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ABSTRACT Phonocardiogram (PCG) signals generated by the heart contain information about heart
conditions. This review examines how PCG analysis identifies and diagnoses heart issues. We studied
traditional signal processing and artificial intelligence techniques and provided a complete picture of the
current state of this field. Adhering to the systematic review guidelines, our comprehensive review covers
103 studies from reputed journals. It includes Machine Learning (ML) and Deep Learning (DL) techniques
used to develop the computer-aided diagnostic tools using PCG signals. This review evaluates the strengths
and weaknesses of various ML and DL methods, emphasizing their effectiveness in diagnosing several
abnormalities. Additionally, we examine the obstacles and challenges limiting the widespread adoption of
PCG-based diagnostic systems in clinical settings. We outline a plan for future research to develop improved
versions of PCG analysis models. These models will be more robust, precise, and user-friendly. They will
improve cardiovascular care by enabling machines to screen for problems automatically and intelligently.

INDEX TERMS Computer-aided diagnostic tool, deep learning, heart sound classification, heart diseases,
phonocardiogram.

I. INTRODUCTION
Cardiovascular Disease (CVD) is one of the leading causes of
death worldwide. The World Health Organization estimated
that about 17.9 million deaths were due to CVD in 2019,
accounting for 32% of all deaths globally. Among these,
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85% of them died due to heart attack and stroke.1 The
imperative for risk stratification, screening, diagnosis, and
prompt management of these cardiac ailments is underscored
within the global health sector. The assessment of heart
sounds, within the context of a patient’s clinical profile,
holds pivotal significance in the physical examination

1https://www.who.int/news-room/fact-sheets/detail/cardiovascular-
diseases-(cvds)
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conducted by clinicians. Abnormal heart sounds can indicate
underlying pathological processes or identify patients at risk
of cardiovascular disease [1].

Auscultation forms a foundational aspect of cardiac exam-
ination during patient evaluation and assessment. Detection
of abnormal heart sounds serves to uncover structural or
functional cardiac irregularities. While echocardiography
is recognized as a viable diagnostic method for various
cardiac conditions, auscultation remains crucial as the
frontline assessment tool, particularly in cases involving
acutely ill patients or where other diagnostic modalities are
unavailable. Conventionally, heart sounds comprise S1 and
S2 components, representing atrioventricular and semilunar
valve closures, respectively. Additionally, physiological S3
and S4 diastolic gallop rhythms may manifest during specific
phases of the cardiac cycle [2], [3], [4].
Various pathological conditions, such as valvular abnor-

malities, intracardiac shunts, impaired cardiac function,
and arrhythmias, can generate abnormal heart sounds and
murmurs [5], [6], [7]. These sounds are characterized based
on their timing, intensity, pitch, shape, location, radiation,
rhythm, and response to positional changes and dynamic
maneuvers. This characterization aids in distinguishing
between physiological and pathological heart sounds [2],
[7]. Consequently, the diagnosis of cardiac diseases via
auscultation necessitates subjective interpretation, reliant
upon extensive clinical expertise and experience.

Phonocardiogram (PCG), a graphical depiction of the
recorded heart sound signal, provides an objective, detailed
and permanent readout that can be used to analyse valve
function and heart health. While it reduces some operator
variability, PCG still requires expert interpretation and
manual analysis can be onerous and subject to human
biases. Heart sound examination includes evaluating S1
and S2 heart sounds, understanding their frequency and
pitch, and assessing their regularity (refer to Figure 1).
Clinical auscultation can identify changes in heart sounds, the
presence of murmurs, and rubs. Heart sounds are brief, and
transient sounds are heard during valve closure and opening.
Based on the timings, these can be divided into diastolic and
systolic sounds. Murmurs are sounds heard due to turbulent
blood flow across the valves, chambers, or vessels and are
typically longer in duration than heart sounds. They can be
classified as systolic, diastolic, or continuous murmurs based
on their timing [8].

Accurate identification of cardiac pathologies via aus-
cultation necessitates clinical expertise. Although advanced
imaging modalities like echocardiography offer precise diag-
nosis and severity assessment of cardiac lesions, auscultation
retains significance, particularly in resource-constrained set-
tings lacking access to advanced equipment [8]. Thus, there is
a growing need for automated methods to identify abnormal
heart sounds and murmurs using PCG signals, providing an
objective approach to evaluating cardiac abnormalities.

Valvular heart diseases often present with abnormal heart
sounds and murmurs. Mitral Stenosis (MS) can cause loud

or soft S1 sounds and a mid-diastolic murmur due to
obstruction [9], [10]. Mitral Regurgitation (MR) typically
results in a soft S1 and a systolic murmur, varying by severity
and presence ofMitral Valve Prolapse (MVP) [9], [11]. Aortic
Stenosis features a soft S2 with an ejection systolic murmur,
while Aortic Regurgitation (AR) also has a soft S2 but a dias-
tolic murmur [12], [13]. Congenital defects like Ventricular
Septal Defect (VSD) and Atrial Septal Defect (ASD) produce
distinctive murmurs and abnormal heart sounds based on
their specific conditions [14], [15]. Patients with Coronary
Artery Disease (CoAD) may have S3 heart sounds from left
ventricular failure and a valve-related murmur with MR [16].
In addition, pulmonary hypertension can cause a loud P2
component of S2 [17], while extrasystole leads to irregular,
diminished heart sounds due to premature beats [18].

Accurate detection of cardiac pathology using auscultation
requires experience and clinical skills. Although advanced
imaging modalities such as echocardiography can accurately
reveal the diagnosis and severity of cardiac lesions, heart
sound examination may still be the primary assessment
tool in remote areas without advanced echocardiographic
equipment, where the clinician’s expertise is essential for
a provisional diagnosis. This underscores the need for
automated identification of abnormal heart sounds and mur-
murs using automated methods for assessing PCG signals,
providing an objective way of evaluating heart sounds and
their abnormalities.

