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Abstract: Nutrient pollution is one of the major issues in water resources management, which has
drawn significant investments into the development of many modelling tools to solve pollution
problems worldwide. However, the situation remains unchanged, even likely to be exacerbated due
to population growth and climate change. Effective measures to alleviate the issues are essential,
dependent upon existing modelling tools’ capacities. More complex models have been developed
with technological advancement, though applications are mainly limited to academic reach. Hence,
there is a need for a paradigm shift in policymaking that looks for a reliable modelling approach.
This paper aims to assess the capacity of existing modelling tools in the context of process-based
modelling and provide a future direction in research. The article has categorically divided models
into plot scale to basin-wide applications for evaluation and discussed the pros and cons of con-
ceptual and process-based modelling. The potential benefits of distributed modelling approach
have been elaborated with highlights of a newly developed distributed model and its application
in catchments in Japan and Australia. The distributed model is more adequate for predicting the
realistic details of pollution problems in a changing environment. Future research needs to focus on
more process-based modelling.

Keywords: nutrient pollution dynamics; soil erosion; surface runoff; distributed hydrological model;
river network

1. Background

Nutrient pollution affects the surface and groundwater quality predominantly. Nitro-
gen (N) and phosphorus (P) are key nutrients that have been responsible for many forms
of environmental hazards in aquatic ecosystems affecting the various states of amenities
such as fisheries, navigation, water sports, and drinking water supply [1]. The use of
chemical fertiliser for crop growing, pasture grazing, and livestock and dairy industry
wastes have been responsible for N and P pollution in waterways [2]. Severe soil erosion
is also associated with nutrient pollution in many landscapes [3]. The deforestation and
modernisation of human societies are exacerbating the pollution effects. The global nutrient
cycle has been altered substantially [1], and the anthropogenically derived atmospheric N
in the 2000s was ten times higher than that of the 1860s [4–7]. In the United Kingdom, rural
pollution contributed 50% of P inputs and 71% of N loads to surface water in 2002 [1,8].
The toxic algal bloom outbreak has increased in the Murray–Darling basin, the largest basin
in Australia, which has vast socioeconomic and environmental impacts [9]. The available
trend and evidence of widespread excess nitrate concentration above the World Health Or-
ganization (WHO) drinking water guideline in aquifers of many OECD countries indicate
worsening groundwater quality [10]. The evidence suggests the need for drastic measures
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to recover polluted ecosystems, which substantially depend on current-day models’ ability
in decision support roles.

The consequences of burning fossil fuels are also felt in nutrient pollution. Climate
change is likely to intensify the nutrient level in surface water [11]. The climate-driven
atmospheric nitrogen deposition has exceeded the critical level in many European ecosys-
tems [12,13]. The situation can be similar in other parts of the world, such as the United
States [14]. However, atmospheric deposition may not be a significant source for many
ecosystems such as Australia. Poor land management, land-use change (excessive land
clearance), and poor stream management have aggravated the situation [15,16].

With the emergence of numerous problems associated with regional-scale land-use
management, global climate change, ecosystem functions, and pollutants’ fate, the need for
integrated environmental modelling (IEM) is increasing [17]. As the concept develops and
organises multidisciplinary knowledge, it provides a means to explain, explore, and predict
environmental system responses to natural and human-induced stressors [17]. However,
many of the existing modelling tools are not suitable to predict the realistic details as
necessary, resulting in inaccurate estimation of nutrient budgets globally [18]. The recom-
mendation for further studies from national and international organisations highlighted
the need for model developments with future research directions, including priorities for
integrated modelling. For example, the European Water Framework Directive (EU WFD)
urged the member states of the European Union to quantify and monitor nutrient pollution
in their river systems, which necessitated the development of more suitable models such
as MONERIS [19]. The Australian government’s first five-year plan (1995–2000) National
Eutrophication Management Program (NEMP) highlighted the need for process-oriented
modelling [20]. Due to the lack of a proper model, the effects of upstream flow process
and in-stream mechanism on blue-green algal growth remain unknown for many Aus-
tralian river systems [21]. The demand for integrated environmental modelling (IEM)
has grown in the context of regional-scale land-use management, global climate change
impact assessment, valuations of ecosystem services, fate and transport of nanomaterials,
and life-cycle analysis [17]. This sees the undertaking of studies on the determination of
research directions and priorities for integrated modelling by various organisations around
the globe [22–26].

