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Abstract: Fatigue loading is critical to fibre reinforced polymer composites due to their anisotropic
and heterogenous nature. This study investigated the tensile fatigue behaviour of polyester and
vinyl ester based GFRP laminates to understand the critical aspects of failure mode and fatigue life
under cyclic loading. GFRP laminates with two different resin systems (polyester and vinyl ester),
two different stress ratios (0.1 and 0.5) and two different environmental conditions (air and water)
were investigated at an applied stress of 80%, 60%, and 40% of the ultimate capacity. Based on the
investigated parameters (i.e., resin types, stress ratio, environmental conditioning, and maximum
applied stress), a fatigue model was proposed. Results show that the resin system plays a great role
in fatigue failure mode while the stress ratio and environmental condition significantly affect the
tensile fatigue life of GFRP laminates. The types of resin used in GFRP laminates and environmental
conditions as input parameters in the proposed fatigue model are a unique contribution.

Keywords: fatigue; fibre composites; polyester and vinyl ester resins; stress ratio; fatigue model

1. Introduction

The behaviour of fibre reinforced polymer (FRP) composite laminates under cyclic
loading are found to be different and more critical than the conventional isotropic ma-
terials due to non-uniform stress distribution [1,2]. FRP composites are currently being
used in marine and civil infrastructure applications due to their corrosion resistance and
lightweight [3–10]. These structures are often subjected to cyclic loading from different
sources. So far, the behaviour of fibre composites are well studied in static loading condi-
tion [11,12]; however, the investigations are still very limited for dynamic fatigue loading.
This study aimed to investigate fatigue behaviour of glass fibre reinforced polymer (GFRP)
composites to understand the critical aspects of failure mode and fatigue life.

There are several resin systems that are commercially available in manufacturing
composites. The two common types are polyester and vinyl ester resins. Polyester is the
preferred choice when cost is an important factor [13]. On the other hand, the static mechan-
ical performance of vinyl ester based composites is better than polyester composites [14,15].
However, it is still unclear how polyester and vinyl ester based GFRP composites will be-
have under cyclic loading. This study evaluated the comparative performance of polyester
and vinyl ester based GFRP laminates under cyclic loading.

The stress amplitude is an important parameter for fatigue life of a material. Keller
et al. [16] studied the tensile fatigue behaviour of pultruded GFRP profiles for the stress
amplitude of 0.1. Vieira et al. [17] also investigated the fatigue behaviour of pultruded GFRP
composites at a stress ratio of 0.1. Borrego et al. [18] studied a very low stress ratio (0.05) to
investigate the effectiveness of nanoparticles to improve fatigue life of GFRP composites.
Similarly, most of the previous studies are conducted fatigue investigation under a constant
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stress ratio. However, the load cycles in a structural component vary its magnitude. For
example, the bridge girders are subjected to load from vehicles having different axle loads.
Therefore, it is important to investigate how the stress ratio affect fatigue life. This study
investigated the effect of stress ratio on the fatigue life of GFRP composites.

The outdoor structures are frequently subjected to moisture, rain, humidity, and
thermal alterations [19]. These extreme environments were found to be a critical parameter
that can deteriorate the properties of materials [20]. Benmokrane et al. [13] found that
the vinyl ester based composites have superior resistance in moisture environment than
polyester based composites due to the lower degradation at fiber–resin interface. Liew
and Tan [21] studied the performance of GFRP composites under tropical climate and
found that the strength of GFRP laminates was decreased with exposure time. Aboelseoud
and Myers [22] investigated the effect of five different environmental conditions on the
performance of hybrid composite beam. They concluded that the chemical reaction caused
by the weathering action can increase the chances of fiber-matrix debonding. Most of these
studies were focused on the static performance of laminated composites under extreme
weather conditions. However, it is not fully understood how the extreme environment can
affect the fatigue life of GFRP composites. The present study highlighted the effect of water
absorption on the fatigue life of GFRP composites. It is expected that the outcome of this
study will benefit researchers and design engineers with improved understanding of the
fatigue behaviour of GFRP composites.

