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Abstract17

We explore the causes and predictability of extreme low minimum temperatures (Tmin)  that 18 

occurred across northern and eastern Australia in September 2019. Historically, reduced 19 

Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific 20 

El Nino.  Positive IOD events tend to locate an anomalous anticylone over the Great 21 

Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD 22 

and central Pacific El Nino also reduce cloud cover over northern and eastern Australia, thus 23 

enhancing radiative cooling at night-time. During September 2019, the IOD and central 24 

Pacific El Nino were strongly positive, and so the observed Tmin anomalies are well 25 

reconstructed based on their historical relationships with the IOD and central Pacific El Nino. 26 

This implies that September 2019 Tmin anomalies should have been  predictable at least 1-2 27 

months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-28 

S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and  29 

the cold anomalies in the east. Rather, the model predicted a circulation amomaly reminiscent 30 

of the low phase of the Southern Annular Mode (SAM). Analysis of hindcasts for 1990-2012 31 

indicates that the model's teleconnections from the IOD are systematically weaker than the 32 

observed, which likely stems from mean state biases in sea surface temperature and rainfall in 33 

the tropical Indian and western Pacific Oceans. This weak teleconnection possibly allowed 34 

for the incorrect early expression of  negative SAM following the strong polar stratospheric 35 

warming that occurred in late August 2019. 36 

 37 
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1. Introduction39

Climate anomalies during 2019 were extraordinary across the globe with the concurrence of a 40 

central Pacific El Nino1 (also referred to as El Nino Modoki or warm-pool El Nino) event 41 

(Ashok et al. 2007; Kao and Yu 2009; Kug et al. 2009), a near-record strength positive Indian 42 

Ocean Dipole mode event (IOD; Saji et al. 1999), and a record-strong weakening and 43 

warming of the Southern Hemisphere stratospheric polar vortex and subsequent development 44 

of record-strong negative phase of the Southern Annular Mode event (SAM; Thompson and 45 

Wallace 2000) during September-December (Lim et al. 2020a). All these phenomena are 46 

well-known to drive hot and dry conditions over Australia especially during austral spring 47 

and  summer (Saji et al. 2005; Hendon et al. 2007; Wang and Hendon 2007; Ummenhofer et 48 

al. 2009; Risbey et al. 2009; Marshall et al. 2014; Lim and Hendon 2015; Lim et al. 2019). 49 

Indeed, Australian areal-mean monthly mean maximum temperature was in the top decile 50 

category and monthly mean rainfall was in the  bottom decile category during  September to 51 

December 2019  based on 110- and 120-year observational records, respectively2. Austral 52 

spring  (September to November) and the individual months of November and December 53 

2019 were  also the driest on record.  54 

In stark contrast to the significantly higher-than-normal monthly mean (hereafter, 55 

referred to as monthly) maximum temperatures, monthly minimum temperatures were 56 

significantly lower than normal in many locations over Australia during August and 57 

September in 2019 (Fig 1). Anomalously low minimum temperatures can have a significant 58 

impact on a wide range of agricultural industries: For instance, damage to crops due to one or 59 

more severe frosts is a major risk for agriculture in Australia (Frederiks et al. 2015; Zheng et 60 

al. 2015), and productivity of beef and dairy cattle (Webster et al. 2008; Cowan et al. 2019), 61 

                                                           
1 The term "central Pacific El Nino" is used in this study to describe an event whose maximum SST anomaly is 
found near the dateline. This will not necessarily correspond to an event in the eastern Pacific. 
2 http://www.bom.gov.au/climate/change/#tabs=Tracker&tracker=timeseries 
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cotton (Bange and Milroy 2004), rice (Jacobs and Pearson 1999; Hatfield and Prueger 2015), 62

sugarcane (Grantz 1989), and viticulture (Keller et al. 2010) is also sensitive to significantly 63 

lower than normal temperatures. Despite such substantial impacts of low minimum 64 

temperatures on the productivity of primary industry, relatively little attention has been paid 65 

to understanding the causes and predictability of low minimum temperatures over Australia 66 

as compared to maximum temperatures and rainfall, although there has been a growing 67 

volume of research regarding frosts (Dittus et al. 2014; Crimp et al. 2016a; Grose et al. 2018; 68 

Risbey et al. 2019). Therefore, we have attempted to improve our understanding of  the 69 

variability and predictability of low minimum temperatures over Australia by examining the 70 

cold extreme case of September 2019. Because cold extremes potentially have a significant 71 

impact on agriculture in spring by influencing the plant life cycle, including the timing of the 72 

flowering of winter crops (Crimp et al. 2016a), we have focused on the anomalously low 73 

minimum temperature (Tmin) of September 2019, for which many regions of northern and 74 

eastern Australia experienced September-mean Tmin in the bottom two deciles, although 75 

south-eastern Australia also experienced extreme low minimum temperatures in August 2019 76 

(Fig 1).  77 

 In this study, we first investigate what caused the widespread low minimum 78 

temperatures during September 2019, which is especially intriguing given the enormous 79 

interest in the hot and dry conditions that occurred later in austral spring 2019 across eastern 80 