A. MOTIVATION
Evaluation of abnormal heart sounds through serial examina-
tion helps determine dynamic changes in the heart’s hemody-
namics, especially following acute injury or complications to
the heart. These changes may result from disease pathology
or procedural complications during interventions. Therefore,
clinicians with good auscultatory skills and knowledge
of heart disease pathology are essential. In this context,
using automated models to evaluate abnormal heart sounds
through PCG signals can aid clinicians in understanding
underlying heart pathology, particularly in the absence of
echocardiographic diagnostic systems or remote healthcare
centres. This approach significantly impacts the identification
of diseases and risk stratification of patients with cardiac-
related complications. To date, only a few review or survey
articles have summarised the existing detection methods
for heart anomalies using PCG signals. Table 1 shows the
summary of the existing review papers. From the table and
our examination, it is evident that no systematic reviews have
been conducted on the classification of heart sounds to detect
heart abnormalities using PCG signals. Hence, a systematic
review is proposed in this area, along with further research
challenges for emerging researchers.

B. CONTRIBUTION
The major contribution of the current study is outlined as
follows:

138400 VOLUME 12, 2024
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FIGURE 1. PCG recording of heart sound from PhysioNet2.

TABLE 1. Summary of the review papers recently used for the analysis of PCG papers.

• We have performed a systematic review [22] and
categorized existing mythologies for automated classi-
fication of heart abnormalities using PCG signals in
traditional/Machine Learning (ML) and Deep Learning
(DL) architectures.

• We have investigated these methods by analysing their
techniques, dataset used, and performance metrics.

2https://www.physionet.org/content/challenge-2016/1.0.0/training-
a/#files-panel

We have also summarised all the existing models for a
better perspective.

• We catalogue numerous unsolved challenges and trace
the pathway that can be followed to progress the existing
methods.

The paper is organized as follows: Section I provides the
introduction, motivation and contributions of the study. The
details of the search strategy are presented in Section II.
Section III describes the datasets, preprocessing techniques,
and performance metrics employed in various studies.
Sections IV and V present studies utilizing ML and
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DL techniques. Finally, the discussion and conclusion are
presented in Sections VI and VII. Further, for the sack of
clarity the organization of the paper is portrayed in Figure 2.

II. SEARCH STRATEGY
We searched IEEE Xplore, ScienceDirect, PubMed, and
Google Scholar for articles published between 1 January
2013 and 31 Dec 2023 on the application of Artificial
Intelligence (AI) methods for Computer-Aided Diagnosis
(CAD) based on PCG using keyword combinations (refer
to Table 2). We included only English articles published in
Q1 tier journals, and excluded animal studies, human studies
on fetal, neonatal and pediatric subjects, conference papers,
review articles, and academic thesis. The percentage of paper
downloaded and selected from various reputed databases is
shown in Figure 3.

The initial search yielded 635 articles and 89 duplicate
articles based on title and author names were discarded.
Abstracts of articles were manually reviewed by authors for
relevance, reducing the number to 287. Among these, 103 had
been published in Q1 journals, and were included into our
analysis (refer to Figure 4), with the following inclusion and
exclusion criteria,

Inclusion:
• Articles must be in English.
• Only the articles present in the Q1 journal are selected.
• Papers based on PCG signals or PCG with other signals
for the classification of heart sound in only considered.

Exclusion:
• Study on animals is not considered.
• Studies purely on the fetal and neonatal, children are not
considered.

• Articles published in conferences are not considered.
• Review papers are not considered.
• Thesis is not considered.
• Articles purely-based on devices (not using CAD tools)
are not considered.

III. AUTOMATED SYSTEM: DATASET, PREPROCESSING,
AND ANALYSIS
CAD utilizes computer algorithms and software to scru-
tinize physiological signals [23], [24], [25] and medical
images [26], [27], [28]. CAD systems are engineered to refine
the precision and efficiency of physiological signal interpre-
tation by providing supplementary insights or pinpointing
areas of potential anomalies. These paradigms have found
widespread applications in various medical domains, includ-
ing radiology, pathology, ophthalmology, and neurology.
Employing sophisticated methodologies such as traditional
approach and DL, these systems extract pertinent features
and patterns from PCG signals, thereby bolstering clinical
decision-making. CAD has emerged as a robust adjunct in
physiological signals, aiding healthcare professionals in the
identification, diagnosis, and monitoring of various medical
conditions [23], [24], [25], [26], [27], [28].

Two primary paradigms have gained significant trac-
tion in the domain of abnormality detection heart sound:
The traditional approach (i.e., ML-based techniques and
unsupervised statistical techniques) and DL approaches.
The first paradigm encompasses ML-based techniques and
unsupervised statistical methods. These approaches rely
on extracting relevant features from PCG signals and
utilizing algorithms to identify patterns andmake predictions.
Unsupervised statistical techniques, such as clustering [29]
and anomaly detection [30], can aid in identifying potential
abnormalities without the need for labelled data. However,
in ML-based techniques, handcrafted features from the PCG
signals are classified using methods such as K- Nearest
Neighbor (KNN), Support Vector Machine (SVM), ensemble
model, etc. The second paradigm involves DL techniques,
revolutionizing computer vision and medical image analysis.
DLmodels, such as CNNs [31], U-Net architectures [32], and
Recurrent Neural Network (RNN) [33], have demonstrated
remarkable performance in tasks like image segmentation,
classification, and detection.
Figure 5 illustrates the schematic depiction of the method-

ology commonly adopted across numerous studies to detect
heart abnormalities using PCG signals. The initial segments
delineate many learning methodologies, including Neural
Networks (NNs), autoencoders, and DL models, used for
feature extraction and classification. These methodologies
operate on the PCG Signal derived from the afflicted organ,
namely the heart. Subsequently, another segment, ‘‘Model
Generation,’’ was tasked with discerning the optimal model
among a selection of candidates and ranking based on their
performance in distinguishing between normal and abnormal
cases.

A. DATASETS
The datasets play a significant role in validating the
systems that identify cardiac disorders with state-of-the-
art techniques. The heart sound recognition/ classification
task is carried out by classifying abnormal and normal
heart sound (i.e., 2-class classification), and multi-class
categorization is performed by categorizing heart sound into
multiple disorders. It is observed from systematic literature
that some popular datasets are publicly available to encourage
research on identifying abnormalities in the heart. Detailed
descriptions of these datasets are given below.
PhysioNet/ Computing in Cardiology Challenge dataset

[34]: It comprises 6 sets, namely training-a to training-f.
It is referred to as PhNetDB in this paper and is available
in Classification of Heart Sound Recordings: The Phys-
ioNet/Computing in Cardiology Challenge 2016 v1.0.03.
It consists of a total raw recording of 3240 (Normal:
2575 and Abnormal: 665). The abnormal or pathological
class includes diseases such as Aortic Stenosis (AS), MR,
Aortic Regurgitation (AR), etc. In challenging data, Train
data comprises 764 patients/ subjects with heart sound

3https://www.physionet.org/content/challenge-2016/1.0.0/
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FIGURE 2. Organization of this paper.