2. Materials and Methods
2.1. Materials

Two different resin systems such as polyester and vinyl ester were used to fabricate the
laminates using hand lay-up manufacturing process and cured 24 h at 60 ◦C in a tempera-
ture controlled room. These two resin systems were selected based on the performance and
cost criteria. While vinyl ester has superior mechanical and durability properties; however,
it is more expensive than polyester resin. This study provided an opportunity to under-
stand the fatigue behaviour of composite laminates made of these two resin systems. The
fibres in the GFRP laminates were oriented in both longitudinal and transverse directions
with the same fibre orientations for both types of laminate. The fibre volume ratio was
55% with a laminate density of 2000 kg/m3 for both laminates in accordance with ASTM
D3171 [23]. The laminated specimens were cut from the composite plates at a nominal
dimension of 300 mm (L) × 25 mm (W) × 3.5 mm (T). Both ends of the sample were glued
(techniglue R60 resin and H60F hardener, structural epoxy adhesive) with 50 mm tabs that
leave the specimens’ gauge length of 200 mm.

2.2. Justification of Selecting Parameters

This study investigated three different parameters including types of resin, applied
stress ratio and environmental conditions. Since polyester and vinyl ester are two of
the most commonly used resin systems, it is worth investigating their behaviour under
fatigue load. Fatigue loads on engineering strcutures are greatly varying in magnitude. For
example, a number of vehicles having different axle loads are running over the bridge that
creating fatigue at different load levels. The applied stress ratios (minimum-to-maximum
applied stress) of 0.1 and 0.5 were considered to represent this loading scenario on the
structures. Moreover, the outdoor structures are often subjected to rain and moisture which
may affect the fatigue life of exterior composite laminates. To address this environmental
condition, the specimens were submerged under water for one month before testing them
in fatigue. All these samples were tested at an applied stress of 80%, 60%, and 40% of
the ultimate capacity. Table 1 provides a list of parameters investigated in this study.
The sample name RPR0.1ENS80 represents that a polyester resin (RP) based sample was
subjected to 0.1 stress ratio (R0.1) and cured at normal environmental condition (EN) before
applied 80% stress (S80) of the ultimate capacity.
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Table 1. Parameters investigated in this study.

Sample Name Types of Resin Stress Ratio, R Environmental
Conditions

Applied Max
Stress Level, S

No. of Tested
Samples Failure Modes

RPR0.1ENS80 Polyester 0.1 Normal 80% 3 Figure 3b
RPR0.1ENS60 Polyester 0.1 Normal 60% 3 Figure 3b
RPR0.1ENS40 Polyester 0.1 Normal 40% 2 Figure 3f
RPR0.1EWS80 Polyester 0.1 Water 80% 3 Figure 3d
RPR0.1EWS60 Polyester 0.1 Water 60% 3 Figure 3d
RPR0.1EWS40 Polyester 0.1 Water 40% 2 Figure 3e
RVR0.1ENS80 Vinyl ester 0.1 Normal 80% 3 Figure 3c
RVR0.1ENS60 Vinyl ester 0.1 Normal 60% 3 Figure 3c
RVR0.1ENS40 Vinyl ester 0.1 Normal 40% 2 Figure 3b
RVR0.5ENS80 Vinyl ester 0.5 Normal 80% 3 Figure 3c
RVR0.5ENS60 Vinyl ester 0.5 Normal 60% 3 Figure 3c
RVR0.5ENS40 Vinyl ester 0.5 Normal 40% 2 Figure 3a

