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Abstract.This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression
model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters.
The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of
Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all
computations and simulations.

INTRODUCTION

There are two types of data, namely linear and circular data. The most common type is linear data such as observations
on income, age, weight, numbers of any item and so on. Whereas, according to [1] the second type occurs when
directions are measured. He states that time data, for example, measured on a 24 hour clock may be considered as
circular data by converting them to angular data. Therefore, data measured by compass or clock, can be expressed
in degrees from 00 to 3600 or in radians from 0 to 2π (cf. [2], [3] and [4]). Circular data can be found in many
different fields, for instance in meteorology, physics, psychology, medicine and biology. The wind direction or the
flight directions of bird-migrations are some examples of this type of data.
Statistical methods developed for linear data normally do not work for circular data. However, many statistical tools
have been proposed to treat this type of data. These tools are called circular or directional statistics. They differ from
those which are used for the linear data. These differences are formed in many aspects of statistical analysis, such
as data display, descriptive and inferential statistics, mathematical distributions, regression analysis and beyond [5,
Chapter 1]. Despite the nature of each type of the data, almost all statistical topics can be considered for both linear
and circular data. One of the useful statistical tools is logistic regression analysis, which analyses the relationship
between a binary response and a predictor. This paper deals with the logistic regression analysis for circular data.

Descriptive statistics for circular data

The early appearance of observations of a circular nature occurred in geology. [6, pp.11-13] summarises the first use
of descriptive statistics for circular data, reporting that the key idea of transforming the circular data to vectors was
introduced by Krumbein in 1939, which is essential in the analysing process of this type of observations. [6, pp.11-13]
also reports that researchers later developed some measures for circular data such as the mean direction and circular
variance. Fisher [6, pp. 30-35], [5, pp.9-15], [1] and [4, pp.13-19] also introduce some processes of finding descriptive
statistics.
In the case of observations of directions in two dimensions, these may be represented as angles measured with respect



to the starting point and a sense of rotation. They also can be represented as points on the circumference of a unit
circle or as unit vectors from the origin as only the direction is required. Due to this circular representation, such
observations are called circular data. We can specify any point on a plane by an ordered pair of numbers, called the
coordinates of the point. Two coordinate systems are used for this purpose:

1. the rectangular coordinate system, representing a point on a plane as (x, y);
2. the polar coordinate system, using (r, α) to represent any point, where r is the distance to the origin and α is the

angle as shown in Figure 1 bellow.

FIGURE 1. Relation between rectangular and polar co-ordinates.

Note that, it is easy to convert between these two systems by using trigonometry. As in figure 1, the relationship
between rectangular coordinates and polar coordinates is

x = r cosα, y = r sinα. (1)

Since the interest is only in the direction of the points and not in their magnitude, r is always considered 1. Thus, there
is a point on the circumference of the unit circle that corresponds to each direction. Each point is then described by
the angle only. Therefore the equation (1) simply becomes

x = cosα, y = sinα. (2)

Now as the circular data have a special nature, special techniques are needed to measure their descriptive statistics.
Thus instead of using the arithmetic mean to measure the mean direction for a set of directions, another measurement
called the circular mean direction is used instead. It is calculated by treating the data as unit vectors and finding the
direction of their resultant vector.
For example suppose there is a set of circular data given in terms of angles α1, α2, · · · , αn where n is the number of
observations. Using equation (2), the transformation from polar to rectangular coordinates leads to the observations

(cosαi, sinαi), i = 1, · · · n. (3)

The resultant vector R then becomes

R =

( n∑
i=1

cosαi,

n∑
i=1

sinαi

)
= (C, S ), say. (4)

The direction of this resultant vector is the circular mean direction. The notation ᾱ0 is used to denote the circular mean
direction which is given by

ᾱ0 = arctan(S/C). (5)

Moreover, as an alternative measure of variance, the length of the resultant vector is used as a measure of concentration
of a data set. Which defined as

R = ‖R‖ =
√

C2 + S 2. (6)



Regression model

To present the relationship between two or more quantitative variables, statisticians use regression models. Depend-
ing on the nature of these variables, these models are divided into two types: linear regression models and circular
regression models.

