
International  Journal  of

Environmental Research

and Public Health

Review

Review of Deep Learning-Based Atrial Fibrillation
Detection Studies

Fatma Murat 1,* , Ferhat Sadak 2 , Ozal Yildirim 3 , Muhammed Talo 3, Ender Murat 4 , Murat Karabatak 3 ,
Yakup Demir 1, Ru-San Tan 5,6 and U. Rajendra Acharya 7,8,9

����������
�������

Citation: Murat, F.; Sadak, F.;

Yildirim, O.; Talo, M.; Murat, E.;

Karabatak, M.; Demir, Y.; Tan, R.-S.;

Acharya, U.R. Review of Deep

Learning-Based Atrial Fibrillation

Detection Studies. Int. J. Environ. Res.

Public Health 2021, 18, 11302. https://

doi.org/10.3390/ijerph182111302

Academic Editor: Paul B. Tchounwou

Received: 18 September 2021

Accepted: 24 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronics Engineering, Firat University, Elazig 23000, Turkey;
ydemir@firat.edu.tr

2 Department of Mechanical Engineering, Bartin University, Bartin 74100, Turkey; fsadak@bartin.edu.tr
3 Department of Software Engineering, Firat University, Elazig 23000, Turkey; ozalyildirim@firat.edu.tr (O.Y.);

mtalo@firat.edu.tr (M.T.); mkarabatak@firat.edu.tr (M.K.)
4 Department of Cardiology, Gülhane Training and Research Hospital, Ankara 06000, Turkey;

ender.murat@sbu.edu.tr
5 Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore;

tanrsnhc@gmail.com
6 Department of Cardiology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
7 Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 138607, Singapore;

aru@np.edu.sg
8 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
9 Department of Biomedical Engineering, School of Science and Technology,

Singapore University of Social Sciences, Singapore 599494, Singapore
* Correspondence: fmurat@firat.edu.tr

Abstract: Atrial fibrillation (AF) is a common arrhythmia that can lead to stroke, heart failure, and
premature death. Manual screening of AF on electrocardiography (ECG) is time-consuming and
prone to errors. To overcome these limitations, computer-aided diagnosis systems are developed
using artificial intelligence techniques for automated detection of AF. Various machine learning and
deep learning (DL) techniques have been developed for the automated detection of AF. In this review,
we focused on the automated AF detection models developed using DL techniques. Twenty-four
relevant articles published in international journals were reviewed. DL models based on deep
neural network, convolutional neural network (CNN), recurrent neural network, long short-term
memory, and hybrid structures were discussed. Our analysis showed that the majority of the studies
used CNN models, which yielded the highest detection performance using ECG and heart rate
variability signals. Details of the ECG databases used in the studies, performance metrics of the
various models deployed, associated advantages and limitations, as well as proposed future work
were summarized and discussed. This review paper serves as a useful resource for the researchers
interested in developing innovative computer-assisted ECG-based DL approaches for AF detection.

Keywords: atrial fibrillation; ECG; deep learning; deep neural networks; arrhythmia detection

1. Introduction

Atrial fibrillation (AF) is the most common heart rhythm disorder. It is seen mostly in
the elderly but even young people who do not have underlying heart disease may suffer
from it. Although AF itself is rarely lethal, it increases the risk of AF-related complica-
tions like heart failure and thromboembolism, which lead to increased morbidity and
mortality [1]. AF is associated with a five and three times increase in risks of incident
stroke [2] and heart failure [3], respectively. AF currently affects 33.5 million people glob-
ally, a number that is expected to increase rapidly due to population aging [4]. According
to Gillis [5], the number of AF patients in the United States is expected to increase 2.5 times
in the next 50 years. To avert AF complications and premature death, it is important to
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detect AF at an early stage to initiate appropriate preventive therapy, e.g., anticoagulation
for cardio embolic stroke prevention.

AF can be classified as paroxysmal, persistent, or permanent AF [6,7]. Paroxysmal
AF is an episode that lasts seven days or less. Persistent AF lasts more than seven days
and necessitates additional therapy to terminate the episode, e.g., pharmacological or
electrical cardioversion [8,9]. In permanent AF, therapy to cardiovert the rhythm is not
attempted [10]. Regardless of their duration, all three classes of AF are associated with
increased thromboembolic risks. Hence, accurate detection of AF episodes, however transi-
tory, and initiation of anticoagulation are key to minimizing downstream adverse events.

The diagnosis of AF requires electrocardiographic (ECG) documentation of the ar-
rhythmia on at least one lead [11]. Paroxysmal AF is easily missed on opportunistic office
ECG recordings. Portable ambulatory extended duration ECG monitoring, e.g., 24-Holter
recording, increases the odds of AF detection but generates voluminous ECG data that are
onerous and time-consuming to analyze. An algorithm that can automatically pinpoint
the onset and quantify the duration of AF episodes will have diagnostic and prognostic
utility. The application of advanced signal processing and machine learning techniques
to AF detection can help to reduce subjectivity and human error as well as improve the
accuracy and timeliness of diagnosis [12].

