ analysis﻿ of﻿ these﻿ three﻿ approaches﻿ describe﻿ the﻿ different﻿ techniques,﻿ such﻿ as﻿ Event﻿
Control﻿modelling﻿with﻿UML﻿that﻿discusses﻿the﻿Event﻿based﻿system﻿call﻿behaviour,﻿especially﻿
when﻿modules﻿are﻿interacted﻿in﻿an﻿event﻿call﻿process﻿to﻿complete﻿a﻿task.﻿This﻿approach﻿is﻿more﻿
likely﻿based﻿on﻿design﻿by﻿security﻿concept.﻿However,﻿the﻿other﻿described﻿techniques﻿are﻿security﻿
components﻿ deployment﻿ in﻿ SCA﻿ while﻿ designing﻿ the﻿ security﻿ of﻿ service﻿ component﻿ based﻿
applications.﻿The﻿drawback﻿of﻿this﻿technique﻿is﻿to﻿cover﻿the﻿authentication﻿layer﻿for﻿application﻿
access﻿security﻿to﻿validate﻿the﻿authentication﻿process﻿of﻿application﻿but﻿not﻿to﻿cover﻿the﻿business﻿
component﻿ inter-communication﻿ layer.﻿ This﻿ presents﻿ the﻿ very﻿ slow﻿ process﻿ of﻿ solid﻿ defence﻿
against﻿the﻿vulnerability﻿identification﻿throughout﻿the﻿development﻿life﻿cycle﻿and﻿while﻿reusing﻿
existing﻿application﻿functionality,﻿where﻿Events﻿are﻿produced﻿and﻿consumed﻿in﻿process﻿of﻿inter-
component-﻿communication﻿model.

Therefore,﻿in﻿the﻿light﻿of﻿above﻿presented﻿model,﻿it﻿can﻿be﻿concluded﻿that﻿a﻿combined﻿
method﻿of﻿these﻿three﻿approaches﻿elaborate﻿the﻿different﻿way﻿of﻿providing﻿Event﻿based﻿system﻿
design﻿security﻿throughout﻿different﻿layers.﻿However,﻿in﻿recent﻿practices﻿the﻿most﻿efficient﻿
technique﻿is﻿third﻿technique﻿Event﻿attack﻿modelling﻿by﻿Faisal﻿Nabi﻿2020﻿is﻿more﻿appropriate,﻿
while﻿dealing﻿the﻿Events﻿based﻿inter-component﻿interaction﻿process,﻿that﻿modelling﻿system﻿or﻿
application﻿design﻿on﻿early﻿stage﻿of﻿SDLC﻿or﻿re-use﻿of﻿Event﻿application﻿function.﻿Therefore,﻿
Event﻿ Attack﻿ Modelling﻿ Technique﻿ is﻿ a﻿ useful﻿ tool,﻿ which﻿ may﻿ helpful﻿ for﻿ developers﻿ to﻿
integrate﻿components﻿to﻿develop﻿composite﻿applications﻿in﻿service﻿component﻿architecture﻿
method.﻿The﻿most﻿important﻿function﻿or﻿feature﻿of﻿this﻿technique﻿is﻿based﻿on﻿graphical﻿note﻿
presentation﻿while﻿depicting﻿the﻿component﻿functional﻿systematic﻿attack﻿graph﻿and﻿service﻿
attack﻿flow.

5.4.1. Attack Analysis Model
The﻿Figure﻿6﻿illustrates﻿the﻿event﻿that﻿process﻿the﻿attack﻿having﻿being﻿infected,﻿the﻿technique﻿
of﻿Event Attack﻿process﻿model﻿as﻿defined﻿given﻿below﻿diagram.﻿This﻿presents﻿ the﻿systematic﻿
process﻿of﻿the﻿vulnerability﻿infects﻿CBS﻿application﻿that﻿refers﻿to﻿the﻿fault﻿tree﻿analysis,﻿which﻿
proceeds﻿towards﻿the﻿attack﻿plan﻿construction.﻿This﻿is﻿followed﻿by﻿model﻿checking﻿and﻿generates﻿
the﻿attack﻿scenario﻿that﻿is﻿traced﻿through﻿final﻿analysis﻿of﻿an﻿attack﻿process﻿such﻿as﻿DDos﻿base﻿
attack﻿Event﻿process.﻿This﻿technique﻿helps﻿to﻿modelling﻿vulnerability﻿in﻿the﻿service﻿component﻿
architecture﻿based﻿applications.

35

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

68

6. CoNCLUSIoN

The﻿research﻿paper﻿has﻿reviewed﻿the﻿comprehensively﻿security﻿updates﻿in﻿the﻿field﻿of﻿component﻿
inter-communication﻿Event﻿base﻿model﻿for﻿service﻿component﻿architecture.﻿The﻿research﻿will﻿help﻿
to﻿understand﻿the﻿threats﻿and﻿types﻿of﻿attack﻿that﻿may﻿a﻿site﻿can﻿face﻿while﻿dealing﻿online﻿event﻿base﻿
systems.﻿Our﻿research﻿has﻿put﻿a﻿benchmark﻿for﻿the﻿current﻿research﻿in﻿Event﻿base﻿security﻿paradigm,﻿
which﻿helps﻿to﻿design﻿event-based﻿systems.﻿The﻿contribution﻿of﻿this﻿work﻿is﻿highlighting﻿the﻿current﻿
security﻿efforts﻿that﻿do﻿not﻿concentrate﻿on﻿event﻿attacks﻿or﻿correctly﻿detect﻿component-by-component﻿
inter-communication﻿ event﻿ model﻿ and﻿ produced﻿ the﻿ solution﻿ of﻿ the﻿ problem﻿ through﻿ the﻿ three-
dimensional﻿approaches﻿analysis﻿and﻿comparison,﻿which﻿is﻿a﻿key﻿contribution﻿of﻿this﻿research.﻿It﻿
also﻿open﻿future﻿work﻿to﻿be﻿done﻿in﻿this﻿domain﻿by﻿the﻿researchers,﻿so﻿that﻿Event﻿based﻿distributed﻿
system﻿can﻿be﻿more﻿secure.

Figure 6. Analysis attack event process model

36

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

69

REFERENCES

Agirre,﻿A.,﻿Marcos,﻿M.,﻿&﻿Estevez,﻿E.﻿(2012,﻿September).﻿Distributed﻿applications﻿management﻿platform﻿based﻿
on﻿Service﻿Component﻿Architecture.﻿Proceedings of the 17th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA),﻿17–21.﻿https://ieeexplore.ieee.org/document/6489684

Aniello,﻿L.,﻿Baldoni,﻿R.,﻿Ciccotelli,﻿C.,﻿Luna,﻿G.,﻿Frontali,﻿F.,﻿&﻿Querzoni,﻿L.﻿(2014,﻿May).﻿The﻿Overlay﻿Scan﻿
Attack:﻿Inferring﻿Topologies﻿of﻿Distributed﻿Pub/Sub﻿Systems﻿Through﻿Broker﻿Saturation.﻿Proceedings of the
8th ACM International Conference on Distributed Event-Based Systems (DEBS),﻿107–117.﻿https://dl.acm.org/
doi/10.1145/2611286.2611295

Bastos,﻿L.,﻿&﻿Castro,﻿J.﻿(n.d.).﻿A Event Based Layered Architecture for Bank Systems.﻿https://www.semanticscholar.org/paper/
A-Event-Based-Layered-Architecture-for-Bank-Systems-Bastos-Castro/9569d5930de34cec61e2bef267ff73d0af1b384c

Carzaniga,﻿A.,﻿Rosenblum,﻿D.,﻿&﻿Wolf,﻿A.﻿ (2001).﻿Design﻿and﻿evaluation﻿of﻿a﻿wide-area﻿event﻿notification﻿
service.﻿ACM Transactions on Computer Systems,﻿19(3),﻿332–383.﻿doi:10.1145/380749.380767

Chin,﻿E.,﻿Felt,﻿A.,﻿Greenwood,﻿K.,﻿&﻿Wagner,﻿D.﻿(2011,﻿June).﻿Analyzing﻿Inter-Application﻿Communication﻿
in﻿Android.﻿Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services
(MobiSys),﻿239–252.﻿https://dl.acm.org/doi/10.1145/1999995.2000018

Continuous﻿Code﻿Quality﻿|﻿SonarQube.﻿(2017).﻿https://www.sonarqube.org/

Denney,﻿E.,﻿&﻿Fischer,﻿B.﻿(2009,﻿July).﻿Generating﻿Code﻿Review﻿Documentation﻿for﻿Auto-Generated﻿Mission-
Critical﻿Software.﻿Proceedings of the Third IEEE International Conference on Space Mission Challenges for
Information Technology (SMC-IT),﻿19-23.﻿https://ti.arc.nasa.gov/m/pub/580/SMC-IT-Denney.pdf

Expansion﻿Files﻿Android﻿Developers,﻿A.﻿P.﻿K.﻿https:﻿//developer.android.com/google/play/expansion-files.html,﻿
2017.﻿[Online;﻿accessed﻿August﻿15,﻿2017].

Java﻿Message﻿Service﻿(JMS).﻿(2016).﻿http://www.oracle.com/technetwork/java﻿/jms/index.html

Kung-Kiu,﻿L.,﻿&﻿Ukis,﻿V.﻿(2007).﻿On Characteristics and Differences of Component Execution Environments.﻿
University﻿of﻿Manchester﻿Preprint﻿CSPP-41.﻿http://www.cs.man.ac.uk/~kung-kiu/pub/cspp41.pdf

Lee,﻿Y.,﻿Nam,﻿D.,﻿&﻿Medvidovic,﻿N.﻿(2019).﻿Technical Report: USC-CSSE-17-801.

Li,﻿L.,﻿Bartel,﻿A.,﻿Bissyandé,﻿T.,﻿Klein,﻿J.,﻿Traon,﻿Y.,﻿Arzt,﻿S.,﻿Rasthofer,﻿S.,﻿Bodden,﻿E.,﻿Octeau,﻿D.,﻿&﻿Mcdaniel,﻿
P.﻿(2015,﻿May).﻿IccTA:﻿Detecting﻿Inter-Component﻿Privacy﻿Leaks﻿in﻿Android﻿App.﻿Proceedings of the 37th
International Conference on Software Engineering (ICSE),﻿280–291.﻿http://2015.icse-conferences.org/

Lu,﻿L.,﻿Li,﻿Z.,﻿Wu,﻿Z.,﻿Lee,﻿W.,﻿&﻿Jiang,﻿G.﻿(2012,﻿October).﻿Chex:﻿Statically﻿Vetting﻿Android﻿Apps﻿for﻿Component﻿
Hijacking﻿Vulnerabilities.﻿Proceedings of the ACM Conference on Computer and Communications Security
(CCS),﻿229–240.﻿https://dl.acm.org/doi/10.1145/2382196.2382223

Memon,﻿M.,﻿Hafner,﻿M.,﻿&﻿Breu,﻿R.﻿(2013).﻿A﻿Platform-independent﻿Framework﻿for﻿Security﻿Services.﻿Models
in Software Engineering: Workshops and Symposia at Models.

Nabi,﻿F.﻿(2011).﻿Designing﻿a﻿Framework﻿Method﻿for﻿Secure.﻿Business﻿Application﻿Logic﻿Integrity﻿in﻿e-Commerce﻿
Systems.﻿International Journal of Network Security,﻿12(1),﻿29–41.

Nabi,﻿F.,﻿&﻿Nabi,﻿M.﻿(2017).﻿A Process of Security Assurance Properties Unification for Application Logic.﻿
Academic﻿Press.

Nabi,﻿F.,﻿Yong,﻿J.,﻿&﻿Xiaohui,﻿T.﻿(2020).﻿A﻿Novel﻿Approach﻿for﻿Component﻿based﻿Application﻿Logic﻿Event﻿
Attack﻿Modeling.﻿International Journal of Network Security.

OASIS﻿Service﻿Component﻿Architecture/Assembly﻿(SCA-Assembly).﻿(n.d.).﻿http://docs.oasis-open.org/opencsa/
sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.pdf

Owasp﻿Orizon.﻿(2017).﻿https://www.owasp.org/index.php/Category:OWASP_Orizon_Project

Petroni,﻿ F.,﻿ Querzoni,﻿ L.,﻿ Beraldi,﻿ R.,﻿ &﻿ Paolucci,﻿ M.﻿ (2016,﻿ April).﻿ Exploiting﻿ User﻿ Feedback﻿ for﻿ Online﻿
Filtering﻿ in﻿Event-based﻿Systems.﻿Proceedings of the 31st Annual ACM Symposium on Applied Computing
(SAC),﻿2021–2026.﻿https://dl.acm.org/doi/proceedings/10.1145/2851613?tocHeading=heading77

37

https://ieeexplore.ieee.org/document/6489684
https://dl.acm.org/doi/10.1145/2611286.2611295
https://dl.acm.org/doi/10.1145/2611286.2611295
https://www.semanticscholar.org/paper/A-Event-Based-Layered-Architecture-for-Bank-Systems-Bastos-Castro/9569d5930de34cec61e2bef267ff73d0af1b384c
https://www.semanticscholar.org/paper/A-Event-Based-Layered-Architecture-for-Bank-Systems-Bastos-Castro/9569d5930de34cec61e2bef267ff73d0af1b384c
http://dx.doi.org/10.1145/380749.380767
https://dl.acm.org/doi/10.1145/1999995.2000018
https://ti.arc.nasa.gov/m/pub/580/SMC-IT-Denney.pdf
https://developer.android.com/google/play/expansion-files.html
http://www.cs.man.ac.uk/~kung-kiu/pub/cspp41.pdf
http://2015.icse-conferences.org/
https://dl.acm.org/doi/10.1145/2382196.2382223
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.pdf
https://dl.acm.org/doi/proceedings/10.1145/2851613?tocHeading=heading77

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 2 • July-December 2020

70

Pietzuch,﻿ P.﻿ (2011,﻿ September).﻿ Building﻿ Secure﻿ Event﻿ Processing﻿ Applications.﻿ Proceedings of the First
International Workshop on Algorithms and Models for Distributed Event Processing (AlMoDEP),﻿11.﻿https://
dl.acm.org/doi/10.1145/2031792.2031794

Rasthofer,﻿S.,﻿Arzt,﻿S.,﻿&﻿Bodden,﻿E.﻿(2014).﻿A﻿Machine-Learning﻿Approach﻿for﻿Classifying﻿and﻿Categorizing﻿
Android﻿Sources﻿and﻿Sinks.﻿NDSS.﻿doi:10.14722/ndss.2014.23039

Reimer,﻿D.,﻿Schonberg,﻿E.,﻿Srinivas,﻿K.,﻿Srinivasan,﻿H.,﻿Alpern,﻿B.,﻿Johnson,﻿R.,﻿Kershenbaum,﻿A.,﻿&﻿Koved,﻿
L.﻿ (2004,﻿ July).﻿SABER:﻿Smart﻿Analysis﻿Based﻿Error﻿Reduction.﻿Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),﻿ 243–251.﻿ https://dl.acm.org/doi/
abs/10.1145/1007512.1007545

Rodríguez,﻿M.,﻿Zalama,﻿E.,﻿&﻿González,﻿I.﻿(2016).﻿Improving﻿the﻿interoperability﻿in﻿the﻿Digital﻿Home﻿through﻿
the﻿automatic﻿generation﻿of﻿software﻿adapters.﻿RIAI Rev. Iberoam. Autom. Inform. Ind.,﻿13,﻿363–369.

Safi,﻿G.,﻿Shahbazian,﻿A.,﻿Halfond,﻿W.﻿G.,﻿&﻿Medvidovic,﻿N.﻿(2015,﻿August).﻿Detecting﻿Event﻿Anomalies﻿in﻿
Event-Based﻿Systems.﻿Proceedings of the 10th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),﻿25–37.﻿https://
dl.acm.org/doi/10.1145/2786805.2786836

Service﻿Component﻿Architecture.﻿(2018).﻿https://www.osoa.org/display/Main/Home

Shand,﻿B.,﻿Pietzuch,﻿P.,﻿Papagiannis,﻿I.,﻿Moody,﻿K.,﻿Migliavacca,﻿M.,﻿Eyers,﻿D.,﻿&﻿Bacon,﻿J.﻿(2011).﻿Security﻿Policy﻿and﻿
Information﻿Sharing﻿in﻿Distributed﻿Event-Based﻿Systems.﻿Reasoning in Event-Based Distributed Systems,﻿151–172.

Srivatsa,﻿M.,﻿Liu,﻿L.,﻿&﻿Iyengar,﻿A.﻿(2011).﻿Event﻿Guard:﻿A﻿System﻿Architecture﻿for﻿Securing﻿Publish-Subscribe﻿
Networks.﻿ACM Transactions on Computer Systems,﻿29(4),﻿10:1–10:40.

Tripp,﻿ O.,﻿ Pistoia,﻿ M.,﻿ Cousot,﻿ P.,﻿ Cousot,﻿ R.,﻿ &﻿ Guarnieri,﻿ S.﻿ (2013,﻿ March).﻿ ANDROMEDA:Accurate﻿
and﻿ Scalable﻿ Security﻿ Analysis﻿ of﻿ Web﻿ Applications.﻿ Proceedings of the 16th International Conference
on Fundamental Approaches to Software Engineering (FASE),﻿ 210–225.﻿ https://www.researchgate.net/
publication/262170634_ANDROMEDA_accurate_and_scalable_security_analysis_of_web_applications

Wun,﻿A.,﻿&﻿Jacobsen,﻿H.﻿(2007,﻿November).﻿A﻿Policy﻿Management﻿Framework﻿for﻿Content-based﻿Publish/
Subscribe﻿Middleware.﻿Proceedings of the ACM/IFIP/USENIX 1907 International Conference on Middleware
(Middleware),﻿368–388.﻿https://dl.acm.org/doi/10.5555/1785080.1785106

Xanitizer.﻿(2017).﻿https://www.rigs-it.net/index.php/product.html

Xenitellis,﻿S.﻿(2002,﻿May).﻿Security﻿Vulnerabilities﻿in﻿Event-Driven﻿Systems.﻿Proceedings of the IFIP TC11 17th
International Conference on Information Security: Visions and Perspectives (SEC),﻿147–160.﻿https://dl.acm.
org/doi/10.5555/647185.719818

Faisal Nabi is a PhD researcher at University of Southern Queensland. He has also received Honorary PhD
in Computer Science from Brock University St. Catharines, Ontario, Canada. Faisal’s research interests are
e-commerce security and software security.

Jianming Yong (PhD) is a professor at school the of information systems at University of Southern Queensland.
He has received his PhD from SwinburneUT. He is also member of IEEE professional. His research areas are
Cloud Computing, Big Data Security and Privacy, Data Integration, Workflow systems, Information system security,
Network management, Web service for SMEs, Digital Identity Management.

Xiaohui Tao (PhD) is a Senior Lecturer (Computing) at School of Agricultural, Computational and Environmental
Sciences, University of Southern Queensland. His research interests are Ontology learning and mining, Knowledge
engineering, Web intelligence, Data mining, Sentiment analysis and opinion mining, Machine learning, Information
retrieval. He is also member of IEEE Professional.

38

https://dl.acm.org/doi/10.1145/2031792.2031794
https://dl.acm.org/doi/10.1145/2031792.2031794
http://dx.doi.org/10.14722/ndss.2014.23039
https://dl.acm.org/doi/abs/10.1145/1007512.1007545
https://dl.acm.org/doi/abs/10.1145/1007512.1007545
https://dl.acm.org/doi/10.1145/2786805.2786836
https://dl.acm.org/doi/10.1145/2786805.2786836
https://www.researchgate.net/publication/262170634_ANDROMEDA_accurate_and_scalable_security_analysis_of_web_applications
https://www.researchgate.net/publication/262170634_ANDROMEDA_accurate_and_scalable_security_analysis_of_web_applications
https://dl.acm.org/doi/10.5555/1785080.1785106
https://dl.acm.org/doi/10.5555/647185.719818
https://dl.acm.org/doi/10.5555/647185.719818

39

CHAPTER 4 A: CLASSIFICATION OF LOGICAL VULNERABILITY BASED ON A

GROUP ATTACKING METHOD

4B: ORGANIZING CLASSIFICATION OF APPLICATION LOGIC ATTACK IN
COMPONENT-BASED E-COMMERCE SYSTEMS

Introduction and Findings: Relationship between Chapter 3 and Chapter 4

Introduction: Chapter 3 covers and provides details of (SCA) service component architecture-

based application logic design and event-based attack in-service composite applications.

Related to this, Chapter 4 covers and provides the detail about the classification of security-

related issues, and further research findings in Chapter 4B, which were then proposed into

groups and made into a taxonomy. This categorized the group attacking method and

classification of two groups of vulnerabilities (technical vs logical) in e-commerce component-

based applications. Moreover, the model presented in this chapter is validated in the Paper that

is presented as 4 B. This chapter addresses the sub-questions 1 and 2 in this thesis.

Findings: This chapter provides valuable findings regarding a taxonomy in the field of

component-based application logic that focuses on logical and technical vulnerabilities as

explained in the publication shown in Chapter 4A. This also provides validity of the proposed

model which is part of the published papers at 4A and 4B. It also validates the attack pattern

in component-based software application logic.

Paper 4A was published in The 10th International Symposium on Frontiers in Ambient and Mobile

Systems (FAMS 2020) held April 6-9, 2020, in Warsaw, Poland, Procedia Computer Science 170 (2020)

923–931, Elsevier.

Paper 4B, which was published in the Journal of Computer Science Q3, and validated the proposed

model in Chapter 4, developed a taxonomy for developers of J2EE platform. This helps to improve the

CVC database which is used for vulnerability reporting and information gathering. Journal of

Computer Science 17(11):1046-1058 DOI:10.3844/jcssp.2021.1046.1058..

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 170 (2020) 923–931

The 10th International Symposium on Frontiers in Ambient and Mobile Systems (FAMS 2020)
April 6-9, 2020, Warsaw, Poland

Classification of Logical Vulnerability Based on
Group Attacking Method

Faisal Nabi* , Jianming Yong , Xiaohui Tao
University of Southern Queensland, QLD4350, Australia

Abstract

New advancement in the field of e-commerce software technology has also brought many benefits, at the same time developing
process always face different sort of problems from design phase to implement phase. Software faults and defects increases the
issues of reliability and security, that’s reason why a solution of this problem is required to fortify these issues. The paper addresses
the problem associated with lack of clear component-based web application related classification of logical vulnerabilities through
identifying Attack Group Method by categorizing two different types of vulnerabilities in component- based web applications. A
new classification scheme of logical group attack method is proposed and developed by using a Posteriori Empirically methodology.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: Security Dimensions, CBS Application, Group Attack Method, Application logic, Attack Classification

* Corresponding author. Tel.: 61+0405265929; fax: +0-000-000-0000 .
E-mail address: faisal.nabi@yahoo.com

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2020.03.109

40

http://www.sciencedirect.com/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:faisal.nabi@yahoo.com
http://creativecommons.org/licenses/by-nc-nd/4.0/)

924 Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931

1. Introduction

The growing complexity of modern e-commerce software based on component architecture is creating many benefits
for e-commerce industry. However, at the same time critical process of different available commercial of the shelf
components may cause of software application logic faults and defects during the plug and play phase of application
new functionality development that increases the issues of reliability and security [3]. Therefore, an approach is
required to classify the issues on the base of component-based software faults and flaws categorization scheme, which
then classify each attack into group attack ID through attack method. The characterization of the attack method is
based on vulnerability that may cause of fault logic into an application design. The design faults or flaws are system
design phase issues those cannot be mitigate through modification of few lines of component code or interface
connection code [10].The security of such problems are discussed through security dimension which reflects the
system aspects and attributes. This may be affected by risk of loss in the event of cyber-attack through group attacking
method. The security dimensions are divided into categories of problem where attacking method that may cause of
logical vulnerability into a system. This help to the developers understand the design issues of security related system
attributes. The security dimension is based on further attributes of the security system, such as security group
knowledge, attack group knowledge, vulnerability category and attack boundary, and group attack method in system.
These all attributes perform a major role in identifying and classifying the logical vulnerabilities based on group attack
method. A group attack method explains the type of vulnerability and its attacking parameters that trigger an infected
component in the case of particular event within the system. This process exploits the system security dimension.
Therefore, such a scheme is needed to be developed that could characterize the two different vulnerabilities, logical
and technical into groups and classification.

1.1 Objective

The research focuses the progress towards the highlighting different security dimensions of categorized vulnerability
into classification of each attack with parameter that cause of triggering an exploitable event within the system. This
will help to understand the further attributes of security dimension related to a system.

1.2 Method

Our research methodology focuses on a classification that separates or orders of main objects and specimens related
to classes. The classifications can be derived by a priori or a Posteriori Empirically by considering the CVE
vulnerability database for security breach cases [11].

2. Related work

Samaila te al .2017, classified the vulnerability into three units by intersection each of these three units: First Units
is (i) a system’s weakness that cause of a flaw, Second Units is (ii) Attacker approach of attack the flaw, and Third
Units is (iii) Being able to exploit the Flaw by an attacker [1] but did not proposed any classification based on these
three units or categorized them into attack cause.

Krsula, 1998, defined the classification of software vulnerabilities related issues which is based on fault that is in case
of faults specification, development / configuration related to software. For example execution can violate clearly
defined security policy [2]. This can be mitigated through the elimination of these problem in a numerous ways, such
as software patches and re-configuring the devices [5]. Krsula; s classification is more likely about environmental
fault which describes given below exampled figure of taxonomy of software. However, the shortcoming of his
research is, proposed scheme limitation to the software fault related environmental condition .Joshi and Singh 2014
has proposed the classification five dimensional vector of vulnerability and defined the defense, method and its
impact related to target attack [3]. However , his work most likely cover the network vulnerabilities , which shortfalls
about design flaw in architecture of software base application in case of component-based development. Software
vulnerability occurs due to the existence of software bugs, faults and errors, which cause an unchecked buffer or
race condition [4].