Australia and the subsequent spate of  devastating bushfires 81 

(http://www.bom.gov.au/climate/current/statements/scs72.pdf) (Boer et al. 2020). We also assess 82 

the predictability of the occurrence of extreme low minimum temperatures during September 83 

2019 using the Australian Bureau of Meteorology (BoM)'s dynamical sub-seasonal to 84 

seasonal climate forecast system ACCESS-S1 (the Australian Community Climate and Earth 85 
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System Simulator-Seasonal prediction system version 1; Hudson et al. 2017) with an aim to 86

elucidate areas for improvement in the future development of the forecast system.  87 

2. Data and Forecast System 88 

For the observational analysis of Australian temperatures and rainfall, we used the Australian 89 

Water Availability Project (AWAP) monthly mean gridded analyses of daily maximum 90 

temperature (Tmax), daily minimum temperature (Tmin) and rainfall, which are provided on 91 

a 5 km grid  (Jones et al. 2009). Tmax and Tmin are indicative of the 2 m air temperature as 92 

measured, for instance,  in a meteorological screen. Three extreme indices (adapted from 93 

Zhang et al. 2011) were also calculated at each grid point using the daily AWAP Tmin 94 

analyses: the coldest minimum temperature of the month, and the number of days with daily 95 

minimum temperatures below 2°C and 0°C. Frost occurs when the ground temperature drops 96 

to freezing (or below).  Frost can occur when the 2 m air temperarture is as warm as  2°C as a 97 

result of a near surface inversion due to enhanced surface radiative cooling (Kalma et 98 

al.1992).  A hard frost (or freeze)  is assumed to have occurred  when the 2 m temeperature 99 

drops to 0° C (or below). We investigate atmospheric circulation anomalies using the  100 

analyses of mean sea level pressure (MSLP), 10-m zonal (U) and meridional (V) winds and 101 

total cloud cover fraction from  the Japanese 55-year ReAnalysis (JRA-55), which are 102 

provided daily on a ~55 km horizontal grid (Kobayashi et al. 2015). For sea surface 103 

temperature (SST), we  use the Hurrell et al. (2008) monthly mean  analyses, which is based 104 

on the HadISST analyses (Rayner et al. 2003) up through 1981 that is mergerd with  the 105 

Reynolds et al. (2002) optimum interpolation version 2 SST analyses for 1982-2019.  106 

 Anomalies of all the observational variables were computed relative to the 107 

climatological mean over 1990-2012, which is the period when the ACCESS-S1 hindcasts 108 

are available. Trends were removed from all the observational data in order to focus on the 109 
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interannual variability of Tmin. The AWAP Tmin analysis shows few areas of strong trends110

in September during the period 1979-2018 except in the far south of Queensland, where there 111 

is a warming trend, and in some locations of Western Australia, where there is a cooling 112 

trend3 (statistically significant at the 10% level, assessed by a two-tailed Student t-test; 113 

Supplementary Fig S1). Correlation and regression analyses using the observational data 114 

were conducted for 1979-2018.    115 

Forecasts of Australian Tmin and associated large-scale circulations were produced 116 

from ACCESS-S1 (Hudson et al. 2017). This system, which is based on the UKMO GloSea5 117 

system (MacLachlan et al. 2015),  is a state-of-the-art dynamical sub-seasonal to seasonal 118 

climate forecast system, which became operational at BoM in August 2018. The atmosphere 119 

is resolved on a ~60 km grid with  85 vertical levels, fully resolving the stratosphere. The 120 

ocean is resolved at 25 km with 75 vertical levels. The atmosphere, land and ocean 121 

component models are coupled every three hours.  122 

11-member hindcasts of ACCESS-S1 out to 6-month lead time are available for 1990-123 

2012 at four different initialisation dates per month (1st, 9th, 17th and 25th). The model 124 

atmosphere (zonal and meridional winds, temperatures, humidity and surface pressure) and 125 

soil temperatures were initialised using the European Centre for Medium-Range Forecasts 126 

Interim Reanalysis (ERA-Interim) data  (Dee et al. 2011), while the model soil moisture was 127 

initialised with the climatology of ERA-Interim (over 1990-2012) (MacLachlan et al. 2015). 128 

The ocean was initialised with the analysis from the Met Office Forecast Ocean Assimilation 129 

Model (FOAM; Waters et al. 2015).  130 

The 11-member ensemble was produced by perturbing the atmospheric initial 131 

conditions only (Hudson et. al. 2017). For this study, we have formed a 22 member ensemble 132 

                                                           
3 This is potentially influenced by a cool bias in recent AWAP Tmin data, relative to the homogenised ACORN-
SAT dataset, driven in part by the movement of sites from town to out-of-town locations in the 1990s and 2000s 
(Trewin2018, Trewin et al. 2020). 
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by utilising the forecasts initialised on the 1st of a month and the 25th of the previous month. 133

For instance, the lead time 0 forecasts for September consists of the 11-member ensemble 134 

forecasts initialised on the 1st of September and the 11-member ensemble forecasts initialised 135 

on the 25th of August.  136 

The real-time forecasts using the operational system for September 2019 were 137 

initialised with the atmospheric conditions from BoM's numerical weather prediction system 138 