Systems developed for automatic recognition of AF primarily exploit two key features
of AF on ECG signals: absent P wave and/or irregular RR intervals. As such, accurate de-
tection of P or R wave peaks is critical. The low amplitude P wave is especially susceptible
to interference from ECG baseline drift and artifacts [13], which may lead to degraded per-
formance of P wave-based algorithms [14,15] with noisy data signals. Another important
method for determining the characteristics of ECG signals is heart rate variability (HRV).
The increase in the spectral energy of HRV dynamics is a critical finding in the diagnosis of
arrhythmia. One of the reasons they are preferred is their durability in noisy environments.
Furthermore, HRV-based features only encode dynamic cardiac activity features. As a
result, it has become one of the preferred methods in recent years, particularly for AF
detection and PAF prediction.

Traditional machine learning algorithms are commonly used for ECG signal analysis [16,17].
The features representing cardiac arrhythmia are created in traditional machine learning
techniques, usually as a result of interaction with experts and a literature review; they
serve as inputs to shallow classifiers such as neural networks [16], SVM [17], KNN, and so
on. These classifiers detect AF from ECG signals by using distinctive features. In the work
of Henzel et al. [18], four statistical features of the RR interval were fed to a generalized
linear classifier to diagnose AF. Overfitting on training data is a common weakness of these
algorithms that rely on handcrafted feature extraction, which perform poorly when run
on unseen data. In contrast, deep learning (DL) techniques incorporate automatic feature
extraction and selection processes within the model. The computer can learn and extract
related features in any problem automatically, which enhances the generalizability of DL
models and renders them superior to traditional machine learning algorithms [19–22].
Convolutional neural networks (CNNs) are widely used in DL models for the analysis
and classification of ECG signals [23–29]. CNNs can automatically learn representative
complex features directly from the data itself, thereby eliminating the need for handcrafted
features. Acharya et al. built an 11-layer CNN structure with a four neuron-output
layer for ECG signal classification [30] and also another 11-layer CNN model that could
distinguish shockable versus non-shockable ventricular arrhythmia [31]. In the work of
Rahhal et al. [32], an unsupervised DL approach for ECG classification showed promising
results when validated against well-known public databases such as MIT-BIH and INCART
arrhythmia databases. In the work of Zubair et al. [33], CNNs for classifying ECG beats into
five different classes were validated using 44 ECG recordings from the MIT-BIH database.
A DL method called greedy deep dictionary learning [34] outperformed traditional and
other DL methods. In [35], a new deep belief networks method that encompassed ECG
signal pre-processing, segmentation and resampling, feature learning, and validation was
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able to learn the features of ECG arrhythmia and successfully classify them into five classes.
By eliminating the need for manual feature extraction, the examples reviewed in this article
underscore the generalizability and potential of DL models for detecting arrhythmia like
AF on raw ECG signals [36–39].

We aimed to survey articles that have been published in international peer-reviewed
journals on AF detection using DL, focusing on those that address the AF problem directly
rather than generic studies of arrhythmia classification that included AF as one of the
classes. The studies utilizing only DL in the detection of AF were examined in this study.
Performance comparisons were made by considering the data sets, input formats, deep
models, and classification approaches used in these studies. As a result, it is expected
that researchers have knowledge in deep learning-based studies to be conducted for AF
detection. Limitations of the studies and suggestions for future works for AF detection
using DL were also discussed.

2. Materials and Methods

During the development of the search strategy, frequently used keywords in recent
studies for the detection of AF were filtered. A review of the literature was conducted
by searching the most used keywords (Atrial fibrillation detection, Arrhythmia detec-
tion, 12-Lead ECG, Atrial activity signal, etc.) and deep learning models (CNN, DNN,
LSTM, etc.) and the search strategy was restricted to the last 5 years. The keywords
“Atrial fibrillation and deep learning”, “Atrial fibrillation AND deep neural networks”,
“Atrial fibrillation AND convolutional neural networks OR CNN”, “Atrial fibrillation
AND LSTM”, and “Atrial fibrillation AND Neural networks” were used to search Google
Scholar, Mendeley, and ScienceDirect databases for relevant articles. In total, 24 articles
were selected that had been published in the following journals: Computers in Biology
and Medicine [40–43], Journal of Electrocardiology [44], IEEE Journal of Biomedical and
Health Informatics [45,46], Lancet [47], International Journal of Cardiology [48,49], Neu-
ral Computing and Applications [50], Biomedical Signal Processing and Control [51–53],
Computer Methods and Programs in Biomedicine [54], Medical & Biological Engineering
& Computing [55], Information Sciences [30,56], Expert Systems with Applications [19],
Journal of Signal Processing Systems [57], AMIA Joint Summits on Translational Sci-
ence proceedings, AMIA Joint Summits on Translational Science [58], Knowledge-Based
Systems [59,60], and Future Generation Computer Systems [61]. Figure 1 shows the distri-
bution of articles by year of publication and the DL model deployed.
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Figure 1. Distribution of publications on atrial fibrillation detection using deep learning by year of publication (a) and 
type of model deployed (b). CNN, convolutional neural network; DNN, deep neural network; LSTM, long short-term 
memory; RNN, recurrent neural network. 