41

Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931 925

 By the date now, there have been many different classification schemes [12, 13, 14, 15, 16] proposed targeting various
parameters related to technology could affect the software production process specially in the phase of (SDLC),
revelation process and attack pattern [6].

Modern classification of vulnerability models mostly targets the vent of software vulnerability, that is a single cause
specially concentrate on domain specific application. It is also possible that a single vulnerability may not cause of a
single reason [8]. Many different reasons can cause of a single vulnerability in a system [9]. Therefore, a single
cause can be reason of different vulnerabilities in different sort of applications based on class of domain. So it is very
much clear that such presentation does not classify the classification models in a holistic way or presentation.
Moreover, present schemes do not provide any detail about logical vulnerability-based attack classification and
group attack method. This paper covers the research gap between present classifications as stated in related work
and the approach adopted in this paper “Classification of logical vulnerability “and group attack method.

3. Proposed Vulnerability Classification Model

The security dimensions are considered as aspects of system and attributes or related process that leaves its effects
on security group to know system and delivers the changes to the system. This is based on understanding of the class
of vulnerability and its category. The security dimensions directly impact on security group knowledge to evaluate the
at tack vector related to the security in network or system. This can be both logically and technically, each aspect
of both can be categorized and a classification is given before mitigating the security issues.

Security Dimension

Security Group Knowledge Attack Group Knowledge

Vulnerability Category

Attack Boundary

Group Attacking Method in System

Fig. 1. The Proposed Vulnerability Classification Model

The attack group knowledge also refers to attack pattern that depends on rigorous methods of exploitation by attacker.
This dimension of security based on process or set of system attributes that may be exploited in an action by attacker
with means of gaining access to the system related information. The next fourth element of security dimension is
vulnerability category .In this stage having evaluated by the first two process of security group and attack group
knowledge gained, a vulnerability is classified and the categorized into its class of group based on exploitation
technique and parameters. Once a vulnerability is categorized its attack boundary profile that is designed
keeping in view the level of impact on the system in case of exploit the security function. This helps to understand the
level and scale of infection or impact onto the system that became target of attack propagation.

42

926 Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931

An attack boundary is basically defined through a set of systems under attack that is controlled as a single
administrative control. At this level boundaries are various, and vulnerabilities can become obvious as data object is
input boundary race condition.

The group attacking method consist on attack ID, classification and attack group that simplifies the vulnerability and
attacking technique, whereas group classifies the attack dimension fall under the category. The purpose of this
model is to simplify the attack dimensions and way of attack fall under the category, where each vulnerability is
subdivided into attack class and method, as defined in the model. Presentation of model is depicted through the table
of Grouping Attack Method ID & Logical Vulnerability Classification.

Table 1. Group Attacking Method ID and Vulnerability Classification.

SN Attack Classification Attack method & Parameter Attack Group & pattern Category

1 Application Logic attack Logic Design Fault Exploitation of
Functionality

Web Application

2 Application Logic attack logic diversion error Anti-Automation Web application

3 Application logic
attack

control flow error web function exploit Web application

4 Application Logic attack programme logic flaw Subversion of Logic Web application

5 Application Logic attack functional flow Fault exploit the sequences
of logic order

Web application

6 Application Logic attack Design logic flaw web Copy Cat Web application

The logical attacks are different types of attacks with different attack methods because logical attack has to exploit
the functionality that is specific to the application and its logic .This is what, defined in the above mentioned table
of Grouping Attack Method ID & Logical Vulnerability Classification.

As mentioned above the main scope of this study is to focus on “application logic based vulnerabilities” problem that
is because of a design flaw or fault that mismatch between design & architecture while developing component –based
software application. We have classified the six vulnerabilities in the application logic and then developed the attack
group and vulnerability classification to be categorized by proposed model of classification and security dimension
in the light of vulnerability model that is cause of design flaw in application logic and functionality.

3.1 Classification of Logical Vulnerability VS Technical Vulnerability

In the light of our research, the proposed model would turn into be a classification & characterization of two
distinctive categories of vulnerability issues /problems “Technical vs Logical Vulnerabilities”. These vulnerabilities
are classified based on the attack method as mentioned in the above table of vulnerability, this classification relates
to attack pattern technique. Therefore, keeping in view the proposed model of classification falls under the two
categories of vulnerabilities, which have been drawn into classification tree model dividing into sub-class of attack at
the application layer of ecommerce component-based software application. This depicts the detailed classification,
having characterized each vulnerability by their unique signature of indemnity in the proposed scheme.

43

Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931 927

 G r o u p & C l a s s ∎C a t e g o r y ∎ G r o u p c l a s s

 Authentication ACL & web site Input Command Execution

Fig. 2. Classification of Vulnerability Scheme

The proposed contribution of the classification is characterized by attack pattern and target agent in each kind of attack
as mentioned in given classification scheme of application logic-based attack pattern method, vulnerability class and
event triggering logical element. This is further put into attack pattern technique to classify each vulnerability in the
light of attack method, such classifications are characterized in groups of attacking parameters which defines nature
of vulnerability. Therefore, in the light of our detailed classification and characterizing of vulnerabilities into groups
and their attacking methods, as it is defined in the above-mentioned table. It is derived that logical vulnerabilities are
such vulnerabilities which cannot be mitigated through traditional approaches such as web scanning tool and
vulnerabilities detection tool those are based on static analysis because web scanners only detect the implementation
bugs, programming error conditions, and fault. Whereas logical vulnerabilities are based on design phased flaw of
software-based application [17].Therefore, our proposed scheme is based on classification and categorization of each
logical vulnerability based on attack method, which is explained through the parameters of attack logic in above
presented table. The classification with defined detailed information about each attack and related attack pattern will
be helpful for the developers, having knowledge of the different attacks with technique to design new applications
based on the idea of security by design technique.

3.2 Layer Based Software System Scenario Attack Modeling

Figure 3 depicts the software layer based system attack scenario to validate the above-mentioned proposed model. This
figure clearly explains the role of software and service into different layers and relationships between actors of
organizations and that face threats. This model help us to understand the three-dimensional layer model of software
system, service, information and event; the attacker affects those and the attacks must be mitigated through defender
actions.

Classification of Vulnerability

 Technical Vulnerability Logical Vulnerability

Brute Force
Insufficient Authentication
weak password recovery
Validation

Credential session
Prediction
Insufficient Authorization
Insufficient Session
Expiration
Session Fixation

Exploitation of Functionality
Anti-Automation
Web function exploit
Subversion of Logic
Exploit the sequences of logic order
Web Copy Cat
Force Browsing

Authorization web application

Business Logic Attacks web application

 Buffer Overflow
 Format String Attack
 LDAP Injection
 OS Commanding
 SQL Injection
 SSI Injection
 X-Path Injection

Information Disclosure
 Directory Indexing
 Information Leakage
 Path Traversal
 Predictable Resource
 Location

 Client-Side Content Spoofing
 Cross-Site Scripting

44

928 Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931

 Fig. 3. Layer Based Software System Attack Model

45

Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931 929

This model classifies the vulnerability lifecycle in the layer based software system attack model. The method and tool
for such modelling is UML and the aspect oriented modelling languages that support the event attack modelling through
the attack surface, have been demonstrated in figure 3.

3.3 Classifying and Categorizing Logical Vulnerabilities

The group attacking parameters based nature of logical vulnerability and attack technique classification are defined
according to each type of attack and characterized according to attack method based on incident reports as mentioned
in method section.

This vulnerability class identifies the category of this
attack pattern as business logic or application logic,
where the attack falls under the logic design fault in
the web server side target agent and the method of
avoiding it is encoding circumvents access controls.

This class of attack falls under the classification of
insufficient anti-automation attack pattern technique.
The category of this vulnerability falls under the web
application that is identified as application logic and
the method is process logic flaw classification.

This vulnerability falls under the web application
category where the attack method is web function
exploited with the technique of application logic
fault classification and insufficient process validation
technique. This comes under the business application
of logic vulnerability.

This vulnerability class programming logic fault falls
under the category of server side application target
agent, where subversion of application logic diverts
the control flow of the entire application logic, the
method of attack is to exploit the workflow.

This class of vulnerability falls under the functional
flow fault classification of attack, web logic is the
target agent, and where the entire function of web
logic diverts service. The method of this attack is to
exploit the sequences of logic order.

This class of vulnerability is classified as web
copycat attack target agent is design logic flaw at
the web software application that exploit the
business logic through application logic flow
diversion as an attack cause.

46

930 Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931

4. Discussion

Therefore, we have detailed the classification and characterization of vulnerabilities into groups and the methods of
attacking them. From this research, it may be understood that that logical vulnerabilities cannot be mitigated through
traditional approaches such as web scanning tools, and vulnerabilities detection tools that are based on static analysis.
Web scanners only detect the implementation bugs, programming error conditions, and faults whereas logical
vulnerabilities are based on the design-phased flaw of software based applications [17].Therefore, our proposed scheme
is based on classification and categorization of each logical vulnerability based on the attack method, which is explained
through the parameters of attack logic in each case presented above. The classification with defined detailed information
about each attack and the related attack pattern will be helpful for the developers, having knowledge of the different
attacks with technique to design new applications based on the idea of security by design technique.

5. Conclusion

The idea of security development process is based on a proper classification of the vulnerability. It is very useful to
have knowledge about the attack and its parameters, target agent, method .Since with the passage of time new
technologies emerges, and the more security attacks occur software application server side , in this scenario researcher
has made an effort to classify the logical vulnerabilities those are never given consideration by the research
community. The proposed vulnerability classification model contributed the new classification related to group
attacking method ID and vulnerability classification , which is never been done this before. The proposed model will
cover the gap between previously design taxonomies based on different areas of system domain and security
classifications of vulnerabilities. This will be very useful for developers to understand the two different sort of
vulnerabilities, specially logical vulnerabilities, while designing applications or security by design based idea adoption
by them. This model will cover the gap of logical vulnerabilities and related attack patterns, technique, method. This
is a significant improvement to taxonomies a class of vulnerability that is not given much consideration by the
academia.

References

[1] Samaila, M. G., Neto, M., Fernandes, D. A. B., Freire, M. M., & Inácio, P. R. M. (2017). Security Challenges
of the Internet of Things. Pp. 53–82, In J. Batalla, G. Mastorakis, C. Mavromoustakis, & E. Pallis (Eds.), Beyond
the Internet of Things. Internet of Things (Technology, Communications and Computing) Cham:
Springer. doi:10.1007/978-3-319- 50758-3_3

[2] Krsul, I. V. (1998). Software vulnerability analysis (Doctoral dissertation). Retrieved from
https://dl.acm.org/citation. cfm?id=927682

[3] Joshi, C., & Singh, U. K. (2014). Admit-A five dimensional approach towards standardization of network and
computer attack taxonomies. International Journal of Computer Applications, 100, 5. doi:10.5120/17524-8091.

[4] Li, X., Chang, X., Board, J. A., & Trivedi, K. S. (2017). A novel approach for software vulnerability classification.
In Reliability and Maintainability Symposium (RAMS), 2017 Annual (1– 7). IEEE. doi:
10.1109/RAM.2017.7889792

[5] Antoon, R. U. F. I. (2006). Network Security 1 and 2 Companion Guide. (Cisco Networking Academy).
[6] Fournaris, A. P., PoceroFraile, L., & Koufopavlou, O. (2017). Exploiting hardware vulnerabilities to attack

embedded system devices: A survey of potent microarchitectural attacks. Electronics, 6(3), 52.
doi:10.3390/electronics6030052 .

[7] Garg, S., & Baliyan, N. (2019a). A novel parallel classifier scheme for vulnerability detection in android.
Computers and Electrical Engineering, (Final revision submitted) doi:10.1016/j. compeleceng.2019.04.019.

[8] Homaei, H., & Shahriari, H. R. (2017). Seven years of software vulnerabilities: The ebb and flow. IEEE Security
& Privacy, (1), 58–65. doi:10.1109/MSP.2017.15

47

Faisal Nabi et al. / Procedia Computer Science 170 (2020) 923–931 931

[9] Sharma, C., & Jain, S. C. (2014, August). Analysis and classification of SQL injection vulnerabilities and attacks
on web 18 S. GARG ET AL. applications. International Conference on Advances in Engineering and Technology
Research (ICAETR), 2014 (1–6). IEEE. doi: 10.1109/ICAETR.2014.7012815

[10] Faisal Nabi, A Process of Security Assurance Properties. Unification for Application Logic, International Journal
of Electronics and Information Engineering, Vol.6, No.1, PP.40-48, Mar. 2017.

[11] Jens L. Eftang a, Martin A. Grepl b, Anthony T. Patera, A posteriori error bounds for the empirical interpolation
method, C. R. Acad. Sci. Paris, Ser. I 348 (2010) 575–579 http://www.sciencedirect.com/ .

[12] Hansman, S., Hunt R., “A taxonomy of network and computer attacks”. Computer and Security, vol. 24, issue
1, Feb 2005, PP. 31-43.

[13] Simmons, C., Ellis, C., Shiva, S., Dasgupta, D., & Wu, Q. “AVOIDIT: A Cyber Attack Taxonomy”, University
of Memphis, Technical Report CS-09-003, 2009. [Online]. Available:

[14] T. Aslam, “Use of a taxonomy of Security Faults,” Technical Report 96-05, COAST Laboratory, Department of
Computer Science, Purdue University, March 1996.

[15] Scott D., Angelos S,” Towards a Cyber Conflict Taxonomy”, 5th International Conference on Cyber Conflict
K. Podins, J. Stinissen, M. Maybaum (Eds.), 2013.

[16] Lough, Daniel. “A Taxonomy of Computer Attacks with Applications to Wireless Networks,” PhD thesis,
Virginia Polytechnic Institute and State University, 2001.

[17] Marco Vieira, Nuno Antunes, and Henrique Madeira, Using Web Security Scanners to Detect Vulnerabilities in
Web Services, 2009 IEEE/IFIP International Conference on Dependable Systems & Networks,
https://ieeexplore.ieee.org/abstract/document/5270294.

48

http://www.sciencedirect.com/

 © 2021 Faisal Nabi, Jianming Yong, Xiaohui Tao, Muhammad Farhan and Nauman Naseem. This open access article

is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Review

Organizing Classification of Application Logic Attacks in

Component-based E-Commerce Systems
1Faisal Nabi, 2Jianming Yong, 3Xiaohui Tao, 4Muhammad Farhan and 5Nauman Naseem

1CIS, University of Southern Queensland, Australia
2CIS, USQ, Australia
3CS, USQ, Australia
4,5school of IT and Engineering, MIT, Australia

Article history

Received: 06-02-2021

Revised: 12-04-2021

Accepted: 27-05-2021

Corresponding Author:

Faisal Nabi

School of Management and

Enterprise, University of

Southern Queensland1West St,

Darling Heights QLD 4350,

Australia

Email: faisal.nabi@yahoo.com

Abstract: This research paper addresses the topic of application logic

attack taxonomy that is due to unclear and incorrect implementation in

component-based applications. The issue addresses the detection and

classification of two separate types of vulnerabilities in component-based

applications. The paper completes this aim through organising the

classification of each attack and then proposes the classification of

logical vulnerabilities and discusses the two distinct forms of weakness

and coding faults in the application software found in the mid-level of

the framework. The most important argument is to desegregate awareness

of attack patterns with boundary profile status relevant to an application

logic vulnerability and possible threats. Having review of two different

types of attack taxonomies, a logical vulnerability classification based

taxonomy is proposed.

Keywords: E-Commerce, Web Software Application, CBS Design Flaws,

Logical Attack, Vulnerability and Taxonomy, Software Security Flaw

Introduction

The implementation of advanced mechanisms for

managing asynchronous events in web browsers and the

advent of many frameworks for rapid prototyping of

server-side components have been stimulated by the

growth of emerging technologies and the shift from

'conditional' applications to Internet-based platforms

(e.g., mail readers). Although new technologies have

given significant funding, development, productivity and

interoperability advantages, little has been done to fix

security concerns. As a consequence, the web applications

become more complex, the risk of abuse is increasing

(Firesmith, 2005). The risk of violence also increases. An

overview of the CVE vulnerability database, for example,

reveals that web-based attacks rose from 25% in 2017 to

61% in 2018. The fact that component-based applications

are typically accessible through designer firewalls makes

it possible for developers with insufficient software

protection to build server-side logic more widely under

time-to-market pressure. As a result, web applications that

are unsafe created and made available over the Internet,

making it simple to exploit (Nabi and Nabi, 2017).

The use of best practises in industrial fields such as

firewalls, encryption (SSL/TSL), vulnerability scan,

security monitoring, etc. (e.g., intrusion, white box and

black box) has historically been promoted by security

engineering in existing systems to insure proper security.

Many security papers and books are unable to provide

much detail on the e-commerce framework's security

specifications and most of what is written seems to stress

the concept of ambiguous security objectives or

concentrate on architectural constraints. Usually is either

the amount required of a stated particular type of

security or the safety implications of non-security

Normally, either the amount appropriate to a given

security form or the safety effects of non-security

specifications are addressed in security processes. Cyber

attacks are essential to any component-based security

assessment of e-commerce application. In this context,

the characteriszation and classification of vulnerabilities is

one of the most important fields of study. Several models

suggest defining them; such models usually generally

describe attacks (Nabi and Nabi, 2017) In addition,

experience shows that attack profiles are highly dependent

on multiple frontier conditions. This study addresses the

problem of the absence of coherent vulnerabilities and

49

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1047

taxonomies to identify and classify two distinct

vulnerability classes in the CSB's web-based e-commerce.

This is achieved by organizing the critical

classifications that suggest the classification of logical

vulnerabilities centred on design faults versus

technological faults focused on web application

deficiencies and defects at the implementation level from

a security evaluation perspective of component-based

software applications. Our research methodology relies

on grouping that separates or orders the component-based

software applications Classifications can be established as

either a priority (i.e., non-empirical from an abstract

model) or Posteriori Empirical by evaluating the CVE

vulnerability database for security breach cases.

Research Background

A taxonomy of recurrent vulnerabilities may contribute

to the organisation of today's safety-enhancing knowledge.

To detect possible attacks on web application software

before it is published to consumers; advanced awareness of

vulnerabilities can be useful. We reviewed 25 taxonomies

from 1974 to 2017 and analysed different levels of

vulnerabilities, property taxonomies, web application

vulnerabilities, network vulnerability taxonomy and

software vulnerability taxonomy of e-commerce threat

classifications before restricting the main scope of this

study to address the logical problems of the web software

application due to mismatch between design and

architecture. However, it depends on web software

application during development. Our attack patterns are

more detailed to which components could recognise a

device design vulnerability.

Most taxonomies have four hierarchical groups within

the taxonomy: Structural flaws, environmental

deficiencies and codes. We contrasted our taxonomy with

the environmental defect class, which is intended to

infringe the environmental standards of programmers and

their software weakness.

Since most (Nabi and Nabi, 2017) researchers did not

find any information on the design vulnerabilities in real-

time, they could not provide any information on this

vulnerability and its attack classifications.

Research Methodology

Our main objective is to develop the taxonomy of

logical weakness in the application layer of distributed

multiple-tier e-commerce systems, as stated in the

introduction. There are several methodologies to assess

the security of information communication technical

infrastructure that are developed in various papers and

texts, which provide a launchpad into an e-commerce

system. We have selected Masera and Nai methodology

2005 as a guide to support our methodology. The authors

present in Masera et al. (2005) a risk management method

for the assessment of complex ICT systems. This

approach accepts the fact that a description of the

function, components, properties and the relationship

between components, assets and the outside world should

be first given for the safety evaluation of a system. This

can be used to identify defects that influence the system

as a whole systematically.

Our research methodology is also focused on the

Posteriori Empirical study of CVE vulnerability database

data from various levels of e-commerce categories of

web-based applications and systems (B2B) and (B2c)

from 2002 to 2017. Specific groups of single

characteristics are used with a set of taxonomic characters

that meet the classification needs of subjective decisions.

These classifications are simplest and require a clear

selection criterion for individuals to be grouped. For

instance, group programmes use encryption or not in their

language of programming. The evaluation of potential

damage to the components, their propagation to the

sys-tem and subsequent attack patterns can be extracted

from the evaluation of this information.

As described above, web applications and systems for

e-commerce and those elements that form the basis of our

methodology are strongly linked to a set of traditional

computer security principles, particularly the "five

pillars." We also developed a Security Vulnerability

Evaluation Model focused on "Five Pillar" Computer

Security Elements for component-based e-Commerce

software applications and systems. This enables

vulnerability to be identified and attacks to patterns that

lead to our main goal of classifying logical vulnerabilities

(Moore et al., 2001).

In the other hand, technological flaws are due to

mistake, fault and bug coding at implementation level

for a software development framework. During such a

process, they can be patched. Furthermore, the use of

vulnerability analysis software and web application

scanning tools is difficult to repair or identify faults in

design. Therefore, no taxonomy provides details on the

logical danger of the application layer targeting attacks

and patterns related to vulnerabilities and attacks in the

mid-level business application logic (the n-tier

e-commerce system).

In component Web Applications and Systems, we

propose the SVAM for the main computer protection

attributes 'Five Columns,' as mentioned, showing the life

cycle of the vulnerability and classifying the key point

where the vulnerability covers two or more delicate

vulnerability classes, such as 'Technical and Logical., as

defined in Fig. 1.

50

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1048

Fig. 1: SVAM model

Related Research Work and Taxonomic

Properties

The theoretical analyses are categorised into

taxonomy (Simpson, 1945; Moore et al., 2001;

Masera et al., 2005), including their base, principles

and procedures and standards. The grouping and/or

arrangement of objects (or specimens) into groups is a

classification. Non-empirically generated

classifications are known as priori classifications.

Empirically generated classifications are called

subsequent classifications by analysing the data.

Objects, Attributes and Constraints of a System

Object: An object is an "entity" that provides or

receives information and possesses a unique name and a

collection of operations on it (Longley and Shain, 1990).

Attribute of Object: An object attribute is an object's

data component and a derived attribute from another

attribute is a later attribute's data component.

Property of Attribute: The attribute property is a

property of the attribute, which can be obtained from the

attribute by applying a function to the attribute.

Attribute refinement: An attribute refinment is a final

refining of attributes wherein larger attributes that

contributes to the identification of attributes with

assumptions. The refinement attribute can-not contain an

attribute element. The refinement attribute can't contain

an attribute property.

Attribute Constraint: The Constraint attribute defines

the ownership or collection of assumptions regarding this

particular attribute.

Table 1 defines attack pattern properties.

51

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1049

Table 1: Attack pattern properties

Pattern name and classification A unique, descriptive identifier for the pattern

Attack prerequisites What conditions must exist or what functionality and what characteristics must the target

Software has, or what behaviour must it exhibit, for this attack to succeed?

Description A summary of the assault including the course of action

Related vulnerabilities or weaknesses What specific vulnerabilities or weaknesses.

Method of attack Which sort of attack vector utilized (e.g., malicious data entry, maliciously crafted file,

Protocol corruption)?

Taxonomic Characters, Object Attributes or Features

The basis for determining a positive classification is

the taxonomic character (Simpson, 1961; Glass and

Vessey, 1995). These are the characteristics or attributes

of the objects. These characters are sometimes referred to

as characteristics, attributes or features (Simpson, 1961).

Asserts the readiness and objectivity of these properties

from the relevant objects.

Concept of Attack Pattern

An assault pattern is the abstraction mechanism to

describe how an assault is carried out. It also describes the

context in accordance with the pattern model where

appropriate and then proposes, proposed ways to mitigate

the attack rather than conventional patterns. In other words,

a pattern of attack is an inference. In a pattern of attack, the

following information is typically given.
With regard to the above-mentioned theory and

concepts, discussion and references are based on
principles, procedures and rules concerning the
taxonomic classification of system objects, attributes,
properties and characteristics. We want to first describe
clearly the vulnerability of web software applications
before moving towards a taxonomic contribution focused
on classification and characteriszation of two separate
vulnerability categories (Technical vs Logical).

Web Software Application Vulnerability

"The weakness of the Web application software
includes misalignment between the application logic and
environmental assumptions taken up in
development/execution (code written) and the environment
within which it is run," we define vulnerabilities in Web
Application software (Nabi, 2011).

Taxonomy of Computer Program Security Flaws

A flaw can be defined as malicious or not.

Malicious Flaws

Implemented to cause a breach of the protection

deliberately, such as viruses, worms, Trojan-based horses,

time bombs and coded trap doors (Landwher et al., 1993).

Non-malicious Flaws: Incorporated due to missing

specifications or design logic mistake.

During the software life cycle, programmes are graded

by the time they are incorporated into the programme.

Defaults during development, repair or service are part of

the implementation time.

Flaws are concerns that arise in software design. A

vulnerability may be a flaw in the software runtime

environment. In general, mitigating a defect requires

much more work than just a few lines of code. The

concern is not just about implementation; the idea behind

it is flawed and that is why it is not implemented For

example, a design flaw that does not mitigate a simple

action such as changes in array boundary (Nabi, 2005) is

a sensitive business logic for an untrusted customer

application (Nabi, 2005; 2011).

A Taxonomy of Security Faults

Many classification schemes for security faults have

been suggested that categorise faults by different criteria

as shown in Fig. 2 (Krsul, 1998; Aslam, 1995):

 Coding faults are composed of faults in the software

development process that are introduced during

software development. These faults are the cause of

errors in programming logic and missing or incorrect

requirements

 Operational faults Operational faults are called

incorrect software deployment. In most situations,

failures can be categorized as operational faults

(Aslam, 1995)

 Environment faults occur when a programmer does

not completely understand the limitations of the

usable right modules or the interactions between

them (Krsul, 1998)

A Taxonomy of Security Error, Faults and Failures

Error: An error is a developer mistake. It could be a

typographical error, misinterpreting a specification, misu

nderstanding, etc. (ANSI/IEEE, 1990).