2.3. Test Setup

Five replicate samples were tested (static) at a loading rate of 2 mm/min to determine
the ultimate capacity and modulus of elasticity of the laminates in accordance with ASTM-
D3039 [24]. Tension–tension fatigue test was performed based on ISO-13003 standard [25].
Both tests were conducted with a computer-controlled servo-hydraulic MTS having a
capacity of 100 kN. To prevent the premature failure due to slipping at the gripping area,
the specimens were clamped carefully with sufficient pressure applied onto the wedge
jaws. All tests were performed at a room temperature of 23 ◦C and relative humidity of
50%. The stress ratios (R) were kept positive for all tests to create a tension-tension fatigue
loading scenario. The number of cycles, load, and displacement data were recorded at
regular intervals. Three replicate samples for 80% and 60% and two samples for 40% of the
ultimate load were tested to obtain higher accuracy in fatigue results. The specimens at 80%,
60%, and 40% of the ultimate load were tested at 2, 4, and 6 Hz frequencies, respectively.
Since the specimen requires a high number of cycles to fail at 40% of the ultimate load, the
number of replicate samples were reduced to two.

A constant amplitude of load was applied at force control mode with a sinusoidal
waveform. The static load transmitted into the specimen followed by variable amplitude
of sinusoidal load (stabilization stage, within approximately 1 s), which was happened
within a very short period of time at the beginning. Once the load stabilised, it continues
with constant amplitude until the failure of the specimen. The loading configuration is
graphically shown in Figure 1.
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3. Results and Discussion
3.1. Ultimate Strength and Stiffness

The static test was conducted for both polyester and vinyl ester based GFRP laminates
to determine the ultimate capacity and modulus of elasticity. This test is particularly
important to determine the applied stress level for the fatigue test. The representative
failure of both laminates are shown in Figure 2a. It can be seen that the nature of failure
for polyester and vinyl ester laminates are different. Polyester samples failed in explosive
manner at the middle of the gauge in two stages. The majority of the outer fibres were
failed first and a drop of stress was noticed in the stress–strain curve (Figure 2b). Thereafter,
the inner fibres started to carry the load and the stress again started to increase gradually.
An ultimate failure was observed when inner fibres were failed. On the other hand, the
vinyl ester based laminates were failed laterally at the middle of the gauge in a brittle
manner. This result has supported the findings of Boinard et al. [26] where they indicated
the fibre-matrix bond is stronger in vinyl ester based laminates than polyester. The average
strength and modulus of elasticity of polyester based laminates were 484 MPa (standard
deviation 19.6) and 20 GPa (standard deviation 1.4), respectively while these values were
524 MPa (standard deviation 28.2) and 19.5 GPa (standard deviation 0.7) for vinyl ester
based laminates.
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Figure 2. Ultimate test of polyester and vinyl ester based GFRP laminates.

3.2. Fatigue Failure Mode

The fatigue life of FRP laminates is very much dependent on their nature of the failure.
Six different modes of failure such as lateral failure at the middle of the gauge (Figure 3a),
lateral failure at the top tab (Figure 3b), lateral failure at the bottom tab (Figure 3c), edge
delamination at the middle of the gauge (Figure 3d), surface delamination at the middle
of the gauge (Figure 3e), and explosive failure at the middle of the gauge (Figure 3f) were
recorded during the test. These modes of failures are expected for the laminates according
to ASTM D3039 [24]. The failure obtained in Figure 3a,f are the desirable modes of failure
under tension-tension cycle loading as they are failed in pure tension. The failure near
the tab area (Figure 3b,c) is occurred due to stress concentration while the interlaminar
delamination played a major role for the failure presented in Figure 3d,e. To avoid the
failure at the tab, it is recommended to consider several factors such as tab alignment, tab
angle, tab material, tab adhesive, grip pressure, grip type, and grip alignment.