Figure 1. Distribution of publications on atrial fibrillation detection using deep learning by year of publication (a) and type
of model deployed (b). CNN, convolutional neural network; DNN, deep neural network; LSTM, long short-term memory;
RNN, recurrent neural network.
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From a detailed analysis of the various methods used in the articles, we constructed a
general approach that is illustrated in Figure 2. The datasets used, the way the ECG signals
were fed to the models, DL models used, and their classification approaches are discussed
in the following section.
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fibrillation detection.

2.1. AF Datasets

Table 1 lists the ECG databases studied in the published papers. Among them,
MIT-BIH DB [62], MIT-BIH AFDB [63], PhysioNet/CinC 2017 [64], MIT-BIH SRDB [62],
MIT-BIH VFDB [62], and CU VTDB [65] were most commonly used.

Table 1. EGG databases used in studies of atrial fibrillation detection based on deep learning.

Database Records Papers

MIT-BIH DB 0.5 h duration, 48 records from
47 subjects, 360 Hz sampling rate [19,30,46,50,54,56,60]

MIT-BIH AFDB 10 h duration, 25 records, 250 Hz
sampling rate [19,30,40–42,52,55,56,59–61]

PhysioNet/CinC 2017 8528 single-lead ECG, 300 Hz [42,44,45,49–51,53,55,57,58]

MIT-BIH VFDB 0.5 h duration, 22 records [56]

CU VTDB 8 min, 35 records, 250 Hz sampling rate [30]

Others Details in individual papers [43,46–49,54,55,61]

Pre-Processing

An ECG signal often contains noise and artifacts that arise from the device used
to collect the signal or the environment in which the signal is being collected. Various
pre-processing techniques can be applied to denoise ECG signals, including Fourier cosine
series operation to remove baseline wander and high frequency components [48], elliptical
band-pass filter [40,43], wavelet transform [51,59–61,66], finite impulse response filter [45],
band-pass Butterworth filter [42,52,55,66], and notch filter [67]. Additionally, to standardize
the ECG signals for analysis, Z-score normalization [43,51,60] and high-pass filter [46] are
commonly used for amplitude scaling and minimize offset effects, respectively.

2.2. Model Input Types

The ECG signal can be configured in various formats—single-lead ECG, multi-lead
ECG, heart rate variability (HRV), spectrogram, or fused features—for input into DL models
for AF detection (Figure 3).
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Single-lead ECG: Single-lead input is commonly used in the published
studies [19,30,42,45,48,51–53,55,56,60,61] as it is computationally lightweight, which fa-
cilitates model training. Lead II depicts the P, QRS, and T waves to good advantage [68]
and which are used in many single-lead ECG input studies. The PhysioNet/CinC 2017
dataset comprising modified Lead I ECG signals acquired using a medical-grade portable
personal ECG monitoring device has also been investigated in other AF studies.

Multi-lead ECG: Studies using this data input generally have access to standard
12-lead ECG signal recordings [47]. As the data dimensionality is inordinately high for
12-lead ECG signals, some researchers used only a subset of 12-lead recordings to mini-
mize the computational cost. Attia et al. [47] excluded four lead signals that contained
little added information and used only eight leads (I, II, V1-6) as inputs for their DL
model. Similarly, Baalman et al. [48] trained their model using only Lead II of the 12-lead
ECG dataset.

ECG segment size: Different segment sizes of single- and multi-lead ECG recordings
have been used in the studies. Single-beat [48,54], five-second [42,59], and ten-second ECG
signal segments [43,47,49] are common inputs. Fan et al. [45] compared the performance
of 5-second, 10-second, 20-second, and 30-second ECG segment inputs in their DL model,
and observed the best results with the 20-second segment input.

Heart rate variability: HRV, which measures RR interval variations over a specified
finite time duration, reflects the state of the autonomic nervous system [69,70] and has been
extensively studied as model input for AF detection (Table 2). Faust et al. [41] segmented
100 beats with a floating window and input the resulting blocks which encompassed HRV
information into a DL system to detect AF. This approach was validated using data from a
different source in the work of Faust et al. [71].

Table 2. Summary of studies performed on atrial fibrillation detection with heart rate variability signals.

Author, Year Purpose Classifier Input
Performance (%)

Spec. Sen. Acc.

Faust et al., 2018 [41] AF detection Bidirectional LSTM 23 subjects 99.61 99.87 99.77
Mei et al., 2018 [72] AF detection SVM + BT 8528 single-lead ECG 98.6 83.2 96.6
Mohebbi et al., 2012 [73] PAF prediction SVM 30-min ECG 93.10 96.30 -
Narin et al., 2018 [74] PAF prediction KNN 5-min ECG 88 92 90
Chesnokov, 2008 [75] PAF prediction SVM 30-min segments 93 76 -
Hirsch et al., 2021 [76] AF detection BoT, RF, LDA 30-beat window 96.1 95.9 97.4
Ebrahimzadeh et al., 2018 [77] PAF prediction MLP, KNN, SVM 5-min ECG 95.55 100 98.21
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Table 2. Cont.