(similar atmospheric model to ACCESS-S1 but with higher horizontal resolution) and the 139 

ocean conditions provided from FOAM. The real-time system produces an 11-member 140 

ensemble of forecasts everyday. Generation of forecast products provided by the BoM 141 

Climate Service uses  a lagged ensemble approach to form a 99-member ensemble (9 142 

consecutive days for the seasonal forecast products). For this study, we formed a 22-member 143 

ensemble by combining the eleven members from the real-time forecasts initialised on the 1st 144 

of a  month and on the 25th of the previous month to be consistent with our hindcast analysis. 145 

Further  details of the ACCESS-S1 model configuration, initialisation, ensemble generation 146 

and forecast performance can be found in Hudson et al. (2017).      147 

3. Results 148 

3.1 Cold extremes in September 2019  149 

The monthly Tmin for September 2019 was anomalously low over northern and eastern 150 

Australia, which contrasted to the higher than normal Tmin over the southern half of Western 151 

Australia (Fig 2). Some parts of northern and eastern Australia experienced Tmin in the 152 

bottom 20% (i.e., bottom quintile) based on 110-year data (Fig. 1b). If we consider the most 153 

recent 40 years, Tmin anomalies in September 2019 are in the extreme cold categories  154 

(bottom 20%)  over larger areas in the north and the east, in stark contrast to the Tmin 155 

anomalies in southern Western Australia, which are in the top 10% (i.e., top decile) 156 

(Supplementary Fig S2).  157 
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The lowest minimum temperatures in September 2019 were up to 4°C lower than 158

normal over the northern parts of Northern Territory and Western Australia and the northeast 159 

of Queensland (Fig 2b). Moreover, the southernmost part of the Australian continent, 160 

especially over eastern South Australia, northern Victoria and parts of southern inland New 161 

South Wales, experienced an above-average number of days with Tmin below 2 °C, a 162 

common threshold for potential  frost formation (e.g., Kalma et al. 1999), and some areas 163 

even had an above-average number of days of hard frost with Tmin below 0 °C (Figs 2c,d). 164 

The increased number of  days with Tmin below 0 °C is concentrated over  the Great 165 

Dividing Range in the south east of the continent and reflects an orographic lowering of Tmin 166 

values. The pattern of enhanced occurrence of days with September Tmin < 0 °C and  2 °C in 167 

the south east of the country is typical of what occurs during  this month when the local 168 

monthly Tmin is below normal (Fig. 3)4.  169 

3.2 Drivers of cold nights over northern and eastern Australia 170 

To investigate what drives the interannual variability of September minimum temperature of 171 

Australia, with the ultimate goal to understand what caused the 2019 September Tmin 172 

anomaly, we first explore the link to tropical SST variations. We do this by regressing de-173 

trended gridded SST on the inversely signed eastern Australian areal-mean Tmin (averaged 174 

over land points east of 140°E and north of 45°S) for September using data for 1979-2018 175 

(Fig 4b) (the inverse Tmin was used to highlight the SST pattern associated with lower-than-176 

normal minimum temperatures). The regression pattern bears a signature of the positive 177 

                                                           
4 Here we have used the Spearman rank correlation to relate the occurrences of days with Tmin < 0 and 2 °C to 

the monthly Tmin at each gridpoint  because the relationship may not be linear although we assume the 

relationship between monthly Tmin and number of days below a threshold is monotonic (i.e., number of days 

below 0 and 2°C  increases with lower values of monthly mean Tmin).  
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phase of the Indian Ocean Dipole (IOD), which is characterised by colder than normal sea 178

surface in the tropical eastern Indian Ocean (0-10°S,90-110°E) and concurrent warmer than 179 

normal sea surface in the tropical western Indian Ocean (10°S-10°N,50-70°E; Saji et al. 180 

1999). Although eastern Australia Tmin is more correlated with the SST in the eastern pole of 181 

the IOD, during September  the SST in the eastern pole of the IOD is correlated with the 182 

index of the IOD, the Dipole Mode Index (DMI),  at 0.9. Thus,  we can subsequently quantify 183 

the relationship of Tmin with the tropical Indian Ocean SST variations  using the DMI.  184 

Eastern Australian Tmin is also seen to be significantly related to the occurrence of central 185 

Pacific (CP) El Nino, which is characterised by warmer than normal sea surface in the 186 

vicinity of the equatorial  dateline (10°S-10°N, 165-220°E) flanked by colder than normal 187 

SSTs in the far east (15°S-5°N, 250-290°E) and west (10°S-20°N, 125-145°E; Ashok et al. 188 

2007).   189 

The observed SST anomaly in September 2019 (Fig. 4a) shows a pattern of both 190 

positive IOD and CP El Nino, which is quantified by positive amplitudes greater than one 191 

standard deviation ( ) of the DMI from May 2019 until January 2020; and the El Nino 192 

Modoki Index (EMI; Ashok et al. 2007) from April to October 2019 (Supplementary Fig.S3). 193 

In September 2019, the DMI was + nd highest after 1994, and the EMI 194 

was + rd highest after 2004 and 1994 for the month in the past 40 year records (Fig 195 