Linear regression model
Linear regression models are used to describe the relationship between two or more quantitative variables that are
linear in nature. One of these variables is called a dependent variable and the rest are called independent variables.
For the simplest case, when there are only two linear variables, the model takes the form:

Yi = β0 + β1Xi + εi, i = 1, · · · , n, (7)

where Yi is the ith value of the dependent variable, β0 and β1 are regression parameters, Xi is the ith value of the
independent variable and εi is a random error term. For more details, see [7, p.31], [8, p.3], [9, p.75], [10, p.13] and
[11, pp.8-9].

Circular - linear regression model
The circular-linear regression model is used to represent the relationship between a linear response variable and one
or more circular predictor variables. [12] proposes a method to determine the correlation coefficient between a linear
variable and a circular variable. It introduces the regression formula z = a+b cos θ+c sin θ, where z is a linear variable
and θ is a circular variable. This particular form of the model makes the coefficient of the multiple correlation of x
with (cos θ, sin θ) equal to one.
Later [13] suggests a regression model to represent the relationship between a linear response and a circular predictor.
[14] proposes a correlation coefficient between two variables which are of different types, i.e linear, circular or di-
rectional. They also give a circular-linear regression model, which is exactly the same as that proposed by [13]. The
estimates of the parameters are also the same despite using the least square estimating method. The same model also
appears in [6, p.139], [4, p.257] and [5, p.186].
The article [15] introduces a regression model to represent the relationship between a linear response with a circular
predictor and a set of linear covariates. [16] provides a case study to illustrate the importance of circular statistics in
analysing the relationship between the ozone level and the wind direction.
The book [17] also contains this model with relevant explanations on how to analyse some circular data sets using the
R-program.
In short, suppose there is a sample (y1, θ1), . . . , (yn, θn), where yi is a linear response and θi is a circular predictor. The
model is given by

Y = β0 + A cos(θi − θ0), (8)

where β0 represents the mean value of the response when (θi − θ0 = 90), A is the amplitude of the cyclic fluctuation
in the response, and θ0 is the highest point that the curve “response value” can reach also known as the “acrophase
angle” (cf. [5, p.186]).

Logistic regression model

Logistic regression analysis is a statistical tool employed to study the relationship between a categorical response and
predictors. This model may be divided into two types depending on the nature of the predictors, whether they are
linear or circular.

Logistic regression model for linear data
According to [18, Chapter 9] and [19, p.3], the first researcher who used the logistic model is Berkson (1944) when
he worked on the statistical methodology of a bio-assay. In 1949, the term log-odds was developed by Barnard with
regard to Berkson’s model. By this, he represented the term log p

1−p which is very important in the modeling process of
the logistic regression. At the time, statisticians were mostly using weighted least square methods of estimation. Later,



and with the improvement of the statistical software, the maximum likelihood method was used with some numerical
methods to estimate the model parameters. The logistic regression model is used to analyse the relation between some
predictors and a binary response. It models the probability that the response belongs to a particular category, such as
0 or 1; success or failure, rather than modeling the response directly. To explain this model, consider the following
logical steps.

1. Assume there is a binary response r, where r = 0 or 1.

2. Assume there are n of these binary responses, the jth one denoted by r j; where j = 1, 2, · · · , n and each r j is
either 0 or 1.

3. Assume the number of successes “i.e when r j takes the value 1” in these n observations is denoted by y, where
y = r1 + r2 + · · · + rn(≤ n).

4. Now assume these n observations are divided into k groups, each one with ni observations, where i = 1, 2, · · · , k
and

∑k
i=1 ni = n. As a result, for the ith group the number of successes is denoted by yi. These observations are

from a binomial distribution.

5. Next define yi
ni

which is a proportion of “successes” denoted by pi. These proportions represent the success
probability.