Author, Year Purpose Classifier Input
Performance (%)

Spec. Sen. Acc.

Boon et al., 2016 [78] PAF prediction SVM 30-min ECG 79.3 81.1 80.2
Marinnucci et al., 2020 [79] AF identification ANN 8244 ECG 75.0 88.7 -

Acc, accuracy; AF, atrial fibrillation; ANN, artificial neural network; AUC, area under curve; BT, bagging tree; BoT, boosted trees; KNN,
k-nearest neighbor; LDA, linear discriminant analysis; LSTM, long short-term memory; MLP, multilayer perceptron; PAF, paroxysmal atrial
fibrillation; RF, random forest; Spec, specificity; SVM, support vector machine.

Ebrahimzadeh et al. [77] extracted a total of 28 features from HRV signals, including
nine linear features, 5 in the time domain and 4 in the frequency domain, 11 time-frequency
features that include both time and frequency information, and 8 nonlinear features in each
section. Similarly, Boon et al. [78] used time domain, frequency domain, and nonlinear
analysis to extract 55 features from HRV.

Spectrogram: One-dimensional signals like ECG RR intervals but not the ECG mor-
phology can be converted to spectrograms [80–82] that have been used as inputs to DL
models for AF detection [40,44,57]. Xia et al. [40] used short-time Fourier transform and sta-
tionary wavelet transform to convert five-second ECG segments into two-dimensional data.
Rubin et al. [44] used fast Fourier transform on 85% overlapping 250-millisecond moving
windows to convert one-dimensional ECG time series to time-frequency representations.

Fused Features: Architectures with two or more different input types have been used
for AF detection to improve model performance. In the work of Fan et al. [50], both
RR interval information and ECG waveform morphological features were fed to two-
layer fully connected networks to distinguish AF, sinus rhythm, and other arrhythmias.
Lai et al. [46] used raw ECG data, fibrillatory wave spectra, and RR interval as inputs
into their AF detection model. Tran et al. [58] proposed a DL network MultiFusionNet
that combined two deep neural networks trained on different information sources using
multiplicative fusion. In the work of Chen et al. [54], the proposed AF detection model
combined CNN with its efficient automated learning and key feature extraction using both
a recursive complex network [83] and coherence spectrum [84], which required additional
manual features.

2.3. Deep Models

Table 3 lists the DL models developed for automatic AF detection. The most popular
was CNN followed by a hybrid model that combined CNN and LSTM.

Table 3. Deep learning models developed for automatic AF detection.

Deep Models Related Publications Advantage/Disadvantage

DNN [43] In terms of speed, it is more advantageous.

CNN [30,40,44–47,49,50,53,54,56,57,60,61] Strong in obtaining representative properties, but lacking in
design difficulties and parameter tuning.

RNN [42,48] Although it is used because of its memory structure, it is
poor at representing sequences.

LSTM [41,51] Although useful for sequence representations, it is slow and
consumes a lot of resources.

Hybrid (CNN+LSTM) [19,52,55,58,59] The use of both representation and sequence features
together is advantageous, but it takes more time and cost.

CNN, convolutional neural network; DNN, deep neural network; LSTM, long short-term memory; RNN, recurrent neural network.
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2.3.1. Deep Neural Networks

Deep neural networks (DNNs), the most basic form of DL, have similar structures
to the traditional multilayer perceptron (MLP) that is obtained by cascading models with
multiple hidden layers. Learning is achieved by abstracting data inputs into the DNN’s
many layers. Cai et al. [43] proposed a one-dimensional deep densely connected neural
network comprising four blocks of multiple densely connected convolutional layers each,
with a novel filter combination and unique use of squeeze and excitation module to enhance
the network’s representation power. The model was able to accurately diagnose AF in
binary and triple classification experiments using ten-second raw 12-lead ECG signals
without the need to extract and select features.