“An error can be the cause of one or more faults”

Fault: Defects can be found in the software code. In

particular, the discrepancy between incorrect programming

and the correct version (ANSI/IEEE, 1990).

Failures: Faulty code execution can lead to null or

more failures when the failure is the [non-empty]

difference between the incorrect and correct programme

results (ANSI/IEEE, 1990).

52

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1050

Fig. 2: Taxonomy of Software Vulnerabilities causes

Previous Research Work and Classifications

A detailed understanding of vulnerabilities can help

to detect possible attacks on a software programme

before they are published to customers. A taxonomy of

recurring vulnerabilities can help navigate the details

required to increase safety awareness. Between 1974 and

2018, we analysed 21 taxonomies and assessed various

levels of vulnerability, classified property taxonomies of

e-commerce risks, web application vulnerabilities,

network vulnerability taxonomy and software

vulnerability taxonomy before restricting the key scope

of the analysis to logical attack problems. This is due to

a flaw between design and architecture when designing

an application with web software.

Taxonomic Classification and Review based

Comparison

McPhee (1974) proposed the classification of

vulnerability that falls under the category of Design flaw

vulnerability, the object of the vulnerability is targeting

operating system flaws.

Abbott et al. (1976) focus on Layered operation and

features that also consider the reason is based on operating

system flaws. So this taxonomy is operating system-oriented.

Bisbey and Hollingsworth (1978) Taxonomy is also

single dimension targeting operating system based

abstract pattern from flaw and automated search flaw.

This taxonomy is also operating system-oriented.

Aslam (1995) explained the UNIX security flaw that

targets the database vulnerability organization. Overall it

is operating system-oriented vulnerability.

Landwher et al. (1993) explain the taxonomy of

Operating System Flaws categorized vulnerability based

on Genesis, Time of introduction and location.

Bishop (1995) explained the UNIX System and
Network Vulnerabilities that focus on Effect, Minimum
number of components, Source of ID.

Gray (2003) explained the layer-based vulnerability in

network operational system.
Jiwnani and Zelkowitz (2004) explained the software

flaws in the software development process. This
taxonomy is three dimensional.

Pothamsetty and Akyol (2004) explained the Layered
based vulnerability targeting the network operational
protocol vulnerability.

Tsipenyuk (2005) multi-dimensional coding error-
based vulnerability that causes software errors.

Weber et al. (2005) focused on also a layer-based
software flaw that generates coding analysis and tool-
based detection.

Kjaerland (2006) four-dimensional taxonomy
explaining the Method of operation and impact of
intrusion and its detection.

Bazaz and Arthur (2007) explained the Hierarchical
vulnerability taxonomy targeting computer sources and its
relation to vulnerability.

Igure and Williams (2008) explained the vulnerability
class multi-dimensional attack on computer system
resources and process of vulnerability.

Simmons et al. (2009) explains five-dimensional
network taxonomy focusses on the attack vector,
operational process and defense.

Cebula and Young (2010) Hierarchical taxonomy
explaining the cyber-attacks and its process to generate
vulnerability that cause attacks in the system.

Scott and Angelos (2013) this Hierarchical Network

Taxonomy explains the Explore the relationship

between events.

Joshi and Singh (2014) five-dimensional taxonomy

focusing on attack entity, defence method and target,

impact, which explains the nature of the attack.

53

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1051

Joshi et al. (2015) review the existing taxonomies
related to computer attacks and vulnerability in the
system. This mostly, targets the network-based
vulnerability detection method overview.

Li et al. (2017) represented the software-based
vulnerabilities and propose the model to mitigate the
software vulnerability issues.

Chen et al. (2018) explained the Taxonomy of

Internet-of-Things Security and Vulnerabilities that

address that internet of things security wholes and related

vulnerabilities in the system and applications.

Overall Review and Comparison

There is a number of vulnerabilities and attacks noted

previous taxonomies which most do not concentrate on

logical software vulnerabilities. This difference clearly

identifies the needs for a systematic model and

classification of these groups into class vulnerability

against technological vulnerability. Therefore, through

the vulnerability life cycle in background software

process model, we introduced a new taxonomy and its

implementation life cycle. This model demonstrates

clearly the birth and life cycle of vulnerability.

Classification of Security Threats in e-Commerce

Generally, structural analysis allows a phenomenon to

be classified. In particular, a formal e-commerce threat

classification would allow managers to develop less

fragile system (Álvarez and Petrović, 2003). The

following classification properties are recommended for

reporting accidents to incident response teams.

 The categories should be mutually exclusive

(maximum one for each category) and collectively

complete (each specimen should be at least one

category). The various categories should be mutually

exclusive (one category should be the most suitable

for all specimens) and uniformly exhaustive (all

specimens should fit in at least one category). In

addition, the types should be mutually exclusive

 In each category should be included specific and clear

criteria for the specimens to be included in the category

 Not only security experts but also less qualified and

seasoned users and administrators can benefit from

intuitive and useful taxonomy

 The terminology of taxonomy should comply with

existing safety terminology (which can not always be

defined easily)

Classification of Web Taxonomy

Chirs and Frank (2005): Addressed a methodology for

vulnerability taxonomization and an example of web

services, WS architectural model of four components and

their connections. It addresses two subclasses. 'Input

Format and Input Origin' then contains attack flows based

on a category of border state error, which is exceeding an

unforeseenly long input that executes arbitrary code from

an attacker (programme written in C or C++). (Format and

Input Origin). The authorship is the proposed Result

Matrix, which is the same that (Aslam, 1995; Krsul, 1998)

classifications and almost a copy thereof.

Álvarez and Petrović (2003): Entered the web attack

taxonomy. Specific web categories are entry point, aim,

HTTP verbs and HTTP headers, which are not covered by

general taxonomies and are considered important for the

precise classification of Web attacks. However, other

types, such as vulnerability to site-specified values (e.g.,

code injection, HTML handling, etc.), will usually face

taxonomies, canonicalization, overload and misspellings.

Alvares differentiated & ordered the taxonomy from the

point of view of the attacker. The author clarified that

because of two vulnerability errors, an attacker might get

access to a point that should be a web server or web

application entry point looking for an attack.

Fig. 3: Web attacks taxonomy (Álvarez and Petrović, 2003)

54

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1052

It reflects the widespread life cycle of a hacker attack

based on the HTTP as shown on the Fig. 3. It is also

incomplete taxonomy and cannot be called a classification

scheme. Since attack patterns cannot be categorised, (Krsul,

1998; Aslam, 1996), classified the classification of

vulnerabilities and their characteriszation by their attributes.

Proposed Classification and Types of Logic

Attacks

There are different types of logical attacks every time

and a particular application function/method must be used

for taxonomy. The logical attacks are designed to interrupt

the application's logical flow. The logic of

implementation is the logical flow that a certain procedure

is supposed to be carried out. The software logic contains

examples of password recovery, account registration,

auction requests and transactions for e-commerce. A

website may provide a consumer with a multi-stage

process to carry out a certain action properly. An attacker

can bypass or use these features to cause website or users

damage. As previously stated, the study focuses on the

problem of "application logic-based vulnerabilities" as

design and architecture differ during development of

web applications. In the application logic, we find

seven faults/flaws as illustrated in Fig. 4 and then a

case that endorse Taxonomy as a source of reference

faults for design faults.

In each type of attack, the attack pattern and target

agent define the proposed taxonomy contribution. As

above, graphical attack pattern methods and vulnerability

classes based on application logic are logical presentation

as defined in Fig 5. This is further used to categorise each

vulnerability because of an attack process, characterised

in-group of attacking parameters that determine the

essence of the vulnerability.

Case as a Reference: Mars Polar Landing Mission

(NASA) Dec 3, 1999

The case for component-based systems and their

implementations is discussed here as a reference. The case

describes one of the classifications identified above of

system composition failures or defects while NASA,

USA, takes the component-based approach for

mission-critical system development.

Reason of Project Failure

Touchdown Monitor (TDM) component failed to co

mply with the requirements contrasted with its functional

 specification based on the specification integration via c

ontract interface, which led to an MPL device design def

ault and task failure.

Requirement Modeled of TDM

TDM component is an MPL system software which

monitors three landing legs during two downward stages.

Logical Component Information Processing

The Multi-Task Monitoring Calls TDM module

receives information from the second module on the leg

sensors at 100 times per second. TDM software tracks the

three touchdown legs during the first process, which

begins at 5 KM above Mars’ Surface.

Fig. 4: Application Logic Vulnerbility Graph

55

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1053

Fig. 5: Characterization of vulnerability

Application Logic of Component

Start reading at First Stage at about 5 km above the

surface of Mars, TDM tracks the touchdown legs,

one sensor per leg to assess touchdown.

Processing Logic Design

Developer assumed that a known possibility sensor

could indicate wrong touchdown signals if-the legs locked

in the deployed position. TDM software had to handle this

56

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1054

possible event with a-marking leg that generates a

spurious signal with an inappropriate sensor on 2

consecutive sensor readings.

Second Stage

TDM was to track the remainder of the good sensor at

around 40 m above the surface. When a sensor had two

consecutive Touchdown reading, the TDM programme

was instructed to shut down the downwind engine.

What Happened?

One or more of the sensors had 2 consecutive readings

in TDM Component Memory before 40 m, leg-sensor

information was processed. When MPL crossed the 40 m

level, during the first step of descent, TDM changed states

and read the storage associated with the leg sensor.

Shutdown Engine effect.

Scientific Justification

A developer can design and enforce the requirement in

various ways, but the nature of a design failure is that

components cause (pre-conditioning, post-condition and

invariant) infringements in performing the condition of

bad data held by software variables (Chen et al., 2018).

Therefore, it has been shown that the problem is not in

implementation logic but in design through the

application logic technique related to the logical

component and its requirement specification rather than a

more functional interface specification integration, which

resulted in a design defect in the MPL framework and

task. This defect's classification is therefore defined as a

design defect, which is a logical defect identified by our

vulnerability classification through SVAM (Fig. 1).

Logical vs Technical Vulnerability Classification

In view of our study, we would like to suggest a

classification and characteriszation of the two categories

of vulnerability problems/issues mentioned above

(Technical Vs Logical Vulnerabilities). These are

categorised as stated above in the classification of each

weakness on the basis of their attack process (attack

pattern technique). Therefore, by retaining the

classification of two separate vulnerability types, we have

drawn up a classification tree where all sub-class attacks

under each vulnerability class are included. A new

taxonomy is shown here with a detailed classification and

distinguished by its distinctive signature in the application

layer of e-commerce systems. As it is stated in Fig. 6.

Fig. 6: Logical vulnerabilities Vs technical vulnerabilities

57

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1055

Fig. 7: Vulnerability mitigating in context software design assurance phase process

Mitigation Process in Context SDLC

Attack patterns identify typical methods of software

operation. They are derived from a model proposed by the

design pattern framework (Li et al., 2017) that clearly

shows the stages of two distinct life cycles of vulnerability,

as shown in Fig. 7. The concept derived from (Joshi et al.,

2015) that one describes design and architecture, another one

shows implementation level, each stage shows two separate

causes of vulnerability, such as the design phase refers to a

design flaw and architectural flaw and flaws, bugs & errors

are seen in the implementation phase. By mismatching a

collection of components in a system design that allows the

sequence of events occurring in the attack pattern, allows the

vulnerability detecting approach is achieved. The proposed

model also presents extensive information on all protected

system development processes at the design and

implementation levels and describes both the two distinct

types of vulnerabilities. This helps to understand two distinct

life cycles of vulnerability and therefore points out the

closeness as stated in the Fig. 7.

Conclusion

For software developers a taxonomy is the footprint

for safe system design (Johnson et al., 1995). The

approach taken in this article focuses in the

characteriszation and classification of vulnerabilities of

58

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1056

component-based web-e-commerce applications and of

logical vulnerabilities. As a result, safety awareness is

increased at the outset of the development process by

incorporating the proposed approach and procedure into

the design phase. Risk management is required to begin

early on so that the protection team can evaluate how the

application logic has been strengthened. In the component

development software model, we also categorised the two

separate vulnerabilities and showed the birth of attack

designs because of vulnerability at the various phases of

the development cycle, which are helpful for developers

in the adoption of protection through design technologies

during software design.

Acknowledgment

This work is based on a Research in Australia cyber

Banking e-commerce security Busniess logic issues.

Author’s Contributions

All authors equally contributed in this work.

Declaration of Interest

 The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this study

 The authors declare the following financial

interests/personal relationships, which may be

considered as potential competing interests

Ethics Approval

There is no human and animal involved in this research

therefore no need of ethical approval for this research

References

Abbott, R. P., Chin, J. S., Donnelley, J. E., Konigsford, W.

L., Tokubo, S., & Webb, D. A. (1976). Security

analysis and enhancements of computer operating

systems. National Bureau of Standards Washingtondc

inst for Computer Sciences and Technology.
https://apps.dtic.mil/sti/citations/ADA436876

Álvarez, G., & Petrović, S. (2003, July). A taxonomy of web

attacks. In International Conference on Web

Engineering (pp. 295-298). Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-45068-8_56

ANSI/IEEE. (1990). ANSI/IEEE Standard Glossary of

Software Engineering Terminology. IEEE Press.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumbe

r=159342

Aslam, T. (1995). A taxonomy of security faults in the Unix

operating system. Master's thesis, Purdue University.

http://cwe.mitre.org/documents/sources/ATaxonomy

ofSecurityFaultsintheUNIXOperatingSystem[Aslam

95].pdf

Bazaz, A., & Arthur, J. D. (2007, January). Towards a

taxonomy of vulnerabilities. In 2007 40th Annual

Hawaii International Conference on System Sciences

(HICSS'07) (pp. 163a-163a). IEEE.

doi.org/10.1109/HICSS.2007.566

Bisbey, R., & Hollingsworth, D. (1978). Protection

analysis project final report. ISI/RR-78-13, DTIC AD

A, 56816.

http://nob.cs.ucdavis.edu/bishop/papers/1999-

raid/1999-vulclass/1999-vulclass.html

Bishop, M. (1995). A taxonomy of UNIX system and

network vulnerabilities. Technical Report CSE-95-

10, Purdue University.

http://nob.cs.ucdavis.edu/bishop/notes/

Cebula, J. L., & Young, L. R. (2010). A taxonomy of

operational cyber security risks. Carnegie-Mellon

Univ Pittsburgh Pa Software Engineering Inst.

http://www.sei.cmu.edu/library/abstracts/reports/10t

n028.cfm

Chen, K., Zhang, S., Li, Z., Zhang, Y., Deng, Q., Ray, S.,

& Jin, Y. (2018). Internet-of-Things security and

vulnerabilities: Taxonomy, challenges and practice.

Journal of Hardware and Systems Security, 2(2),

97-110. doi.org/10.1007/s41635-017-0029-7

Chirs, V. B., & Frank, R. J. (2005). A taxonomy

methodology applied to web services. Research

Report, IBM Zurich Research Laboratory.

https://dominoweb.draco.res.ibm.com/f3f9573a5c7b

2db4852570750034edf2.html

Firesmith, D. G. (2005, August). A taxonomy of security-

related requirements. In International Workshop on

High Assurance Systems (RHAS'05) (pp. 29-30).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.66.6934&rep=rep1&type=pdf

Glass, R. L., & Vessey, I. (1995). Contemporary

application-domain taxonomies. IEEE Software,

12(4), 63-76. https://doi.org/10.1109/52.391837

Gray, A. (2003). An historical perspective of software

vulnerability management. Information Security

Technical Report, 8(4), 34-44.

doi.org/10.1016/S1363-4127(03)00005-0

Igure, V. M., & Williams, R. D. (2008). Taxonomies of

attacks and vulnerabilities in computer systems. IEEE

Communications Surveys & Tutorials, 10(1), 6-19.

doi.org/10.1109/COMST.2008.4483667

Jiwnani, K., & Zelkowitz, M. (2004). Susceptibility

matrix: A new aid to software auditing. IEEE

Security & Privacy, 2(2), 16-21.

59

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=159342
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=159342
http://nob.cs.ucdavis.edu/bishop/papers/1999-raid/1999-vulclass/1999-vulclass.html
http://nob.cs.ucdavis.edu/bishop/papers/1999-raid/1999-vulclass/1999-vulclass.html
http://nob.cs.ucdavis.edu/bishop/notes/
http://www.sei.cmu.edu/library/abstracts/reports/10tn028.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tn028.cfm
https://dominoweb.draco.res.ibm.com/f3f9573a5c7b2db4852570750034edf2.html
https://dominoweb.draco.res.ibm.com/f3f9573a5c7b2db4852570750034edf2.html

Faisal Nabi et al. / Journal of Computer Science 2021, 17 (11): 1046.1058

DOI: 10.3844/jcssp.2021.1046.1058

1057

doi.org/10.1109/MSECP.2004.1281240

Johnson, R., Gamma, E., Vlissides, J., & Helm, R.

(1995). Design pattern: Reusable object-oriented

software. Addition Wesley.

Joshi, C., & Singh, U. K. (2014). Admit-A five dimensional

approach towards standardization of network and

computer attack taxonomies. International Journal of

Computer Applications, 100(5), 30-36.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=1

0.1.1.678.3355&rep=rep1&type=pdf

Joshi, C., Singh, U. K., & Tarey, K. (2015). A review on

taxonomies of attacks and vulnerability in computer and

network system. International Journal, 5(1), 742-747.

Kjaerland, M. (2006). A taxonomy and comparison of

computer security incidents from the commercial and

government sectors. Computers & Security, 25(7),

522-538. doi.org/10.1016/j.cose.2006.08.004

Krsul, I. V. (1998). Software vulnerability analysis. West

Lafayette, IN: Purdue University.

 http://coast.cs.purdue.edu/pub/papers/ivan-

krsul/krsul-phd-thesis.pdf

Landwher, C., Bull, A. R., McDermott, P. J., & Choi, S. W.

(1993). A taxonomy of computer program security flaw.

Technical report, Naval Research Laboratory.

https://cwe.mitre.org/documents/sources/ATaxonom

yofComputerProgramSecurityFlawswithExamples%

5BLandwehr93%5D.pdf

Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M.,

& Xie, W. (2017, September). A new method to

construct the software vulnerability model. In 2017

2nd IEEE International Conference on

Computational Intelligence and Applications

(ICCIA) (pp. 225-229). IEEE.

doi.org/10.1109/CIAPP.2017.8167212

Longley, D., & Shain, M. (1990). The Data and Computer

Security Dictionary of Standards. Concepts and Terms.

Masera, M., Fovino, I. N., & Sgnaolin, R. (2005). A

framework for the security assessment of remote

control applications of critical infrastructures. In

Proceedings of the Twenty-Ninth ESReDA Seminar.

McPhee, W. S. (1974). Operating system integrity in

OS/VS2. IBM System Journal, 13, 230-52.

Moore, A. P., Ellison, R. J., & Linger, R. C. (2001).

Attack modeling for information security and

survivability. Carnegie-Mellon Univ Pittsburgh Pa

Software Engineering Inst.

https://apps.dtic.mil/sti/citations/ADA388771

Nabi, F. (2005). Secure business application logic for e-

commerce systems. Computers & Security, 24(3),

208-217. doi.org/10.1016/j.cose.2004.08.008

Nabi, F. (2011). Designing secure frame work method for

e-commerce systems. Journal of Network Security,

12, 29-41.

Nabi, F., & Nabi, M. M. (2017). A process of security

assurance properties unification for application logic.

International Journal of Electronics and Information

Engineering, 6(1), 40-48.

http://ijeie.jalaxy.com.tw/contents/ijeie-v6-n1/ijeie-

v6-n1.pdf#page=44

Pothamsetty, V., & Akyol, B. A. (2004, November). A

vulnerability taxonomy for network protocols:

Corresponding engineering best practice

countermeasures. In International Conference on

Communications, Internet and Information

Technology, (pp. 168-175), St. Thomas, US Virgin

Islands.

https://www.researchgate.net/publication/22142543

8_A_vulnerability_taxonomy_for_network_protocol

s_Corresponding_engineering_best_practice_counte

rmeasures

Scott, D., & Angelos, S. (2013). Towards a Cyber Conflict

Taxonomy. In: 5th International Conference on

Cyber Conflict, (pp. 45-56).

Simmons, C., Ellis, C., Shiva, S., Dasgupta, D., & Wu, Q.

(2009). AVOIDIT: A Cyber Attack Taxonomy.

University of Memphis, Technical Report CS-09-003.

Simpson, G. G. (1945). The principles of classification

and a classification of mammals. Bulletin of the

American Museum of Natural History, 85. xvi+350.

http://hdl.handle.net/2246/1104

Simpson, G. G. (1961). Principles of animal taxonomy.

Columbia University Press, ISBN: 9780231888592.

Tsipenyuk, K., Chess, B., & McGraw, G. (2005). Seven

pernicious kingdoms: A taxonomy of software

security errors. IEEE Security & Privacy, 3(6), 81-84.

doi.org/10.1109/MSP.2005.159

Weber, S., Karger, P. A., & Paradkar, A. (2005). A

software flaw taxonomy: Aiming tools at security.

ACM SIGSOFT Software Engineering Notes,

30(4), 1-7.

https://dl.acm.org/doi/abs/10.1145/1082983.1083209

60

https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Erich+Gamma%22
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22John+Vlissides%22
https://www.google.com.au/search?tbo=p&tbm=bks&q=inauthor:%22Richard+Helm%22
https://cwe.mitre.org/documents/sources/ATaxonomyofComputerProgramSecurityFlawswithExamples%5BLandwehr93%5D.pdf
https://cwe.mitre.org/documents/sources/ATaxonomyofComputerProgramSecurityFlawswithExamples%5BLandwehr93%5D.pdf
https://cwe.mitre.org/documents/sources/ATaxonomyofComputerProgramSecurityFlawswithExamples%5BLandwehr93%5D.pdf
http://hdl.handle.net/2246/1104

61

CHAPTER 5: A NOVEL APPROACH FOR COMPONENT-BASED

APPLICATION LOGIC EVENT ATTACK MODELING

Introduction and Findings: Local Relationship between Chapters 4 and 5

Introductory Note: Chapters 4 A and B. These cover and provide the details about a

taxonomy which categorizes the group attacking method and classification of two groups of

vulnerabilities (Technical vs Logical) in e-commerce component-based applications. Within

this, Chapter 5 covers and addresses the event attack modeling scenario in the banking

application domain. The proposed approach is based on the event attack modeling technique by

using Uppaal Tool to detect the design flaw in the e-commerce component-based application

while reusing the design specification of the existing application logic of the system. The

research question addressed in this chapter is based on question 3.

Findings: This chapter provides findings on the relationships with the previous two chapters

as a sequence in terms of SCA and event attack modeling that is projected through case study-

based modeling and projected subversion attack in banking applications while reusing design

specification of reused components.

This paper is published in the International Journal of Network Security, First Online Feb. 28, 2020
(VDOI: 1816-3548-2020-00010).

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 437

A Novel Approach for Component based
Application Logic Event Attack Modeling

Faisal Nabi1, Jianming Yong1, and Xiaohui Tao2

(Corresponding author: Faisal Nabi)

School of Management and Enterprise, University of Southern Queensland1

West St, Darling Heights QLD 4350, Australia

School of Sciences, University of Southern Queensland, Australia2

(Email: u1104061@umail.usq.edu.au)

(Received Aug. 4, 2019; Revised and Accepted Dec. 6, 2019; First Online Feb. 28, 2020)

Abstract

An Event that targets a particular system is required to
identify through a novel approach of vulnerability mod-
eling. Current research does not support Event Attack
Modeling in component based application logic vulnera-
bilities. To find such vulnerabilities, it is important to
identify the component that triggered the Event to ex-
ploit the system. This research proposes the Event Based
Attack Modeling, especially in a scenario of component
based software subversion logic attack category Business
Application Logic. This will help to design and reuse of
component from existing application’s functional logic.

Keywords: Attack Modeling; CBS reuse; E-Commerce
Application; Event Attack Method; Security Modeling

1 Introduction

Event based inter-component applications interact
with each other through a passing message inter-
communication mechanism [12]. This controlled by a dis-
tinct component that is called the event dispatcher, which
performs its role as an intermediary between components
where condition s are set for the system or application. In
this process data communication is called an events that
is generated from input communi-cation between compo-
nents [11]. There are two more type of events, event pa-
rameters and event procedures that invoke the individual
procedure called the event handlers. In an application,
an event attack is occurred when any component of an
application is mismatched with its design specification at
integration stage. This may result of design fault, be-
cause of event-based interruption, which then can create
a loophole to exploit the particular system, generated by
an attack event during the inter-communication of event
parameters [2].

The security vulnerability can arise in the environment
that supports the event attack method. The source of the
vulnerability can be based on object (component) that is

able to generate the event send without any restriction
and can be easily crafted into an event sequence for other
objects (components) to circumvent the entire logic [9,27].

Event Interception is a phase of condition in which a
victim object is identified and intercept the events des-
tined to it. To be able to intercept the event sent to
an object permits the attacker to breach the confidential-
ity of one direction of object (component) communication
within the system [1,2,11,27]. In recent years there have
been many application attacks based on logical flaws, such
as logic flaw or design faults. There is a specific strategy
that is required to deal with logical vulnerabilities, such
logical attacks are classified as subversion attack. This
attack is occurred because of logical flaw in design com-
ponent based application and its interfaced based integra-
tion fault [4, 7, 25,27].

Figure 1: Component based application logic event attack
scenario

Therefore, we classify this problem as an Event Attack
View. In this case, specification refers to conventional
attack, threat, vulnerability. This classifies the attack
method, and attack model of identified vulnerability that
is known as a subversion attack. In the field of cyber se-

62

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 438

curity Attack Event information is considered as at-tack
related data that is derived from various sources. An at-
tack event is defined as targeting assets by using attack
method, which then exploits the functionality of applica-
tion business process or circumvents the flow logic. It is
very hard to detect the design flaw based vulnerabilities
through traditional scanning tools; this is why such vul-
nerabilities never classified to deal with in terms of the
application logic [5, 7].