6. Finally, model the dependence of this success probability pi on some explanatory variables. A linear regression
model is used to build such a model. However, the use of a model such as

pi = β0 + β1x1 + · · · + βk xk, (9)

is misleading. In other word, the term on the left hand side has a range (0, 1); whereas, the term on the right
hand side can assume any value on the real line. For this reason, the probability scale has to be changed from
the range (0, 1) to the range (−∞,∞). According to [20, p.56] one of the possible transformations that can be
applied is the logit of a success probability p, which is written as

logit p = log
p

1 − p
. (10)

Note that the p
1−p is the odds of a success, given by the ratio of the probability of success over the probability

of failure. So the logit transformation of p is the logarithm of odds of a success. The range of the logit value
for any value of p is (−∞,∞). This step enables us to model the dependence of the success probability on some
explanatory variables by using linear logistic regression as

logit(pi) = log
( pi

1 − pi

)
= β0 + β1x1 + · · · + βk xk, (11)

which after some simplifications may be written as

pi =
eβ0

∑k
i=1 βi xi

1 + β0
∑k

i=1 βixi
. (12)

The latter equation shows how the logistic regression model is used to model the probability of a response
belonging to a particular category depending on some predictors.

For more details see [20, Sections 2.1, 3.5 & 3.6] and [21, Section 1.1].

Logistic regression model for circular data
Logistic regression model for circular data is intended to describe the relationship between a binary response and
circular predictor(s). This type of relationships may arise in the environmental field, where a binary response could be
rainfall (yes or no) and circular predictor is the wind direction.



Modelling

For the circular logistic regression model, this paper will cover the case of only one circular variable as a predictor.
Consider n binomial observations with pi =

yi
ni

, for i = 1, . . . , k. Let the value of pi depends on a circular variable θi as
follows:

logit(pi) = log
( pi

1 − pi

)
= β0 + A cos(θi − θ0), (13)

where

• β0 is the value of the logit (log odds) when the result angle from the term (θi − θ0) equals 900, or equivalently
eβ0 is the value the odds when the result angle from the term (θi − θ0) equals 900.

• A represents the distance from the x axis to the highest point in the curve or it is the amplitude of the cyclic
fluctuation in the response.

• θ0 is the angle where the logit (log odds) reaches its highest value.

Equation (13) can be written as

logit(pi) = log
( pi

1 − pi

)
= β0 + β1 cos θi + β2 sin θi, (14)

where
A =

√
β2

1 + β2
2 and θ0 = tan−1(β2/β1). (15)

Now to simplify the estimating process, equation (14) may be rewritten by assuming ηi = β0 + β1 cos θi + β2 sin θi and
using the exponential function to obtain

pi

1 − pi
= eηi ⇒ pi =

eηi

(1 + eηi )
(16)

Estimation of parameters

The maximum likelihood method will be used to estimate the parameters, β0, β1 and β2, of the circular logistic regres-
sion model. Suppose that binomial data of the form yi successes out of ni trials, i = 1, · · · , k, are observations from a
binomial distribution. The likelihood function is then given by

L(β) =

n∏
i=1

(
ni

yi

)
pyi

i (1 − pi)ni−yi . (17)

This likelihood function depends on the unknown pi which depends on the regression coefficients β′s through equation
(14).
We need to find the estimators β̂0, β̂1 and β̂2 which maximises the function L(β)

log L(β) =

k∑
i=1

{
log

(
ni

yi

)
+ yi log pi + (ni − yi) log(1 − pi)

}
. (18)

After some algebraic operations and using some derivation rules, the first derivatives of the parameters β0, β1 and β2
can be written as follows

∂ log L(β)
∂β0

=

k∑
i=1

yi −

k∑
i=1

ni

1 + e−(β0+β1 cos θ+β2 sin θ) , (19)

∂ log L(β)
∂β1

=

k∑
i=1

yi cos θ −
k∑

i=1

ni cos θ
1 + e−(β0+β1 cos θ+β2 sin θ) , (20)