3.3. Effect of Resin Types

Polyester and vinyl ester are widely used resin systems in polymer composites due to
their good balance between performance and cost. Understanding the fatigue behaviour of
laminates made of these two resin systems is important for designing structures subjected
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to cyclic loading. Figure 4a plotted the S–N (stress vs. cycle) curves for polyester and vinyl
ester based GFRP laminates at the normal environmental condition. It can be seen that
the polyester based samples were failed in higher cycles than vinyl ester based samples at
the same stress level, particularly at 40%. This can be attributed to the mode of failures of
the samples and generation of temperature during cyclic loading. Specimen RPR0.1ENS40
failed in explosive manner at the middle of the gauge (Figure 3f) while RVR0.1ENS40 failed
laterally at the top tab (Figure 3b). The interaction between secondary hydroxyl groups
in the vinyl ester molecule and the hydroxyl groups present on the surface of glass fibre
can improve bonding of the resin to the fibres (i.e., rigid bond) [26]. The premature failure
of RVR0.1ENS40 specimen perhaps due to the rigid bond that created stress concentration
and provided lower fatigue life than RPR0.1ENS40. This result is in-line with the findings of
Ferdous et al. [27] where it was shown that the premature failure has a significant impact
on fatigue life of laminates. Moreover, the generation of surface temperature measured by
digital infrared thermometer during cyclic loading was shown that the vinyl ester resin
system generates more temperature than polyester resin. Figure 4b plotted the variation of
the surface temperature of polyester and vinyl ester based GFRP laminates which show
that the temperature increases up to 6.5 ◦C for polyester and 10 ◦C for vinyl ester based
laminates. The surface temperature increased rapidly for the first 10,000 cycles due to the
internal friction between particles and then increase slowly due to the gradual reduction of
internal friction. In general, the rigid bond of vinyl ester resin system than polyester makes
the GFRP laminates more prone to stress concentration under cyclic loading.Polymers 2020, 12, x FOR PEER REVIEW 5 of 10 

 

 
Figure 3. Failure of the specimens recorded during the test. (a) Lateral failure at the middle of the gauge, (b) lateral failure 
at the top tab, (c) lateral failure at the bottom tab, (d) edge delamination at the middle of the gauge, (e) surface delamination 
at the middle of the gauge, and (f) explosive failure at the middle of the gauge. 

3.3. Effect of Resin Types 
Polyester and vinyl ester are widely used resin systems in polymer composites due 

to their good balance between performance and cost. Understanding the fatigue behav-
iour of laminates made of these two resin systems is important for designing structures 
subjected to cyclic loading. Figure 4a plotted the S–N (stress vs. cycle) curves for polyester 
and vinyl ester based GFRP laminates at the normal environmental condition. It can be 
seen that the polyester based samples were failed in higher cycles than vinyl ester based 
samples at the same stress level, particularly at 40%. This can be attributed to the mode of 
failures of the samples and generation of temperature during cyclic loading. Specimen 
RPR0.1ENS40 failed in explosive manner at the middle of the gauge (Figure 3f) while 
RVR0.1ENS40 failed laterally at the top tab (Figure 3b). The interaction between secondary 
hydroxyl groups in the vinyl ester molecule and the hydroxyl groups present on the sur-
face of glass fibre can improve bonding of the resin to the fibres (i.e., rigid bond) [26]. The 
premature failure of RVR0.1ENS40 specimen perhaps due to the rigid bond that created stress 
concentration and provided lower fatigue life than RPR0.1ENS40. This result is in-line with 
the findings of Ferdous et al. [27] where it was shown that the premature failure has a 
significant impact on fatigue life of laminates. Moreover, the generation of surface tem-
perature measured by digital infrared thermometer during cyclic loading was shown that 
the vinyl ester resin system generates more temperature than polyester resin. Figure 4b 
plotted the variation of the surface temperature of polyester and vinyl ester based GFRP 
laminates which show that the temperature increases up to 6.5 °C for polyester and 10 °C 
for vinyl ester based laminates. The surface temperature increased rapidly for the first 
10,000 cycles due to the internal friction between particles and then increase slowly due 
to the gradual reduction of internal friction. In general, the rigid bond of vinyl ester resin 
system than polyester makes the GFRP laminates more prone to stress concentration un-
der cyclic loading. 