TABLE 2. Search query or string used in the current study.

FIGURE 3. a) Articles downloaded from reputed databases, b) quartile
categories.

recording of 3153, with a duration of 5 s to 120 s. Test
data: 30 patients/subjects with heart sound recording of

1277 having duration 6 s to 104 s. All PCGs were resampled
to 2000 Hz. The sample signals are shown in Figure 6.

The PASCAL4 dataset was released for the segmentation
and classification of heart sounds challenge using PCG
signals and is referred to as PSDB in this paper. For the
classification task, data were collected from two sources
using: i) stethoscope Pro iPhone app, i.e., Dataset A (DS A),
and ii) digital stethoscope DigiScope, i.e., Dataset B (DS B).
Dataset A and Dataset B consist of 176 and 656 auscultations,
respectively. In DS A, class/count is given as normal
(NR)/31, murmur (MU)/34, extra heart sound (EHS)/19, the

4https://istethoscope.peterjbentley.com/heartchallenge/index.html

VOLUME 12, 2024 138403



A. Gudigar et al.: Automated System for the Detection of Heart Anomalies Using Phonocardiograms

FIGURE 4. Search strategy used in current study.

artifact (AR)/40, and unlabelled test/ 52. Likewise, in DS B,
class/count is given as normal (NR)/320, murmur (MU)/95,
extra-systole (ES)/46, and unlabelled test/195.

Yaseen et al. [35]: The authors have collected PCG from
48 various sources and made available at https://github.com/
yaseen21khan/Classification-of-Heart-Sound-Signal-Using-
Multiple-Features-/blob/master/README.md; it is referred
to as YDB in this paper. They eliminated the data with high
noise, and the signals were sampled at 8000Hz. It comprises
5 classes/counts NR/200, AS/200, MS/200, MR/200, and
MVP/200. A total of 1000 files for NR and AB categories
in .wav format.

B. PREPROCESSING
The heart sound can be graphically represented by using
PCG signals. However, along with useful information, these
also contain noise. Noise could be due to the surrounding
environment or the recording instrument itself. Although
these noises are controllable, they cannot be eliminated.
Hence, it is very essential to use certain de-noising techniques
to highlight the required sound range [36]. Studies have used
Butterworth filters in the range varying from 20 Hz upto 500
[36], [37], [38], [39] or wavelet transform [40], adaptive finite
impulse response notch filter and a high-pass Butterworth
filter [41] for preprocessing the PCG signals.
Further, PCG signals are separated into systole and diastole

states of cardiac cycles. This helps in the classification
of the abnormalities. This separation into cardiac cycles
can be performed with or without using ECG as reference
signals [42], [43]. A study by [42] used Springer’s improved
version of Schmidt’s segmentation algorithm for cardiac
cycle separation, which doesn’t require ECG signals as a ref-
erence. A study by [44] used amplitude and frequency-based
segmentation techniques. Studies also use envelop extrac-
tion [45], [46]. A study by [45] performed homomorphic
filtering on the preprocessed PCG signals. In this stage, the
non-linear combination of signals is converted into linear
combinations using logarithmic transformation. Further, the
peaks were identified. Shannon entropy envelopes are used
in [47]. Segmentation of the signals is also done using Hidden

Semi-Markov Models (HSMM) as these techniques can give
good results even for the noisy PCGs [39], [42], [48], [49],
[50], [51]. The performance of these models is ensured with
the help of Viterbi algorithm [39], [49], [50].

C. PERFORMANCE ANALYSIS
The major aspect is how the performance of traditional/ ML
methods and DL methods are analyzed. For classification,
Accuracy (AC), Precision (PR), or PPV: Positive Predictive
Value, Specificity (SP), Sensitivity (SE) or Recall (RE),
and F1-score or F-measures (FM) are calculated using
a confusion matrix [27]. The Mean Accuracy (MAC) is
calculated based on the SE and SP, which reflects the
overall performance of the predictive model [34], [52].
The balanced performance between 2 classes is calcu-
lated using G-mean [53]. All are described using Tp:true
positive, Tn:true negative, Fp:false positive, and Fn:false
negative. Parameters such as the F1-score and Area Under
Curve (AUC) are used to compare the performance of
the system and classifier efficiency, respectively [28], [29].
Another parameter, such as Matthew’s Correlation Coeffi-
cient (MCC), ranges from 0 − 1; the higher the MCC better
the classifier performance [54]. These performance measures
reflects the ability of diagnostic system for identifying
abnormalities in heart sounds. These parameters of the
diagnostic tools should be at greatest possible to exhibits its
correctness towards specific task. The figures of merits are
shown in the Table 3.

IV. TRADITIONAL/ML ARCHITECTURE
Multiple studies are carried out using various traditional
approaches to classify PCG signals into binary and multi-
class. In this review, different traditional methods used for
classification are summarized and shown in Figure 7. Tradi-
tional Architecture (TA)/ ML architecture generally follows
preprocessing, feature extraction, feature reduction/ranking
and classification. Further, these methods are classified into
supervised learning and unsupervised learning approaches
for the detection of heart abnormalities using PCG signals.
Unsupervised: This type of learning approach supports

the classification job by using an unlabelled dataset. Data
preprocessing, feature selection and extraction are com-
monly performed using unsupervised learning [139]. It also
employed for clustering, feature dimensionality reduction,
density estimation etc. [140].
Supervised: This learning is widely used for regression

i.e., to fit the data and classification for separating the data.
It uses the labelled dataset to predict the classes [140]. For
example, supervised learning is text recognition [141], traffic
sign recognition [142] etc.