In this research, we propose Event Based Attack Mod-
eling for design flaw based vulnerability, called Subversion
Attack (Component based application logic flaw) by us-
ing a Banking case study. The purpose of this re-search
is to simplify the process of vulnerability modeling to un-
derstand the life cycle of vulnerability. This could help
the developers while designing and reusing design speci-
fication of business components from existing application
components and their underlining application logic. An
Event Attack refers to a security problem that exploits the
event based inter component communication model [5].
The definition of Event Attack: A malicious component
that generates an event of circumvention in order to ex-
ploit the target’s application logic or functionality. This
intercepts communication by forcing the targeted compo-
nent to send back an inappropriate call or calling away
from application functional logic [5].

2 Problem Statement

The focus of this research is to analyze the Event at-tack
model and the Subversion attack that falls in the category
of business logic vulnerability. Specially considering the
security breach scenario real life case study related to Bar-
clay bank, as well as the re-usability design description of
component.

The research question, how can Event Attack Model-
ing simplify the application logic vulnerability, subversion
attack? This question is answered by the example of real
time case study research method, using Event At-tack
Modeling technique.

This real-life case study is a good example of a design
flaw in application logic due to the reuse of a component
caused component subversion. In this example, the devel-
oper reused the same component that was already incor-
porated in the registration functionality elsewhere within
the application, violating the assumptions of the compo-
nent developer. This mistake lead to the introduction of
an application-level flaw that allowed an attacker to ac-
cess another client’s bank accounts. The approach taken
to be analyzed, this problem is one that the Event At-
tack Modeling Technique will be able to helpful to detect
design flaws and/or fault free component-based applica-
tion logic in the middle tier of the n-tier architecture as
depicted in Figure 1.

2.1 Research Philosophy

The research philosophy is taken as applied science that
is basically an application of existing scientific knowledge
to practical applications such as technology, concerning
the theory of Event of inter component-communication
model. It uses theory, knowledge, method and technique
for a particular state of the art [28]. This discussion about
Component-based State of the Art in relation to the phi-
losophy of its application & design pattern. The research
philosophy also defines and investigates about state of the
art technology in Event interaction between the compo-
nent software de-signs, which is adopted from an applied
science philosophy to formulate a solution for business
logic vulnerability. In this process, it is very important to
understand that design question in the light of research
philosophy, can help to conduct the research in the field
of Attack Modeling & Security domain by ensuring that
research-er‘s work is going in a right direction and their
work is rigorous and insightful.

2.2 Research Gap

In the light of current research and recently studied lit-
erature review, [6, 14, 18, 21] and [17] in the domain of
cyber and network vulnerability modeling. The research
Gap clearly finds an interest to improve the business logic
security, specially “Design Flaw” in a service oriented e-
commerce applications, that is composed with integrated
components. The research gap identified the significance
of application logic vulnerability class and category “Sub-
version attack” cause of Design Flaw, because automated
vulnerability analysis and detection tools cannot detect it.
This is reason why such vulnerabilities are always over-
sighted by the application developers. The developers are
always keen to reuse existing component core logic from
current business logic of the system. This may often cause
of mistake while integrating component code solution and
designing new functionality.

2.3 Research Design and Method

This research is based on exploratory method where
no scientific foundation is available for supporting tech-
niques. The current research and literature review high-
lights the gap between the current approach and previ-
ously designed models or frameworks for logical vulnera-
bilities. Therefore, we have proposed (Event Attack Mod-
eling) such a technique that could deal with application
level logic vulnerabilities. This would help to detect early
design faults at the time of integration of components and
design fault free new applications. The re-search design
also follow previous modeling techniques to justify the
newly proposed technique. This simplifies the problem
detection process and method.

63

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 439

2.4 Current Approaches in Attack Mod-
eling

There have been several techniques used for vul-
nerability modeling. These techniques are Attack
Graph [26], Attack-Vector [22], Attack-Surface [22], Di-
amond model [13], OWASP’s threat model [13] and Kill
Chain [15]. Each technique has its own properties and
speciality to identify and model the attack process path
way through out the system and network. For example,
Attack Graph technique is used for network related vul-
nerability and system exploitation modeling based on sce-
nario of security issues. Through this technique one can
identify the process and pathway of security breach cause
within the network as shown in Figure 2.

Figure 2: Attack graph with attack path against system

3 Studying Case Profile & Event
Attack Modeling

This real life case is a good example of a design flaw in
application logic due to the reuse of a component caused
component subversion. In this example, the developer
reused the same component that was already incorpo-
rated in the registration functionality elsewhere within
the application, violating the assumptions of the compo-
nent developer. This mistake leads to the introduction
of an application-level flaw that allows an attacker to ac-
cess an other client’s bank accounts (component code Fig-
ure 3).

Figure 3: C customer component code

3.1 Component Application Logic Design
Fault

The registration functionality incorporated with the
CCustomer component that consist of “(use case logic
+ Process and Entity Type Logic)” within the applica-
tion, including core functionally. This process allows the
user to authenticate and grant access to the application
components such as “My Account component”, “View
Balance component”, “Funds transfers component”, “Se-
lect Bank Account component, Debit Credit component
and other information component. After having authen-
ticated user itself to the application through the regis-
tration process, the same Object instantiate and saves in
the session key information related to the identity. The
components of application within functionally referenced
information related to the ?CCustomer(Component)?

object in order to carry out its actions because the
?CCustomer(Component)? object is candidate compo-
nent (Process and Entity Type logic) within the major-
ity of application — for example, account details shown
on the main page of the user was generated based on
the customer unique number that contained within this
component. In the way composition or reuse of the com-
ponent, code was already used within the application. It
clearly shows that the developer assumption leads to a
flaw in the reuse of application logic design. This caused
the birth of a vulnerability to subversion attack on appli-
cation business logic. It was a serious mistake and subtle
to detect and exploit.

3.1.1 Class of Vulnerability

The “Subversion Attack” characterization of vulnerability
flaw falls under the application logic, and attack method
is to exploit the workflow of business logic, this process
subvert business process. At implementation level it is
classified as design logic flaw, which then finally charac-
terized as “Subversion of logic” attack.

Subversion of logic. Class: Programme logic flaw;

Server application: (Target agent);

Attack method: (Exploit the work flow);

Subvert application logic: (Attack cause);

Implementation level: (Application design logic flaw
classification);

Vulnerability: Subversion of logic.

Therefore, we modeled the Event oriented subversion
life cycle that displays the logic diversion of business logic
in a small chain of inter-component based communication
application model, caused by CBS Flaw.

The above mentioned Figure 4 displays an event at-
tack model scenario, class is subversion attack that falls
under business application logic vulnerability, based on
component based software that may be flawed in CBS.
This fault may have effects on service calls and flow of
the function that depends on event based call to other

64

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 440

Figure 4: Subversion attack event scenario

objects within the system. As it is shown in the above
Figure 4, C is condition that must correspond to com-
ponent D before processing to normal application logic
flow to proceed the E. Therefore, D component is a logic
fault that does not let the service flow according to nor-
mal flow of CBS call service,this is reason why such faults
cannot be detected by automated code & system vulner-
ability scanning tools,and such faults or flaws fall under
the classification of logical vulnerability.

3.2 Case Scenario Based Experimental
Study

We have further investigated the scenario of this attack
keeping in view the above mentioned example related to
a security breach of Bank case study. This is caused by a
logical design flaw within the system while reusing compo-
nent from existing application logic. This is called “Sub-
vert Event based Attack” on the banking application. The
developers always oversight such attacks on the applica-
tion’s business logic, even though it is a serious vulner-
ability. It is hard to detect through code scanning and
automated detection tools. Therefore, such a technique
is required that could simplify the projection of this vul-
nerability, through the approach of Event based Attack
modeling. The proposed technique seems to be a new
and effective technique for early detection of such attack
at design level of application.

The above-mentioned Figure 5 displays the complete
life cycle of the Event Attack Model. In the model C
indicates to a condition, If sign-in, Pass log in to My
Account Condition to allow access into the system, Else
Failed sign in. This is the general case of scenario sys-
tem logic for sign in. However, the major mistake is done
by the application developer of the banking system reused
same component that was already incorporated in the reg-
istration functionality elsewhere within the application.
This mistake causing subversion of logic and by pass the
condition that is set on My Account (component) this
violated the assumptions of the component developer and
caused the system under attack. This attack also subvert

Figure 5: Event attack subversion logic scenario

the other components of the application service flow as
shown in Figure 5. Any intrusion detection tool cannot
detect this sort of attack known as a class of application
logic subversion attack. Therefore security scanning au-
tomated software, fail to discovery and un-automate this
class of vulnerability. The reused component in the appli-
cation is spotted in Red Color, which reflects the service
flow diversion and allow an Event to trigger a logical at-
tack by passing session and controls security mechanism
of an application related to other service components as
displayed in Figure 5. Therefore, above model cycle of
an attack is modeled through a Event Attack Modeling
technique in scenario of Component-based Software sub-
version logic Fault.

3.3 Theoretical Analysis of Proposed Ap-
proach

In the light of cyber attack theory a successful attack re-
lies on information to be processed by attacker, in case of
when an attack is underway and it is measured by modify-
ing as a result related to attack. Therefore, in-formation
is a most important element of any cyber at-tack the-
ory [25].

As, it is confirmed that in the theory of cyber attack,
first attack is defined and then attacker knowledge related
to information parameters and configuration parameters
are derived in order to mitigate the system from potential
damage [10].

Therefore we formalized the theory of cyber attack into
proposed approach event attack modeling.In this pro-cess,
first identified the attacker and then measured the at-
tack information parameters, through that an event is oc-
curred as a fault logic, service component triggered to flow
diversion and allow an Event trigger by passing session
and controls security mechanism. This is demonstrated
through scenario based event attack modeling Figure 5
that helped to diagnose the vulnerability life-cycle. This

65

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 441

Figure 6: Cyber attack theory model

gives the knowledge related to information attack param-
eters, and component configuration parameters that de-
cides the attack vector related to vulnerability of applica-
tion logic class (subversion logic attack).

Therefore, it is concluded that above mentioned tech-
nique is very useful for attack modeling in the light of
cyber attack theory.

3.4 Systematical Comparison of the Pro-
posed Scheme

The current approaches of attack modeling are based
on attack graph and vector modeling techniques [22, 26],
these techniques models focus on the network or system
vulnerability based modeling that deals with the different
attacks targeting the network [10], but the lack of software
application scenario based modeling.In this, scenario an
approach is immanent for application based vulnerabil-
ity modeling technique. Therfore, the proposed scheme is
presented, event based attack modeling that targets the
service component triggered to flow diversion of appli-
cation logic in component-based system. The proposed
scheme is comparably sounder as compare to any other
modeling technique for software based application and its
core logic flow.

3.5 Discussion

We have seen that the proposed technique is very helpful
in detecting the event that triggered the subversion attack
within the application and its component at the integra-
tion level, which clearly depicts the vulnerability and its
effects on other components of the application and un-
derling business logic. We also have evaluated the other
techniques such as Attack Graph and Attack Vector. The
Attack Graph is use to identify the vulnerability in the
networks and system, and Attack Vector can provide the
path way projection through hacker exploitation attempt
which targets the network servers by payload or malicious
input. It is also modeled through Attack Vector Modeling
technique. It has been noticed that none of these tech-
niques meet the requirement of logical attack modeling
and simulation [18].

Where as proposed technique is useful to model the
case scenario of banking application through Event Based

Attack modeling. That is spotted in red color the com-
ponent with fault service flow, calling C condition My
Account component within the application that cause
exploitation.

4 Related Work

There are numbers of approaches target the security in
event based inter-component applications [3, 19, 23, 24].
For example, Simeon et al. [27] took into account the
security vulnerabilities in event-based applications and
systems, explained the conditions that can be made of
them,in result of inter-communication fault. In simple
term, current security solutions more rely on encryp-
tion, static code analysis, and runtime ACL techniques.
Whereas, on the other hand, there have been many tech-
niques adopted to attack modeling such as the Diamond
Model [13], Attack Tree [20], Attack Vector [22], Attack
Surface [16], Kill Chain [15] and Attack Graph [26]. How-
ever, all of these techniques fail to ad-dress the logical
vulnerabilities detection or modeling framework, because
these techniques are network vulnerability modeling and
address the network security issues related to the system.
Therefore, such a technique needs to introduce that can
deal with missing gap between application and system
level vulnerability modeling. This will fill the research
gap related to logical vulnerabilities in application logic
(Component-based Software) [8].

5 Conclusions

Attack modeling is a most useful technique in ana-lysing
the attacks and early mitigation of the problem. This is
why many techniques are introduced to deal with the at-
tack modeling in the system network domain. The logical
vulnerabilities are flaw in design or fault in logic. It is
hard to detect and modeled. Therefore such a technique
is required that could deal with the logical flaw based vul-
nerability. In this paper, we have introduced a novel ap-
proach of modeling called “Event Attack Modeling” that
used Uppaal Tool to model the vulnerability and its at-
tack flow through attack-triggered component within the
application in real time scenario. This will help the devel-
opers design their application free from logical flaws and
design faults, while reusing design specification of compo-
nent from existing application.

References

[1] A. A. Al-khatib, W. A. Hammood, “Mobile malware
and defending systems: Comparison study,” Inter-
national Journal of Electronics and Information En-
gineering, vol. 6, no. 2, pp. 116–123, 2017.

[2] H. Al-Mohannadi, Q. Mirza, A. Namanya, I. Awan,
A. Cullen, J. Disso, ”Cyber-attack modeling analy-
sis techniques: An overview,” The 4th International

66

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 442

Conference on Future Internet of Things and Cloud
Workshops, 2016. DOI: 10.1109/W-FiCloud.2016.29.

[3] L. Aniello, R. Baldoni, C. Ciccotelli, G. A. D. Luna,
F. Frontali, and L. Querzoni, ”The overlay scan at-
tack: Inferring topologies of distributed pub/sub
systems through broker saturation,” in Proceedings
of the 8th ACM International Conference on Dis-
tributed Event-Based Systems (DEBS’14), pp. 107—
117, 2014.

[4] A. Anurag, “Network neutrality: Developing busi-
ness model and evidence based net neutrality regu-
lation,” International Journal of Electronics and In-
formation Engineering, vol. 3, no. 1, pp. 1–9, 2015.

[5] Bank of England, “An introduction to
cyber threat modelling”, Industry re-
port, Bank of England Publication, 2016.
(https://www.cyentia.com/library-item/
an-introduction-to-cyber-threat-modelling/)

[6] M. Bentounsi, S. Benbernou, M. J. Atallah,
”Security-aware business process as a service by hid-
ing provenance,” Computer Standards & Interfaces,
vol. 44, pp. 220–233, 2016.

[7] BSIMM, ”Attack models with bsimm frameworks,”
2016. (https://www.bsimm.com/framework/
intelligence/attack-models/)

[8] E. M. Hutchins, M. J. Cloppert, and R. M. Amin,
”Intelligence-driven computer network defense in-
formed by analysis of adversary campaigns and in-
trusion kill chains,” Leading Issues in Information
Warfare & Security Research, vol. 1, pp. 80, 2011.

[9] S. Islam, H. Ali, A. Habib, N. Nobi, M. Alam, and D.
Hossain, “Threat minimization by design and deploy-
ment of secured networking model,” International
Journal of Electronics and Information Engineering,
vol. 8, no. 2, pp. 135–144, 2018.

[10] S. Jajodia and S. Noel, Advanced Cyber Attack
Modeling, Analysis, and Visualization, George Ma-
son University, Mar. 2010. (https://csis.gmu.edu/
noel/pubs/2009_AFRL.pdf)

[11] N. J. Kim, M. S. Gong, G. S. Lee, ”An attack-target-
method schema for cyber attack event database,”
IEEE International Conference on Electronic In-
formation and Communication Technology (ICE-
ICT’16), 2016. DOI: 10.1109/ICEICT.2016.7879705.

[12] Y. K. Lee, D. Nam, N. Medvidovic, Identifying Inter-
Component Communication Vulnerabilities in Event-
based Systems, Technical Report: USC-CSSE-17-
801, 2016.

[13] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog,
”Threat modeling for CSRF attacks,” in IEEE 16th
International Conference on Computational Science
and Engineering, vol. 3, pp. 486-–491, 2009.

[14] A. K. Luhach, S. K. Dwivedi, C. K. Jha, ”Designing
and implementing the logical security framework for
e-commerce based on service oriented architecture,”
International Journal on Soft Computing (IJSC’14),
vol. 5, no. 2, 2014.

[15] P. K. Manadhata, J. M. Wing, ”An attack surface
metric,” IEEE Transactions on Software Engineer-
ing, vol. 37, no. 3, pp. 371-–386, 2011.

[16] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Hu-
ber, and E. Weippl, ”Dark clouds on the horizon:
Using cloud storage as attack vector and online slack
space,” in USENIX Security Symposium, pp. 65-–76,
2011.

[17] F. Nabi, ”Designing a framework method for secure
business application logic integrity in e-commerce
systems,” International Journal of Network Security,
vol. 12, no. 1, pp. 29-–41, Jan. 2011

[18] F. Nabi and M. M. Nabi, ”A process of security as-
surance properties unification for application logic,”
International Journal of Electronics and Information
Engineering, vol. 6, no. 1, pp. 40–48, 2017.

[19] F. Petroni, L. Querzoni, R. Beraldi, and M. Paolucci,
”Exploiting user feedback for online filtering in event-
based systems,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing (SAC’16),
pp. 2021-–2026, 2016.

[20] C. Phillips and L. P. Swiler, ”A graph-based system
for network-vulnerability analysis,” in Proceedings of
the 1998 Workshop on New Security Paradigms, pp.
71-–79, 1998.

[21] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V.
Schiavoni, and J. B. Stefani, ”A componentbased
middleware platform for reconfigurable service-
oriented architectures,” Software Practice and Expe-
rience, vol. 42, no. 5, pp. 559—583, 2017.

[22] B. Schneier, ”Attack trees,” Dr. Dobb’s Journal, vol.
24, no. 12, pp. 21—29, 1999.

[23] B. Shand, P. Pietzuch, I. Papagiannis, K. Moody, M.
Migliavacca, D. Eyers, and J. Bacon, ”Security policy
and information sharing in distributed event-based
systems,” Reasoning in Event-Based Distributed Sys-
tems, pp. 151—172, 2011.

[24] M. Srivatsa, L. Liu, and A. Iyengar, ”Event-guard:
A system architecture for securing publish-subscribe
networks,” ACM Transactions on Computer Systems
(TOCS’11), vol. 29, no. 4, pp. 10:1—10:40, Dec.
2011.

[25] A. Tayal, N. Mishra and S. Sharma, “Active mon-
itoring & postmortem forensic analysis of network
threats: A survey,” International Journal of Elec-
tronics and Information Engineering, vol. 6, no. 1,
pp. 49–59, 2017.

[26] United States. Joint Chiefs of Staff, Joint Tactics,
Techniques, and Procedures for Joint Intelligence
Preparation of the Battlespace, 2000. (http://purl.
access.gpo.gov/GPO/LPS49610)

[27] S. (simos) Xenitellis, ”Security vulnerabilities in
event driven systems,” in Proceedings, Security in
the Information Society: Visions and Perspectives,
pp. 147–160, 2001.

[28] A. Yaghmaie, ”How to characterise pure and applied
science,” International Studies in the Philoso-Phy of
Science, vol. 31, no. 2, pp. 133–149, 2017.

67

https://www.cyentia.com/library-item/an-introduction-to-cyber-threat-modelling/
https://www.cyentia.com/library-item/an-introduction-to-cyber-threat-modelling/
https://www.bsimm.com/framework/intelligence/attack-models/
https://www.bsimm.com/framework/intelligence/attack-models/
https://csis.gmu.edu/noel/pubs/2009_AFRL.pdf
https://csis.gmu.edu/noel/pubs/2009_AFRL.pdf
http://purl.access.gpo.gov/GPO/LPS49610
http://purl.access.gpo.gov/GPO/LPS49610

International Journal of Network Security, Vol.22, No.3, PP.437-443, May 2020 (DOI: 10.6633/IJNS.202005 22(3).09) 443

Biography

Faisal Nabi is a PhD researcher at University of South-
ern Queensland.He has also received Honorary PhD in
Computer Science from Brock University St. Catharines,
Ontario, Canada. Faisal’s research interests are e-
commerce security and software security.

Jianming Yong is Professor of school of information sys-
tems.He has received his PhD from SwinburneUT.He is
also member of IEEE professional.His research areas are
Cloud Computing, Big Data Security and Privacy, Data
Integration, Workflow systems, Information system secu-
rity, Network management, Web service for SMEs, Digital
Identity Management.

Xiaohui Tao is Associate Professor in School of Sci-

ences, University of Southern Queensland, Australia. His
research interests include Natural Language Processing,
Text Mining, Knowledge Engineering, and Health In-
formatics. During his research career, Tao has gained
a wealth of knowledge and experience in dealing with
massive datasets and delivering solution to complex re-
search problems, and made many contributions to On-
tology Learning, Web Intelligence, Data Mining, and In-
formation Retrieval. His research results have been pub-
lished in 90+ refereed papers, many of them are on highly
ranked journals such as IEEE TKDE, KBS, PRL and con-
ferences such as ICDE, PAKDD and CIKM. He has been
a Program Chair of many International Conferences and
Workshops.

68

69

CHAPTER 6: SECURITY ASPECTS IN MODERN SERVICE COMPONENT-

ORIENTED APPLICATION LOGIC FOR SOCIAL E- COMMERCE SYSTEMS

Introductory Note and Findings: Relationship between Chapter 5 and Chapter 6

Introductory Note: Chapter 5. covers and addresses the Event attack modeling in the scenario

of the banking application domain. The proposed approach is based on the event-attack

modeling technique by using Uppaal Tool to detect the design flaw in the e-commerce

component-based application, while reusing the design specification of the existing

application logic of the system. Chapter 6 reveals a detailed case study based problem solution

in the context of social e-commerce that is used as a tool to close down the subject of targeted

audience in relation to banking case study and proposed methodology that is justified through

modeling technique related to application logic. The research sub-question addressed in this

Chapter is Question 4. This defines logical relationships while discussing the major problem

in social -e-banking, which is the main focus of this thesis.

Findings This Chapter provides a comprehensive solution as a finding that linked with

previous chapter findings that social e commerce based application logic security through

UML modeling and validated the research work.

This Paper was published in the Journal of Social Network Analysis and Mining (2021) 11:22

https://doi.org/10.1007/s13278-020-00717-9 Springer-Verlag GmbH, AT part of Springer Nature

2021.

https://doi.org/10.1007/s13278-020-00717-9

Vol.:(0123456789)1 3

Social Network Analysis and Mining (2021) 11:22
https://doi.org/10.1007/s13278-020-00717-9

ORIGINAL ARTICLE

Security aspects in modern service component‑oriented application
logic for social e‑commerce systems

Faisal Nabi1 · Xiaohui Tao1 · Jianming Yong1

Received: 20 October 2020 / Revised: 3 December 2020 / Accepted: 7 December 2020 / Published online: 16 February 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021

Abstract
Modern practices in social commerce are a subset of e-Commerce focusing on security framework protocols such as secure
transactional protocols, cryptographic schemes, and sanitization criteria. It is assumed that these practices will ensure stable
social media-based e-Commerce applications. The main concern in utilizing these practices focus on software component
composition, and integration flaws, which are often overlooked in their business application logic. These problems can ren-
der the effect of modern information security concepts null and void. The weakest link in social media-based e-Commerce
applications is the component’s logic subversion on its server side, which is caused by developers overlooking the design
process. This paper addresses a unique issue in aspects of information security in application logic vulnerability called
subversion attack, which can be classified as a design flaw. This kind of security flaw cannot be prevented by many tradi-
tional security mechanisms commonly used in modern e-Commerce systems. To address this issue, we propose the use of
security assurance methodologies in service component-oriented applications to be utilized through threat modeling and a
novel technique component fault detection model. This idea is further extended to the modeling component and its applica-
tions using a UML secure design approach. To validate the technique, the methods applied in this paper are verification and
validation for security by design testing to avoid the business logic design flaw problem in rapidly built component-based
social media e-Commerce applications.