4c). Eastern Australian Tmin (EAU Tmin) for September 2019 was the 4th coldest in the 196 

same period. The lowest mean minimum temperature over eastern Australia for September 197 

occurred in 1994, with  slightly larger DMI and EMI values than 2019 (Fig. 4c).  198 

Over 1979-2018, the correlation of  EAU Tmin with the DMI  and with EMI is -0.4 199 

and -0.6, respectively. Spatially, the significant correlation of monthly Tmin during 200 

September with the DMI is concentrated in the southeast along the Dividing Range and in the 201 

far northwest (Fig. 5a), whereas the significant correlation with the EMI is mainly in the 202 
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central north and east (Fig. 5b). The high correlation of the DMI with the number of days 203

with Tmin < 0 and 2 °C is similarly localised in the southeast along the Dividing Range 204 

(Figs. 5c,e) , whereas the high correlation with the EMI is concentrated in the eastern 205 

Murray-Darling Basin(Figs. 5d.f).  Similar correlation patterns of the monthly Tmin are 206 

found between the lowest Tmin and the DMI and the EMI (Figs. 5g,h).  207 

Based on these relationships in Figure 5, we can reconstruct Tmin anomalies with 208 

multiple linear regression using the DMI and the EMI as predictors. The explained variance 209 

of monthly Tmin for September using this regression model is displayed in Fig. 6a (expressed 210 

as the correlation of reconstructed Tmin with observed Tmin over the period 1979-2018). The 211 

explained variance ranges up to 60%  along the east coast and extending across the far north. 212 

This regression model then can be used to successfully reconstruct the September 2019 213 

observed anomalies (Fig. 6b) by plugging in the observed values of the DMI and EMI for 214 

September 2019 (Fig. 6c). The  correlation between the observed and the reconstructed Tmin 215 

anomaly patterns for 2019 (i.e., pattern correlation between Fig 6b and 6c) is 0.8.     216 

In order to gain more insight into the cause of the widespread low Tmin for 217 

September 2019, we display in the top row of Figure 7 the anomalies of MSLP, 10-m 218 

horizontal winds and total cloud cover fraction for  September 2019. To assist comparison 219 

with the lower panels, we display the observed September 2019 Tmin anomaly map (Fig. 2a) 220 

here again  (Figure 7e). The middle and bottom rows of Figure 7 display the composite 221 

anomalies during the five strongest positive IOD events and the three strongest CP El Nino 222 

events observed during  1979-2018 (years are listed in Table 1), respectively. The observed 223 

2019 circulation anomalies are characterised by a strong high pressure anomaly centered over 224 

the Great Australian Bight and associated significant northward winds advecting cold air 225 

from the south and westward winds blowing towards Western Australia. Also, there is a  4-226 

16% reduction in the total cloud cover fraction over northern and eastern Australia, which 227 
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would have increased outgoing longwave radiation (i.e. radiative cooling to space), therefore 228

promoting enhanced night-time cooling. These circulation and cloud fraction anomalies are 229 

remarkably similar to what typically occurs during positive IOD years (middle row of Fig. 7) 230 

and,  to a lesser degree, during the strong CP El Nino years (bottom row Fig. 7).  The analysis 231 

presented in Figure 7 confirms the important role of the IOD and central Pacific El Nino for 232 

promoting the low Tmin anomalies observed during September 2019.  233 

 We have also examined the composite anomalies for  strong negative IOD years and  234 

strong CP La Nina years and found that the circulation anomalies are not symmetrically 235 

opposite to their positive counterparts over the midlatitudes (Supplementary Fig. S4), and the 236 

pressure anomalies and related horizontal wind anomalies are mostly not statistically 237 

significant at the 10% level. On the other hand, negative IOD and CP La Nina are related to 238 

significant low pressure anomalies in the tropical eastern Indian Ocean and over the  239 

Maritime Continent and significant increases of total cloud cover over eastern Australia 240 

(Supplementary Fig S4). These anomalous conditions appear to be closely tied to higher 241 

Tmin over the north and the subtropical east of the country observed during the negative IOD 242 

and CP La Nina years.  243 

3.3 ACCESS-S1 Forecasts 244 

IOD events generally start to develop during  austral winter, peak in late spring and then 245 

typically decay in December when the Australian summer monsoon commences (Saji et al. 246 

1999b; Zhao and Hendon 2009; Hendon et al. 2012). The skill for predicting the IOD, as 247 

expressed by temporal correlation of the predicted and observed DMI, based on ACCESS-S1 248 

hindcasts from 1990-2012, is displayed in Figure 8a.  There is little skill in predicting the 249 

IOD for start dates prior to June, and the highest skill at long lead times is for the August to 250 

October start dates. The forecast performance of ACCESS-S1 for the IOD is similar to other 251 

coupled model seasonal prediction systems (Zhao and Hendon 2009; Shi et al. 2012). 252 
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However, even from September and October start dates, the forecast skill drops off for austral 253

summer months because the IOD rapidly decays in December. Consistent with the lack of 254 

hindcast skill to predict the IOD prior to June or July start times, the predicted DMI index for 255 

September 2019 did not display realistically large amplitude until forecasts initialized on 1 256 

July (Fig. 8c). 257 

In contrast to the IOD, CP El Nino/La Nina can be skilfully predicted by ACCESS-258 