Many past technical reviews provided future directions in research. In 2003, Borah
and Bera [27] comprehensively reviewed 11 nonpoint source models to understand their
appropriateness in evaluating watershed management practices. The study identified mod-
els for short-term and long-term event simulations. Bennet et al. [28] used environmental
models’ characterisation techniques to establish an appropriate level of confidence in model
performance as they are used in research, management, and decision making. They used
numerical, graphical, and qualitative methods for comparison of model performance. Fu
et al. [29] reviewed existing catchment-scale water quality models of freshwater, nonurban
systems and their ability to support catchment management. Their study identified a
significant challenge in separating the impact of climate from land use and management
and stressed the need for process-based modelling. In this study, we highlight the needs
for process-based modelling from the technical point of view, whereas the previous re-
view by Fu et al. [29] mainly focused on policy needs. Here, we identify models based
on categories from source level to basin-wide application and highlight the prospect of
process-based modelling compared with others, particularly the capacity in determining
the fate of nutrients in higher temporal and spatial resolutions and dealing with climate
change applications.

2. The Review of Existing Models

The existing modelling tools are discussed broadly under three categories. The first
category describes the plot-scale models, mainly used to determine pollutant loads from
agricultural areas. Many of these models are the basis for larger-scale application input,
forming the critical foundation for integrated modelling. The river network models are
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discussed under the second category. Finally, the third category identifies integrated
models that combine land surface and in-stream network processes for holistic modelling
of the watershed.

The atmospheric deposition of N nutrient is one of the sources for nutrient enrich-
ment in many agricultural watersheds in some regions [12,13], and it can be modelled by
using tools such as Model of Atmospheric Transport and Deposition of Reacting Nitrogen
(MATADORN); long-range element tracer models HARM and TRACE [30,31] are excluded
in the review below.

2.1. Nonpoint Source (NPS) Models at the Plot Scale

The early development of nonpoint source models mainly focused on solving pol-
lution problems arising from agricultural land as the issue with the extensive use of
chemical fertiliser was growing. Since both N and P have detrimental effects on ecology,
the concern has developed on reducing N and P loading from agricultural catchments
to river systems [32]. The plot-scale NPS models assist in identifying best management
practices. However, in most cases, simplistic approaches such as export coefficient or the
event mean concentration methods were used and considered acceptable approaches [33].
The Pollutant Load (PLOAD) [34] model is an example of this type of model. Chemi-
cals, Runoff, and Erosion From Agricultural Management Systems (CREAMS) [35] and
GLEAMS [36] are similar models but use some physics-based approaches. The process-
based approach is found in Soil Nitrogen (SOIL N) and Soil Plant Atmosphere System
(DAISY) models. In the SOIL N [37,38] model, the nutrient transformation process is
considered conceptually, but the soil transformation process is divided into different layers
in a mechanistic way [39,40], which is helpful in the study of the hydro-climatic influence
on nutrient release. DAISY [41–43] adopted a more robust approach in describing the
soil–plant–atmosphere interaction designed to simulate N dynamics in agricultural soils,
which is suitable for simulating crop pattern behaviour on the nutrient level. The Root
Zone Water Quality Model (RZWQM) [44–48] and Leaching Estimation and Chemistry
Model (LEACHM) [40] are some other plot-scale models for the analysis of root zone
process and groundwater leaching.

2.2. The River Water Quality Models

The in-stream water quality models are mainly used for determining the fate of
pollutants during transport in flowing water. In this kind of modelling, the input is
the point discharge at the river upstream or tributary locations. The models output the
concentration level of pollutants at different segments of the channel. An example of
a widely used stream water quality model is QUAL2K [49] or the improved version
QUAL2E [50,51], which simulates state variables at river reaches based on wastewater
loading as input for the model. QUAL2K and QUAL2E solve the equations for physical
transport and chemical reaction processes of nutrients; however, the steady-state models
provide output at a diel time scale only [49].