A. ABNORMALITY DETECTION IN HEART SOUNDS
Studies have considered both unsupervised and supervised
techniques for the classification of binary and multi-class
heart abnormalities using PCG signals. Spectral clustering is

138404 VOLUME 12, 2024
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FIGURE 5. Graphical illustration of various approaches for detecting heart anomalies (as targeted application) with
fundamental purpose.

TABLE 3. The metrics that reflects the system performance.

used to classify the unlabelled data set. The affinity matrix
is created by considering the similarity values of two feature
vectors, and the eigenvector of this affinitymatrix is then used
to cluster the similar feature vectors [29]. A study by [55]
proposed a privacy-based approach for PCG signals analysis
using F-test.

Studies have also used various supervised classifiers
such as SVM ([35], [37], [42], [43], [51], [56], [57], [58],
[59], [60], [61], [62], [63], [64], KNN ([35], [42], [43],
[60], [62], [63], [65]), logistic regression [43], ensemble
techniques [38], [42], [43], random forest ( [60], [61], [64],
[65]) for binary and multi-class classification. Some studies
have used variation in SVM to attain better classification
rates. A study by [66] has used a Twin SVM (TWSVM) on
various features and attained an accuracy of 90.4%. A study

by [67] has used Least Square SVM (LSSVM) to achieve
an accuracy of 86.718%. A study by [44] used five types
of artificial neural networks, namely narrow, medium, wide,
bilayered, and trilayered for training the extracted spectral
features. They modelled various combination of features with
the different networks and individual features spectral spread,
and spectral slope attained maximum accuracy, sensitivity,
specificity, precision and F1-score each of 99.9% for the
medium, wide, narrow, bilayered, and trilayered neural
networks.

B. CoAD DETECTION USING TRADITIONAL/ML METHODS:
A study extracted time-domain, frequency-domain, entropy,
and cross-entropy features. The study has used a statistical
analysis technique called the generalized linear mixed model.

VOLUME 12, 2024 138405
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FIGURE 6. Example of PCG signal normal (a0007.wav) and abnormal
(a0002.wav) with 3500 values2.

FIGURE 7. Various Traditional/ ML models applied to detect heart
abnormalities using PCG signal.

To reduce the dimensionality of the features, the study has
used two feature selection techniques: information gain and
SVM–Recursive Feature Elimination (SVM-RFE). For the
top 30 features selected by SVM-RFE, the study attained a
maximum accuracy of 90.92% using the SVM classifier [68].
A study by [69] used a synchro-squeezing transform to detect
CoAD in heart signals. For the fusion of spectral features
on a multi-channel framework, they observed an accuracy of
83.48%.

C. FEATURE RELATIONSHIP IN TRADITIONAL/ML
METHODS
Features are extracted from PCG signals either from 1D
CNN signals or from 2D images. 1D CNN .wav files
of PCG signals are converted into 2D Cochleagram [29],

chromagram [58] and spectrogram images [58]. A study
has extracted Local Binary Patterns (LBP) from these 2D
images to extract the textual descriptors. LBPs are used
because of their resistance to grayscale variance and are
not computationally complex [58]. A study has extracted
Mel-Frequency Cepstral Coefficients (MFCC) and Discrete
Wavelet Transform (DWT) features from PCG signals and
fed them as input to various models. They found that a
combination of both features provides good results [65].A
study has considered Fractional Fourier Transform-Based
Mel-Frequency Spectral Coefficients (FrFT-MFSC) features.
The fractional Fourier transform highlights the signal rotation
in the time-frequency domain. These are more suitable for
the representation of signals that are not stationary [42].
It is observed that wavelet-based features could capture the
otherwise neglected features on an inhomogeneity scale. The
study has utilized features at wavelet coefficients at levels
3 and 4 and approximation coefficients at level 4, thus making
a total of 900wavelet-based features. This study also captured
various statistical features [49].
Spectral-based feature extraction has also proven to be a

good approach for the classification of PCG signals [44].
A study has extracted various spectral features, namely
spectral kurtosis, spectral skewness, spectral roll-off point,
spectral slope and spectral spread and by using the com-
bination of these features with the ANN classifier, has
achieved a better accuracy of 99% [44]. Another study
has extracted features from multiple domains such as
time, frequency, state amplitude, energy, spectrum-domain,
cepstrum-domain, cyclostationary features, High-order sta-
tistical features, entropies, etc. Their analysis of various
feature domains indicated that frequency, energy, and entropy
domains outperformed the other domain features [51].

In [30], the local and global statistical features are extracted
from a windowed PCG signal. The authors have considered
the static features of MFCC, Perceptual Linear Prediction
(PLP) and Linear Predictive Cepstral Coefficients (LPCC)
with logarithmic energy and their first and second deriva-
tive. Further, to reduce the dimensionality of the features
extracted, they applied a mutual information-based feature
selection approach. A study by [29] has used Cochleagram
features by considering the first 20 gamma tone filter bank
energy as effective features.

Time and wavelet-based features are utilized for
multi-class classification by [67]. They used Daubechies-2
wavelets to extract wavelet coefficients from PCG signals.
Studies have also used a combination of various types of
features for multi-class classification. In [71], the MFCC
and LPCC from 1D CNN PCG signal are extracted. They
converted the 1D PCG to 2D using Continuous Wavelet
Transform (CWT) and deep spatial features are obtained
using various deep CNNs. The features are selected using
Particle Swarm Optimization (PSO) and Genetic Algorithm
(GA) [71].
Studies have also used a combination of features by

extracting time and frequency domain features from DWT,
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Wavelet Packet Transform (WPT), Perceptual WPT and
EMD methods and deep features from various pretrained
models such as VGG16, ResNet-50 and MobileNetV2 [60].
A Multilayer Extreme Learning machine (ML-ELM) is
used for the PCG scalogram. Further, to identify the most
unique feature, the recursive feature elimination technique is
used [60].
It is observed that, initially EMD is used to denoise the

raw PCG signals. Further, for the representation of various
classes of signals, one-dimensional Local Ternary Patterns
(LTPs) and MFCCs were extracted. These features were then
fused and fed to the SVM classifier for classification [59].