S1, based on correlation of predicted and observed EMI, for start times all year round (Fig, 259 

8b). The long lead skill reflects the long persistence of the EMI (Hendon et al. 2009; Kug et 260 

al. 2009; Fig 8b). However, the highest long lead skill for the EMI is for start times after 261 

May, which is after the so-called "northern spring predictability barrier".  Although positive 262 

EMI anomalies are consistently predicted from as early as 1 April 2019, the predicted 263 

anomalies are consistently weaker than observed (Fig. 8c).  264 

 In light of the strong capability to predict both IOD and CP El Nino at least for short 265 

lead times in the late winter and spring, we further assess the capability of ACCESS-S1 to 266 

predict Tmin extremes across Australia by computing the Receiver Operating Characteric 267 

(ROC; also called the relative operating characteristic; Wilks 2006) curve using the hindcasts 268 

for 1990-2012 over all grid points of Australia (Figs. 9a,9b) and the area under the ROC 269 

curve at each grid point (Figs. 9c,9d) at zero (forecasts initialised on 1 September) and one 270 

month (forecasts initialised on 1 August) lead times. The ROC is computed as the ratio of the 271 

hit rate5 versus false alarm rate6 for predicting Tmin in the lowest quintile. The ROC is 272 

computed in ten equally sized probability thresholds from 0 to 1. In Figures 9a, 9b, the curve 273 

above the no skill line indicates good forecast performance as it indicates greater hit rates 274 

than false alarm rates no matter what are the probability thresholds to issue an alarm for an 275 

                                                           
5 The ratio of the correct forecasts for the occurrence of an event to the total number of forecasts 
6 The ratio of the incorrect forecasts for the occurrence of an event (i.e., forecasts for the occurrence which are 
not observed) to the total number of forecasts 
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event occurrence. For the area under the ROC curve, values greater than 0.5 are skilful 276

relative to a random forecast and a value of 1 is perfect.  277 

ACCESS-S1 shows overall high skill to predict low Tmin for September at both lead 278 

times, and the significantly high skill across much of eastern and northern Australia at zero 279 

lead time (Fig. 9a) is where the observed low values of Tmin occurred during 2019 (Fig. 2a). 280 

Although the skill declines at lead time of 1 month (Fig. 9b), skill remains high in the central 281 

east and north, suggesting that the anomalies during 2019 might have been well predicted.  282 

However, the forecast for September 2019 (Figs. 10a and b) failed to capture the extreme low 283 

Tmin across the east at lead time 0 and across the east and the north at lead time 1 month. 284 

These forecast busts imply a missed opportunity to forewarn the increased chance of the 285 

lower-than-normal minimum temperatures and frost formation in southern New South Wales, 286 

Victoria and eastern South Australia during September 2019.  This forecast error appears to 287 

be related to the complete miss of the teleconnection of the positive IOD to locate a high 288 

pressure anomaly over the Bight (Figs. 10 c,d) that drives northward and westward winds 289 

advecting the cold air over eastern Australia. Why did these forecast errors happen? 290 

    The capability of ACCESS-S1 to capture telecponnections from the IOD and CP El 291 

Nino is assessed by examining composite patterns of MSLP, 10-m horizontal winds, outgoing 292 

longwave radiation flux (used as a proxy for total cloud cover) and Tmin during September 293 

for the strong positive IOD years  and strong positive CP El Nino (not including 2019) using 294 

forecast data at zero lead time (Fig. 11). For the IOD, the predicted patterns have an overall 295 

resemblance to the observed composite patterns shown in Figure 7 (middle row and also 296 

Supplementary Fig S5 for the same composite years), but the magnitudes of the anomalies 297 

are significantly smaller than the observed even at this shortest lead time. The surface 298 

pressure anomaly is especially too weak and too far south compared to the observed. The 299 

composite patterns for MSLP and horizontal winds for CP El Nino (Figs. 11f-h) show the 300 
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inability of ACCESS-S1 to simulate the high pressure center southwest of Australia and 301

associated circulation. The composite forecast anomalies are also not significantly different 302 

from the normal conditions, highlighting that the teleconnections of the positive IOD and CP 303 

El Nino to Australian Tmin are substantially underpredicted in ACCESS-S1. Consequently, 304 

lower than normal Tmin in September during positive IOD and CP El Nino appear to be 305 

correctly predicted only in the far north of the country but are not captured  in the south and 306 

east where the effects of the  high pressure anomaly in the Bight  are important (Figs. 11e,j).   307 

  The inability of ACCESS-S1 to capture the impact of the positive IOD and CP El 308 

Nino on Tmin throughout a broad region of central and southern Australia is likely related to 309 

the systematic errors in simulation of the mean state of the tropical Indo-Pacific: the SST 310 

tends to be simulated to be  too cold to the north west of Australia, with too little rainfall, and 311 

stronger than observed south easterly trade winds across the southern tropical Indian Ocean 312 