2.3.2. Convolutional Neural Networks

To learn, CNN models automatically extract hierarchical features from simple to
complex using convolution by applying high-dimensional filters on the input data. They
have been used successfully in problems involving two-dimensional images [85–88] as
well as one-dimensional time-series data like ECG. CNN models used for AF detection
can perform feature extraction and classification without the need for manual feature
extraction. Xia et al. [40] were the first to use CNNs for AF detection. Unlike traditional
AF-detection algorithms, their proposed method neither required manual feature extraction
nor detection of ECG P and/or R waves. In the work of Fan et al. [45], a multi-scaled
fusion of deep convolutional neural network (MS-CNN) employed two CNN streams each
with 13 convolution layers and different filter sizes that could capture ECG features at
different scales. After the max-pooling layer, the two streams were combined and the
MS-CNN model completed with three fully connected layers. Fujita et al. [56] proposed
a new system approach for AF and atrial flutter (AFL), an arrhythmia closely related to
AF, detection using an eight-layer deep CNN. Using standard ten-second 12-lead ECGs,
Attia et al. [47] built an artificial intelligence-enabled ECG machine that used a CNN model
with a single convolution layer to detect AF. Fan et al. [50] proposed a CNN-based AF
screening framework (FRM-CNN) to automatically screen for AF segments from mobile
ECG signals using both ECG rhythm and morphological feature inputs. A 34-layer residual
network was used to capture morphological features from ECG signals before both the
morphological as well as rhythm features were input to a two-layer fully connected network
with SoftMax layer for classification. Lai et al. [46] built four CNN models for classifying
ECG data into AF and non-AF labels. Using different inputs, each model consisted of two
convolution layers, two pooling layers, one batch-normalization, one fully connected, one
input, and one output layer. Zhao et al. [57] proposed an 18-layer dense layered CNN
model for AF detection. Wang et al. [60] combined a CNN and an improved Elman neural
network (IENN), and created two linked models to validate the model’s classification
performance. Among these last three models that differed in their decision mechanism for
signal identification—MLP, Elman neural network (ENN), and IENN, respectively—but
otherwise possessed similar structures, the IENN + CNN model [60] yielded the best
performance for AF detection. Nurmaini et al. [61] proposed a one-dimensional CNN
with two types of layers: (1) feature learning layers with one-dimensional convolutions
and subsampling (pooling); and (2) fully connected layers as classifiers that are similar
to the layers of a typical MLP. Different combinations of convolution and pooling layers
were tested for classification performance. A 13-layered one-dimensional CNN model
with five pooling layers—the more the pooling layers, the greater the reduction in model
complexity—was found to have the best performance. Chen et al. [54] developed an
accurate AF detection model that used two CNN algorithms to perform multi-feature
extraction of atrial activity on ECG signals, which were combined with a decision-level
fusion method. Despite working on a small training dataset without validation data,
Nguyen et al. [53] were able to report better results than other common methods with their
model, which combined CNN architecture for extracting deep features from ECG signal
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segments and a support vector machine (SVM) that classified each segment automatically
without overfitting.

2.3.3. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of artificial neural network developed
to solve temporal problems, particularly those with sequential inputs [89,90] such as ECG
signals. Baalman et al. [48] fed single-cycle ECG morphological inputs to the attention
mechanism of a RNN for AF detection. Of note, the use of single-cycle samples or short
segments of ECG is especially suitable for real-time remote device/sensor monitoring appli-
cations. Mousavi et al. [42] input ECG signals to an attention mechanism of a bidirectional
RNN (BiRNN). By increasing the number of attention mechanisms, four different models
were created: the RNN model without the attention mechanism and three hierarchical
attention network (HAN)-ECG models with one, two, and three attention mechanisms.
Best accuracy and performance were obtained with more attention mechanisms, i.e., the
HAN-ECG3 model, which contained wave attention, beat attention, and window attention
layers sandwiched between BiRNN layers.

2.3.4. Long Short-Term Memory

Long short-term memory (LSTM) models proposed by Hochreiter et al. [91] are widely
used in DL to address deficiencies in the RNN architecture that include gradient exploding
and vanishing problems, which limit the ability to learn lengthy-time period dependencies.
The bidirectional LSTM designed by Faust et al. [41] effectively learned and extracted
features from RR interval input data composed from 100-beat segments, and attained
98.51% and 99.77% accuracies for AF detection with ten-fold cross-validation and blindfold
validation, respectively. The LSTM network was able to learn features in the presence or
absence of AF that were then passed to the fully connected top model for classification,
eliminating the need for information reduction by feature extraction. Cao et al. [51] used a
two-layer LSTM network to train a public ECG database and reported that their proposed
data augmentation method achieved a better F1 score for AF classification than without
data augmentation.

2.3.5. Hybrid Deep Models

There are theoretical synergies between CNN models’ representation learning and
LSTM models’ sequence learning that can be combined to yield powerful DL models where
features obtained from CNN layers are fed to LSTM layers in sequence. Andersen et al. [19]
proposed an end-to-end model combining CNN and LSTM networks to classify ECG
data as AF or sinus rhythm (SR) by extracting high-level features from RR intervals.
Tran et al. [58] developed a deep structure incorporating both raw data and extracted
features that captured the temporal dependence of the input data by including residual
blocks and LSTM layers with the raw input data. Raw data were subjected to an average
pooling layer in the CNN-LSTM model to mitigate long training times due to the large
volume of data inputs. Jin et al. [59] proposed a twin-attentional convolutional LSTM neural
network (TAC-LSTM) AF detection model that used CNN to compress ECG signals to
obtain short-term characteristics and LSTM to obtain long-term dependency characteristics
of ECG signals. Petmezas et al. [52] developed a deep CNN model to generate deep features
from ECG signals followed by an LSTM layer for temporal dynamics memorization. They
dealt with training data imbalance by employing focus loss, an improved version of
cross-entropy loss, and reported success for detecting AF from four different rhythms.
In Zhang et al. [55], ten-second ECG segments were input to the LSTM layer and the
output fed to the CNN network to generate deep features that were finally classified by
the SoftMax layer into AF versus non-AF labels. The training incorporated the Adam
optimization method with a cross-entropy loss function. The proposed LSTM-CNN model
showed good results when tested with three separate ECG databases.
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2.4. Classification Task