Since the PCG signals are non-stationary, a study
by [61] used Fourier-Bessel Series Expansion-based Empir-
ical Wavelet Transform (FBSE-EWT) for the decomposition
of the signals. However, this produces a different number
of intrinsic mode functions to maintain uniformity. The
study has used strategies based on signal energy, statistical
analysis, and signal similarity measures. The dimensionality
is reduced by using Salp Swarm Optimization Algorithm
(SSOA), Emperor Penguin Optimization Algorithm (EPOA),
and Tree Growth Optimization Algorithm (TGOA).

A study by [62] has generated 768 features from the
one-dimensional binary pattern with three kernels. Further,
the feature set is reduced by Neighbourhood Component
Analysis (NCA) based on weights. Features were also
generated by using a graph-based technique named Petersen
Graph Pattern (PGP), which is combined with tent pooling
for decomposition. Then, the features were selected by using
Iterative NCA [63].
To reflect the major correlation energy of a template

signal, a study by [64] first constructed a wavelet group.
Next, the target signals’ fuzzy characteristics are acquired by
convolving them using the best possible wavelet collection.
Lastly, matching features between the template and target
signals are computed using fuzzy features. Self-matching
features in the frequency domain, mutual matching features
in the frequency domain, and self-matching features in the
time domain were extracted in their work. Further, they also
extracted MFCC features from PCG signals and observed
that combining Fuzzy Matching Feature Extraction (FMFE)
with MFCC attained the maximum accuracy of 99% for
SVM classifiers. Table 4 shows the used traditional/ML
approaches, datasets, classes, and performances of the studies
analysed using PCG signal and Table 5 shows the traditional
methods used for detecting CoAD.

V. DEEP LEARNING ARCHITECTURE
In the literature, it is observed that most of the work
significantly uses the DL architecture (namely 1D CNN,
2D CNN, RNN, and Autoencoders Neural Network (AEN))
to characterise the heart anomalies using PCG signal. The
signal-based or image-based inputs are fed into the various
models. As a result of the present study, we have organized
all the various nomenclature of DL architecture around the
related work, as shown in Figure 8. Here, we describe briefly

an overview of the various DL approaches used to identify
heart abnormalities using PCG signal.
CNNs: The advancement in the feed-forward NN eventu-

ally introduces CNNs as next- generation neural computation
approach in computer vision area. CNNs are widely used in
various applications, to name a few: speech recognition [143],
text classification [144] etc. In CNNs, the layers referred to as
convolutional stacked together with pooling layers followed
by fully connected layers are used for classification tasks.
In the ImageNet classification competition, a new CNN-
based architecture called AlexNet [145] achieved unrivaled
performance. Further to enhance the overall accuracy ResNet
was introduced by Microsoft researchers [146]. Herein
residual blocks and skip-connection networks concepts are
introduced. Another model, i.e., VGG is introduced by
Simonyan and Zisserman [147] with a depth of 16 to
19 weight layers having a convolutional layer (3 × 3) to
achieve promising results.
RNNs: RNNs are designed to process sequential informa-

tion form text, videos, and audio [148]. Long-Term Memory
Networks (LSTMs) are variants of RNN and comprise
recurrent memory blocks [149]. Further, Bidirectional Long
Short-Term Memory (BiLSTM) shows better performance,
when compared to RNN and LSTM for classification tasks
[150]. Here, two LSTM layers are used for information
processing in both directions [151].
AEN: AEN comprise three layers: input, hidden (cod-

ing), and output (decoding). It is an unsupervised learn-
ing method, used for dimensionality reduction [152]. Its
learning efficiency is increased as it converts the input
into lower-dimensional feature vectors. Another variant
of autoencoder i.e., denoising autoencoder is proposed to
enhance the robustness of the model [153].

A. ABNORMALITY DETECTION IN HEART SOUNDS
The temporal statistics and dynamics are captured efficiently
from the heartbeat sequences using RNNs [33]. BiLSTM
performs 1.3% better than Gated Recurrent Units (GRU)
[33]. In [82], the capability of the 1D CNN model is
improved when compared with 2D CNN model. However,
three VGGNets are used to construct the promising predictive
model [83].

In [84], AEN, CNN, Deep Neural Network (DNN), ANNs,
and SVM are compared and AEN showed better results.
The CNN architecture achieved a promising performance
using transition blocks and stacked clique [31]. The time
and frequency domain features are extracted using GRU and
CNN, respectively and fused to get Heart Sounds Parallel
Feature fusion classification Network (HSPFN) [85]. The
Large Kernel Network (LKNet) is proposed in [36], and
multiple LKNets are fused to enhance the accuracy of the
transfer learning model. The authors have studied various
attention modules and data-balancing techniques to evaluate
the effectiveness of the DsaNet [86]. In [86], the DsaNet
result is improved by 2.37% when using a 2-stage training
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TABLE 4. Summary of the traditional/ML approaches in terms of their characteristics and results used to detect heart abnormalities.
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TABLE 4. (Continued.) Summary of the traditional/ML approaches in terms of their characteristics and results used to detect heart abnormalities.
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TABLE 4. (Continued.) Summary of the traditional/ML approaches in terms of their characteristics and results used to detect heart abnormalities.
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TABLE 4. (Continued.) Summary of the traditional/ML approaches in terms of their characteristics and results used to detect heart abnormalities.

FIGURE 8. Various DL models applied to detect heart abnormalities using
the PCG signal.

approach. The stacked autoencoder-based DNN is developed
[87]. Recently, 1D CNN has been utilized to construct
an Attentional Multi-Scale Temporal Network (AmtNet),
and a Convolutional Block Attention Module (CBAM) has
been used to improve the feature map [88]. In [89], the
Wasserstein autoencoder-based model reconstructs the PCG
signals. In addition, various deep Generative Adversarial
Networks (GAN) are also evaluated [89].

The usage of enhanced MFCC features with ResNet
has increased the efficiency of the classification when
classifying 3-class data [90]. For 3-class classification,
AEN outperforms, with a significance level of 5 % when
compared to other methods [84]. The generative model such
as WaveNet is used in [91], for multi-class categorization,
which comprises a residual block with activated function
as gated. In [92], the cardiac auscultation is detected using
lightweight CRNNmodel called CardioXNet. The two-phase
learning structure of CardioXNet handles 2-class and 5-class
problems efficiently.