∂ log L(β)
∂β2

=

k∑
i=1

yi sin θ −
k∑

i=1

ni sin θ
1 + e−(β0+β1 cos θ+β2 sin θ) · (21)



Due to the complicated nature of this function, the derivatives are unavailable in any explicit form. As an alternative,
the Newton-Raphson method is used to estimate the parameters of the model [22, Section 12.3.2] with an initial value
of β(t) in the following formula

β(t+1) = β(t) +
[
− l′′(β(t))

]−1
l′(β(t)), (22)

and then repeat this step until getting β(t+1) ≈ β(t). Once we obtain the estimated values of β0, β1 and β2, we should
apply the equations (15) to get fitted the circular logistic regression model.

Goodness of fit test

The goodness of fit test used to determine how well a model fits a set of data. It compares the observed values with
the predicted values. One of the measures used to do this test is the deviance. [21, p.12] and [20, Section 3.8] mention
how to use the deviance to test the goodness of fit for the linear logistic regression. The same process will be adopted
to handle the goodness of fit test for the circular logistic regression model. For binomial data, the deviance measures
the difference between the observed binomial proportions, yi

ni
denoted by pi, and the predicted proportions, p̂i, under

an assumed model for the true success probability pi. The likelihood function of the predicted model, which contains
the predicted value p̂i, denoted by Lp, will be compared to that of the observed model, which contains the observed
value pi =

yi
ni

and will be denoted by Lo. The comparison is achieved by using the deviance statistic which is given by
the formula

D = −2 log(Lp/Lo) = −2(log Lp − log Lo)· (23)

For the circular logistic regression, the predicted values p̂i are obtained by

logit(p̂i) = β̂0 + β̂1 cos θi + β̂2 cos θi. (24)

From the equation (18), the maximised log-likelihood function under the predicted function is

log Lp =

k∑
i=1

{
log

(
ni

yi

)
+ yi log p̂i + (ni − yi) log(1 − p̂i)

}
. (25)

While under the observed model, the fitted probabilities will be the same as the observed proportions, pi = yi/ni,
i = 1, 2, ..., k, and so the maximised log-likelihood function for the observed model is

log Lo =

k∑
i=1

{
log

(
ni

yi

)
+ yi log pi + (ni − yi) log(1 − pi)

}
. (26)

The deviance is then given by

D = −2(log Lp − log Lo)

= −2
k∑

i=1

{
yi log

pi

p̂i
+ (ni − yi) log

(1 − pi

1 − p̂i

)}
. (27)

The predicted number of successes is ŷi = ni p̂i, then the latter equation can be written as

D = −2
k∑

i=1

{
yi log

yi

ŷi
+ (ni − yi) log

(ni − yi

ni − ŷi

)}
. (28)

It is easily seen that this is a statistic compares the observations yi with their corresponding fitted values ŷi under the
current model. The deviance is asymptotically distributed as the chi-square distribution, χ2, with (k − p) degrees of
freedom, where k is the number of binomial observations (i.e the actual number of proportions yi

ni
), and p is the number

of unknown parameters in the current linear logistic model. According to [23], the goodness of fit tests the following
hypotheses:

H0 : model does not fit vs. H1 : model fits. (29)

If the deviance was bigger than α level critical value of the chi-square value, then we conclude that there is a sample
evidence of the lack of fit i.e reject H0.



Application of Circular Logistic Regression model

In this part, a real data set is analysed to demonstrate the proposed method. This data set was obtained from the Aus-
tralian Bureau of Meteorology for the Toowoomba Airport weather station which is located in Toowoomba, Queens-
land, Australia. It contains 365 daily observations of rainfall records (yes or no) and wind directions measured in
degrees from January 1 to December 31 in 2015. To verify the proposed approach, a simulation study is conducted,
which gives acceptable results. The R software [24] is used to conduct the simulation and the analysis of the real data.