MIKE11 WQ is a one-dimensional river water quality modelling software that over-
comes the limitation of a steady-state model by solving dynamic equations for physical,
chemical, and biological processes. The model describes pollutant’s interaction with bed
load sediment and organisms, including nitrification and denitrification for computing
dissolved oxygen (DO), biochemical oxygen demand (BOD), ammonia, and nitrate [52].
The tool adopts Nitrogen Simulation Model DRAINMOD-N to calculate nitrate input from
agricultural land with other source inputs for the MIKE11 model [53].

The International Water Association (IWA) River Water Quality Model No. 1 (RWQM1)
overcomes the limitations of the BOD-based river water quality models. This model
incorporates biomass population growth and respiration processes to deal with the river
acclimatisation to changes in pollutant load or environmental conditions and tracks mass
continuity by describing the composition of organic material as the mass fraction of organic
compounds [54]. In addition, the RWQM1 was a useful simulation tool for CalHidra2.0
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to analyse the N removal and study different scenarios, including upgrading several
wastewater treatment plants (WWTPs) [54].

2.3. Basin-Scale Integrated Models

The large-scale models aim to integrate land surface and in-stream processes in more
detail. The main features in this type of modelling are the amalgamation of components to
describe the whole basins. As a result, we found a mix of approaches to describe catchment
behaviours in many basin-scale models.

2.3.1. Conceptual Models at Basin Scale

Agricultural Non-point Source Pollution model (AGNPS) [55] is a basin-scale single
event-based model estimating pesticide and nutrient runoff from nonpoint sources in the
agricultural watershed [56]. The model uses the empirical equation-based method. The
AnnAGNPS is an improved version model of AGNPS, developed by the U.S. Department of
Agriculture Agricultural Research Service (USDA-ARS) [57–59]. This version is capable of
continuous simulation of nonpoint pollutants at a yearly scale [60]. A similar type of model,
Areal Non-point Source Watershed Environment Response Simulation (ANSWERS) [61,62],
computes movement of water in overland, subsurface, and channel flow phases operating
on a cell-to-cell basis [63–65]. However, AGNPS and ANSWERS are single event-based
models, and the application is limited to watersheds of about 200 km2 [66].

Catchment Scale Management of Diffuse Source (CatchMODS) [67] is a semidis-
tributed model that uses the Identification of Unit Hydrographs and Component Flows
from Rainfall, Evaporation, and Streamflow (IHACRES) hydrological model [68] for calcu-
lating the time-series input of catchment boundary conditions. The sediment component is
similar to SedNet model [69]. The model outputs are TN and TP on an annual basis without
considering different species of nutrients due to a lack of process description [67,70].

Modelling Nutrient Emissions in River Systems (MONERIS) [71] is a conceptual
model to account for different sources of nutrient emission [72]. The model considers seven
pathways of inputs to the river network. The model is applicable for the estimation of
annual loads. Monthly simulation is in progress (anonymously).

The stochastic model Spatially Referenced Regressions on Watershed Attributes (SPAR-
ROW) is a spatially referenced regression model that examines the landscape characteristics
influencing the delivery of N and P from sources in a watershed to stream channels [73].
The approach in the model to determine the capacity of a watershed to deliver N to chan-
nels is the use of a ‘landscape delivery ratio’ (LDR), which is expressed as the fraction of N
input that completes the overland and subsurface phase of transport to the stream channel.
When the landscape delivery ratio is modelled, it is considered as a continuous function of
local-scale landscape characteristics. Then, a spatial pattern is estimated that varies as a
function of soil and climate characteristics. Subsequent incorporation of regional frame-
works, such as physiographic, geologic, or ecological regions, may improve the estimation
of landscape delivery ratio that is useful in modelling the effects of relatively broad-scale
spatial processes that affect N attenuation [73]. The multivariate statistical techniques,
such as cluster analysis (CA), principal component analysis (PCA), factor analysis (FA),
and discriminant analysis (DA) can help characterise and evaluate surface and freshwater
quality and verify temporal and spatial variations caused by natural and anthropogenic
factors linked to seasonality [74,75].