A novel log MFSC features are used, which is the
distinctive form of MFCC [93]. It addresses the four-

class classification problems, i.e.,ASD, VSD, Patent Ductus
Arteriosus (PDA), and normal. In [94], a combination of
Stationary Wavelet Transform (SWT) and Hierarchical Long
Short-Term Memory (HLSTM) is utilized for binary and
multi-class categorization. For multi-class categorization of
the heart sound, the features were extracted using MFCC,
spectrogram, and chromagram with CNNs and referred to
as Feature-based Fusion Network (FDC-FS) [95]. Recently,
Continuous Wavelet Transform (CWT) with Noise Robust
Cardio net (NRC-Net), a type of CRNN, has better accuracy
when compared to the visual geometry group with 16 layers
VGG16 [96].

B. CoAD DETECTION USING DL TECHNIQUES
The heart irregularities due to coronary artery disease are
captured using a PCG and ECG. It is very difficult to identify
CoAD using these modalities due to its lower diagnostic
sensitivity [53]. Hence, multi-domain features are integrated
under the CNN framework to detect CoAD by using ECG
and PCG [53], The researchers have collected data, with the
subjects having stenosis ≥50% in the left circumflex, left
anterior descending, and right coronary artery [53]. In [97],
the FFT and P-Welch Sub-Band Moments (SBMs) give a
multichannel accuracy of 82.57% by using channels closer
to the inferior, anterior, and apex of the heart.

C. FEATURE RELATIONSHIP IN DL TECHNIQUES
The features extracted from the autoencoder are better than
the MFCC [82]. To obtain more discriminative features,
a t-test is applied to SBM features and are selected based
on the p-value [97]. In [98], the feature dimensions are
effectively reduced and selected using principal component
analysis and correlation methods. It is observed that the
greater significant difference between non-CoAD and CoAD
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TABLE 5. Summary of the traditional approaches in terms of their characteristics and results used to detect CoAD.

is achieved with a principal component of the greater
correlation [98]. Modified gaussian window-based stockwell
transform is used to obtain the Time-Frequency Representa-
tion (TFR) of PCG signals [87]. The TF entropy features are
extracted from each segmented FHS component of the PCG
signal, and significant features have been selected using the
ANOVA test [87]. Also, the authors have utilised SHapley
Additive exPlanations (SHAP), values to analyse the model
deeply [52], [99]. It shows the positive and negative effects
of the features on the performance of the classifier [99].
To identify Diastolic Dysfunction (DD), the dimensions of
the deep features are reduced by using Linear Discriminant
Analysis (LDA) [41].
The extraction of power spectrogram i.e., Short-Time

Fourier Transform (STFT), picks up the discriminative
features from PCG for disease identification [100]. The
fusion of LPCCs andMFCC provide complementary features
to detect heart valve diseases [101]. The usage of triple
spectrograms was made in [102], which led to acceptable
results for noisy data. The features such as DWT, CWT,
and MFCC have shown competitive results for binary
and multi-class classification [103]. The features such as
time-frequency domain and deep features using CNN are
fused, and features are selected using variance [104]. The
methods such as STFT, log-mel transformation, Hilbert-
Huang transformation, wavelet transformation, MFCC, and
Stockwell transformation are explored in [52]. In [54],
Rational Dilation Wavelet Transform (RDWT) which is
decomposed into sub-bands and is selected as discriminant
features. It is observed that SWT depicts fundamental heart
sounds efficiently when compared to DWT [94]. The DL
visualization is performed locally and globally to indicate
the prominence of the features for correct prediction [105].
The various 2D features are extracted for sound classification,
and it found that for time domain features, transfer learning
has increased the result by 2% [40]. Table 6 shows the DL
approaches, datasets, classes, and performances of the studies
analysed using PCG signal. Table 7 summarizes the state-of-
the-art DL methods to detect CoAD using PCG.

VI. DISCUSSION
We reviewed 103 Q1 papers that highlight the significance of
using PCG signals to identify heart abnormalities in recent
years. The distribution of the papers used in the current study
is shown in Figure 9. It was observed that IEEE, Elsevier,
Springer, and others (MDPI, Wiley, etc.) contributed 21.35%,

FIGURE 9. Selected papers from various standard journals.

48.54%, 12.56%, and 17.47% of TA/ML and DL architecture
techniques, respectively. These techniques vary based on
the type of modality (signal or image) used as input to the
architecture.

The authors used publicly available and private datasets
to evaluate their models. Some models utilized multiple
datasets for binary and multi-class classification [105], [126],
[130], [131]. For instance, as shown in Table 6, the authors
favored the 2D CNN model for both binary and multi-
class classification. From Tables 4-7, it is observed that
accuracy, sensitivity, specificity, and F1-score are commonly
used metrics, while AUC, MCC, and G-mean are used to
a lesser extent. In some cases, the overall score of the
developed system is calculated using the values of sensitivity
and specificity. However, TA/ML and DL methods show
homogeneity in performance measures. Tables 4 and 6 show
that most of the multi-class categorization is performed by
considering only two of the datasets. The usage of the
database across various methods is shown in Figure 10.

Various studies have been conducted using supervised
and unsupervised traditional or ML techniques. It is
observed that TA has used (dataset/work): PhNetDB/25.64%,
PSDB/10.25%, YDB/17.94%, Others/28.20%, and Multiple
datasets/17.94%, for heart sound identification. From the
literature, it is observed that a study by [76] attained
the maximum sensitivity and specificity of 99.5% and
99.6%, respectively. In this study, after the preprocessing
stage, the output of the wavelet transform was used to
evaluate the Shannon energy, which highlights the low
energy values. This emphasizes the medium energy level and
preserves high peaks. Further, a threshold-based technique
is used to binary classify heart abnormalities using PCG
signals. A study by [64] attained the highest sensitivity and
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FIGURE 10. The distribution of the datasets a) TA/ML methods and b) DL methods used
by various authors.

specificity of 99.4% and 99.7% for multi-class classification
for combining MFCC with FMFE with an SVM classifier.
This study has evaluated the performance of FMFE features
with various classifiers and noted that incorporation of
MFCC features drastically improves the performance of the
model [64]. It is observed that different studies have used
SVM and variation in SVM and attained good results for
binary classification [37], [42], [45], [58], [66]. However,
for multi-class abnormality detection models with KNN
[62], [63], [70], or RF ( [60], [61], [81]), classifiers have
outperformed compared to other methods.