Keywords Design flaws · Subversion attack · Social media-based e-commerce system · Service component architecture ·
Assurance & security · UML-based modeling · Business logic attacks

1 Introduction

Security and privacy issues in the field of social media-
based e-Commerce are important topics for debate among
the users concerned. E-Commerce is one part of the infor-
mation system architecture business model and its use has
become increasingly common. However, the users may find
themselves somewhat unwilling to suffer from risks to their
security and privacy. In the banking industry, social media-
based e-Commerce has prompted a new age of information

security. However, banking via e-Commerce is unfortu-
nately hindered by the risks associated with these issues.
There is also no trust in the customer, and no visitor shop
on the website, and these sites will not function if these
privacy and security risks are not removed. The social,
organisational, technological, and economic perspectives
of these two problems, namely security and privacy (Raed
and Nripendra 2020: Wang et al. 2020). Service -oriented
applications in the social e-banking domain are developed
with well-defined, readily available software components.
These are the building blocks used to develop the services
in service component architecture. It is important for the
design process of service-oriented applications in the social
e-banking domain to follow an order where once the design
process of an application is determined as an organiza-
tional task, and then it is considered as modular compo-
nents that need to be integrated. Each modular component
is a service explaining its interfaces through the integra-
tion of these services in a social e-banking system. Having

 * Faisal Nabi
faisal.nabi@usq.edu.au

Xiaohui Tao
Xiaohui.tao@usq.edu.au

Jianming Yong
jianming.yong@usq.edu.au

1 School of Business and School of Science, University
of Southern Queensland, Toowoomba, Australia

70

http://orcid.org/0000-0003-1804-2949
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-020-00717-9&domain=pdf

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 2 of 19

identified modular components, new business processes
depend on the integration of components (Nabi et al. 2020).
It can be clearly understood by researchers and develop-
ers that system composition and integration are the most
complicated processes in software design, while devising
complex operations such as the integration process into the
social e-banking system. The complications that occur in
the integration of these e-banking systems may cause a pro-
cess of continuous changes in the technical and business
attributes offered by the bank to its customers in order to
fulfil their needs (Nabi et al. 2019a, b). The social e-banking
systems are often designed and based on various compo-
nent vendors, consisting of different platforms and design/
architecture patterns. The continuous changes may cause
extra complexity during service-oriented component-based
banking application integration because design flaws in the
integration process may allow business logic attacks. This
is the main reason that subverting the operation of web 4.0
social commerce-based banking application processes can
cause serious financial damage (Nabi et al. 2020). The focus
of this research is to investigate the vulnerability of business
logic in service component-oriented applications using a
security breach scenario real-life case study related to social
commerce-based e-banking. This real-life case study is a
good example of a design flaw in application logic due to
the reuse of a component causing component subversion. In
this example, the developer reused the same component that
was already incorporated in the registration functionality
elsewhere within the application and violated the assump-
tions of the component developer. This mistake led to the
introduction of an application-level flaw that allowed an
attacker to access other clients’ bank accounts. Therefore, a
research question is raised here: How can the developer test
if a Web 4.0 social e-Commerce e-banking application ser-
vice contains logical flaws in component integration design
specification? At the same time, service component architec-
ture should be considered. Service component architecture
is a solution in modern social e-banking, especially when
it reuses components while designing new applications as
part of social media distributed systems, such as online web
4.0 social commerce-based e-banking application services.
However, security aspects are not generally considered at a
low level when interacting with these services, leading to
possible unauthorized access to the service. Another issue to
be considered is that sometimes, reuse of service logic may
cause failure. A good network defence perimeter in modern
systems, such as using firewalls, honey pot, intrusion detec-
tion and other network security components should ensure
that legitimate users can access the application while, at
the same time, preventing illegitimate users from gaining
the opportunity to attack the systems through the abuse of
vulnerable social media business processes (Ghassan et al.
2020). The system logic and business process are based on

two components: business logic and flow of information
(Nabi and Nabi 2017). A large majority of researchers have
focused on information flow as a way to build an approach to
business process security. However, issues related to e-busi-
ness protection in the approaches fail to address the logic of
a component’s business processing during the design stage,
especially when components are developed based on their
business logic (Agirre et al. 2018).

In this paper, we have discussed the security aspects of
challenges related to design flaws that can cause subver-
sion attacks on component-based application logic, in n-tier
applications. The paradigm of security by design technique
draws attention to the complexity of the security. Security
must not only be addressed retroactively by identifying
and fixing security loop-holes, but must also be consid-
ered at an early stage of social commerce e-banking system
development.

1.1 Problem statement

Social media is an increasing field of research activity in
organizations. Social commerce is a subset of e-Commerce.
Social media can be described as a phenomenon where;
“a collection of Internet-based applications, based upon
the ideological and technological fundamentals of Web
4.0, which allow user generated content to be created and
shared.” These applications can change how security in
social commerce works by communicating, working with,
interacting and exchanging information such as internet
social commerce and e-banking services (Alalwan et al.
2018). This paper will investigate and discuss the security
aspects of challenges related to design flaw-based subversion
attacks that cause reuse design specification while develop-
ing new services from existing service component integra-
tion SOI methods, causing business logic vulnerability in the
middle-tier of the social commerce e-banking architecture.
Therefore, there is clearly a need for a methodology to deal
with the logical flaws that normally do not show attack pat-
terns or signatures, which is the reason it is hard to discover
them through automated techniques. More recently, practices
of future generation e-Commerce system development for
social media, techniques to secure service-oriented appli-
cations, have mainly focused on technical vulnerabilities,
which can consist of security analysis and detection tools
for vulnerability identification. However, security analysis
encompasses a very limited approach for service compo-
nent-oriented application design and implementation (Nabi
et al. 2019a, b).

1.2 Objective and contribution

This paper provides three key contributions: The first
contribution is the solution to the problem of system

71

Social Network Analysis and Mining (2021) 11:22

1 3

Page 3 of 19 22

integration-based component reuse from existing logic. For
this we have used a model-based engineering approach. The
second contribution focuses on how problems in a quick
design approach based on the service component or Module
specification misanalysis from the logical function in future
generation social e-Commerce system can lead to a security
breach at the system design logic stage. This problem is
illustrated by the definition of a case study involving a social
commerce-based e-banking application based on a reused
component. A novel approach is developed for the secu-
rity assurance methodology for service component-oriented
applications. The main points of this novel approach are: (1)
The security risk analysis model; (2) Threat modeling; (3)
The novel component fault detection technique that detects
the faults in component-based design and application; (4) A
UML-based modeling component and its application using
a UML secure design approach. The third contribution is a
novel technique of validity system integration testing (veri-
fication and validation method for security by design testing)
to avoid the business logic problem customizing security
assurance requirements from modern approaches for com-
ponent-based applications, thus helping to detect design flaw
problems cause by subversion of attack.

2 Related work

According to Abdulrahman et al. (2017), in recent decades,
Internet technology has grown rapidly, having become an
important element in almost every social media-based busi-
ness. The social e-banking industry is one of the most impor-
tant developments. In the banking industry, social e-banking
is a new business model in which fixed costs of operation are
reduced through the provision of unbroken banking services
(Abdulrahman et al. 2017). The number of social e-banking
applications in companies used by internet users is expected
to rise dramatically (Laukkanen et al.2018). Banks compete
by social commerce-based e-banking to increase customer
loyalty, acquire greater market share, improve services and
offer value-added services, increase efficiency, and reduce
operating costs. At the same time, they also face security and
privacy issues customer relationship related matters.

According to Jiang et al. (2018) data security is a primary
concern for both consumers and companies with the signifi-
cant success of the social commerce internet trade. While the
generalization of data can provide substantial protection of
the privacy of even a person, over-generalized data can make
the data worth little to no value. In this research, researchers
have developed techniques of generalization to optimize data
usability and to minimize privacy disclosure (Jiang et al.
(2018); Wang et al. (2020). Developers suggest a privacy-
aware access management model for web services in social
media environments based upon the fact that the permissible

degree of generalization leads to much more fine-tuned lev-
els of access monitoring. It also discusses how a trustworthy
a decision to handle a legitimate access mechanism is made,
and how access management policies are continuing (Jiang
et al. (2018); Wang et al. (2020). Comprehensive experi-
ments with both real-world and synthetic datasets illustrate
the realistic and efficient privacy control model proposed.

According to Raed and Nripendra (2020), the aim of
this study is to build on the understanding and influence of
social exchange on the emerging social commerce. Previous
research on social media indicated that certain mechanisms
such as social commerce structures, social support, social
presence, confidence, flow interactions and group interac-
tion, should have a relationship with the online community.
However, only some of the above-mentioned structures have
already been used. This research has developed a conceptual
model that considers structures from a range of theories.
The results showed that building social commerce influ-
ences positive social support, confidence and social presence
among community members. They also found that security
and privacy are important concerns in a social commerce
e-banking service, which needs to develop through new soft-
ware trends (component-based software) (Raed and Nrip-
endra 2020).

According to Nabi et al. (2020), the words ‘service com-
ponent’ come from the service component architecture for
distributed system design based on events. While the pat-
tern for service components provides composite application
development and reusability support. However, event-based
communication in the interaction model of components was
explored most within the upper SCA layer when designing
logic for service-oriented application components. In this
area, a robust safety evaluation is needed that could be used.
This layer is called an application process logic layer that
produces the application rendering logic and authenticates
it from ACL (Nabi et al. 2020). Experiencing problems in
composite application and event-based attack in the model
architecture of the service component refers to event-based
attack in application logic. This goal is accomplished by
evaluating and reviewing security problems, modelling tech-
niques of the application functionality of service compo-
nents, and modeling applications that create, consume and
process events.

In agreement with the methods of Zhang et al. (2018), this
paper addresses a distributed approach that enables an effec-
tive and trustworthy composition of service with safe sensor
network data transmission. The computation trust and data
trust rules are suggested based on a model of a multi-level trust
by evaluating relationships of dependence. An independent
model-checker can then evaluate each target component opera-
tion. In addition, in a composite evaluation, an identity-based
aggregate signature is added to ensure safe data transmission
between different components. Results have shown that the

72

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 4 of 19

approach not only delivers efficient, reliable composition of
service with complex invocation structures, but also lowers
the cost of safe data transfer (Zhang et al. 2018). This can be
considered as social commerce secure application service sup-
port but also limited in its approach.

According to Nabi et al. (2021), recent developments in the
field of e-Commerce-based social media software technologies
have brought many benefits; at the same time, however, design
processes often lead to a variety of different issues, from the
design phase to the implementation phase. Software faults and
defects increase the problems with reliability and protection
and, for these reasons, a solution for these issues is required.
This paper addresses the issues of the lack of consistent clas-
sification of logical vulnerabilities in application logic relevant
to components-based Web applications. The primary way to
resolve these issues is to define the Group Attacking Method
by categorizing two distinct forms of web-based component
vulnerabilities. This research helps explain the creation of
applications for social commerce through integration based
on components and avoids design vulnerabilities (Nabi et al.
2021).

Seinturier et al. (2017) explain that “New Business Pro-
cess” is supported by reuse of services, whether it is a busi-
ness component service or an existing service of component
base solution, aligning IT with business functions. Reuse of
services increases the chances of active solutions by amalgam-
ating new business process from existing services (Seinturier
et al. 2017).

Current security practices are most likely to rely on tradi-
tional methods of security, which are based on a socket secure
layer or a transport security layer and IDS, so deployment of
these security methods targets network security problems and
related issues (Nabi and Nabi 2017). Therefore, such practices
are known as security functional techniques, but lack security
assurance methods. Faisal also highlighted that traditional
software engineering practices are not sufficiently up to date
to analyze their vulnerability, including penetration of white
Box and Black Box testing (Nabi and Nabi 2017). The authors
further explained that traditional Intrusion detection tools or
vulnerability analysis tools have often failed to detect design
flaws (referred to as business logic vulnerability) through tra-
ditional security methods in social media system.

Therefore, in the light of the above-mentioned literature
review and research, it is clear that there is a gap focus on
improving the business logic security (Design Flaw), com-
prising integrated components.

3 Case study‑based research method

A case study-based research plan is also called an explor-
atory research case for experimentation (Yaghmaie
2017). The exploratory research case study investigates a

well-defined phenomenon (business logic vulnerability)
classified by a scientific detailed research formulated event-
based attack modeling approach for test generation that can
be tested within the research environment using an explora-
tory case study method. This sort of case study is very often
applied as an exploratory research design in a completely
new field of scientific investigation (Yin, 2016). In the light
of the given explanation of exploratory case study method,
the research design will be further extended by exploring
a real-life case study. From that study, we take out the test
design for a service-oriented social commerce Web-based
banking system. The test design will follow further stages;
for example, the component integration strategies at run time
will be compared to its requirements and design specifica-
tions (as can be seen in Figs. 7 and 8), while modelling the
component and its application. A further step is to consid-
ering attack event scenarios, which is based on connections
between business components and their work flow, to ana-
lyze the security risk related to cases (as shown in Fig. 2).
Therefore, considering the practice of component secure
methods, multi-tier specification scenario modelling will
be practiced using UML sec 2.0. The technique is further
divided into 2 phases. The first phase represents a system
tier, while the second phase represents a component tier. The
first phase focuses on the design product, while the second
phase considers the design, test and distinctive symptom
specification for individual components that participate in
system development (as projected in Fig. 9). The next phase
is to consider the security assurance approach that helps to
detect integration-based logical flaws from the system that is
proved through the validation and verification (V&V) secu-
rity assurance process. This process is followed by the V &V
security design testing model that is theoretically justified by
the designed model for security by the design testing tech-
nique. This model will validate the proposed solution called
the Security by Design approach for component-oriented
service and its application.

3.1 The impact of flaws in application business logic

The complexity risks in social commerce web applications
are caused by the fact that developers may introduce flaws
that can easily be manipulated by intruders. The key problem
that is noticed most in web applications is the integration of
various diverse components from a different source, such as
custom-built-purpose applications and COTS components,
including third party Vander products (Agirre et al. (2016).
The major issue related to integration of these components is
that they are not easy to reuse, which may cause application-
level flaws. The presentation of this problem is more than
code bugs like Buffer Overflow and is linked with business
logic, for example, the right time for an authentication of
canceled policies to enforce the overall security policy of the

73

Social Network Analysis and Mining (2021) 11:22

1 3

Page 5 of 19 22

application (Jones and Ashenden 2005). Examples like flaws
that allow fraud to be committed for personal enrichment
through their exploitation are shown in examples from the
literature (Nabi and Nabi 2017). It is also noticed that most
of the academic focus tends to be low level coding problems,
even though these types of high-level software flaws account
for 50% of all security software flaws.

The social commerce web application vulnerability may
be described as the vulnerability of web application soft-
ware, which involves mismatch of application/design soft-
ware and environmental assumptions made while develop-
ing/implementing (code writing), running a system, and
running the environment’. For example, the designers of a
component may have built it with the assumption that all
accesses are authenticated but that they can be reused in a
context where pre-authentication takes place, and this rea-
soning is presumed to have taken place within a component.
This is a simple example, but our presented case of design
flaw issues of reusing components illustrates the condition
when the user of the component makes assumptions that
were not implemented by the developer (Xhafa et al. 2010).

3.2 Case study‑based research scope

This research has significant scope in the field of compo-
nent-based social commerce e-banking applications and
security architecture in modern system generation, espe-
cially in the middle tier where application logic security
is an important factor while using SCA design patterns.
The violation in the middle tier is of real concern, based
on the mismatch of component design specification with
respect to the existing logic of the banking application,
while re-using the component to build a new service,
causing the subversion attack. The attack indicates a seri-
ous violation of application integrity and security. Service
oriented component software uses two sorts of compo-
nents to develop Web-based social commerce e-banking
application logic. These two components are Custom-
Developed/COTS. It is possible that they will have flaws
in design or its software application. The CBS-based
solution has caused software risks that lead to logical
vulnerabilities such as the components’ logic subversion
attack, misuse of application logic and circumventing the
components’ business logic flow. All of these temper the
functional steps of the flow of application.

In light of the research problems in Sect. 4, the
research will focus on a security breach subversion of
attack scenario (case study). This relates to the web 4.0
social commerce e-banking systems that reuses design
specification while developing new services from exist-
ing service component integration SOI methods, causing
business logic vulnerabilities in the middle-tier of the
social commerce e-banking architecture.

4 A practical example: social
commerce‑based e‑banking case study

This real-life case of web 4.0 social commerce e-banking
is an excellent example of a design defect in software logic
due to the reuse of a component design specification that
causes subversion elements in the application logic. In this
case, the developer reused the same features of a compo-
nent code that had already been implemented elsewhere
in the application for the registration functionality and
violated the developer’s presumptions. This error led to
an application level defect that permitted an attacker to
access bank accounts of other customers.

4.1 A composite application functionality
and business process

The application encourages its current customers, as well
as those who have not already registered for online applica-
tions. For this purpose, new users are required to provide
basic personal information, such as their name, address and
date of birth but not any secret information like Passwords/
PINs, which would ensure a degree of assurance of their
identity. When this information is processed, the applica-
tion sends back a registration request to be processed. Upon
successful registration, an information pack is mailed to the
registered user’s home address. This pack provides informa-
tion about the online activation access via a telephone call
to the company’s call center as well as the use of a onetime
password to log into the system.

The designer of the application believed that this mecha-
nism would protect the system from unauthorized access to
the application. The process of security is implemented in
the three way of protection mechanism.

1. At the initial stage, some modest amount of personal
data is required in defense, to judge a malicious attacker
or troublesome user to attempt the beginning registration
process behalf of other users.

2. During this process, a key secret transmitted out of hand
the registered customer’s home address. The attacker
needs to have access to the victim’s personal mail.

3. In order to authenticate himself, the customer is required
to phone a call center in the normal way, based on per-
sonal information and selected digits from a PIN. The
design is supposed to be well defended but the logical
flaw is in the actual implementation of design mecha-
nism. The personal data to be stored is based on being
able to correlate this with a unique customer’s identity in
a company database, and the developer needs to develop
the registration mechanism. The developer was eager to

74

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 6 of 19

Fig. 1 Customer information handling & reused component social commerce in e-banking

reuse existing component code that was already used
within the application somewhere else.

class CCustomer

{

 String firstName;

 String lastName;

 CDoB dob;

 CAddress homeAddress;

 long custNumber;

… }

After this process was completed, as defined in Fig. 1,
this object was instantiated, inhabited with provided infor-
mation that is stored in the user’s session. In this process, the

application verifies the user’s details; if they match, it then
retrieves that user’s unique customer number, which was
used within the company’s system. This number is added in
the Object with some other personal information. This object
communicates with the back-end system for completion of
the registration request to be processed. The developer sup-
poses that using this code would be harmless and would not
cause any security problems. However, a serious mistake
caused a flaw in the actual design.

4.2 Exploitation

Figure 2 explains the registration functionality incorporated
with the Customer component that consists of “(use case
logic + Process and Entity Type Logic)” within the appli-
cation, including core functionally. This process allows
the user to authenticate and grant access to the application

75

Social Network Analysis and Mining (2021) 11:22

1 3

Page 7 of 19 22

components such as “Account details component”, “State-
ment component”, “Funds transfers component”, “Debit
component”, “Credit component” and “other informa-
tion component”. After having authenticated the user to
the application through the registration process, the same
Object is instantiated and saved in the session key informa-
tion related to the identity.

The components of the application within functionally
referenced information relate to the *CCustomer (Com-
ponent)* object in order to carry out its actions because
CCustomer (Component) object is a candidate component
(Process and Entity Type logic) within the majority of appli-
cations. For example, account details shown on the main
page of the user were generated based on the customer’s
unique number that was contained within this component.
In this way, the composition or reuse of the component code
was already used within the application. It clearly shows

that the developer’s assumption led to a flaw in the reuse of
application logic design. This caused the birth of vulnerabil-
ity to subversion attack on the application business logic. It
was a serious mistake but was difficult to detect and exploit.

To exploit this flaw in the logic, an attacker may need to
perform the following steps as defined in Fig. 3:

1. The first step is the “log in” process into the application
using the customer’s own valid account information.

2. The result of an authenticated session, and access to the
registration functionality is to try to input the some other
customer’ personal information. This will result in over-
writing the original “CCustomer” (Component) object
in the attacker session with a new object of the targeted
customer.

3. After this process, it is important to get back to applica-
tion functionality and try to target another customer’s

Fig. 2 Event—attack—modelling & system exploitation social e-banking

76

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 8 of 19

Fig. 3 Subversion attack mapped through social commerce banking service flow

account. It is hard to detect without clearly understand-
ing the application logic as a whole and the use of dif-
ferent kinds of components in the application logic layer.
The flawed assumption by the developer caused the sub-
version attack class vulnerability.

While the above-mentioned vulnerability seems to be
minor, it may cause dangerous results. In fact, intruders may
be relatively subtle. Access to the key application feature
was assured by multilayer access controls (channel level pro-
tection), and a complete authentication session was required
to pass such monitoring; fraud detection was a second secu-
rity defense.

4.3 Security breach case summary

In light of the above-mentioned the question, we first
addressed the problem and then, keeping the scenario of
web 4.0 social commerce e-banking Application Case
Study in view, proposed a security assurance methodology
to overcome the problem. The vulnerability identification
technique in the “Social commerce-based e-Banking Case”
is accomplished by matching a sequence of components in
the application development logic of the system and prob-
lem caused by overlooked integration of the business pro-
cess of components during the run time logic of the appli-
cation. Therefore, such a technique is necessary because

logical defects do not reveal attack patterns or signatures
and thus cannot be automatically discovered. In order to
solve this problem, a Threat Modelling approach is used,
to project the design flaw targeting subversion attack and
attacks on application logic. This approach is supported by
the practice modeling component and its application, using
UML for a secure design approach with a valid technique
for design flaw detection (V & V method for security by
design testing). Using this technique avoids the business
logic problem by customizing security assurance require-
ments from modern approaches for component-based
applications.

5 Proposed security assurance
methodology

A security assurance methodology is designed to over-
come the problem security aspects of challenges related
to design flaws (service component-oriented application
logic) in future generation social commerce-based Bank-
ing & e-Commerce applications. This methodology ana-
lyzes the security risks related to possible attacks on sys-
tem design and on the base of that, three stages have been
defined to deal with design-based flaw problems. The key
element of this methodology consists of the formulation of
well-established existing approaches that help to design a

77

Social Network Analysis and Mining (2021) 11:22

1 3

Page 9 of 19 22

new methodology: First (1) Threat Modelling; Second (2)
Taxonomy of software Vulnerability Model; and Third (3)
Component Fault Detection Models. This methodology pro-
vides further support to Modelling the Application and its
Components without Fault, which then leads to Designing
Security by Design Application Modeling. This methodol-
ogy is proved through the validation and verification secu-
rity assurance process followed by the V and V method for
security by the design testing approach, which is theoreti-
cally justified by the designed model. Please note that the
contingency & probability models are out of scope based on
Case Scenario, which is why they are not considered part of
the solution strategy, as shown in Fig. 4.

5.1 Security risk analysis

The key step in security risk assessment is to iden-
tify potential attacks on a systems design and its impact on per-
formance, such as the above listed instance of the Web 4.0
software application based on social e-banking-based
e-commerce components case, and the conceptual weak-
ness in the business-tier application layer. The reasoning

given here focuses on a certain class of attacks on par-
ticular applications, so it will be very specific. One of the
first steps in system design should be to consider potential
assaults on a particular system and their effects, such as
the above-noted case of the web software application based
on social media-based e-commerce components, and the
logical weakness found in the business application layer.
The vulnerability identification technique is achieved by
mismatching a sequence of components in the application
design logic and problem caused by ignoring the business
process integration of components. This is reflected at the
time of the business process logic of the application (which
can be mapped through scenario-based approach business
process flow as mentioned in Fig. 3). The simple end-to-
end system feature is often decomposed into sub-scenarios
that define the functionality of an important component
of a subsystem enabling an evaluation of the definition
described in the case study. A vulnerability attack pattern
can then take place in the “Event Trigger” sequence in the
attack pattern, revealing the occurrence, and which com-
ponent is used to exploit the vulnerability in the presented
case.

Fig. 4 Security risk analysis model

78

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 10 of 19

This assessment can be used to identify the neces-
sary defensive measures and later to evaluate the sys-
tem’s security.

5.2 Threat modelling of application logic
vulnerability

Modeling of threats is a technique that can recog-
nize risks, attacks, vulnerabilities and countermeas-
ures within the application scenario. In light of the above
case study, we have examined a class of vulnerabilities in
the application logic. These attacks, which we classified
in this research as falling into the category of Design &
Architecture Flaws, are based on the Logical, Design &
Architectural divisions of application logic. We propose
a Method of Threat Modelling approach to uncover the
pattern of attack in the application logic from the root
cause, integrating information from the case study of
security breach. The threat model of an Attack Event and

Attack Target method is defined as a flaw in logic and a
flaw in design. At this stage, a logical attack is defined by
some attacker having access to a targeted system under the
attack that enacts an illegitimate action by using an attack
method (Subvert logic/Circumvent logic). A specification
of an event attack method will circumvent the logical flow
of an application, which may cause two further steps: one
is the subversion attack; the second is circumventing the
actual application’s logic, resulting in a Business Logic
Attack.

A major attack technique (logical error or design flaw)
identifies the vulnerability and uses it to identify a threat to
the components and the entire system. It must also be noted
that software components and middleware from third par-
ties constitute one of the major changes in web application
systems as a security protocol, and integrity is threatened
due to the design flaws in development failures as mentioned
in Fig. 5.

Fig. 5 Threat modelling of subversion attack

79

Social Network Analysis and Mining (2021) 11:22

1 3

Page 11 of 19 22

Fig. 6 Taxonomic classification of software vulnerability

5.3 Taxonomic classification of software
vulnerabilities

In software, vulnerability defects can cause security breach
problems which in turn result in software loop-holes. These
are (DesignFlaw, Coding Fault, Configration Error).

In light of our research, we believe that a risk assess-
ment in component software web applications and sys-
tems is firmly linked with some concepts tradition-
ally derived from computer security, especially
the ’five pillars’: the concepts of risk, vulnerability, attack,
and assets which are attributes of interest that must
be defined (Nabi 2005).

According to Nabi (2011 and 2017) relates missing
question to (Design & Architecture) of component struc-
ture + integration & interaction unclear model, reuse of com-
ponent specification related to functional logic. Given below
classification explains about discovered software security
issues by other researchers contribution as mentioned in
Fig. 6.

The code issues that exist in the design of the software
are considered defects. A flaw in the underlying software
may or may not constitute a fault. Usually, the mitigation of

a fault means much more than simply changing several lines
of code (Zhang et al. 2018). The problem is not just within
implementation; the underlying model is faulty. Therefore,
the flaw would be included in every implementation fol-
lowing the model (Agirre et al. 2016). For example, in an
untrusted client application, executing critical business logic
is a design defect that cannot be mitigated by a single meas-
ure such as adjusting array limits.

5.4 Component fault detection model

The component fault detection is a state of the art paradigm
of security by design technique. However, fault detection is
a preliminary element of fault tolerance technology. There-
fore, fault detection and diagnosis-based fault tolerance tech-
nologies are hard to define separately. Many approaches have
been introduced, such as fault detection methods based on
the system’s internal data exchange and inter-component
communication, but no approach covers the system‘s bro-
ken component risk analysis, especially when the code is not
available. Therefore, under such circumstances, a technique
that can model the component and system design on multi-
tier specification through the UML modeling is required.