The Australian modelling software developer the eWater has developed a suite of
modelling packages such as CMSS [76], Environmental Management Support System
(EMSS), the catchment modelling framework E2, and Water and Contaminant Analysis
and Simulation Tool (WaterCAST) for various applications [70,77,78]. The Catchment
Management Support System (CMSS) is an accounting model for nutrient budgeting from
different land-use types [79], the EMSS is an event mean concentration and dry weather
concentration based simulation model [80,81], and E2 and WaterCAST are improved
versions for continuous time series simulations at catchment scale. The Catchment–Stream
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Water Quality model CatStream [82,83] is another conceptual and network-based integrated
catchment–stream water quality model built on a simplistic export coefficient method. The
spatial scale is on a subcatchment basis, and the temporal scale is daily. The model outputs
are TSS, TN, and TP. The main limitation of export coefficient-based modelling is the lack
of representation of inherent processes, which makes the models unsuitable for predicting
changes in hydro-climatic conditions.

2.3.2. Process-Based Models at Basin Scale

The process-based models aim to overcome conceptual modelling limitations by incor-
porating process descriptions from source generations to pollutant movement in surface
and subsurface zones. For example, the Integrated Catchment Model of Nitrogen Dynamics
(INCA-N) [30,31] is a process-based semidistributed model that estimates nutrient flux in
soil and groundwater zones and tracks movements of both nitrate N and ammonium N in
the riverine phase. The Integrated Catchment Model of Phosphorus Dynamics (INCA-P) is
a similar type of model for P simulation and has a very complex and detailed description
of P processes [84,85]. Although INCA-N and INCA-P are physically based models for N
and P in the catchment and riverine phases, the hydrological part is conceptual. Therefore,
they may not suit predictions under changing environments.

The stream order-based model RIVERSTRAHLER [86,87] simulates river eutrophica-
tion and in-stream algal production based on the ecological function of the river systems.
It links the kinetics of microbiological and chemical processes to their macroscopic appear-
ance at the scale of the whole drainage network [86,88–91].

The Pollutant Flow (PolFlow) model, developed in GIS, adopts a distributed modelling
approach that calculates nutrient fluxes, routes nutrients through the river network, and
has dynamic functions to account for nutrient transport delay in the soil groundwater [92].
However, the model operates in five-year time steps using spatial function at a spatial
resolution of 1 km2, which may not suit current situations.

The real-time flood forecasting system WATFLOOD [93] is a distributed model that
uses group response unit functions to describe the hydrological process. The model
estimates runoff, sediment yield, and soluble nutrient concentrations for each land cover
class, weighted by area and then routed downstream. However, the model has a limitation
in describing the transport process as it does not include a dedicated river component.

The Soil and Water Assessment Tool (SWAT) model [94,95] is an outcome of the
USDA Agricultural Research Service (ARS). The origin of SWAT is linked to USDA ARS
models, including the CREAMS [96], GLEAMS [36,97], and the Environmental Impact
Policy Climate (EPIC) [98]. The EPIC was initially called the Erosion Productivity Impact
Calculator [99]. These components were previously combined into a simulator called the
Water Resources in Rural Basins (SWRRB) model [100] to assess management impacts on
water and sediment movement for ungauged rural basins across the United States. The
SWAT has been widely used around the world for its easy access and flexibility [101].
For example, the Ecohydrological Assessment Tool (ECOHAT) combined SWAT with a
conceptual rainfall–runoff model Xinanjiang for modelling the Chinese watersheds [102].

The Diffuse Nitrate Modelling Tool (DNMT) [32] is built within the TOPMODEL [103]
for simulation of runoff through the permeable area and over the impervious area and
the nitrate transport. The N transformation process has been modelled using SOILN [38].
However, this model introduced the unit nitrograph (UNG) method, similar to the concept
of the unit hydrograph method in hydrology, which is based on a conceptual approach.

The MATSALU model was developed in Estonia for the Matsalu Bay (Baltic Sea)
agricultural watershed to assess different management scenarios for eutrophication control
of the bay [104,105]. The model consists of four coupled submodels that simulate watershed
hydrology, catchment geochemistry, river transport of water and nutrients, and the bay
ecosystem. Like SWAT, its watershed components were essentially based on the CREAMS
approach. However, since the model was developed for the MATSALU watershed and
connected to specific datasets, it is not sufficiently transferable.
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The Soil and Water Integrated Model (SWIM) is a watershed model for hydrology
and water quality that combines SWAT and MATSLU models and was suggested for N
modelling for mesoscale watersheds (100–10,000 km2) [66].