Figure 3. Failure of the specimens recorded during the test. (a) Lateral failure at the middle of the gauge, (b) lateral failure
at the top tab, (c) lateral failure at the bottom tab, (d) edge delamination at the middle of the gauge, (e) surface delamination
at the middle of the gauge, and (f) explosive failure at the middle of the gauge.



Polymers 2021, 13, 386 6 of 10

Polymers 2020, 12, x FOR PEER REVIEW 6 of 10 

 

  
(a) S–N curve for different laminates (b) Increase of surface temperature 

Figure 4. Comparison between polyester and vinyl ester based laminates. 

3.4. Effect of Stress Ratio 
Structures are subjected to different level of cyclic loading such as low to medium 

and low to high range of loads on which the fatigue life of structures are dependent. This 
effect can be captured by varying the stress ratio during a fatigue test. Figure 5a represents 
the S–N curve of GFRP laminates at a stress ratio of 0.1 and 0.5. It can be seen that the 
fatigue life of laminate is significantly affected by the stress ratio. At an applied stress of 
40%, the fatigue life increased by almost 10 times for a stress ratio of 0.5 compared to 0.1. 
This can be explained by the loss of stiffness of laminates between first and last cycles [27]. 
Figure 5b plotted the load–displacement curve of laminates for first and last cycles at a 
stress ratio of 0.1 and 0.5. The slope of the load–displacement curve is the function of stiff-
ness. It can be seen that the specimen RVR0.1ENS40 lost 11.32% stiffness while the specimen 
RVR0.5ENS40 lost only 7.03% stiffness before the failure. The higher loss of stiffness reduced 
fatigue life. The lower stress ratio means the higher elongation of laminates in each cycle 
which increase the surface temperature due to higher internal friction and degrade the 
fatigue resistance quicker than what happen for higher stress ratio. This implies the higher 
stress ratio is less detrimental to structures under cyclic loading than lower stress ratio. 

  
(a) S–N curve for different stress ratios (b) First and last cycles of load-displacement 

Figure 5. Comparison between different stress ratios. 

3.5. Effect of Water Absorption 
Outdoor structures often come into contact with water from rain, moisture, or other 

sources. This may allow structures to absorb water which may affect their fatigue life. 

y = 1.42 x 10-0.10

y = 1.57 x 10-0.13

0%

20%

40%

60%

80%

100%

0 200,000 400,000 600,000

A
pp

lie
d 

st
re

ss
 le

ve
l, 

S

Cycles, N

Polyester_Normal
Vinylester_Normal

25

27

29

31

33

35

37

0 10,000 20,000 30,000 40,000

In
cr

ea
se

 o
f t

em
pe

ra
tu

re
, ⁰

C

Cycles, N

Polyester
Vinyl ester

y = 1.57 x 10-0.13

y = 1.66 x 10-0.11

0%

20%

40%

60%

80%

100%

0 250,000 500,000 750,000

A
pp

lie
d 

st
re

ss
 le

ve
l, 

S

Cycles, N

Vinylester, R = 0.1
Vinylester, R = 0.5

0

5

10

15

20

25

30

0 2 4 6

Lo
ad

, (
kN

)

Displacement, (mm)

First cycle, R = 0.1
Last cycle, R = 0.1
First cycle, R = 0.5
Last cycle, R = 0.5

Figure 4. Comparison between polyester and vinyl ester based laminates.