80

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 12 of 19

Fig. 7 Component fault detection model (CFDM)

We designed a model for a component fault detection
scheme that detects faults based on component design
specification, which utilizes test requirements and diag-
nostic specification of components, as mentioned in the
diagram. It divides the model into system tier and compo-
nent tier, where component 1 to component N is modeled
based on stated specifications, which then test and diagnose
the overall design specification of the whole model for fault
detection in system design or components as mentioned
in Fig. 7.

Novelty of CFDM as a practical example
In order to test the component fault detection model, it is

important to address the practical testing example. For this
purpose, we have chosen the Air Control system in Fig. 8.
The Applicability of the above-proposed CFD model fault
detection is practiced through an Air Control System. This

is based on two main components, operator user interface
component and Control Station Component, in which sub-
components are component 1 (ON) and Component 2 (Off)
connected with a contact point where component 3 supports
the system. Having the assumption of fault tolerance, the
applicability of component function fails during the opera-
tion to communicate with the main component in the system
as depicted in the model. That failure shows faults in the
system detected through UML Sec 2.0, keeping in view a
design specification based on test requirements and diag-
nosis specification of component and system. At this stage,
where system design is considered as a whole model as
depicted in the component and system fault detection model,
which illustrates the practical application of faults detected
in component and system.

81

Social Network Analysis and Mining (2021) 11:22

1 3

Page 13 of 19 22

5.5 Modeling the application and its components
without fault

Component-based Software Engineering from different
points of view with an emphasis on the various aspects of
software design, such as various phases (design stage, com-
ponent as interchangeable design parts; components reported
to a particular system model in the implementation phase,
run time binary packages, distributed components), industry
aspects (business components, product components, COTS
components), and archives. (Rodríguez et al. 2016).

In addition, we should make sure that every ele-
ment of the software layout is explicit and comprehensive
enough to explain the assumptions and planned func-
tional logic in the application by the designer in order
to enable the application and its components to be modelled.

Explicitly comment it is mandated that following infor-
mation on all components of a system to ensure secu-
rity of software and its underlining logic.

1. The intended use and purpose of the compo-
nent (if the component code is usable, the func-
tional business logic can also be expressed in the com-
ponent by specifying a use contract).

2. Assumptions and logic of everything out-
side its direct control made by each component.

3. Reference to all client-based components using clear-
cut documentation could have prevented the logic fault
within the above-mentioned case, for example, online
registration functionality (Note: here, the client does
not apply to the client–server user-end, but to any other
client-based component (code) that is considered imme-
diately dependent upon the component logic).

4. The risk analysis consists of three key steps to ensure
component-based security requirements. The first is the
detection of potential system design attacks; the second
is architectural risk analysis for component-based cor-
porate logic security; and the third is component-level
analysis.

5.6 Designing security by design application
modeling

Designing the social commerce-based distributed system
software in a tier is also extremely important since several
attacks trigger design defects (subversion of attack) as men-
tioned in the above case study of e-Commerce applications.
These logical defects usually apply not only to component-
based systems but also to structural defects where compo-
nent modeling is built to a set of system logic, in accord-
ance with corporate rules relating to a particular business
or sector. It is necessary to clearly define the architectural
design of topology, whereby the system is designed for use

Fig. 8 UML Sec 2.0 modeling fault detection of air control system

82

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 14 of 19

by clearly distinguishing the SDLC design level (Elio et al.
2014; Lindström et al. 2015). The second stage focuses on
the strategy and policy for application logic development
that concentrates on how the components need to work under
a given business rule and policy. The third stage refers to
the development strategy for components that use dynamic
web content to customize an individual’s experience within
a website and provide users with more interactive details.
Dynamic content can be rendered in several ways: static
HTML files, Java script, or the rendered JSP file, using the
component-supported environment, such as Java servlets
in J2EE by invoking business logic hosted through middle-
ware for back-end business data access. In a normal scenario
an application developer considers the approach, in which
components are combined to be assembled for a particular
business requirement and to create a solution. A composite
application consists of new components these are created
especially for business applications and existing components
that are reused from other applications.

If the approach is theoretically justified, the concept of the
Service Component-Oriented system development technique
is a collective set of specifications that proposes a program-
ming model for developing applications and systems. This

model promotes the previous approaches to implementing
services and supporting the developing open standards like
Web services.

Therefore, keeping in view theoretical justification: if we
dissect a component structure, a simple component has two
states; one is “Service” and other is “Reference”. A service
is considered to be something that addresses the interface for
a component, which keeps one or more operations, whereas
a reference is a dependency based on a service (functional-
ity) that is required by another component.

We have modeled a system (Fig. 9) in a scenario in which
techniques consist of system and component at two differ-
ent levels. The system level focuses on the design product,
while specifications for individual components that par-
ticipate in system development are modelled as UML sec
design approach. This is the multi-specification architecture
of a component-based system in which different layers of
components are modelled based on their business rules and
processes, with execution within the system. The component
integration strategy at run time is compared to its require-
ment and design specifications.

The component-oriented programming concept pro-
motes the implementation of service, where the security by

Fig. 9 UML Sec 2.0 security by design approach multi-specification J2EE system modeling

83

Social Network Analysis and Mining (2021) 11:22

1 3

Page 15 of 19 22

Fig. 10 V &V integration model for security by design testing

design technique supports the UML-based design model-
ling for system security at the design stage or while reus-
ing the component from an existing application. For this
purpose, we have practiced the UML-based security by
design system modelling through the concept of service
component-oriented software engineering. In this exercise,
Business Domain Components and service Components are
being modelled based on a multi-tier specification of the
architectural design of topology in which the system will
be designed for deployment by separating each tier. The
first tier consists of the Business System Interface, which is
connected with a service component (rendering logic) that
corresponds to the second tier: the Business Component and
Application Component. From this stage, Business EDC and
sub-component, as realized use cases, invoke mid-tier ser-
vice. Furthermore, this process corresponds with the back-
end service and application components. These components
provide Consumer Service and Business Component service
provider in order to process the system function (defined
as the component’s business logic), as depicted in the fig-
ure given below. The component integration strategies at
run time are also clearly defined through inter-connections
among the all system and application components, while
considering requirement and design specifications of service
description.

6 A validation & verification of method
integration testing model

To validate the security assurance process, the technique
would follow the V & V integration method for security by
design testing the approach that would be set as a test-bed

model, which then has no need of all component realiza-
tions. Normally models are available at an earlier stage as
compared to at their realization. This technique makes the
process easier and makes it possible for earlier detection of
design flaws, especially in the case of comparing/matching
real time system testing.

In addition, adaptation and configuration is normally
allowed by models as compared to realizations that are
appropriate for system testing in unrelated conditions for
assurance purposes. It is easier when models are used as
an alternative of realizations, especially when exceptional
behavior testing and broken components are conditional.

In addition, test quality is improved and the ability of
models to change test conditions at a great rate improve the
state of test execution. In return, not only is the allowed
model-based testing simple and easy but it also lowers the
chances of threat during the test process as mentioned in
Fig. 10.

Theoretically justified by the design model and method of
security assurance process, diagram 10 illustrates the graphi-
cal display of the V & V integration model for security by
the design testing approach. It considers the components C1
& Cn that are only illustrated above in the figure in which
component C1 is shown by M1 model, whereas Cn is shown
by realization Zn. In the IMZ is infrastructure integration
model, both M1 and Zn need to be integrated, which refers to
the model and its realization, so that the equation is rendered
{M1, Zn} IMZ. Therefore, this initial depiction of the sys-
tem is considered for testing at an early system stage, which
extracts from R & D, system requirements, and design, that
are shown by the dashed arrow. The R (requirement) & D
(design) systems of both specifications are captured in order
to allow M1 model and Zn realization to be tested using

84

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 16 of 19

Integration of IMZ for the infrastructure integration model.
The process of the model justifies above defines the secu-
rity assurance service that deal with the component-oriented
applications in the context of the security assurance process
methodology.

Hence, in the light of the V&V model, we have exem-
plified a case scenario of the “Domain Model System” for
applicability to the proposed model in Fig. 11, which is dem-
onstrated with the UML modeling to detect the flaw or fault
in the design. For this process, System component specifica-
tion is used through the scenario-based schema to generate
event modeling for the system through equation {M1, Zn}
IMZ integration testing. The diagram illustrates a compo-
nent and sub-component-based system, in which faults are
detected, keeping in view the equation {M1, Zn} IMZ where
all the components realization are not required, especially
when exceptional behavior testing and broken components
are conditions of the test. The information regarding the R
& D of the Domain Model system are gathered with the

specifications of M1 and Zn realization with C1 & Cn,
respectively, to be tested, using integration IMZ. The threat
model also explains the fault cause of errors in the process
of communication (event-based messaging) that may fail and
may cause underlying threat vulnerability of the applica-
tion logic. The technique of identifying vulnerability in the
Domain Model System is achieved via matching a sequence
of components and sub-components in a system application
logic.

The graphical presentation of the above-proposed method
of the V & V Integration model for security by design testing
and experimental modeling of fault detection in component-
oriented-service is generated through the formula in the
equation {M1, Zn} IMZ. However, it is important to explain
the process through the projected model as it is defined here
in Fig. 12. This model demonstrates the requirement and
system design specification by formulating the properties
of components that are used for realization and integration

Fig. 11 V &V method for fault detection in component-oriented-service

85

Social Network Analysis and Mining (2021) 11:22

1 3

Page 17 of 19 22

of the IMZ checker to be tested as defined in Fig. 12. This
whole process validates the idea as explained in Sect. 6.

7 Discussion

The key point to consider is that the component itself could
be considered as properly designed as long as the design
specification of the component matched the n-tier architec-
ture e-Commerce applications with regard to each layer’s
boundary profile condition (functional specification require-
ments). This complies with the current application logic in
the purpose and actions of the overall system. The concern
is that the component developer and the software develop-
ment company are likely to be individuals (this is the most
common scenario!). In this sense, a validation process is
needed to validate the design before implementing it when

incorporating components into component software artifact
models and functionally processing logic. This is based
on interface specifications that are unwanted. So what is
required? A component software integration process that
refers to security risks model in the components compo-
sition at the design stage, may be incompatible with their
semantics and operational behavior! The value of this lesson
may help the development of the future generation system as
well to help understandings of the basic rules of component
semantics and operational behavior oriented integration.
Throughout a component-based software solution develop-
ment, the Defense Software Community (DE Software Com-
munity) reuses components of the current system’s logic
in view of the specification and role-performance of differ-
ent layer components in the specific solution, such as Arian
Rocket Failure (ESA).

Fig. 12 Model-checking process to validate the proposed method of V &V

86

 Social Network Analysis and Mining (2021) 11:22

1 3

22 Page 18 of 19

Thindicates that component software compatibility
based on component software model objects was sug-
gested, but the designer ignored component inter-
face dr ive logically def ined constraints.Those
defined by using the component used and offered inter-
faces from the overall logical structure design via con-
tract strategy during the composition. This may have
caused the solution failure that depended on functional-
ity related to particular boundary profile condition as com-
pared to design specific conditions that caused the (ESA)
Mission Arian to fail.

8 Conclusion and future directions

The lesson from this case study is that developers must
always consider the key point that the component must
itself be correctly designed, as far as the design and speci-
fication of the component is concerned. It must match with
respect to the boundary profile condition of each layer’s
functional specification requirement within the architecture
that respects existing application logic in the overall sys-
tem’s function as well as its behavior. Therefore, keeping
in view this point, we have practiced a security assurance
methodology for a service component-oriented modern
generation e-Commerce social media application through
threat modeling. This follows a component fault detection
model novel technique with a further modeling component
and its application using a UML secure design approach
and developing a valid technique for design flaw detection.
This will increase the level of assurance during the design
component-based, rapidly developing future generations of
social e-Commerce application software and deployment of
business logic into the social commerce e-banking system.
The proposed approach would also encourage the develop-
ers to design secure component-based applications while
re-using existing components from the application’s busi-
ness logic and will thus ensure the security of the secure
design-based modeling technique in the design method.

This research also opens a new direction for the social
e-Commerce application using component-based software
techniques that may help developers understand faster
development and related security concerns of such sys-
tem requirements. The research also provides a lesson for
security modeling techniques through new methods that are
addressed here. This may help the developers design secure
social commerce systems at the enterprise level.

References

Abdulrahman A, Mansour A, Noura A (2017) A model for evaluat-
ing the security and usability of e-banking platforms. Computing
99:519–535. https ://doi.org/10.1007/s0060 7-017-0546-9

Agirre A, Parra J, Armentia A, Estévez E, Marcos M (2016) QoS aware
middleware support for dynamically reconfigurable component
based IoT applications. Int J Distribut Sensor Netw 3:17. https ://
doi.org/10.1155/2016/27027 89

Agirre A, Armentia A, Estévez E, Marcos M (2018) A component-
based approach for securing indoor home care applications. Sen-
sors 18(1):46. https ://doi.org/10.3390/s1801 0046

Alalwan AA, Dwivedi YK, Rana NP, Algharabat RS (2018) Examin-
ing factors influencing jordanian customers’ intentions and adop-
tion of internet banking: extending UTAUT2 with risk. J Retail
Consum Serv 40:125–138. https ://doi.org/10.1016/j.jretc onser
.2017.08.026

Elio G, Karim D, Benjamin G, Eric D, Claude G (2014) A security risk
assessment model for business process deployment in the cloud.
In: 2014 IEEE international conference on services computing,
pp 307–314. https ://doi.org/10.1109/scc.2014.48

Ghassan B, Achim H, RafaelValencia G, Jun S, Asif G (2020) Towards
an assessment framework of reuse: a knowledge-level analysis
approach. Complex Intell Syst 6:87–95

Jiang H, Zhou R, Zhang L et al (2018) Sentence level topic models
for associated topics extraction. World Wide Web. https ://doi.
org/10.1007/s1128 0-018-0639-1

Jones A, Ashenden D (2005) Risk management for computer security:
protecting your network and information assets 1, St edn. Elsevier,
Amsterdam, pp 46–57

Laukkanen P, Sinkkonen S, Laukkanen T (2018) Consumer resistance
to internet banking: postpones, opponents and rejectors. Int J Bank
Mark 26(6):440–455

Lindström B, Andler SF, Offutt J, Pettersson P, Sundmark D (2015)
Mutating aspect-oriented models to test cross-cutting concerns.
In: 2015 IEEE eighth international conference on software test-
ing, verification and validation workshops (ICSTW). https ://doi.
org/10.1109/icstw .2015.71074 56

Nabi F (2005) Secure business application logic for e-commerce sys-
tems. Elsevier J Comput Secur 24(3):208–217

Nabi F, Nabi M (2017) A process of security assurance properties unifi-
cation for application logic. Int J Electron Inform Eng 6(1):40–48

Nabi F, Yong J, Tao X (2019a) A novel approach for component
based application logic event attack modelling. Int J Netw Secur
22(3):437–443

Nabi F, Yong J, Tao X (2019b) Proposing a secure component-based-
application logic and system’s integration testing approach. Int J
Inform Electron Eng 11(1):25–39

Nabi F, Yong J, Tao X (2020) Classification of logical vulnerability
based on group attacking method. In: 11th international confer-
ence on ambient systems, networks and technologies (ANT 2020),
Warsaw Poland

Nabi F, Yong J, Tao X (2021) Classification of logical vulnerabil-
ity based on group attack method. J Ubiquit Syst Pervas Netw
14(1):19–26

Raed SA, Nripendra PR (2020) Social commerce in emerging markets
and its impact on online community engagement. Information.
https ://doi.org/10.1007/s1079 6-020-10041 -4

Rodríguez M, Zalama E, González I (2016) Improving the interopera-
bility in the digital home through the automatic generation of soft-
ware adapters. RIAI Rev Iberoam Autom Inform Ind 13:363–369

Seinturier L, Merle P, Rouvoy R, Romero D, Schiavoni V, Stefani J-B
(2017) A component-based middleware platform for reconfigur-
able service-oriented architectures. Softw Pract Exp 42:559–583

Wang H, Wang Y, Taleb T, Jiang X (2020) Special issue on security and
privacy in network computing. World Wide Web 23(2):951–957

Xhafa F, Barolli L, Papajorgji P (2010) Complex intelligent systems
and their applications. Springer optimization and its applications,
vol 41. Springer, New York

Yaghmaie A (2017) How to characterise pure and applied science. Int
Stud Philos Sci 31(2):133–149

87

https://doi.org/10.1007/s00607-017-0546-9
https://doi.org/10.1155/2016/2702789
https://doi.org/10.1155/2016/2702789
https://doi.org/10.3390/s18010046
https://doi.org/10.1016/j.jretconser.2017.08.026
https://doi.org/10.1016/j.jretconser.2017.08.026
https://doi.org/10.1109/scc.2014.48
https://doi.org/10.1007/s11280-018-0639-1
https://doi.org/10.1007/s11280-018-0639-1
https://doi.org/10.1109/icstw.2015.7107456
https://doi.org/10.1109/icstw.2015.7107456
https://doi.org/10.1007/s10796-020-10041-4

Social Network Analysis and Mining (2021) 11:22

1 3

Page 19 of 19 22

Yin RK (2016) Case study research design and methods. Canad J Prog
Evaluat 1:1. https ://doi.org/10.3138/cjpe.30.1.108

Zhang T, Zheng L, Wang Y, Shen Y, Xi N, Ma J, Yong J (2018) Trust-
worthy service composition with secure data transmission in sen-
sor networks. World Wide Web 21:185–200

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

88

https://doi.org/10.3138/cjpe.30.1.108

CHAPTER 7: SOCIAL INTERACTION WITH SOFTWARE CONNECTORSAND THE

ROLE OF FAÇADE-BASED COMPONENTS FOR SECURE APPLICATION LOGIC

Introduction and Findings: Relationship between Chapter 6 and Chapter 7

Introduction Note: Chapter 6 addresses a detailed case study-based problem solution in the context

of social e-commerce that is used as a tool to close down the subject of the targeted audience in

relation to the banking case study and proposed methodology that is justified through modeling

techniques related to application logic. Chapter 7 covers and addresses the modeling techniques by

using and incorporating security-modeling features into component service architecture to

expanding the research work in Paper 5. This will be further reflected as a part of security feature-

based UML Sec modeling for an example B2c ATM model demonstrated in the context of social

interaction of e-commerce component-based application security modeling that justifies secure

application logic. This chapter addresses -sub-question 5 and it makes a relationship to the thesis as

defined in the structure of the thesis in Chapter 1

Findings: This chapter provides UML-based modeling and suggests security through façade-based

function describing an example of the B2c ATM model demonstrated in the context of social

interaction of e-commerce component-based application logic in terms of the social medium of

application human interaction.

This paper has been accepted for publication in the International Journal of Network Security.

89

Social Network Analysis and Mining

Social Interaction with Software Connectors & the Function of Facade Component in
Secure Application Logic

--Manuscript Draft--

Manuscript Number: SNAM-D-21-00168

Full Title: Social Interaction with Software Connectors & the Function of Facade Component in
Secure Application Logic

Article Type: Original Article

Corresponding Author: faisal nabi
USQ
AUSTRALIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: USQ

Corresponding Author's Secondary
Institution:

First Author: faisal nabi

First Author Secondary Information:

Order of Authors: faisal nabi

Jianming Yong, PhD

Xiaohui Tao, PhD

Order of Authors Secondary Information:

Funding Information:

Abstract: The paper represents a conceptual study of the social interaction model of ATMs by
using integration in a UML model-based design for software architecture that deals
with the secure component-based software protection and communication patterns
through facade based connector. The facade-based connector is developed separately
from software components by using the correct contact pattern between components
and the required security patterns that encapsulate the connection with other secure
connectors. Each secure connector consists of both security architecture and contact
patterns. It is constructed as a composite component even though connectors are
usually used by component-based software development to encapsulate the
mechanisms of communication with components. This paper addresses the security
and privacy issues related to social interaction with the ATM model that may also be
encapsulated in the software application logic through a secure facade based
connector that is known as a security in a connector based social e-commerce B2c
application.

Suggested Reviewers: Prof Chunsheng Yang, PhD
Prof, Conseil national de recherches Canada: National Research Council Canada
Chunsheng.Yang@canada.ca
He is expert in social network and software security

Dr.Rosisin mullins, PhD
Prof, University of Wales Trinity Saint David
r.mullins@uwtsd.ac.uk
She is expert in information systems and security

ghazanfar safdar, PhD
Prof, University of Bedfordshire - Luton Campus: University of Bedfordshire
ghazanfar.safdar@beds.ac.uk
Security and Authentication Protocols for Communication Networks

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

90

Social Interaction with Software Connectors & the Function of
Facade Component in Secure Application Logic

 Faisal Nabi, Jianming Yong, Xiaohui Tao
(Corresponding author: Faisal Nabi) faisal.nabi@yahoo.com

School of Business, and School of Science University of Southern Queensland1West St, Darling Heights QLD
4350, Australia.

Abstract— The paper represents a conceptual study of the social interaction model of ATMs by using

integration in a UML model-based design for software architecture that deals with the secure component-

based software protection and communication patterns through facade based connector. The facade-based

connector is developed separately from software components by using the correct contact pattern between

components and the required security patterns that encapsulate the connection with other secure

connectors. Each secure connector consists of both security architecture and contact patterns. It is

constructed as a composite component even though connectors are usually used by component-based

software development to encapsulate the mechanisms of communication with components. This paper

addresses the security and privacy issues related to social interaction with the ATM model that may also

be encapsulated in the software application logic through a secure facade based connector that is known as

a security in a connector based social e-commerce B2c application.

Keywords
Computer Security, Component based Software, Social e-Commerce Applications, Façade Component, Con-
nectors Security, Security & Privacy.

1 INTRODUCTION

Modern life is far more complex than any other kind of social order, and is primarily aimed at achieving individ-

ual objectives, thus fragmenting the social order and reducing the interaction that comes with social contact.

Consequently, people rely on social media (e.g. email, social media and video conferencing) to maintain contact

and with the passage of time, social e-commerce is also being used, such as social interaction with theATM bank-

ing model .This model has enabled a new era of shifting from traditional e-commerce to social e-commerce and

Banking industries have adopted this model.This refers to human social interaction (Siricharoen 2019). However,

the security of HCI related to social interaction is a very important issue requiring discussion among the research

community. One example is social interaction using the ATM Banking security model.

Click here to access/download;Manuscript;Faisal Social
commerce.pdf

Click here to view linked References

91

mailto:faisal.nabi@yahoo.com
https://www.editorialmanager.com/snam/download.aspx?id=126355&guid=4867b7c1-8c69-4e8a-8c18-638acbd66fa0&scheme=1
https://www.editorialmanager.com/snam/download.aspx?id=126355&guid=4867b7c1-8c69-4e8a-8c18-638acbd66fa0&scheme=1
https://www.editorialmanager.com/snam/viewRCResults.aspx?pdf=1&docID=2924&rev=0&fileID=126355&msid=8ae740d7-75e8-4f82-86e2-0b8baa69a70b

In modern era of software, the component-based software development method is widely used, especially in the

distributed social e-commerce system, which has developed through components. Such systems or applications

encapsulate the functionality of the business logic process. Apart from that, components also need connectors,

which encapsulate the inter-communication of component process (Albassam et al. 2017). The UML 2 provides

notation for modelling the component ports that are provided and the necessary interfaces in CBSAs asynchro-

nous communication or synchronous replication communication. The connector’s role within the component-

based application is that of a glue that encapsulates the inter-communication mechanisms to perform the func-

tionality that supports the application logic. This provides a major role in component based applications because

some components within an application are without offered or required interfaces that need connector support to

glue the connection in between the component interaction within the application.

Current approaches for component-based development of social e-commerce often ignore the secure integration

process designed by the security concept. There are currently two main methods for component integration.

These current methods appear to use a composition process that falls into two main categories: (a) transmitting

the message directly; (b) transferring the message indirectly. In these two methods, interaction of components is

based directly on inter-communication which corresponds to the direct method call, performing two distinctive

roles, both sender and recipient of a message. In this case, the recipient's identity is either known to the sender

statically or evaluated dynamically during the execution time.

The direct message transmission method calls for a component that is tightly coupled, in which there is no need

of any glue code or connector as shown in figure 1 (a). On the other hand, indirect message transmission con-

nectors are exemplified as separate entities that are defined clearly in the component composition. They are usu-

ally glue codes or scripts, which pass messages indirectly between components. To make a connection from one

component to another component, a connector provides the link, which provides a method to be notified by the

former. In general, the data flow associated with the composition is isolated from the computation in the individ-

ual component, when the components are linked through the indirect message transfer figure 1 (b). This figure

clearly illustrates that components do not directly call each other but connectors are called in the system method

process during the loosely coupled application logic (Albassam et al.2017).

92

 Figure 1: Direct and Indirect component inter-communication model
A pattern of security represents a common detection procedure performed by a security service. A secure con-

nector improves the management of complex software systems by distinguishing security concerns from software

architecture applications concerns.Therefore, each component determines a relatively independent application

logic that differs from that of other components. A connector performs functions as a means of communication

between components on behalf of the components, which encapsulating the specific type of inter-communication

between components.A secure design approach is used to encapsulate security functionality separately from the

software components inside the connector (Shin et al. 2018). The connector’s original function is to provide a

framework to exchange messages between components in the software architecture. However, the function of

connectors is expanded in this paper by adding security patterns as designed by the security concept to the con-

nectors via a secure session façade component acting with secure connectors.

The idea of secure connectors is based on component principles, which include both basic components that en-

capsulate security patterns and message communication patterns, in which a secure connector is a composite

component. The secure inter-connectors are designed using component principles and include composite modules

that encapsulate the security patterns and message transmission patterns of the secure connector. A security pat-

tern object is encapsulated in a secure connector as a component to offer one or more security services to soft-

ware components to secure business application logic.