An integrated surface and subsurface model (ISSM) was applied in the Bonello water-
shed in Italy; it incorporated a hydrological model (SWAT), groundwater models (MOD-
FLOW and MT3DMS), and an in-stream water quality model (QUAL2E). The tool provides
good results in predicting water and nutrient leaching from the surface to the aquifer,
groundwater dynamics, aquifer interaction with the stream system, and the surface water
and nutrient fluxes at the watershed outlet [106].

The Système Hydrologique Européen Transport (SHETRAN) [107,108] model couples
the surface/subsurface three-dimensional water flow, multifraction sediment transport,
and multiple reactive solute transport. The leaching and transport of nitrate are mod-
elled using the three-dimensional differential solute transport equations [109,110]. Using
SHETRAN-UK, a nitrogen modelling system (NMS) was developed and applied within
the 3000 km2 Tyne basin from 1985 to 1989. The physically based catchment model NMS
comprises a field-scale nitrogen model, EPIC. EPIC is an established crop growth and farm
management model [111] and provides N input and uptake data to SHETRAN [112].

MIKESHE, a submodel of SHE Système Hydrologique Européen, within the MIKE
framework from the Danish Hydraulic Institute (DHI), was combined with DAISY to
estimate pesticide leaching to shallow groundwater for physically based simulation of
macropore flow process in a spatially distributed manner [113–116]. Similarly, the European
Soil Erosion Model EUROSEM [117,118] was combined with MIKESHE for continuous sim-
ulation. MIKESHE is a physically based distributed hydrological modelling tool [107,108].
However, the use of MIKESHE may not be applicable where the hydrologic regime is
dominated by overland flow [113].

3. Research Gap Analysis over Basin-Scale Modelling

The watershed models provide a useful framework for analysing the anthropogenic
and climate effects on the natural environment [66]. Many of these models have been
developed, dividing the catchment into homogeneous subareas called hydrologic response
units (HRUs). Each HRU consists of parameters for the topographic features, land use, land
cover, and soil types. Models such as SWRRB [119], MATSALU [104,105], and SWAT [120]
have used the concept of HRU for larger watershed-scale modelling. The size of a water-
shed is also a factor for the applicability of some models in some instances. It is found that
SWRRB can be used in agricultural basins of up to 600–800 km2, MATSALU was applied
in a 3500 km2 rural basin, and SWAT was applied in watersheds of up to 25,000 km2 in the
United States [66]. Hence, it is apparent that some models are catchment-specific due to lim-
itations in HRU approaches. The main drawback is that the water flows and dissolved and
solid-phase concentrations of nutrient compounds are computed from lumped hydrologic
and biogeochemical processes at a subarea (HRU), which may not be applicable to larger
catchments. As a result, the need for distributed modelling is evident for regional-scale
application for water quantity and quality analysis.

In many modelling tools, the nutrient transport via soil erosion process has been ig-
nored, which could be an important source in many watersheds. The WATFLOOD [93,121]
model separates soil-bound and soluble nutrient transport processes in the model descrip-
tion, though there are limitations in the transport mechanism that need to be addressed [93].
The SWAT model [95] is not suitable for dynamic sediment modelling [122]. Hence, the
linking of hillslope soil erosion process and in-stream sediment transport has been an
important research topic in the nutrient modelling context.

ANIMO [123] and DAISY [42,43] are examples of complex mathematical models that
could be useful to describe nitrogen biogeochemical process in a detailed manner; however,
they are limited to application in soil column movement only at plot-scale levels as they
do not include a component for movement or transformation in surface water or ground-
water [112]. The integration of this type of plot scale model with a distributed hydrologic
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model such as MIKESHE or SHETRAN could overcome the limitations. As the computing
facilities and GIS functionalities have advanced tremendously, spatially distributed models
have been linked with catchment and drainage network systems for continuous time series
simulation [124–127]. The fully distributed hydrological model MIKESHE [107,108] has
incorporated DAISY, and the similar model SHETRAN incorporated NMS for a physically
based description of nutrient dynamics for nitrate simulation. However, their applications
were mainly limited to groundwater analysis. The distributed modelling of dominant
overland flow process and nutrient export from catchment to the river network system via
various pathways are very limited.