Out of all, DL approaches have contributed 60.19%
work and used: PhNetDB/20%, PSDB/10%, YDB/21.81%,
Others/7.2%, and Multiple datasets/40% for heart sound
identification. The maximum number of the work have used
multiple datasets to show the robustness of the method (refer
to Table 6). It is noted that 2DCNNhas achieved better results
than 1D CNN and avoids the segmentation of PCG signals.
It is observed that 2 papers such as [87] and [106] have
achieved better sensitivity for binary classification. However,
the specificity achieved by [87] is 99.26% and 98.32%,
for different datasets, which is better compared to other
results. Since the combination of CNN-SVM has achieved
a high recognition rate in image classification/ recognition
tasks, the same has been expected in PCG classification
[129]. For multi-class classification, the YDB dataset is used

extensively (refer to Figure 11). In [92], a combination of
CNN and BiLSTM are used to extract the efficient features
to achieve remarkable performance. It is also observed that
1D CNN is developed to obtain the accuracy of 99.5%
[123]. It is observed that [94], have achieved an accuracy
of 99.47 ± 0.42 using YDB dataset. They have also
concentrated on 2- class classification. Herein, SWT and
HLSTM acquire the fundamental and temporal variations
in heart sounds respectively. Hence, it effectively helps
to discriminate against heart valve diseases. The Chirplet
Z transform(CZT) with pretrained networks and multiple
training are also achieved better results [56]. Recently, it has
been observed that YAM-Net has achieved a specificity of
99.9% and authors have considered various SNRs to analyze
the PCG signal in different noise environments [130]. It is
also observed that, AEN has been practically used to observe
the condition of the heart [84]. However, for MR, AS, MS,
and MVP, an accuracy of 100% is achieved using [125] using
LOOCV strategy.

It is also observed that [40], [56], [84], [88], have used
more than 2 databases for the analysis of PCG signals. Only a
few works, such as [47] and [56], have worked on more than
5 class categorizations using PCG signals. Hence it is difficult
to compare it with othermethods. Some papers, such as [113],
have combined PCG and ECG, wherein the predicting model
extracts more information.
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PCG can assist the clinician in the cardiac disease
diagnosis by providing information on the phase of the
cardiac cycle affected. This information, along with the
clinical background and provisional diagnosis, can be made
with the suspicion of underlying cardiac pathology. Although
echocardiography is the best method for structural heart
diseases and the severity of valve stenosis or regurgitation,
PCG can assist physicians in stratifying the patients with
the presence of heart diseases using abnormal heart sound
patterns along with the details of patient’s signs and
symptoms.

A. COMPARISON OF TRADITIONAL/ML AND DL
APPROACHES
Tables 4 and 6, indicate that most of the work has performed
multi-class categorization of heart abnormalities using PCG
signal. Figure 12 shows the distribution of these work with
respect to number classes using ML and DL approaches.

It is observed that, the majority of the work addresses
the 5-class classification problems, i.e., 58% and 71%
using traditional/ML and DL approaches respectively. Since
the evaluation protocols of the various studies are different,
the performance parameter such as accuracy is considered
for the comparison (refer to Figure 12). By using the
discriminable structure of the proposed methodology, the
approaches present in [63], [81], [92], [125], [128], and [130]
have shown promising results i.e., approximately 100%
accuracy.

The selection of the methods under ML or DL depends
on the discretion of the research group. In the ML approach,
the generation of the hand-crafted features is based on the
empirical way or researcher experience, which may produce
false positives during diagnosis. Hence, DL methods are
selected to perform feature extraction and classification
automatically [128]. The DL approaches provide the end-
to-end structureand avoids manual extraction of features.
In [125], deep CNN has shown its ability to categorise each
class to 100% accuracy, when compared to TLmodels such as
VGG16 and ResNet-50. A CardioXNet lightweight CRNN is
designed to be comparable computational requirement [92].
The TL based on YAM-Net with 86 layers is utilised to
classify heart sounds [130]. The authors have utilised the
complementary features of ML and DL, i.e., feature gener-
ation is performed by multilevel networks and classification
is performed by using KNN classifier to achieve an accuracy
of 100% [63]. Though the performance of the DL approaches
is exciting, it requires more training time and computational
power due huge number of features that are fed to DL
models [61].

B. FUTURE DIRECTIONS
CoAD is a prevalent and serious health condition that
affects millions of people worldwide. Early and accurate
diagnosis is crucial for effective treatment and prevention of
complications. Many researchers have proposed predicting

models using PCG signals. However, the development of
CAD tools using PCG signals faces several challenges. For
the benefit of public health, we presented the following
future directions for the researchers to improve the efficacy
of the CAD tool, which can thus be deployed in real-
world scenarios. It is represented in 5-fold, with the pictorial
representation shown in Figure 13.

1) MULTICENTRIC, MULTIMODALITY, AND SPECIAL AI
STRUCTURE
One significant challenge is the lack of multi-regional patient
data for robust model prediction and better inter-regionality
samples. CoAD manifestations can vary across different
populations, and a diverse dataset from multiple regions
is essential to develop generalizable and reliable models.
Additionally, the absence of a comprehensive database for
multi-class samples hinders the ability to train models for
accurately classifying various heart conditions. Furthermore,
the unavailability of a database for multi-modality signals
limits the potential for extracting complementary features
from various bio-signals, such as ECG, PCG, and imaging
data (e.g. heart ultrasound). Hence, there is a need for a
multicentric study to collect the multimodality data. It can be
possible with two ormore international research collaborative
groups associated with various hospitals. Combining the
information from multiple modalities could enhance the
diagnostic capabilities of CAD tools. Ensemble models
leverage the strengths of different approaches, including
ML, DL, and signal processing techniques, to provide more
reliable and accurate diagnoses. Further, the ensemble of
DL models (such as bagging, stacking and boosting [26]),
can be utilised to integrate the various data modalities in
heterogeneous domains. In addition, data fusion models such
as joint modeling, independent modeling, and guided model-
ing fusion can be further explored to improve classification
accuracy [154]. It is observed that the research community
lacks benchmark performance of ML and DL architectures
for the publicly available datasets using unified evaluation
parameters. Hence, the area is in need of a benchmark
among the various ML and DL approaches published for
heart abnormality detection using various modalities. The
integration of multiple prediction models with multiple
feature extraction using deep layers will surely provide new
intuition to explore the significance of each model that affect
heart abnormalities. Thus, it is able to establish a special AI
structure for the detection of heart abnormalities in the future.