(Hudson et al. 2017). As the tropical Indian Ocean and western Pacific are where SST is high 313 

and associated convective rainfall is rich, the cold and dry mean state biases are translated 314 

into problems in simulating the teleconnection from the IOD to the extratropics (Hudson et 315 

al. 2017) .   316 

 However, examination of the forecast for September 2019 (Figs. 10e,f) suggests that 317 

the model error of this particular case well exceeds the systematic errors in the depiction of 318 

the IOD and CP El Nino teleconnection that were discussed above. Closer inspection of the 319 

forecast surface pressure anomaly (Figs. 10e,f) reveals that the model was predicting strong 320 

low pressure anomalies south of Australia, which were a midlatitude signature of a strong 321 

negative phase of the SAM (predicted September SAM at lead zero -0.7  but observed SAM 322 

was +0.6 im et al. 2020b). Strong negative SAM was predicted for September 2019 as a 323 

result of the record-strong Antarctic polar stratospheric warming that occurred in the last 324 

week of August 2019 (Lim et al. 2020b; Rao et al. 2020). Consequently, clearer sky and 325 
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increased downward compression of air over the Australian continent, which are known as 326

the responses to the negative SAM (Lim et al. 2019), were predicted (Figs. 10c,d,g,h), 327 

resulting in high Tmin being adiabatically promoted in the model. However, in reality, the 328 

stratospheric warming did not couple down to the surface until the 3rd week of October, and 329 

so the SAM was actually positive in September (Lim et al. 2020b); and a pronounced high 330 

pressure anomaly associated with the positive IOD was dominant over the Bight as shown in 331 

Figure 7a. We can speculate that ACCESS-S1 was prematurely predicting negative SAM 332 

during September in response to the stratospheric warming because of the too-weak 333 

teleconnection from the IOD and CP El Nino. Rao et al. (2020) demonstrated that the same 334 

error of predicting negative September SAM in 2019 was found in the multi-model mean 335 

prediction consisting of the five different major international centre models. Thus, further 336 

work is required to better understand the source of this common error across the forecast 337 

systems.   338 

To further gain insight into the apparently high skill for predicting Tmin across much 339 

of the east but the failure during 2019, we also assess the capability of  ACCESS-S1 to depict 340 

the Tmin anomalies associated with the negative IOD and CP La Nina (compare 341 

Supplementary Fig S7 to Figs S4 and S6). For these cases, the model does a much better job 342 

in capturing the higher-than-normal Tmin over the north and subtropical east of Australia as 343 

observed. Therefore, the forecast skill for September Tmin across much of the east and north 344 

as shown in Figure 9, seems to reflect the forecast skill in predicting Tmin during negative 345 

IODs and CP La Ninas.   346 

4. Concluding remarks 347 

Northern and eastern Australia experienced very unusual low minimum temperatures during  348 

September 2019, which were recorded to be in the bottom two deciles based on the past 40 349 
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year record. The number of days with minimum  temperatues below 2°C and 0°C, which are 350 

indicators of potential frost damage, was significantly larger along and north of the Dividing 351 

Range in Victoria, South Australia and southern New South Wales, indicating a potential 352 

increase of frost formation. We have shown that, historically, reduced September-mean Tmin 353 

across northern and eastern Australia is related to the occurrence of the positive IOD and CP 354 

El Nino, which are monitored by the DMI and the EMI, respectively. The teleconnection of 355 

the positive IOD to the Southern Hemisphere extratropics is characterised by a well-defined 356 

high pressure anomaly over the Great Australian Bight (e.g. Cai et al. 2011; McIntosh and 357 

Hendon 2017), which promotes cold air advection from the south to eastern Australia. 358 

Furthermore, for both positive IOD and CP El Nino, reduced cloud cover in the northern and 359 

eastern portions of Australia is associated with lower Tmin, allowing more outgoing 360 

longwave radiation at night.  361 

In September 2019 the IOD was the 2nd strongest positive and central Pacific El Nino 362 

was the 3rd strongest for the month in the past 40-year record. The observed 2019 September 363 

Tmin anomalies are well reconstructed using regressions onto the DMI and EMI during the 364 

period 1979-2018, then scaling the coefficients by the amplitude of the DMI and EMI in 365 

September 2019. This reconstruction suggests that the September 2019 Tmin anomalies 366 

should be well predicted because September IOD is skilfully predictable at least with 2 month 367 

lead time and September central Pacific El Nino is skilfully predictable at beyond 2 seasons 368 

lead time using the ACCESS-S1 system. However, even at zero lead time, ACCESS-S1 369 

failed to predict the cold conditions over eastern Australia of September 2019 largely because 370 

of its failure to predict the anomalous high in the Bight that is predominantly associated with 371 

the positive IOD and, to a lesser extent, with central Pacific El Nino. 372 

Analysis of the ACCESS-S1 hindcasts indicates that the simulated IOD and central 373 

Pacific El Nino teleconnections are systematically too weak to drive the Tmin variability in 374 
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eastern Australia and especially in the south, which leads to forecast busts at a time when 375

cold extreme forecasts can be very important and useful over south eastern Australia. This 376 

weak teleconnection may have allowed for the incorrect early expression of  negative SAM 377 

following the sudden stratospheric warming that occurred in late August 2019. The cause of 378 

the too weak IOD teleconnection is the focus of ongoing work, but presumably reflects in 379 

part the strong systematic biases in the mean state of the tropical Indian Ocean (e.g. Hudson 380 

et al. 2017)  that are key to faithful depiction of the IOD. 381 

The extreme Tmin that occurred in September 2019 also coincided with both drought 382 

and extreme high day-time temperatures over much of south-eastern and eastern Australia, 383 

driven by the strongly positive IOD and central Pacific El Nino. This is a critical time of year 384 

for many agricultural sectors in Australia that  are sensitive to any one of these local climate 385 

extremes, and so exposure to all three simultaneously places significant stress on the industry. 386 