3.4. Effect of Stress Ratio

Structures are subjected to different level of cyclic loading such as low to medium and
low to high range of loads on which the fatigue life of structures are dependent. This effect
can be captured by varying the stress ratio during a fatigue test. Figure 5a represents the
S–N curve of GFRP laminates at a stress ratio of 0.1 and 0.5. It can be seen that the fatigue
life of laminate is significantly affected by the stress ratio. At an applied stress of 40%, the
fatigue life increased by almost 10 times for a stress ratio of 0.5 compared to 0.1. This can be
explained by the loss of stiffness of laminates between first and last cycles [27]. Figure 5b
plotted the load–displacement curve of laminates for first and last cycles at a stress ratio of
0.1 and 0.5. The slope of the load–displacement curve is the function of stiffness. It can be
seen that the specimen RVR0.1ENS40 lost 11.32% stiffness while the specimen RVR0.5ENS40
lost only 7.03% stiffness before the failure. The higher loss of stiffness reduced fatigue
life. The lower stress ratio means the higher elongation of laminates in each cycle which
increase the surface temperature due to higher internal friction and degrade the fatigue
resistance quicker than what happen for higher stress ratio. This implies the higher stress
ratio is less detrimental to structures under cyclic loading than lower stress ratio.

Polymers 2020, 12, x FOR PEER REVIEW 6 of 10 

 

  
(a) S–N curve for different laminates (b) Increase of surface temperature 

Figure 4. Comparison between polyester and vinyl ester based laminates. 

3.4. Effect of Stress Ratio 
Structures are subjected to different level of cyclic loading such as low to medium 

and low to high range of loads on which the fatigue life of structures are dependent. This 
effect can be captured by varying the stress ratio during a fatigue test. Figure 5a represents 
the S–N curve of GFRP laminates at a stress ratio of 0.1 and 0.5. It can be seen that the 
fatigue life of laminate is significantly affected by the stress ratio. At an applied stress of 
40%, the fatigue life increased by almost 10 times for a stress ratio of 0.5 compared to 0.1. 
This can be explained by the loss of stiffness of laminates between first and last cycles [27]. 
Figure 5b plotted the load–displacement curve of laminates for first and last cycles at a 
stress ratio of 0.1 and 0.5. The slope of the load–displacement curve is the function of stiff-
ness. It can be seen that the specimen RVR0.1ENS40 lost 11.32% stiffness while the specimen 
RVR0.5ENS40 lost only 7.03% stiffness before the failure. The higher loss of stiffness reduced 
fatigue life. The lower stress ratio means the higher elongation of laminates in each cycle 
which increase the surface temperature due to higher internal friction and degrade the 
fatigue resistance quicker than what happen for higher stress ratio. This implies the higher 
stress ratio is less detrimental to structures under cyclic loading than lower stress ratio. 

  
(a) S–N curve for different stress ratios (b) First and last cycles of load-displacement 

Figure 5. Comparison between different stress ratios. 

3.5. Effect of Water Absorption 
Outdoor structures often come into contact with water from rain, moisture, or other 

sources. This may allow structures to absorb water which may affect their fatigue life. 

y = 1.42 x 10-0.10

y = 1.57 x 10-0.13

0%

20%

40%

60%

80%

100%

0 200,000 400,000 600,000

A
pp

lie
d 

st
re

ss
 le

ve
l, 

S

Cycles, N

Polyester_Normal
Vinylester_Normal

25

27

29

31

33

35

37

0 10,000 20,000 30,000 40,000

In
cr

ea
se

 o
f t

em
pe

ra
tu

re
, ⁰

C

Cycles, N

Polyester
Vinyl ester

y = 1.57 x 10-0.13

y = 1.66 x 10-0.11

0%

20%

40%

60%

80%

100%

0 250,000 500,000 750,000

A
pp

lie
d 

st
re

ss
 le

ve
l, 

S

Cycles, N

Vinylester, R = 0.1
Vinylester, R = 0.5

0

5

10

15

20

25

30

0 2 4 6

Lo
ad

, (
kN

)

Displacement, (mm)

First cycle, R = 0.1
Last cycle, R = 0.1
First cycle, R = 0.5
Last cycle, R = 0.5

Figure 5. Comparison between different stress ratios.