2. Research Design

In this paper, we address the role of facade-based connectors in the development of secure business application

logic in the domain of social e-commerce based applications using ATMs (B2c) example. According to software

architecture theory, the functionality of an application is handled by components in a CBSA (Taylor et al. 2010)

for concurrent and distributed systems, whereas the emphasis here is on coordination between components.For

this purpose, a comprehensive review study is carried out and a solution is suggested in section 4. This work re-

lies on exploratory research analysis, which aims to create an idea of secure application logic, free from vulnera-

bility, to address the complexity of the business logic phenomenon in social e-commerce systems (B2 c).

93

2.1 Research Motivation

In recent years, the number of ATM incidents has risen, particularly fraud involving malicious applications, in-

cluding Blackbox electrical devices. Black box is a term widely used to define technically advanced electronic

devices, which are directly attached to an ATM in such a manner as to enable the offender to exercise control

over the operation of the ATM. The key targets of these attacks are the data, including the cardholder infor-

mation. In this case, the focus is the social interaction with the ATM and the ATM dispenser which is used for the

provision of cash. These attacks disrupt authentic transactions with a genuine card and a PIN. Attacks on differ-

ent ATM models have been successful suppliers that run multiple ATM software versions.This paper addresses

the security issues related to social e-commerce, particularly ATM Banking that may also be encapsulated in the

software application logic through a facade-based connector that is called a security in connector-based applica-

tion. This approach can deal with attempted fraud involving the Black Box. This form of cyber crime is a sub-set

of social crime. Additionally, the Subversion Attack Vulnerability in application logic in B2c system may be the

cause of a component based event called the inter communication method. This leads to a process at the time,

comprising loosely coupled or tightly coupled integration based on interfaces of components as defined in figure

1.The solution defined related to this problem is modeled through B2c ATM case study fig.6-7.

 Figure 2: Social ATM Network and Software Process Environment Model

94

3. Review of Existing Work

According to Almeida 2017, due to the broad diffusion of Web 4.0 technology, e-Commerce is gaining momen-

tum. The focus of e-commerce applications has moved towards context awareness and personalisation in social

mining, recommendations and data semantics. However, the design of such systems involves complex architec-

tures to accommodate smart behaviours. These systems still insure substantial non-functional properties such as

flexibility, performance and scalability.Therefore, secure social e-commerce applications logic is an important

aspect of such systems, and this has not previously been clearly or fully discussed by the research community.

According to Shin, M. E et al. 2017, several methods have been proposed for the development of secure distrib-

uted software business applications. Many of the solutions that have been designed focus on protecting the com-

ponents of business applications , in order to provide an effective security service for the component. However,

less consideration has been given to connectors that can be used to provide security services for the components

of business applications. in particular, social interaction based communication through connectors.The action of

connectors is used to bind or encapsulate communication process between components in software architecture.

At this stage, security concerns can also be encapsulated in software connectors, which are classified as protec-

tion connectors, separate from application components that contain application logic in social e-commerce appli-

cations.

According to Al-Azzani.S et al. 2012, for the simulation, the capturing and implementation of the security orien-

tated connector approach is used. Using software connectors, the security characteristics of a system design are

defined. Connectors control and apply an extensible software security contract defined by components. Connect-

ors can assess what values the associated components should execute. Security relies on the connector core soft-

ware architecture to ensure that specific security requirements are taken into account during its design. In addi-

tion to addressing the problem from an architectural point of view, their work also provides a way to define and

improve these stable connectors.Therefore, an opportunity is available to work on the social interaction of con-

nector approach, while designing component-based software for social e-commece applications.

According to Shin, M. E et al. 2016, secure connectors are used for the implementation of a distributed business

application in secure software architectures where components of business application may communicate with

one another through various types of communication.This approach allows secure connectors to provide security

services to business application modules built separately while focusing on separately built functional logic for

95

https://www.researchgate.net/profile/Fernando_Almeida21?_sg%5B0%5D=kgVVMRLn9yAyqlWStnZBE_mBU4gLnKu3mw3U2wOkx9WR-46798s9bKwFWXEOLpQimgkiwy0.pLAZw9nK7IsQ2YebubyV1t-xoFQcmekDOdg77OUwc5mk9soC-ShAjVbcFEcUynO_R6vJEh8-KKqcafXT4xEN7A&_sg%5B1%5D=jjP7SUByCtUGwk7O741x4vFvwrVenSNswXma5knIwHrDrkgbfAzNswHNzcEA6pxAgdrxMo8.afpE1uwlVZnBaVceuwzcAXJPt6vxobilJmL1WxsusydPJyEiOd3OmdUuBCEIO5v9wQsNDXR6ECiBlJrWMjjJqw

social interaction with software connectors.

An approach for complex applications by designing application needs and designs independent of security re-

quirements and designs using the UML notation is defined in previous works (Shin, M. E et al. 2016) by the au-

thors. In cases of security use, security specifications are identified and inserted in artefacts of security services.

If a system requires security services, cases of security use are applied at extension points from a non-secure

business application scenario. Nevertheless, the writers paid relatively less attention to the secure technology en-

vironments in which secure software design would suit security requirements (Shin, M. E et al 2018).

The composition of the component concept moves around the one or two components that have been combined.

These encapsulate the composite properties, which can be either a tightly coupled or a loosely coupled integra-

tion. The idea of a secure connector is more likely to be designed to keep in view computer security aspects such

as confidentiality, integrity, authentication, authorization, and non-repudiation. The need for the idea to extend

over here is to protect business component based application a Facade component at the top of connector to se-

cure the application security in social e-commerce based ATMs (B2c) model.

3.1 Component based Application Logic

The term ‘business logic’ refers to a particular “service”; this service can be a withdraw payment service. This is

defined by the business component class withdraw payment, which is handled through the component class busi-

ness logic. Each component has business logic offered by a business component that resides in the business do-

main. The concept of a ‘logical component’ can be defined as a sub-component or part of a sub-system; in both

conditions, the component keeps its own identity (Nabi et al 2017). Certain steps need to be followed in order to

perform a predefined action using application logic to operate a business process (Shin, M. E., et al 2016).The

logical component-ware supports the process of application logic and each component’s business logic to devel-

op set of functionalities, which then further translate it into component’s business processing logic by integrating

these components in the n-tier architecture.

 Figure 3: Application Component with Business Logic

96

SOA is a method of designing software, in which services are provided to the components by application compo-

nents. The web based banking system is constructed /developed using two sorts of components in the business

logic layer of the application. These two kinds of components are: (1) Business Processing Components; (2)

Business Entity Components. The first category of components deals with service that is requested by end-users

through the published user-interface. They decide the function of business entity components that definitely will

be called or invoked and operated. They are persistent components that keep their state stored by the application

and are part of application domain (Nabi et al 2017).

Research explains that recent approaches of the component based social e-commerce banking system present a

serious lack of security properties at the level of component based secure design applications, which may be con-

nector based logical security, The drawback here is that security is mainly designed as a component offer and the

required interfaces glue based composition that has a gap of security from session development of transaction

and encapsulate the functionality. At this stage, further design is needed to provide a secure session facade com-

ponent approach at the top of secure connectors by encapsulating the security functionality to minimize the com-

plexity of component based composite applications and business application logic (Nabi et al 2020).

3.2 Taxonomy of Software Connector

To properly understand the connector definition, the basic tasks a connector can perform must be defined and

analysed; here, the software communication taxonomy provided in Shin et al (2017) can be used for guidance.

We have chosen the connector tasks listed below, usually the core tasks, from the main service categories and the

specific connector styles of this taxonomy.

 Figure 4: Connector Role in Component Based System and Application Logic

Data transmission and control: A link defines the protocols that can be used to track and/or transfer data (e.g.

process call, event management and data stream). Each of these systems has certain features and characteristics,
97

for example local or remote procedure calls. As for RPC, it can be implemented with different types of middle-

ware. Event management may also be based on an event server, a consolidated event queue, and so on.

Adapting the interface and converting the data: In consideration of the need to tie two (or even more) mod-

ules not originally designed to interoperate, an adapter in the connector specification is a good concept. As stated

in Baker (2014), an adapter and/or data converter automatically or semi automatically generated mechanism is

available to decide (and challenge) the alternative.

Coordination of connectivity and communication: Method call ordering on the interface of a system is im-

portant in general (the definition of a protocol in (Gomaa 2011)). A functional feature specification (e.g. inter-

face, structure and design protocols (Plasil et al 1999) Wright CSP based adhesives and calculation) typically

specifies the permissible orders. Another function of the connector is to manage the connector and match-enforce

conformity with the system protocol (API set). For example, consider using a server node, which is used in a sin-

gle-threaded environment, for a multi-client threaded environment.Intercepting correspondence: Since connectors

mediate all communications between components in the network, a component communication interception

frame (without being aware of participants) may help implement various filters (including cryptography applica-

tions, data compression, load control, debugging).

3.3 Connector Architecture and Lifecycle

A simple or compound connector may consist of an architecture design framework. The interior elements of a

basic connector architecture are instances of primitive elements only (figure 5a). Types of primitive elements

(generic forms are typically used–the interface type is permitted as well as the property parameters) (Taha et al

2017).A comprehensive specification of the semantics of each basic element type is provided by mapping the

underlying context in addition to a functional specification in plain English.

"The standard features of the RPC are stub or skeleton components."

For example, their remote interface type (specified as property parameter) and the underlying application model

parameterize each of the components.

For each supported application platform (CORBA, Java RMI, etc.) there is mapping of stub and skeleton element

types. Internal components of a composite connector are instances of other connector types and/or components

(Figure 5b). This definition allows for the development of complex connectors that represent the hierarchical ex-

istence of component interactions with hierarchically organised architectures (Nabi 2011).

98

 Figure 5: Connectr Model (a) Simple Architecture (b) Compound Architecture

4. An Approach Designing a Secure Facade Based Connector

Social e-commerce application model development components security services are interactive applications that

can be applied through different security technologies to accomplish a security goal, such as authentication, au-

thorization, anonymity, completeness, compatibility and non-repudiation.A protection service can be implement-

ed using different security techniques, each addressing a particular security strategy that performs a security ser-

vice. For example, you can use a symmetrical encryption protection pattern or an asymmetric authentication en-

cryption template to construct a confidential security service (as mentioned in figure 6).

A secure connector is created separately by analysing the transmission pattern of message and security patterns

given by the application components. A secure connector is a distributed connector consisting of a secured

transmission sender connector and a secure receiver inter-connector that is linked with a session based facade

component acting with a connector, as shown in figure 6.

 Figure 6: Designing Facade Based Secure Connector

99

The UML stereotype is used to identify each secure connection, which clearly identifies its position in the archi-

tecture of applications. A security controller, one or more security objects and a contact object are secure sender

or receiver connectors, which are linked with the all other connectors encapsulated in by a security fa-

cade component. In this way, the secure session of transmission between the component and business logic is

organised, which is displayed in figure 6. A security coordinator is designed to combine contact models and pro-

tection architectures, which are chosen to be used in a modular way, establishing the integration of the security

pattern and the communication pattern through coordination among the connectors.

The secure connector may be a sender security coordinator or a receiver coordinator, as shown in figure 6. When

a communication pattern component (CPC) and one or more security pattern components (SPCs) are chosen for a

connector, the security sender and receiver coordinators need to be configured for every reusable secure connect-

or. Therefore, a framework can be built for each contact style for the high-level security coordinator. For each

interchangeable secure connector, the design is tailored according to the chosen security pattern(s).

4.1 UML based ATM Secure Facade Based Connectors Modeling

The example of social interaction with an ATM model is practiced through a facade based secure connector ap-

proach, demonstrating that composition connectors are n-ary connectors used to support component composition

as it is explained in the below diagram. These connectors communicate and coordinate with each other through

defined inter-connectors as shown in figure 7.The ATM client component establishes the session through the se-

cure facade component, which encapsulates the secure sender service based on secure connectors and then pro-

ceeds to the process of encryption and receiver decryption to be called by the mechanism. .The encryption tech-

nique is used for symmetric algorithm security pattern connector components, both encryptors and decryptors,

to provide the security for the business process of the ATM service method. The approach taken as a facade ses-

sion based connector condition supports the ATM process from client to server.

100

 Figure 7: UML Base ATM Secure Facade Connector Design Model

The above mentioned figure 7 shows a secured synchronous response message Security Connector, which is used

to validate a confidentiality service ATM application through a Personal Identification Number (PIN). The cus-

tomer and ATM Server components synchronously and confidentially communicate with response sender / recep-

tor connectors through their protected, synchronous message transmission, each encapsulating a security service

cryptography object and an element for decryption protection for a confidentiality function.

A Security Sender Coordinator and a Security Receiver coordinator object, to coordinate security service objects,

are included in the secure synchronous message communication with reply sender and receiver connectors. The

synchronous message communication with response is encapsulated by a secure synchronous messages commu-

nication with the reply sender connector, while the secure message communication with the reply receiver con-

nector encapsulates synchronous message communications with the response receiver template item.

From another conceptual study view, figure 7 displays an abstract and high-level layer overview of the secure

façade connector with the SEP for service requests and a response, which can be used by an ATM network. This

clearly illustrates the security pattern in a formulated function of connectors. The service request is encoded by

SEO on the secure facade-sender connector; while the ATM client component transmits a service request to the

101

ATM server, so that the symmetric encryption authentication method for the SED component is chosen and then

sent to the ATM server component, assuming that the ATM server component has the symmetrical encryption

security pattern feature.

 In the secure facade sender connector, the reply is encrypted by the SED component and sent to the ATM client

component when the application logic processes any transactions made by the machine.The facade secure session

manages the security for the component based application logic for the ATM service as it is depicted in diagram

7. This approach is unique in its approach as it coordinates with all connectors of the application component and

their underlying security application functionality and logic to make it secure.

It may be postulatetd that the facade session based approach is more secure as it has the capability to accommo-

date the security policy for application underlying logic and other glued components, which are integrated

through a secure connector approach as defined in the above diagram. The practical application of this model has

been tested in a Java bean business component environment in a banking organization to test the applicability of

the proposed idea of a secure facade based component acting with a connector in ATM social e-commerce (B2c).

4.2 Technical analysis of data transmission Packets in Proposed ATM Model

This process is defined as the technical analysis view while having to follow the ATM data process in

the event of social interaction.The back-end process protocol used, the length of each packet and the

additional information needed for each important packet is shown in figures 8 and 9. The packet num-

ber and time stamp have been clearly indicated to provide enough space for the relevant information to

be displayed in the figure below. Additional packet captures will continue with the ATM startup that

runs to get a clearer picture of which packets make up the initial contact with the server. It is also im-

portant to investigate the differences between startup contact packets and those that represent a custom-

er-initiated transaction, if any exists.

102

Figure 8: ATM Network Transmisson Packet Information

The facade-based protected connector provides the service that is measured on each filtered data capture to con-

tain only the packets necessary for the ATM and the processing system transaction. The overhead packets have

been eliminated, still leaving the packets that handled the transaction for each of the above mentioned processes

and number of transactions. During each transaction, this technique is used to measure the packets are in terms of

quantity, size and volume. There are some differences with the number and size of packets in relation to the

ATM startup packet. The data obtained, however, can indicate some effects on the congested section of the net-

work connected with the ATM.

103

 Figure 9: ATM Authentication Packet Tramsmission Process

The test transactions are carried out after checking that the ATM is confirmed to the authentication server fol-

lowed by the facade secure session. From the original authentication through the secure session facade connector,

the ATM has an address of 192.168.0.7 and has an authentication key at IP address 206.71.17.21. These adresses

are then used as buffers for each capture to a stream containing only packets and addresses from each transaction.

In order to be checked, the system process model for the above mentioned facade session based functional novel

method follow checking that the ATM is authenticated to the authentication server; the user should upload the

XML scheme in a specific format to the model checking process.

 In a certain format, the XML schema should be given. The schema can be accessed through a computational

process. The SRS tool kit takes up this description and extracts the information involved (i.e. tables, attributes

and their data types, main keys and interactions), stores the extracted data as items in classes generated for the

phase in comparison process between input & output data. The arrangement of information into business plans

makes this goal possible The below figure 10 displays the front –end process that perfoms the value of the ATM

model process input and output test value. In this way, the proposed test process outcome will be analysed in a

secure way, as mentioned in figure 10.

104

Figure 10: Extracted Information from XML Schema Scenario Based Validation

Therefore, this is a logical technique; as the adequacy of the new connector design remains unexplored, we have

attempted to fill this gap through the facade software connector approach that encapsulates the functionality of all

other connectors and provides a secure communication pattern in the B2c social e-commerce application devel-

opment. It is also important to run a comparision of this technique through the software connector perspective

rather than the network associated protocol security because the issue identified is the facade based secure ap-

proach that consititutes the idea explained above.

4.3 Centralizes Security Session Facade

The application's security policies can be operated at the facade level of the session, because this is the clients '

level tier. The session facade’s coarse grain exposure is harder, more realistic, than at the participating compo-

nent level, to identify security policies at this level.

Secure connector supports business components that provide sophisticated control points and security, which is

easier to manage for session facade. This provides coarse grain access because relatively fewer coarse grain

methods have to be handled securely.

4.4 Security Analysis Using Session Facade

The approach of using the session facade is a software design pattern through which we can encapsulate the steps

of the session process in a single “session call” () method. This is done at the level of session bean that delegates

the multiple-steps process to encapsulate the calling functionality of secondary connectors in a frame to execute

105

the application processing logic. Within the session Facade implementation, the “identifycustomer” () secure

method is a remote call, whereas “findbycustomerID” () and “getpassword” () are local calls. It is important to

note that the session facade improves the performance and security to simplify the interface to the client. This

increases the benefits of facade based solutions in a secure connector design approach for B2c e-commerce solu-

tions.

5.5 A Comparison of Software Connector Modeling Approaches

The existing approaches based on some other methods (Shin et al 2018: Baker et al 2014: Shin et al 2016: Shin

et al 2017; Shin et al 2016; Derdour et al 2015) shed light on the modeling of component connector interaction.

Perry et al. provided a high-level description of the architecture function of software connectors (Perry et al

2014). In order to define architectural components, including connectors, Kazman et al. proposed outside canon-

ical features (Kazman et al 2016). Finally, previous attempts had model connectors at the interdependency

stage of the module.

The software modelling languages typically define relations between the modules at the process call level and the

access to shared data (Derdour et al 2015). For this purpose, architecture and description languages have been

specifically developed to enable development of more complex and efficient connectors, such as UML Sec. We

have used the power of UMLSec for modelling the ATM B2c architectural design through a façade based com-

ponent connector. This is empowered by existing ADLs primarily focused on checking the properties of model-

ling behaviour of each connector in the system. This helped to clearly define the connectors’ export services,

their mechanics, interaction protocols and interaction usage and development constraints within the ATM exam-

ple in figure 6. As the adequacy of the new connector design remains unexplored, we have attempted to fill this

gap through the façade software connector approach that encapsulates the other connector functionality and pro-

vide a secure communication pattern in B2c social e-commerce application development.

5. Discussion

The approach suggested in this paper differs from other security approaches. Our approach employs secured a

facade based connector that separates application issues from security issues in a secure software architecture for

social distributed applications based on components. Communication problems are coordinated from security

106

issues within secure connectors. Suryanarayana, et al (2004) focuses on the trust management system where se-

curity services are embedded in free, unified application components in software protection technologies.

This paper provides the secure connectors with protection between components, i.e. for stable interactions be-

tween application components. The secure facade based connectors provide security services for communication

with other components to the application components. They also delegate the processes of authentication, author-

ization, confidentiality. Integrity and non-repudiation services can be built in protected connectors or delegated to

internal and external security components via secure connectors while processing the social interaction ATM

(B2c) Model.

Composing and managing the interactions is not a trivial activity in component-based design. In the present state-

of-the-art components-based models, the design and interface types are primarily port-to-port or method-call-

based. Both styles confer a dynamic pattern because, due to the number of system calls, ports and connectors, the

number of contacts will drastically increase. A simple and coherent model with such a complexity is to be avoid-

ed logical functions actions are required.

Since the facade of the session reflects the process for use cases, transaction processing on the facade level of the

session is more rational. Similar to centralized security, centralized transaction management provides benefits.

The facade provides a central position for the administration and interpretation of transaction power. Transaction

processing on participating business components is much more relevant internally, in particular since it is smaller

than the facade. However, the client has access to the Java bean business component indirectly through commu-

nication of secure connectors; those use a session facade to place the burden of demarcation on the client side

tier. The function of connectors is expanded in this paper by adding security patterns as design side concept to the

connectors via a secure session facade component acting with the secure connector’s social interaction with the

ATM B2c Model.

5.1 Research Contribution

This paper addresses the security issues that may also be encapsulated in the software application logic through

secure façade based connector that is called security in connector based component application. This approach

can deal with the Subversion Attack Vulnerability in application logic that may cause of component event based

107

calling inter communication method. This leads to a process at the time of loosely coupled or tightly coupled in-

tegration based on interfaces of components as defined in figure 1.The solution defined related to this problem

through the modeling ATM case study in figure 6 and 7, which is different from other approaches in this domain.

6. Conclusion

This paper addresses the development of facade based secure connectors for the design of secure software archi-

tectures for social distributed commercial applications such as the ATM Model. The secure connectors are built

separately from the business application components and take into consideration the security services that appli-

cation components need, as well as the communication patterns for sending secure messages and replies between

the components (if desired).

The security services provided in software environments by the application components for business applications

are designed to provide secure facade based connectors. These secure connectors contain security-related arte-

facts for the isolation of software modules from security services. The security artefacts are allowed only when

application components need the required security resources, such as authentication, authorization, protection,

confidentiality and non-repudiation. Through distinguishing security concerns from implementation problems,

secure facade based process encapsulating the connector’s secure function that will make complex networks

more easily maintained and flexible as mentioned in the ATM social e-commerce application example.

Declaration of interest

☒ The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships, which may be considered as po-
tential competing interests:

Ethics approval

There is no human and animal involved in this research therefore no need of ethical approval for this research.

References

108

Albassam, E., Porter, J., Gomaa, H., Menascé, D.A, 2017: DARE: A Distributed Adaptation and Failure Recov-

ery Framework for Software Architectures. In: 14th IEEE International Conference on Autonomic Computing

and Communications (ICAC), Columbus.

Al-Azzani.S., Bahsoon.R, 2012 SecArch: Architecture-Level Evaluation and Testing for Security, in Joint Work-

ing IEEE/IFIP Conf. Software Architecture (WICSA) and European Conference on Software Architecture

(ECSA), pp. 51–60, ISBN 978-1-4673-2809-8.

Almeida.F ., 2017 Concept and Dimensions of Web 4.0, International Journal of Computers and Technology, Vol

16 Issue7: pp 7040-7046 DOI: 10.24297/ijct.v16i7.6446

Baker, C., Shin M., 2014., Aspect-Oriented Secure Connectors for Implementation of Secure Software Architec-

ture, International Conference on Software Engineering and Knowledge Engineering (SEKE’2014), Vancouver,

Canada, July 1-3.

Derdour.M., Alti.A., Gasmi.M.,, Roose.P., 2015 Security Architecture Metamodel for Model Driven Securi-

ty,Journal of Innovation in Digital Ecosystems,Volume 2, Issues 1–2, Pages 55-70.

Gomaa.H., 2011 Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures (Cam-

bridge University Press, Cambridge, UK.

 Kazman.R., Cervantes.H, 2016 Designing Software Architectures: A Practical Approach, Addison Wesley, p 97-

102.

Nabi.F., Yong.J., Tao.X., 2020 A Novel Approach for Component based Application Logic Event Attack Model-

ing, Vol. 22, No. 3, pp. 435-441.

Nabi.F., 2011 Designing a Framework Method for Secure. Business Application Logic Integrity in e-Commerce

Systems, International Journal of Network Security, Vol.12, No.1, PP.29–41, Jan. 101.

 Nabi.M.M,, Nabi.f., 2017 A Process of Security Assurance Properties Unification for Application Logic “, Inter-

national Journal of Electronics and Information Engineering, Vol.6, No.1, PP.40-48 .

Plasil, F., Besta, M., Visnovsky, S.1999: Bounding Component Behavior via Protocols. In Proceedings of TOOLS

USA ‘99, Santa Barbara, USA.
109

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.24297%2Fijct.v16i7.6446?_sg%5B0%5D=5wtQyUQWFQa3JXWmBjD6qowlcHddKTct-Yrr6tP2VAdNPO9jdFAQnsQHW3svogmyw_ybRQMLi9e609KxXdOJZ3i9ug.swUo5pCFYZPwyR_9PkZDCc7e_GH-_-rCEmojKtH6wxz377xE3X54A6sk-_su-vSVvbNOtuSWzJCZ7-7-A1TVRw
https://www.sciencedirect.com/science/article/pii/S2352664515000206#!
https://www.sciencedirect.com/science/article/pii/S2352664515000206#!
https://www.sciencedirect.com/science/article/pii/S2352664515000206#!
https://www.sciencedirect.com/science/article/pii/S2352664515000206#!
https://www.sciencedirect.com/science/journal/23526645
https://www.sciencedirect.com/science/journal/23526645/2/1

Perry.D.E. 2014, Software Architecture and its Relevance to Software Engineering, Invited Talk. Second Interna-

tional Con-ference on Coordination Models and Languages, Berlin, Germany.

Shin, M., Gomaa, H., Pathirage, D, 2018: A Software Product Line Approach for Feature Modeling and Design

of Secure Connectors. In: The 13th International Conference on Software Technologies (ICSOFT). SciTe-

Press, Porto.

Shin, M. E., Gomaa, H., Pathirage, D., 2016. Reusable Secure Connectors for Secure Software Architecture, 15th

International Conference on Software Reuse, Limassol, Cyprus,PP 25-35

Shin, M.E., Gomaa, H., Pathirage, D.2017: Model-based design of reusable secure connectors. In: 4th Interna-

tional Workshop on Interplay of Model-Driven and Component-Based Software Engineering (Mod Comp),

Austin.