Human-induced climate change has far-reaching consequences with negative impacts
on the ecosystem from local to global level [11]. Overexploitation of natural resources,
population growth, and urbanisation are linked to degraded water quality in surface and
ground waters. Climate change will place additional stress on receiving watercourses
through alterations to rainfall and temperature and resultant changes in biophysical prop-
erties [128]. The uncertainties of how future climate will alter physical, chemical, and
biological systems combined with uncertainties of climate models limit our ability to pro-
vide robust predictions and identify how best to manage the water environment [129]. Such
uncertainties make it difficult to determine future water quality status and set improvement
targets to achieve good ecological outcomes [130].

The authors of this paper adopted a process-based approach in nutrient simulation
with an aim to improve model predictions, developed within a distributed hydrological
modelling framework IISDHM [131–133], and demonstrated how hydro-climate-based
parameters were useful to assess the impact of climate change on nutrient pollution and
determine the future water quality status [134]. An overview of this modelling is discussed
below, and summaries of all models reviewed in this paper are presented in Tables A1–A3
(Appendix A).

4. Applicability of a Distributed Modelling Approach within IISDHM

The Institute of Industrial Sciences Distributed Hydrological Model (IISDHM) is a dis-
tributed hydrological model, originally developed at the University of Tokyo, Japan [131–133],
that can describe the hydrological process in surface and subsurface zones. Authors Alam
and Dutta [134–136] developed the nutrient modelling components within this IISDHM
framework. Figure 1 shows the various components of the model.
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The model was tested and verified in two case studies in Japan and Australia (Figure 2),
which are hydro-climatologically of distinct characteristics, being situated in different hemi-
spheres. The size of the catchment of the Saru River of Japan is about 1350 km2. Although
the catchment is predominantly a forested ecosystem, huge amounts of sediment and
nutrient loads are carried away during heavy floods.
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Figure 2. Location maps showing case study areas (the Saru River, Japan (left) and the Latrobe River, Australia (right).

As data were available from a high-intensity data collection campaign, the applicability
of the model for flash flood events could be tested in the Saru River. The observed data
show strong correlations between flow and nutrient level for this river, as shown in Figure 3,
which was predicted well with hourly interval output.
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Figure 3. Correlation of NO3-N (left) and PO4-P (right) loadings with flow in the Saru River.

The model adopted hydro-climate-based parameters and soil moisture index, which
was useful to simulate seasonal nutrient transport behaviours for the Latrobe River in
Australia. Figure 4 shows the seasonal pattern of NO3-N level and the correlation with the
flow that was used for model validation.
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5. Conclusions

A comprehensive review of the existing nutrient modelling tools has been presented
in this paper. The discussion has covered various types of models, including plot-scale
models, river water quality models, and basin-scale integrated models. It is observed that
the conceptual approach using the export coefficient method or event mean concentration
method is a widely used approach in determining nutrient release from different land uses.
These methods are best suited for assessing best management practices by accounting for
annual loadings of TN and TP from agricultural lands. However, this type of modelling is
unsuitable for predicting dynamic behaviour due to changes in catchment processes. The
process-based models overcome the limitations, though their application has been very
limited to agricultural lands, where they have mostly been used to determine the nutrient
level for plant growth interaction or groundwater modelling. The implementation at a
larger scale is relatively scarce because of the inability to describe the proper nutrient export
mechanism. Future research should focus on integrating catchment and river transport
modelling that enables the determination of catchment export, the residence or movement
of nutrients in various pathways, and the role of sediment in nutrient budgeting at down-
stream waters. This study shows an application of a distributed modelling approach that
was useful to predict nutrient pollution at a detailed level under a changing environment.
This type of modelling will be helpful to determine the future water quality status and
adopt management options for integrated planning.
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Appendix A

Table A1. The summary of plot-scale models.

Name of Model Type Land Surface
Process

Ground Water
Process Temporal Scale Output Reference

PLOAD Conceptual Export
coefficient - Annual TN and TP [34]

LEACHM Process based Soil and crop
model

Unsaturated
zone model Variable time N and P [40,137]

SOILN/SOILNDB Process based Soil and crop
model Lumped Annual N [17,38,109,138]

EPIC Process based Soil and crop
model - Annual N and P [123]

ANIMO Process based Soil layer
model Leaching Variable time

step N species [99,123]

CREAMS/GLEAMS Physics Soil and crop Root zone Event based N and P [35,36,96,97]

RZWQM Process based Soil and crop
model Lumped Subdaily NO3-N [46]

DAISY Process based Soil and crop
model Leaching Variable time NO3-N [41–43]

Table A2. The summary of river water quality models.