Therefore, understanding the drivers of these conditions and the pathways to improved 387 

prediction skill of Tmin in association with  IOD and EMI should be a high priority of 388 

research. 389 
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 547 

Figure captions 548 

Figure 1. Deciles of monthly mean of daily minimum temperatures for (a) August and (b) 549 

September 2019. Deciles are computed based on 1910-2019. 550 

(http://www.bom.gov.au/jsp/awap/temp/index.jsp). 551 

Figure 2. September 2019 anomalies of (a) Tmin, (b) lowest Tmin, (c) number of days when 552 

Tmin is below 0 °C and (d) number of days when Tmin is below 2 °C compared to their 553 

respective climatologies over the period 1990-2012. Note that in (c) and (d) the increased 554 

number of days with night-time temperatures below 0 and 2 °C is shown with the blue colour 555 

shading. 556 

Figure 3. Spearman rank correlation of monthly Tmin with (a) lowest Tmin, (b) number of 557 

days when Tmin is below 0 °C and (c) number of days when Tmin is below 2 °C in 558 

September. Note that red shading indicates negative correlation and blue indicates positive 559 
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correlation in panel (a), displaying lower monthly Tmin positively correlated with lower 560

lowest Tmin whereas red shading indicates positive correlation and blue shading indicates 561 

negative correlation in (b) and (c), displaying monthly Tmin negatively correlated with the 562 

number of  extreme cold nights (i.e. lower monthly Tmin is associated with increased number 563 

of days with Tmin < 0 °C and < 2 °C in (b) and (c), respectively). Spearman rank correlation 564 

is used because the extreme threshold-based indices are non-Gaussian and therefore require 565 

analysis using non-parametric methods. 566 

Figure 4. (a) De-trended SST anomalies for September 2019, (b) regression of SST on the 567 

inversely signed eastern Australian Tmin averaged over land points of 140-156°E, 45-10°S 568 

for September 1979-2018, and (c) time series of the Indian Ocean Dipole mode index (DMI; 569 

dark blue bars), the El Nino Modoki Index (EMI; orange bars), and the areal-mean eastern 570 

Australian Tmin of September (EAU Tmin; light blue bars). In (b) regression coefficients are 571 

scaled by the magnitude of EAU Tmin in 2019. Stippling in (b) indicates the statistical 572 

significance of the regression coefficients at the 10% level. 573 

Figure 5. Spearman's rank correlation of (a,b) September-mean Tmin, (c,d) number of days 574 

in September with Tmin < 0 °C, (e,f) number of days in September with Tmin < 2 °C, and 575 

(g,h) lowest Tmin during September with the DMI (left) and the EMI (right). Positive 576 

correlation is shown with blue colour shading in (c)-(f) to indicate positive DMI and EMI are 577 

associated with increased days for Tmin < 0 °C and < 2 °C. 578 

Figure 6. (a) Pearson correlation between the observed Tmin and the reconstruction of Tmin 579 

using the DMI and the EMI over 1979-2018, (b) observed Tmin anomalies for September 580 

2019 (same as Fig 2a), and (c) reconstruction of Tmin anomalies for September 2019 using 581 

the same the multiple linear regression model as in (a). The pattern correlation between (b) 582 

and (c) is 0.8.  583 
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Figure 7. (Top row; a-e) September 2019 anomalies of (a) MSLP (hPa), (b) 10-m zonal wind 584

(ms-1), (c) 10-m meridional wind (ms-1), (d) total cloud cover fraction (%), and (e) Tmin (°C). 585 

(Middle row; f-j) Respective composites of the same fields as in (a)-(e) for the five strongest 586 

positive IOD years in 1979-2018 (listed in Table 1). (Bottom row; k-o) Same as (f-j) but for 587 

the three strongest central Pacific El Nino years (listed in Table 1). Anomalies of total cloud 588 

cover fraction were computed relative to the climatological fraction. Colour bars for the 589 

middle and bottom row are at the bottom. Note that for (d), (i), (n) red colour shading 590 

indicates the reduction of the cloud cover and blue colour shading indicates the increase of 591 

the cloud cover. Stippling in the middle and bottom rows indicates the statistical significance 592 

on the difference of the two means (composite mean vs climatological mean) at the 10% 593 

level, assessed by the two-tailed Student t-test with the samples sizes of five and three in the 594 

composite groups of the strong positive IOD and the strong central Pacific El Nino, 595 

respectively, and 23 in the climatological group. 596 

Figure 8. (a) ACCESS-S1 hindcast skill to predict the DMI as a function of forecast start 597 

month (y-axis) and lead time (x-axis). (b) Same as (a) except for the EMI. (c) Forecasts for 598 