Shin, M. E., Gomaa, H., Pathirage, D., Baker, C., Malhotra, B., 2016. Design of Secure Software Architectures

with Secure Connectors, International Journal of Software Engineering and Knowledge Engineering, Vol. 26,

No. 5, pp 769–805.

Suryanarayana.G., Erenkrantz J. R., Hendrickson S. A., Taylor R. N., 2004 PACE: An architectural style for trust

management in decentralized applications, in Proc. 4th Working IEEE/IFIP Conf. Software Architecture

(WICSA '04), (IEEE Computer Society, Washington, DC, USA, 2004), pp. 221–230.

Siricharoen.W.V, 2018 Understanding Social Interaction with Human Computer Interaction (HCI) Adaptation,

EAI Endorsed Transactions on Context-aware Systems and Applications 6(18):160762

Taha, A., Trapero, R., Luna, J., Suri, N.2017: A framework for ranking cloud security services. In: International

Conference on Services Computing (SCC), pp. 322–329. IEEE, Honolulu.

Taylor, R. N.; Medvidovic, N.; Dashofy, E. M,2010 software Architecture Foundations Theory and Practice, ISBN

13: 9780470167748; Publisher: Wiley.

110

111

CHAPTER 8. RESEARCH RESULTS AND CONCLUSION

8.1 Introduction-related thesis question and contribution to the research

This figure displays the publications that informed the research questions and illustrate and

highlights the main contribution of this research through this diagram that shows how application

logic in banking applications can be secure. This can be done via the re-use of business

component design specifications through the process of vulnerability identification, calcification

and modeling. This Chapter also outlines the main goals of this process which have been covered

in the following publications, that support each research thesis question as a contribution to the

literature in this field.

Figure 8.1: Security Assurance Model Projection of Thesis Contribution

The above-mentioned diagram explains the research questions related to the contribution made

by this thesis.

For example, security assurance in the CBSD section as displayed in the figure explains the main

research question and other parts represent the sub-questions related contribution/s. These five

papers cover the aspects cited in the above-mentioned Diagram 8.1

112

• This main research question has been answered in terms of SCA that supports service-

oriented application logic, in this Chapter, it is stated that existing literature that illustrates

the background of modern research is significant to explore. This chapter carefully

explains the nature of the problem and defines a model as a contribution which is

mentioned in Figure 6. Analysis attack event process model that is a contribution to the

review paper, while comparing other methods.

• Research sub-questions 1 and 2 address the component-based logical vulnerability

taxonomy, the main purpose of this is to address the relationship between technical and

logical vulnerability and validates the proposed model for a CBSD taxonomy, which is a

major contribution as presented in Chapters 4 A and 4B. These publications discuss the

contract type and contract assurance gap-based problem.

• Research Question 3 addresses the relationship to define how Question 3 was answered

through proposed event-based attack modeling by using a case study-based modeling and

designed solution about design flaws detection in real-world scenarios. This is presented

in Chapter 5 which also demonstrates the modeling component of assurance-based

integration.

• This research question 4 address the relationship between the service-oriented component-

based application logic that defines application logic vulnerability detection through

proposed modeling in terms of social e-banking and proposed and validated modeling for

CBSD-based business logic flaws. This is the major contribution of this thesis as well as

this produced in the Q 1 publication that presents the specification-based integration.

• In this thesis, research question 5 addresses social interaction in banking application logic

based on connectors. A novel technique has been addressed and formulated the

application-based logical vulnerability through a façade component connector that is its

kind of new technique and recently accepted in IJNS Q 2 Journal. This presents logical

solution assurance.

Whereas the compound assurance in Figure 8.1 presents the overall contribution of solution

strategy towards displaying the complete solution in CBSD security assurance.

113

Therefore, it is concluded that security assurance is based on the proposed model as displayed in

Figure 8.1. The research thesis results and discussion section covers each paper, with a related

explanation that shows how it matches with Diagram 8.1 and its contribution to the research.

Research Thesis Results and Discussion

The research thesis discussion raised a number of points in relation to the analysis and findings

regarding each of the five papers. Further analysis is offered here to clarify our research

contribution.

Findings and Discussion Points

The first and most important contribution is the analysis of requirements of event-based

distributed system design, where SCA (service component architecture) is used. A service

component paradigm allows for composite application development and application reusability.

However, while creating service-oriented component application logic, security in event-based

communication in components interaction models is usually emphasized on the top layer in SCA.

As highlighted by Sonar Qube (2017), existing system analytics focusing on the service

component do not focus on event attacks, and nor do they appropriately detect vulnerabilities

component-by-component, as demonstrated in OWASP’s Orizon Project (2018) and Xanitizer

(2017).

This research has explained the concerns with composite applications and event-based attacks in

the service component architectural paradigm. We have accomplished this goal by analyzing,

assessing, and modeling strategies in-service component application functionality, as well as in

application components that create, consume, and process events.

The research paper has examined in depth the most recent security changes in the field of

component inter-communication event base model for service component architecture. The study

will assist users in comprehending the hazards and forms of attacks that a component-based

application may encounter while working with application logic through event-based service in

component architecture. Our research has established a new standard for future research in the

event-based security paradigm.

The primary contribution of this research is that it identifies current security efforts that do not

114

focus on event attacks nor correctly detect component-by-component inter-communication event

models, and it produces a solution to the problem through three-dimensional methods analysis

and comparison. It also paves the way for future research in this area by researchers, with the goal

of making event-based distributed systems more secure.

The thesis represents the second contribution in the field of application logic security

vulnerabilities classification.

New advancements in the field of e-commerce software technology have also offered numerous

benefits; yet, the development process is always fraught, from the design phase to the

implementation phase. Software flaws and defects exacerbate dependability and security

concerns, requiring a solution in application business logic that is based on a logical component-

ware combination.

The study addresses the issue of logical vulnerability classification in component-based web

applications by identifying Attack Group Method and categorizing two different types of

vulnerabilities in component-based applications. Using an empirical methodology-based

classification strategy for a logical group attack approach, a novel classification scheme is

presented and built.

The security dimensions are features and attributes of the system that impact the security group's

ability to understand and make improvements to the system. This is based on a thorough grasp of

the vulnerability category and its subclasses.

The security dimensions have a direct impact on the security group's ability to analyze the attack

vector in relation to an application or system security. This can be done both logically and

technically, with each part of both being classified before the security issues are addressed.

Based on our findings, the proposed model offers classification and characterization of two unique

categories of vulnerability issues/problems: "Technical Vulnerabilities" and "Logical

Vulnerabilities." These vulnerabilities are categorized according to the attack method, which is

listed in the vulnerability model, and related to the attack pattern technique.

The thesis represents the third research contribution as event–based attack modeling in the context

of application logic vulnerability in a component-based banking application while re-using design

specifications within existing component logic. This may cause a subversion attack in application

115

business logic.

Through a novel vulnerability modeling technique, an Event that targets a specific system must

be identified. In component-based application logic vulnerabilities, current research does not

provide event attack modeling. To detect such flaws, it is crucial to determine which component

set off the Event that allowed the system to be exploited.

This study presents Event-Based Attack Modeling, which is particularly useful in the context of

component-based software subversion logic attacks in the Business Application Logic category.

This will aid in the creation and reuse of components based on the functional logic of current

applications.

Attack modeling is a very effective technique for analyzing attacks and preventing the situation

from becoming worse. As a result, a variety of strategies have been developed to deal with attack

modeling in the component-based system domain. Design flaws or logical flaws are examples of

logical vulnerability.

Noting the difficulty in identifying and modeling them, a technique that can deal with logical

flaw-based vulnerabilities is necessary. In this work, we provide “Event Attack Modeling,” a

unique modeling approach that employs the Uppaal Tool to model a vulnerability and its attack

flow through an attack-triggered component within an application in a real-time scenario.

The fourth contribution of this research is that it identifies security assurance methodologies in

service component-oriented applications to be utilized through threat modeling and a novel

component fault-detection model.

Using a UML secure design approach, this concept is expanded to include the modeling

component and its applications. The methodologies used in this research to validate the strategy

include verification and validation for security by design testing in rapidly developed component-

based social e-Commerce banking applications, to avoid the business logic design flaw problem.

Modern social e-commerce practices are a subset of e-Commerce that emphasizes security

framework protocols such as secure transactional protocols, cryptographic techniques, and

sanitization criteria. These procedures are expected to ensure the stability of social e-commerce-

based applications. The key challenge in designing these techniques is the composition of

software components and integration flaws. The primary focus of these techniques is on software

116

component composition and integration problems, which are frequently overlooked in business

application logic. These issues have the potential to negate the impact of modern information

security approaches. The component's logic subversion on the server-side is the weakest link in

social e-Commerce banking application logic security solutions.

This paper covers a specific issue in application logic security known as a subversion attack,

which can be classified as a design flaw. Many traditional security techniques routinely utilized

in modern e-Commerce systems cannot overcome this type of security flaw.

The security assurance methodology used in this research to validate the strategy includes

verification and validation for security by design testing in rapidly developed component-based

social media e-Commerce applications, to avoid the business logic design flaw problem.

The fifth research contribution is that it describes a secure social distributed applications software

architecture that contains components. Our approach uses a façade-based connector that isolates

application logic difficulties from security problems. This research addresses security and privacy

issues related to social interactions with the ATM model that may also be encapsulated in the

software application logic through a secure façade-based connector that is known to increase

security in a connector-based social e-commerce (B2c) application. This will target the

Subversion Attack Vulnerability found in the application logic of B2c systems and may allow a

component-based approach called the inter-communication method.

This research work was developed in the context of our focusing on the modeling technique, by

introducing security-modeling aspects into component service architecture in order to expand on

the research work in paper 5 (Security assurance methodology). As anexample, the B2c ATM

model will be featured as part of the security feature-based UML Sec modeling, in turn, was

demonstrated through social interactions with e-commerce software security modeling that

justifies the secure application logic.

Within a secure socially distributed applications software architecture that contains components,

our approach uses a façade-based connector that isolates application logic difficulties from

security problems.

Secure connectors that coordinate communication have security challenges. The trust

management system is the focus of this method, which combines security services with open,

117

unified information defence technology application components and their underlying logic.

Security connectors with component security, i.e. for reliable connections among application

components, are also discussed in this article. Secure façade-based connectors ensure that a

component's business logic communicates with other components in the application.

They also assign authentication, permission and confidentiality procedures. Integrity and non-

repudiation services can be inserted into secure connectors or transferred through secure

connectors to internal and external security components during the processing of social

interaction ATM (B2c). The façade serves as a focal point for the administration of transaction

power and perception. Transaction processing through participating business components is far

more important internally, especially because components are smaller than the façade. Through

secure connector communication, the client has indirect access to the Java bean business

component; these use a session façade to transfer the burden of demarcation to the client tier.

Discussion

Figure 8.1 projects that all publications based on the research questions illustrate and highlight

the main contribution through this diagram, specifically how application logic in banking

applications can be developed securely, while re-ing a business component design specification.

This process is particularly can be used for the banking domain. However, an example of NASA

project is presented, so there is the possibility of using this model for mission-critical systems

may also be possible. The research findings can be applied to the development of new secure

applications based on the existing business logic in the banking industry at the design, development and

testing stages as presented in publication 5 (chapter 6) demonstrate the reusability of business

components and validation model through Uppaal Tool and UML modeling.

This explains the role of the model of each publication which expresses the contribution of this

thesis. The model Figure 8.1 expresses the process of security assurance such as design speciation

and contact type of component interface assurance, which then leads to specification that is based

on integrity assurance which further formulates the logical structure of logical function of the

component. This process defines the CBSD assurance process. This model depicts the overall

process and makes links with the role defined in service component architecture-based social

banking application logic.

It is important to consider that such systems need security at the design stage, so that the logical

structure of the application follows the component business logic of each. Any integration fault

inevitably leads to a security flaw in the design. This causes a bypass of security mechanisms in

ways defined in this research, and set out in case study examples exploring social interaction in

e-commerce banking applications.

Therefore, it is concluded that this research has covered the gap between design specification of

business component integration faults and re-usability of business process functions of the

component. The further gap that has been closed is CBSD-based social e- banking security in

terms of design-based business logic, which is not discussed this before as projected in publication

5 of this thesis. Future research and further implications are subject to continue in future for those

who are interested in this research.

Research Recommendations

Therefore, in this case, bank developers needs to focus on the purpose and type of behaviour

specification of re-used component in terms of requirement specification in each layer (an n-tier

CBS application), component functional specification boundary conditions and knowledge of its

defined interfaces within the systems, and if ignored design specification for each layer

component. The failure to meet the required specifications as compared to its functional

specification based on design specification, for the purpose it was designed, based on its current

logical component-based composition in the system. This gave birth to the design flaw in the

component ware. This all process of problem generated business logic vulnerability. This is a

very serious violation of the principle “specification purpose” in component-oriented logical

component-ware at the time of business interface-driven integration, while ignoring usage

contract type specifications. It’s also a case of “Test by Contract”, which means not only that a

design specification for the component is needed for consideration but also contract establishment

among the interfaces and their designed logic throughout the process. Together this creates

security assurance among the interface-focused designed components behaviour through e-

process while developing component-oriented business logic. It is important to consider the

boundary condition of logical attack falls in between functional specification and design

specification. Therefore, our proposed solution will help to mitigate the attack triggering method

“Event-based-generated” e-process flow to violate business logic.

This research will recommend following the developers to create business logic free from flaws,

118

while using existing logic.

8.2 Conclusion

The service component architecture provides a foundation to develop application logic design and

event-based communication in service composite applications. At the same time, there are

security issues regarding service integration and composite application component re-use, which

often suggests a design flaw in service component-oriented application logic design. The research

has proved that it is difficult in service component architecture to reuse the design specifications

of existing system component logic, while reusing design specifications to integrate new services

through business application logic.

Specifically in the banking domain, it is evident that system design that uses existing components

for another service must organize design specification and business process integration according

to the business logic of each component.

Therefore, it is imperative to design a solution based on a methodology that will strengthen

security. A design method approach for service component-oriented e-commerce applications can

be considered in the context of social e-commerce banking case studies by using a modeling

methodology that helps to generate and automate the vulnerability through attack scenario

modeling (UML Sec & Uppaal Tool) as presented in this thesis.

The research findings are based on the research contribution from Papers 1 to 5 is to propose a

security assurance approach for service-component-focused business logic by reusing core

service logic. It will also resolve the disparity between traditional viewpoints and security

requirements in e-commerce systems in the context of its sub-set social e-commerce. It will

increase the degree of security assurance by design modeling such a practice. When practicing

the design of service component-focused applications within the e-commerce domain we will use

currently available components and deploy business logic into service-based systems.

A second contribution of the research is that it proposes and defines a new taxonomic system of

logical vulnerabilities in service component-based middle-tier services, which are often the result

of design defects due to COTS or in-house software modules for service integration. The third

point of contribution is that attack modeling in the scenario of logical attacks by event-based

attack causes feature detection. The fourth contribution is derived from the approach in paper 5,

119

120

which targets the security assurance methodology through security modeling UML - see

technique. The fifth contribution will be reflected in more depth as part of security feature-based

UM - see modeling for a B2c ATM social interaction model.

This thesis carefully examines a pressing issue in component-based service-oriented application

logic reuse and security. Other researchers have not succeeded in solving the issues set out above.

This indicates a clear research gap, which has been comprehensively addressed through this series

of research publications. As a result, and given its technical nature, the proposed work when

completed will be a significant achievement in the domain of components and services-based

solutions, as well as strengthening their integrity and level of assurance in this domain.

8.2.1 Future Research Direction

This research opens a gateway for further research findings for researchers through the taxonomy

which helps to further improve the technique in terms of flaw-free CBS-based J2EE application

logic development and especially social interaction interim of social medium-based banking

application security through enhancing the suggested model in this research to make more secure

banking online.

121

References

Algharabat, R. S., & Rana, N. P. (2020). Social commerce in emerging markets and its impact on online

community engagement. Information Systems Frontiers, Springer, vol. 1, pages 1-22.

Amirpour, M., Harounabadi, A., & Mirabedini, S. (2016). Service-oriented architecture assessment based on

software components. Decision Science Letters, 5(1), 109-118.

Agirre, A., Marcos, M., & Estévez, E. (2012, September). Distributed applications management platform based

on Service Component Architecture. In Proceedings of 2012 IEEE 17th International Conference on

Emerging Technologies & Factory Automation, 1-4.

Bentounsi, M., Benbernou, S., & Atallah, M. J. (2016). Security-aware business process as a service by hiding

provenance. Computer Standards & Interfaces, 44, 220-233.

Ghassan B, Achim H, RafaelValencia G, Jun S, Asif G (2020) Towards an assessment framework of reuse: a

knowledge-level analysis approach. Complex Intell Syst 6:87–95.

Gbaffonou, B. A., Lapalme, J., & Champagne, R. (2015). Service-oriented architecture: a mapping study. 2015

International Conference on Enterprise Systems, 33-42.

Hassard, J., & Kelemen, M. (2012). Encyclopedia of Case Study Research. SAGE Publications, 49-56.

Janssen, M. (2014). Exploring the service-oriented enterprise: Drawing lessons from a case study. In Proceedings

of the 41st Annual Hawaii International Conference on Systems, 101-101). IEEE.

Jiang, M., & Willey, A. (2005). Architecting systems with components and services. In IRI-2005 IEEE

International Conference on Information Reuse and Integration, 259-264.

Jakoubi, S., Tjoa, S., Goluch, S., & Kitzler, G. (2011). Risk-aware business process management—establishing

the link between business and security. In Complex intelligent systems and their applications, 109-135.

Kalantari, A., Esmaeili, A., & Ibrahim, S. (2013). A Service-Oriented Security Reference

Architecture. International Journal of Advanced Computer Science and Information Technology, 1, 25-

31.

Karimi, O. (2011). Security model for service-oriented architecture. Advanced Computing: An International

Journal (ACIJ), 2(4).

Laukkanen P, Sinkkonen S, Laukkanen T (2018). Consumer resistance to internet banking: postpones, opponents

122

and rejectors. Int J Bank Mark 26(6):440–455

Luhach, A. K., Dwivedi, S. K., & Jha, C. K. (2014). Designing and implementing the logical security framework

for e-commerce based on service-oriented architecture. International Journal on Soft Computing (IJSC),

5(2).

Malohlava, M., Hnetynka, P., & Bures, T. (2013). Sofa 2 component framework and its ecosystem. Electronic

Notes in Theoretical Computer Science, 295, 101-106.

Nabi, F., & Nabi, M. M. (2017). A process of security assurance properties unification for application logic.

International Journal of Electronics and Information Engineering, 6(1), 40-48.

Nabi, F., Yong, J., & Tao, X. (2019). Proposing a secure component-based-application logic and system’s

integration testing approach. International Journal of Information and Electronics Engineering, 11(1),

25-39.

Nabi, F., Yong, J., & Tao, X. (2020). Classification of Logical Vulnerability Based on Group Attacking

Method. In: 11th International Conference on Ambient Systems, Networks and Technologies (ANT),

Warsaw Poland.

Nurcan, S., & Schmidt, R. (2015). Service-oriented Enterprise-Architecture for enterprise engineering

introduction. Proceedings of the 2015 IEEE 19th International Enterprise Distributed Object Computing

Conference Workshops and Demonstrations, 88-90.

Nabi, F. (2008). Designing Secure Framework Method for Business Application Logic Integrity in e-commerce

Systems. Works in Progress 24th Annual Computer Security Applications Conference Anaheim,

California, USA, 8-12.

Nabi, F. (2005). Secure business application logic for e-commerce systems. Computers & Security, 24(3), 208-

217.

Novak, M., & Švogor, I. (2016). Current usage of component based principles for developing web applications

with frameworks: a literature review. Interdisciplinary Description of Complex Systems:

INDECS, 14(2), 253-276.

http://eprints.usq.edu.au/37984/
http://eprints.usq.edu.au/37984/

123

Paik H., Lemos A.L., Barukh M.C., Benatallah B., Natarajan A. (2017) Service Component Architecture (SCA).

In: Web Service Implementation and Composition Techniques. Springer, Cham.

https://doi.org/10.1007/978-3-319-55542-3_8

Raed SA, Nripendra P.R. (2020) Social commerce in emerging markets and its impact on online community

engagement. Information. https://doi.org/10.1007/s10796-020-10041-4.

Riad, A. M., Hassan, A., & Hassan, Q. F. (2018). Leveraging SOA in banking systems’ integration. Journal of

Applied Economics Science, Romania (JAES), 3(2), 4-9.

Rodriguez, M., Zalama, E., & Gonzalez, I. (2016). Improving the interoperability in the Digital Home through

the automatic generation of software adapters. Revista Iberoamericana De Automatica E Informatica

Industrial, 13(3), 363-369.

Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., & Stefani, J. B. (2017). A component‐based

middleware platform for reconfigurable service‐oriented architectures. Software: Practice and

Experience, 42(5), 559-583.

Wang, H., Wang, Y., Taleb, T., & Jiang, X. (2020). Special issue on security and privacy in network computing.

World Wide Web, 23(2), 951-957.

Woody, C. (2015), Security Risk Management using the Security Engineering Risk Analysis (SERA) Method,

presentation. Annual Computer Security Applications Conference.

Yaghmaie, A. (2017). How to characterise pure and applied science. International Studies in the Philosophy of

Science, 31(2), 133-149.

Johan, S.K.; Mishra, R.K. (2019) Predicting and Accessing Security Features into Component-Based Software

Development: A Critical Survey. In Software Engineering; Hoda, M.N., Chauhan, N., Quadri, S.M.K.,

Srivastava, P.R., Eds.; Springer: Singapore; pp. 287–294.

Johan, S.K.; Mishra, R.K. (2019) A Review on Re-usability of Component Based Software Development.

Reliab. Theory Appl. 14, 32–36.

Lau, K.K.; Cola, S. (2017) An Introduction to Component-Based Software Development; World Scientific:

Singapore.

https://doi.org/10.1007/s10796-020-10041-4

D. Migault, M. A. Simplicio, B. M. Barros et al., (2017, June) “A framework for enabling security services

collaboration across multiple domains,” in Proceedings of the 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), pp. 999–1010, Atlanta, GA, USA.

J. Jürjens, K. Schneider, J. Bürger et al., (2019) “Maintaining security in software evolution,” in Managed

Software Evolution, pp. 207–253, Springer, Cham, Switzerland.

G. Wangen, C. Hallstensen, and E. Snekkenes, (2018), “A framework for estimating information security risk

assessment method completeness,” International Journal of Information Security, vol. 17, no. 6, pp. 681–

699.

S. E. Sahin and A. Tosun, (2019) “A conceptual replication on predicting the severity of software

vulnerabilities,” in Proceedings of the Evaluation and Assessment on Software Engineering, pp. 244–

250, Copenhagen, Denmark.

P. Rotella, (2018, June) “Software security vulnerabilities: baselining and benchmarking,” in Proceedings of the

1st International Workshop on Security Awareness from Design to Deployment, pp. 3–10, Gothenburg,

Sweden.

A. R. S. Farhan and G. M. M. Mostafa, (2018, April) “A methodology for enhancing software security during

development processes,” in Proceedings of the 2018 21st Saudi Computer Society National Computer

Conference (NCC), pp. 1–6, Riyadh, Saudi Arabia.

Alrubaee, A.U., Cetinkaya, D., Liebchen, G., & Dogan H., (2020) A Process Model for Component-Based

Model-Driven Software Development Journal Information, 11, 302; doi:10.3390/info11060302

Rana T. & Baz A., (2020) Incremental Construction for Scalable Component-Based Systems, Journal Sensors,

20, 1435; doi:10.3390 NIST 2021

https://csrc.nist.gov/Projects/ssdf/s20051435.

Vicente-Chicote, C., Inglés-Romero, J.F., Martínez, J., Stampfer, D., Lotz, A., Lutz, M., & Schlegel, C., (2018)

A Component-Based and Model-Driven Approach to Deal with Non-Functional Properties through

Global QoS Metrics: 40-45.

Mills, M., (2017) "Sharing Privately: The Effect Publication on Social Media Has on Expectation of

Privacy". EBSCOhost. Journal of Media Law. Retrieved 4 April 2018.

Nabi, F., Yong, J., & Tao, X. (2020), A security review of event-based application function and service

124

https://csrc.nist.gov/Projects/ssdf
https://dblp.org/pid/88/3023.html
https://dblp.org/pid/37/9978.html
https://dblp.org/pid/49/1566.html
https://dblp.org/pid/120/5615.html
https://dblp.org/pid/22/10535.html
https://dblp.org/pid/135/8354.html
https://dblp.org/pid/s/ChristianSchlegel.html
http://eprints.usq.edu.au/39342/

component architecture. IGI International Journal of Systems and Software Security and

Protection, 11 (2). pp. 58-70. ISSN 2640-4265.

Nabi, F., Yong, J., & Tao, X. (2020), Classification of logical vulnerability based on group attacking

method. In: 11th International Conference on Ambient Systems, Networks and Technologies

(ANT 2020), 6-9 April 2020, Warsaw Poland.

Nabi, F., Yong, J., & Tao, X. (2019), A novel approach for component-based-application logic event

attack modelling. International Journal of Network Security, VDOI: 1816-3548 (2020-00059).

ISSN 1816-353X.

Nabi, F., Yong, J., & Tao, X. (2020), Security aspects in modern service component‑oriented application

Logic for social e‑commerce systems Social Network Analysis and Mining

https://doi.org/10.1007/s13278-020-00717-9.

Nabi, F., Yong, J., & Tao, X. (2021) An Approach of social interaction with software connectors & the

role of façade components for secure application logic (Under Publication Process).

125

http://eprints.usq.edu.au/39342/
http://eprints.usq.edu.au/37984/
http://eprints.usq.edu.au/37984/
http://eprints.usq.edu.au/37983/
http://eprints.usq.edu.au/37983/
https://doi.org/10.1007/s13278-020-00717-9