The class to which ECG signal input belongs is determined at the final layers of
DL models. Classification can either be binary—AF versus non-AF—or multi-class.
In binary classification, the AF class may include AFL [42] and the non-AF class may
include SR [40,41,43,45,47,48,55] and/or other arrhythmia [43,45,55,59]. In the multi-class
approach, the ECG databases typically contain a variable number of classes besides AF,
such as:

• AF, SR, AFL and ventricular fibrillation [30,56];
• AF, SR, and others [50];
• AF, SR, and AFL [60];
• AF, SR, others and noisy [44,51,53,57];
• AF, SR, and non-AF [61]; and
• AF, SR, AFL, and junctional rhythm [52].

3. Discussion and Comments

Table 4 summarizes the foregoing information on DL AF detection models. In general,
more than 90% model accuracy for AF detection was attained. CNN models were the
most popular [30,40,44–47,49,50,53,54,56,57,60,61]. In some of these studies, standard
CNN layers were modified to networks of different sizes [30,46,47,49,56,61]. For example,
Acharya et al. [30] achieved 92.50% and 94.90% accuracy rates for detecting AF on ECG
segments of two different durations with an 11-layer CNN model. CNN AF detec-
tion models with 8 [56] and 13 layers [61] have also been proposed. Adding various
feature extraction methods to the inputs of some CNN models was shown to enhance
performance [40,44,50,54,57]. Inputting models with spectrograms containing time-frequency
plots of ECG signals yielded good performance [40] without requiring manual feature
extraction. The LSTM-based model proposed by Faust et al. [41] reported an excellent
99.77% accuracy with HRV signals, which underscores the potential for using HRV input
in AF detection models.

CNN DL can perform automatic feature extraction effectively. Wang et al. [60] used
the features obtained from the CNN model coupled with IENN classifiers and achieved
high performance of 99.4%. Nguyen et al. [53] used the SVM classifier to classify the
features obtained from the CNN layers and obtained a F1 score of 0.78 for AF detection.
Representative features extracted from CNN layers can also be fed to LSTM models, which
are effective at learning sequential features, with good results [52,58]. Conversely, when
the LSTM architecture was used as a sequential feature extractor and the output was fed to
the CNN model, lower performance was reported [55] compared with other studies.

Table 5 lists the studies based on the PhysioNet/CinC 2017 database, which may be
relevant to potential mobile monitoring applications as the single-lead ECG signal data
were acquired using a medical-grade portable device. Fan et al. [50] reported a very high
F1 score of 0.88 for AF detection but the study did not include ECG signals in the noisy
class. In studies where all four ECG classes in the database, sinus rhythm, AF, others,
and noisy were included, AF detection F1 scores in a tight range of 0.78 to 0.84 were
reported [44,51,53,57,58], with slightly better performance in the LSTM models [51,58].
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Table 4. Deep learning models for atrial fibrillation detection.

Authors, Year Number of Subjects Leads Classes Database Method
Performance (%)

Spec. Sen. Acc.

Acharya et al., 2017 [30] 21,709 2 s ECG segments
8683 5 s ECG segments Lead II SR, AF, AFL and VF

MIT-BIH DB,
MIT-BIH AFDB,

CU VTDB
11-layer CNN 93.13

81.44
98.09
99.13

92.50
94.90

Xia et al., 2018 [40] 162,536 5 s ECG segments 2 Lead AF and non-AF MIT-BIH AFDB
STFT (RGB) + CNN

STFT (grayscale) + CNN
SWT + CNN

98.24
97.17
97.87

98.34
98.60
98.79

98.29
97.74
98.63

Faust et al., 2018 [41] CV: 20 subjects
BV: 3 subjects - SR and AF MIT-BIH AFDB HRV + bidirectional LSTM 98.67

99.61
98.32
99.87

98.51
99.77

Fan et al., 2018 [45] 5154 SR recordings
7713 AF recordings Single Lead SR and AF,

AF and O PhysioNet/CinC 2017 MS-CNN 98.77
98.84

93.77
80.26

98.13
97.19

Andersen et al., 2019 [19]
23 long-term recordings
48 short-term recordings
18 long-term recordings

Single Lead SR and AF
MIT-BIH AFDB,

MIT-BIH DB,
MIT-BIH SRDB

CNN + LSTM
96.95
86.04
95.01

98.98
98.96

-

97.80
87.40

-

Fujita et al., 2019 [56] 25,287 2 s ECG segments Single Lead SR, AF, AFL and VF
MIT-BIH DB,