DMI and EMI September 2019 from different start times (orange colour bars). The red colour 599 

bars in (c) are the observed amplitudes of the DMI and the EMI. 600 

Figure 9. (a,b) Forecast ROC displayed as a function of hit rates versus false alarm rates 601 

using all the land points over Australia in the hindcast period 1990-2012 at lead times of 0 602 

and 1 month, respectively. The blue dots indicate the probability thresholds to define the 603 

positive forecast for an event. The diagonal line indicates no skill. (c,d) Forecast skill 604 

measured by the area under the ROC curve for predicting bottom quintile Tmin for 605 

September at lead time 0 and 1 month at each grid point.  606 

Figure 10. Forecasts from ACCESS-S1 for (a,b) Tmin (°C), (c,d) outgoing longwave 607 
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radiation flux (Wm-2), (e,f) MSLP, and (g,h) 500 hPa geopotential height (m) anomalies for 608

September 2019 at 0 and 1 month lead times.  609 

Figure 11. Composites of ensemble mean forecast anomalies at lead time zero for (a,f) 610 

MSLP (hPa), (b,g) 10-m zonal wind (ms-1), (c,h) 10-m meridional wind (ms-1), (d,i) outgoing 611 

longwave radiation flux,(Wm-2), and (e,j) Tmin (°C) during the three strongest positive IOD 612 

years (upper panels) and the three strongest central Pacific El Nino years (lower panels). The 613 

years for each category are listed in Table 1. Stippling indicates the statistical significance on 614 

the difference of the two means at the 10% level, assessed by a Student t-test with the sample 615 

sizes of three in the composite groups and 23 in the climatological group. 616 
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DMI   1994 
  1997 
  2006 
  2015 
  2018 

  1992 
  1998 
  2005 
  2010 
  2016 

EMI   1994 
  2002 
  2004 

  1983 
  1988 
  1998 
  2008 
  2010 
  2016 

 618 

Table 1. The strongest positive and negative IOD and central Pacific El Nino years based on 619 

September-mean absolute values of the DMI and the EMI being at least greater than 1 620 

standard deviation for 1990-2012. 621 
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Figure S1. Linear trend on September Tmin over 1979-2018 (°C per decade). Stippling 

indicates statistically significant trends at the 10% level assessed by a two-tailed Student t-

test with 39 degrees of freedom.  

  



 

Figures S2. (a) Tmin anomalies of September 2019 and (b,c) its decile maps with the decile 

thresholds found in 1990-2012 (when ACCESS-S1 hindcasts are available) and 1979-2018 

  



 

Figure S3. Standardized anomalies of the IOD mode index (DMI) and the El Nino Modoki 

Index (EMI) in January 2019 to February 2020, which were computed relative to the monthly 

climatology and standard deviations of 1990-2012.   



 

Figure S4. (Top row; a-e) Composites of (a) MSLP (hPa), (b) 10-m zonal wind (ms-1), (c) 

10-m meridional wind (ms-1), (d) total cloud cover fraction (%), and (e) Tmin (°C) anomalies 

for the five strongest negative IOD years in 1979-2018 as listed in Table 1; (Bottom row f-j) 

Same as (a-e) but for the six strongest central Pacific La Nina years. Stippling indicates the 

statistical significance on the difference of the two means at the 10% level, assessed by a 

two-tailed Student t-test with five and six samples in the negative IOD and the central Pacific 

La Nina composite groups, respectively, and 23 samples in the climatological group. Note 

that strong negative IOD and strong central Pacific La Nina occurred in 1998 and 2010, so 

these two years are included both composites, which may partly explain the similarities 

between the two composites. 

  



   

Figure S5. (Top row; a-e) Composites of September (a) MSLP (hPa), (b) 10-m zonal wind 

(ms-1), (c) 10-m meridional wind (ms-1), (d) total cloud cover fraction (%) and (e) Tmin (°C). 

anomalies for the three strongest positive IOD years in 1990-2012 (listed in Table 1) for the 

direct comparison with the forecast composites shown in Figure 11 in the main article. 

(Bottom row; f-j) Same as (a-e) but for the three strongest central Pacific El Nino years 

(listed in Table 1). Stippling indicates the statistical significance on the difference of the two 

means (composite mean vs climatological mean) at the 10% level, assessed by the two-tailed 

Student t-test with the samples sizes of five and three in the composite groups of the strong 

positive IOD and the strong central Pacific El Nino, respectively, and 23 in the climatological 

group. 

  



 

Figure S6. The same as Figure S4 except four negative IOD years and three central Pacific 

La Nina years being used for the direct comparison with the forecast composites in Figure S7. 

  



 

Figure S7. Ensemble mean forecast composites of (a,f) MSLP, (b,g) 10-m zonal wind (ms-1),  

(c,h) 10-m meridional wind (ms-1), (d,i) total cloud cover fraction (%), and (e,j) Tmin (°C) 

during the four strong negative IOD years (upper panels) and the three strong central Pacific 

La Nina years (lower panels) at lead time 0 as found in Table 1 and in the hindcast period of 

1990-2012. Stippling indicates the statistical significance computed as described in Figure S4 

caption except four and three samples in the negative IOD and the central Pacific La Nina 

composite groups, respectively, being used. 

 