Name of Model Type Land Surface
Process

In-Stream
Process

Ground
Water

Process
Spatial
Scale

Temporal
Scale Output Reference

QUAL2K/
QUAL2E

Process
based

Time series
input

Network
model - River reach Diel time

scale
N and P
species [49–51]

MIKE 11 Process
based

Time series
input

Network
model - Node and

link
Variable time

step
N and P
species [139]

RWQM1;
CalHidra 2.0

Process
based Exist Exist - Node and

link Not available N and P [54]

INCA-N Process
based Semidistributed Reach based Semidistributed River reach Weekly NO3-N level [30,31]

INCA-P Process
based Semidistributed Reach based Semidistributed River reach Daily

Organic and
inorganic P

levels
[85]

RIVERSTRAHHLER Process
based -

River
network
model

- River reach Variable time
Nitrate,

phosphates,
and silica

[86]

Table A3. The summary of integrated basin-scale models.

Name of
Model Type

Land
Surface
Process

In-Stream
Process

Ground
Water

Process
Spatial Scale Temporal

Scale Output Reference

CatStream Conceptual Subcatchment River
network - Subcatchment

based Daily TSS, TN,
and TP [82,83]

AGNPS Physics Rate based - -

Grid
based—can be

used up to
200 km2 size
watershed

Single event N and P [55]

ANSWERS Physically
based

Sediment
and runoff

based
Exist Exist

Hydrologic
response unit

(HRU)
(200 km2)

Single event N and P [61,62]

CatchMODS Conceptual Time series
by IHACRES

Network
model

Leaching
estimates

Subcatchment
based Annual TN and TP

loads [67]
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Table A3. Cont.

Name of
Model Type

Land
Surface
Process

In-Stream
Process

Ground
Water

Process
Spatial Scale Temporal

Scale Output Reference

CMSS Conceptual Export
coefficient - - Subcatchment

based Daily TN and TP
loads [76]

EMSS Conceptual
Event mean
concentra-

tion
- - Subcatchment

based Daily TN and TP
loads [70]

E2 Conceptual
Event mean
concentra-

tion
- - Subcatchment

based Daily TN and TP
loads [77]

SWRRB Physics
based CREAMS - GLEAMS Basin scale

(600–800 km2) Single event [119]

PolFlow Conceptual Lumped Lumped Lumped 1 km grid 5 year TN and TP
loads [92]

MONERIS Conceptual

Rate based
emission

from
different
sources

- Lumped as a
source 1 km grid Annual TN and TP

emission [71]

SPARROW Regression
model

Landscape
delivery

ratio

Network
model Lumped

River reach
with catchment

input
Annual TN [73]

DNMT Process
based

SOILN
model

Unit
Nitrograph

(UNG)
method for
transport to
waterways

Lumped
with soil
nutrient
process
model

(SOILN)

Subcatchment
based

Multiple
steps NO3-N [32]

SWAT Process
based

Lumped soil
and aquifer

process
QUAL2E

Lumped
with surface

process

Semidistributed
variable

storage routing
method

Variable
steps N [94,95,140]

MATSALU Same as SWAT

Elementary
Areas of
Pollution

(EAP) based

Daily N [105]

SWIM Same as SWAT Mesoscale
watershed Daily N [66]

ISSM Process
based SWAT QUAL2E MODFLOW-

MT3DMS - Daily N and P [106]

WATFLOOD Process
based

Group
response

unit (GRU)
approach;

CREAM and
AGNPS

approach

-

Lumped to
estimate
leaching

using
extraction
coefficient

Grid based Hourly N and P [93,121]

TNT2 Process
based

Soil–ground
water and

surface
interaction

- Exist Grid based Variable
steps N [140]

SHETRAN Process
based EPIC model Exist Exist Grid based Variable

steps NO3-N [107,108,110]

MIKESHE/
DAISY

Process
based DAISY -

Solute
transport
process

Grid based Variable
steps NO3-N [13,41–

43,107,108]

IISDHM Process
based

Flow
capacity

based
Dynamic Lumped Grid based

Run in 1 s
time step

with hourly
interval
output

N and P
species [131–136]
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