Illustration with Simulation
To simulate data for fitting a circular logistic regression model, the following two R-packages are used

1. CircStats is used to generate circular variables [25]. According to [5, p.54] the function “rvm” is used to gen-
erate a set of circular random variables from the von Mises distribution CN(µ, κ). This function has 3 arguments
namely sample size, mean direction µ and concentration parameter κ

2. ISwR is used to run the proposed model [26]. The function “glm” is used to fit a linear logistic regression model
[27, p.228]. This function is adopted to fit a circular logistic regression model.

Firstly, a circular predictor vector “cir.pred.” is generated from CN(600, 12) with n = 1000. After that calculate the
probability of success using equation (16) and by setting β0 = 1, β1 = 2 and β2 = 3. Furthermore, a binary response is
generated using the above results and the function “rbinom”. The generated data are saved in a file called Sim.Data.
Finally, the proposed model is fitted by using the adapted version of the function “glm” as shown bellow.

glm(formula = Bin.resp. ~ cos(cir.pred.) + sin(cir.pred.), family = "binomial",data =Sim.Data)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.9583 -0.4631 0.1661 0.4247 2.2974
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.9091 0.1102 8.248 <2e-16 ***
cos(cir.pred.) 1.7947 0.1449 12.387 <2e-16 ***
sin(cir.pred.) 3.0327 0.1840 16.478 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1351.50 on 999 degrees of freedom
Residual deviance: 688.63 on 997 degrees of freedom
AIC: 694.63

Number of Fisher Scoring iterations: 5
The p-value is 1.151929e-144

These results show that the proposed model as a whole fits much better than the null model. In addition, this model
does very well when it comes to calculate the associated probabilities with each predictor. It shows that these values
vary from 0 to 1. Furthermore, it could be used to predict the probability of the success of the response for any
pre-selected value of the circular predictor.

Analysis of Rainfall Data
In this subsection, the proposed model is applied to a rainfall data set saved in a file named “Rain.Wind”. For the
fitting of the circular logistic regression model, the function “glm” from the package “ISwR” is used. The R-results
are as follows



glm(formula = R ~ cos(W) + sin(W), family = binomial(link = "logit"),
data = Rain.Wind)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.0534 -0.9080 -0.7408 1.3383 1.7238

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.76292 0.11404 -6.690 2.23e-11 ***
cos(W) -0.04106 0.16237 -0.253 0.80037
sin(W) 0.46436 0.16050 2.893 0.00381 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 454.86 on 364 degrees of freedom
Residual deviance: 446.33 on 362 degrees of freedom
AIC: 452.33

Number of Fisher Scoring iterations: 4
The p-value is 0.01404355
The predicted value of the associated probability with W=78 is 0.3801237

As shown in equation (29) above, a chi-square value of 8.53 on 2 degrees of freedom yields a p-value of 0.014. That
means the the null hypothesis, which says model does not fit, is rejected.
Now, the estimated values of the parameters are used to fit the proposed model. By using equation (15), the estimated
value of the parameters of the proposed model are A ' 0.46 and θ0 = 95.050. As a result, the circular logistic
regression model of the relation between the rainfall as a response and the wind direction as a circular predictor of the
considered data set is given by

logit(pi) = log( pi
1−pi

) = −0.762 + 0.46 cos (θi − 95.050)

where

• β0 = 0.762 is the value of the logit (pi) or log (odds) when the resulted angle from the term (θi − 95.050) equals
900, or equivalently eβ0 is the value the odds when the resulted angle from the term (θi − 95.050) equals 900.

• A = 0.46 represents the distance from the horizontal axis to the highest point in the curve or it is the amplitude
of the cyclic fluctuation in the response.

• θ0 = 95.050 is the angle where the logit (pi) or log (odds) reaches its highest value.

Conclusion

This paper has provided a new logistic regression model to analyse the relationship between a binary response and
a circular predictor. This model is capable of calculating the associated probability with each value of the circular
predictor variable and to predict the success probability of the response at any chosen value of the circular predictor
variable.
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