Polymers 2021, 13, 386 7 of 10

3.5. Effect of Water Absorption

Outdoor structures often come into contact with water from rain, moisture, or other
sources. This may allow structures to absorb water which may affect their fatigue life.
Therefore, a comparative study was conducted to understand the effect of water absorption
on the fatigue life of GFRP laminates with respect to the normal environmental condition.
Before fatigue testing, samples were submerged into water for one month (30 days) to allow
sufficient absorption of water. Quino et al. [28] found that the water absorption in GFRP
laminates can reach to the saturation level after approximately 600 h (25 days) meaning that
the water absorbtion was reached to an equilibrium condition. It was found that the GFRP
laminates absorbed 0.38% water with respect to the initial weight of the samples. This
small amount of water affected the fatigue life significantly as can be seen from Figure 6
that plotted the S–N curve of GFRP laminates cured at normal air and water environments.
The fatigue life of water samples decreased to one-ninth of the normal samples when the
specimens were subjected to 40% of the ultimate strength of normal samples. This can
be attributed to the change of fatigue failure mode when absorbed water. The normal
specimen RPR0.1ENS40 was failed in explosive manner at the middle of the gauge (Figure 3f)
while the specimen RPR0.1EWS40 ageing in water was failed in delamination (Figure 3e).
Boinard et al. [26] found that the rate of water absorption of polyester based laminates is
twice than vinyl ester based laminates. The hydrolysis of the matrix and fibre, and swelling
of the matrix due to the loss of physical interactions destabilise the fibre–matrix interface
that reduce the modulus of matrix material and decrease the transverse flexural strength
and results a premature failure of the specimens.
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4. Fatigue Model

This study investigated twelve different configurations of samples including two resin
systems, two stress ratios and two environmental conditions at three load levels as tabulated
in Table 1. It is desirable to capture the fatigue behaviour of GFRP laminates by a single
equation incorporating all variables. This study proposed a fatigue model (Equation (1))
that is applicable to all twelve samples. This model was developed based on the variation
of results observed in Figures 4a, 5a and 6. It is assumed that the variation of test frequency
has no effect on the fatigue life of laminates. In Equation (1), N represents the fatigue life,
R is the stress ratio, S is the maximum applied stress, a is the resin constant and b is the
environmental constant. It was found that the resin constant for polyester and vinyl ester
resin systems are 7 and 1.3, respectively. On the other hand, the environmental constant for
normal curing is 1 while this magnitude is reduced to 0.83 for samples submerged in water.
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Figure 7 plotted the variation of model results from the experiments. It can be seen that the
model can satisfactorily predict the experimental behaviour.

N = aR
(

1.5
S

)10b
(1)
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5. Conclusions

The tensile fatigue behaviour of polyester and vinyl ester based GFRP laminates are
compared. The effect of different types of resin, applied stress ratio and environmental
conditions are investigated experimentally and a fatigue model is developed. Based on the
results, the following conclusions are drawn:

Polyester resin based GFRP laminates primarily failed in explosive manner at the
middle of the gauge while the laminates composed of vinyl ester resin are failed laterally
under cyclic loading. The absorption of water can change the nature of fatigue failure to
delamination.

Vinyl ester resin system can create a rigid bond with fibres and generate more heat
than polyester resin. The rigid bond of the vinyl ester resin system than polyester makes
the GFRP laminates more prone to stress concentration under cyclic loading.
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The stress ratio can play a major role in fatigue life of composite structures. The higher
stress ratio is less detrimental to structures under cyclic loading than lower stress ratio.
This is due to the lower loss of stiffness at higher stress ratio.

The absorption of water makes the bond between fibres and matrix of GFRP laminates
weaker. This weak bond force the specimen to fail prematurely and significantly impact
the fatigue life.

A simplified fatigue model is proposed by considering the types of resin and curing
environments as a function of fatigue life. The proposed model well captured the fatigue
behaviour for all resin systems, stress ratios, environmental conditions, and applied stress
levels investigated in this study.
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