MIT-BIH AFDB,
MIT-BIH VFDB

8-layer CNN 96.07 99.43 98.61

Attia et al., 2019 [47] 649,931 10 s ECG recordings 12 Lead SR and AF
(includes AFL)

Mayo Clinic
ECG Laboratory CNN 83.4 82.3 83.3

Baalman et al., 2020 [48] 1499 10 s ECG recordings Lead II,
8 Lead SR and AF AFACT R-centered SC-ECG + RNN

R-to-R-wave SC-ECG + RNN - - 94.00
96.00

Cai et al., 2020 [43] 16,557 10 s ECG recordings 12 Lead
SR and AF

AF and non-AF
SR, AF and O

Chinese PLA
General Hospital

Wearable 12-Lead,
The China Physiological

Signal 2018

DDNN
99.19
97.04
95.85

99.44
98.63
98.38

99.35
98.21
97.74

Lai et al., 2020 [46] 510,472 10 s ECG recordings Multi Lead AF and non-AF Hexin Patch Lead II,
MIT-BIH DB 8-layer CNN 93.4 93.1 93.1

Jin et al., 2020 [59] 150,060 5 s ECG recordings - AF and non-AF MIT-BIH AFDB Multi-domain
feature + TAC-LSTM 98.76 98.14 98.51
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Table 4. Cont.

Authors, Year Number of Subjects Leads Classes Database Method
Performance (%)

Spec. Sen. Acc.

Wang et al., 2020 [60] 22,174 ECG segments
1265 ECG segments Single Lead SR, AF and AFL MIT-BIH AFDB,

MIT-BIH DB

CNN + MLP
CNN + ENN
CNN + IENN

99.3
99.6

97.1
99.3

98.3
99.4

Nurmaini et al., 2020 [61] 6114 samples (9 s) Single Lead SR and AF
SR, AF and non-AF

PhysioNet AFDB,
MIT-BIH AFDB,

MIT-BIH Malignant
Ventricular Entropy,

An Indonesian Hospital

13-layer
one-dimensional CNN

99.91
99.17

99.91
98.90

99.98
99.17

Mousavi et al., 2020 [42] 167,422 5 s ECG recordings
8528 ECG recordings Single Lead AF and non-AF

SR and AF
MIT-BIH AFDB,

PhysioNet/CinC 2017 BiRNN (HAN-ECG) 98.54 99.08 98.81

Chen et al., 2021 [54] - 2 Lead
12 Lead SR and AF MIT-BIH DB,

AHA DB, QT DB, CSE DB
Multiple feature

extraction + CNN - - 98.92

Petmezas et al., 2021 [52] 970,009 beats 2 Lead SR, AF, AFL and J MIT-BIH AFDB CNN + LSTM + FL 99.29 97.87 -

Jo et al., 2021 [49] -
12 lead,
6 Lead,

Single Lead
AF and non-AF

Sejong ECG DB, PTB-XL
ECG DB, Charman et al.
ECG DB, PhysioNet DB

CNN 99.5 99.9 99.6

Zhang et al., 2021 [55]
80,000 ECG segments
83,464 ECG segments
19,220 ECG segments

Lead I AF and non-AF
Wearable Lead I-II,

MIT-BIH AFDB,
PhysioNet/CinC 2017

LSTM + CNN
95.19
94.49
96.66

97.73
96.46
92.09

95.44
95.28
96.23

Acc, accuracy; AF, atrial fibrillation; AFL, atrial flutter; BiRNN, bidirectional RNN; BV, blindfold validation; CNN, convolutional neural network; CV, cross-validation; DDNN, deep densely connected neural
network; ENN, Elman neural network; FL, focal loss; FRM-CNN, CNN-based AF screening framework; HAN, hierarchical attention network; HRV, heart rate variability; IENN, improved Elman neural
network; J, junctional rhythm; LSTM, long short-term memory; MLP, multilayer perceptron; MS-CNN, multi-scaled fusion of deep CNN; N, noisy; O, others; RNN, recurrent neural network; SC, single-cycle;
Sen, Sensitivity; Spec, Specificity; SR, sinus rhythm; STFT, short-time Fourier transform; SWT, stationary wavelet transform; TAC-LSTM, twin-attentional convolutional LSTM; VF, ventricular fibrillation.
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Table 5. Deep learning models for atrial fibrillation detection using the PhysioNet/CinC 2017 dataset.

Authors, Year Classes Method F1N F1A F1O F1

Rubin et al., 2018 [44] SR, AF, O and N SQA + DCNN 0.91 0.83 0.72 0.82
Fan et al., 2020 [50] SR, AF and O FRM-CNN 0.93 0.88 0.74 0.85

Zhao et al., 2020 [57] SR, AF, O and N Kalman filter + DCNN 0.89 0.79 0.72 0.80
Tran et al., 2020 [58] SR, AF, O and N CNN + LSTM 0.90 0.83 0.75 0.80
Cao et al., 2020 [51] SR, AF, O and N 2-layer LSTM 0.91 0.84 0.70 0.82

Nguyen et al., 2021 [53] SR, AF, O and N Stacking CNN + SVM 0.93 0.78 0.79 0.83

AF, atrial fibrillation; CNN, convolutional neural network; DCNN, densely connect neural network; F1, F1 score; FRM-CNN, CNN-based
AF screening framework; LSTM, long short-term memory; N, noisy; O, others; SQA, signal quality analysis; SR, sinus rhythm; SVM, support
vector machine.

This review chronicled research and development efforts to improve AF detection
methodology through continual experimentation with network layer configuration and
parameters. The observations contribute to the future design of DL models that are com-
putationally efficient and yet can yield optimal results. Due to the blackbox nature of
many DL models, there is a dearth of information on why a particular model should
become successful or not. This constitutes an important impediment to clinical acceptance
of new AF detection models [49], and a few studies have attempted to address this issue
directly. Jo et al. [49] constructed saliency maps for the ECG that depicted the models’
explainability. Mousavi et al. [42] added to their model’s RNN backbone structure hierar-
chical attention mechanisms with interpretable transform effects on the detection results.
Baalman et al. [48] developed a visualization tool for the attention vector that facilitated
model interpretation. Lastly, disparities in the ECG signal input dimensions among the
studies—ECG segments of different input sizes such as single beats [48,54], five- [42,59]
and ten-second segments [43,47,48] have been used as input to the models—can limit the
generalizability of the conclusions.

Cardiologist Comments

It is important to distinguish AF from SR on the ECG. With manual interpreta-
tion, multi-lead ECG signals are more accurate than single-lead signals for AF diagnosis.
For example, if the P wave in Lead II is positive and the P wave in precordial Lead V1
is negative or biphasic on a background of regular or equal RR intervals, SR is highly
likely [92]. In theory, Leads II and V1 may represent the optimal two-lead ECG input
combination for AF detection models that best balances accuracy with computational costs.
Further, it would be appropriate to examine ECG segments lasting at least 30 s as the
clinical significance of short episodes remains uncertain. By convention, AF on standard
12-lead ECG (the reference standard) and/or AF of at least 30 seconds in duration on
any ECG recording are obligatory for the clinical diagnosis. Not surprisingly, DL models
validated on 12-lead ECG database are arguably more credible and accurate. Nevertheless,
single-lead ECG recordings are becoming more ubiquitous on personal and mobile devices
and can no longer be dismissed as an increasingly relevant source of ECG signal data.

The chief motivation for developing AF screening systems is to detect AF accurately
and reliably so that:

• Stroke and stroke-related complications can be prevented with early diagnosis of AF
and initiation of oral anticoagulant therapy.

• AF-induced electrical and/or mechanical remodeling of the heart can be averted with
rhythm and/or heart rate control.

• AF-associated heart failure can be prevented and/or ameliorated with specific heart
failure drugs.

• AF-associated hospitalizations and healthcare expenditure can be reduced through
optimal preventive management.

Possible limitations of AF screening include:
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• Few public ECG databases are available for DL model training, which require a high
volume of input data to develop accurate and robust models.

• Paroxysmal AF, which exacts similar stroke risk as persistent and permanent AF, may
escape detection on 12-lead ECG and/or short-duration ECG monitoring.

• Related arrhythmia like AFL that are morphologically distinct from AF and yet also
carries similar stroke risk as AF has only been included in selected studies.

4. Future Work

AF has effective preventive and therapeutic strategies and meets the criteria for
cost-effective disease screening. Randomized controlled trials are incipient currently but
interest is growing apace. When developing a DL model, consideration of the feasibility
for implementation in cloud-based applications for real-world, real-time monitoring is
imperative. Wearable technology provides low-cost and practical data input options
for arrhythmia screening, and DL models are an efficient framework for signal analysis
and interpretation.

Figure 4 illustrates a proposed cloud-based AF detection system that can be employed
on mobile phones. The HRV signal, which we showed to yield the best performance [41]
among the studies reviewed, is extracted from ECG recording and sent to the cloud for
processing. The processed data is interpreted by the cloud-based DL model and results
are relayed back to the clinician with minimal human effort. After verification by the
clinician, the vetted results are sent to the patient’s mobile phone. The feasibility of such
a system is dependent on managing the computational costs of the DL model as well as
data dimensionality. Of note, HRV signals occupy smaller bandwidths than ECG signals
and can be acquired on mobile devices for real-time applications. Finally, the cloud-based
system offers the optionality of processes to be conducted online or offline, which should
garner clinical acceptance.
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5. Conclusions

In this study, we discussed 24 papers on DL methods developed for automatic detec-
tion of AF on ECG-based signals. Most of the studies used CNN models, which yielded
good results with ECG as well as HRV signals. This study can serve as a guide for
researchers interested in designing optimal DL models for AF detection with the least
computational costs. Aside from the limitations of deep learning methods (number of
data, computational costs, etc.), another significant limitation of the study is the absence
of a systematic search method. On some general journal search engines, the keywords
determined were used to conduct a search. In future studies, this search strategy and
journal search engines can be expanded to conduct a more systematic review.
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