2) INTERNET OF THINGS (IOT)
The IoT block in the image suggests an integrated system
where data from various sources, such as medical devices
and sensors, is collected and uploaded to the cloud. This
centralized data repository is valuable for training advanced
AI models, specifically ensemble models. Ensemble models
are employed to leverage their ability to extract important
features from diverse and multifaceted data. By combining
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TABLE 6. Summary of the DL approaches in terms of its characteristics and results used to detect heart abnormalities.
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TABLE 6. (Continued.) Summary of the DL approaches in terms of its characteristics and results used to detect heart abnormalities.
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TABLE 6. (Continued.) Summary of the DL approaches in terms of its characteristics and results used to detect heart abnormalities.
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TABLE 6. (Continued.) Summary of the DL approaches in terms of its characteristics and results used to detect heart abnormalities.
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TABLE 6. (Continued.) Summary of the DL approaches in terms of its characteristics and results used to detect heart abnormalities.

numerous algorithms and techniques, these ensemble models
can effectively identify and integrate the most relevant
features, enhancing the overall predictive power and accuracy
of the system. The trained ensemble models are then
utilized to make predictions and generate diagnostic insights.
These predictions are subsequently shared across mobile
devices, ensuring better availability and accessibility of the
diagnostic results to healthcare professionals and patients.
This integrated approach not only facilitates the collection
and aggregation of data from multiple sources but also
harnesses the power of ensemble AI models to extract mean-
ingful insights. By leveraging cloud computing and mobile

technologies, the system enables widespread dissemination
of diagnostic information, ultimately improving healthcare
delivery and patient outcomes.

3) EXPLAINABLE AI (XAI) AND UNCERTAINTY
ESTABLISHMENT (UE)
The deployment of advanced AI models, particularly ensem-
ble models, in the domain of CAD using medical signals like
PCG underscores the importance of XAI and UE techniques.
XAI plays a crucial role in enhancing the transparency,
interpretability, and trustworthiness of the diagnostic pre-
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TABLE 7. Summary of the DL approaches used to detect CoAD in terms of their characteristics and results.

FIGURE 11. Performance of the various approaches using YDB dataset.

dictions made by these complex AI systems [134], [135].
Given the critical nature of medical diagnoses and the
potential impact on patient care, it is essential to understand
the reasoning behind the model’s decisions. The various
methods such as Explain like I’m 5 (years old) (ELI5) [155],

Local Interpretable Model-Agnostic Explanations (LIME)
[156], and SHAP [157] can be utilised to visualise the
interpretations by the predicting models. Further, these
models are helpful in analyzing the importance of various
modalities. The adaptation of these methods in the attention
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FIGURE 12. Multi-class work distribution using a) traditional/ML approaches and, b) DL approaches.

modules of ensemble DL networks can help to analyse
the impact of the various patches or portions of the input
image or signals on the classification accuracy. This helps
to show the clinical importance of each modality used
to build the AI models. By incorporating XAI methods,
healthcare professionals can gain valuable insights into
the decision-making process of the ensemble models. XAI
techniques can highlight the specific features or patterns in
the medical signals that contributed most significantly to the
diagnostic outcome. This understanding can aid in building
confidence in the model’s predictions, as well as facilitating
more informed clinical decision-making [136].

As DL predictions have become increasingly important,
so does the need to estimate uncertainty. Uncertainty
arises from two main sources: the data and the model.
Data uncertainty stems from noise or imperfections in the
input, such as sensor noise in images or videos. Model
uncertainty, on the other hand, reflects the model’s ability to
learn effectively from the training data and make accurate
predictions, especially when faced with inputs that differ

significantly from the ones it was trained on. In DL
and ML, it’s crucial to consider uncertainty to ensure
reliable predictions and decision-making. There are two
main types of uncertainty: Aleatoric (Data) Uncertainty:
This stems from the inherent randomness or noise in the
data itself. Epistemic (Model) Uncertainty: This arises from
the limitations of the model, such as insufficient data
or incomplete training [137]. UE aims to measure these
uncertainties throughout developing and using DL and ML
models, from data selection and evaluation to model training,
performance assessment, and deployment, thus improving
the confidence level of the model. Hence the researchers
can concentrate on the prospective study, which focuses
on uncertainty estimation for DL models (correspondingly,
Bayesian neural networks, Monte Carlo dropout, bootstrap
models, and Gaussian mixture models [138]), to enhance
the honesty of clinical practitioners on the detection of heart
abnormalities.

Moreover, XAI and UE can help identify potential biases
or limitations in the trained models, enabling continu-
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FIGURE 13. General flowchart of challenges in future directions for automated identification of heart pathologies.

ous improvement and refinement of the CAD systems.
By shedding light on the model’s behaviour healthcare
professionals can better assess the reliability and applicability
of the diagnostic results, particularly in cases where the
predictions deviate from clinical expectations. Ultimately,
the integration of XAI and UE in CAD tools leveraging
medical bio signals such as ECG, PCG, and various
imaging modalities, not only enhances the transparency and
trustworthiness of the diagnostic process but also fosters a
collaborative relationship between AI systems and human
experts, leading to improved patient care and outcomes.

VII. CONCLUSION
This work presents a review of techniques using PCG signals
to detect heart abnormalities, demonstrating the significant
potential for PCG analysis techniques to help identify various
heart diseases. The studies discussed in this review have
employed traditional signal processing methods, advanced
ML and DL techniques. Despite significant progress, several
challenges still hinder the widespread adoption of these
automatic PCG-based diagnostic systems in clinical settings.
To overcome these challenges, future research should focus
on improving signal enhancement and noise reduction

techniques. Additionally, new DL methods should be
developed to accurately identify complex time-based patterns
and subtle differences in PCG signals. It is also crucial to
make these models more interpretable and explainable to
increase trust and facilitate their integration into healthcare
settings. Collaboration among researchers, healthcare profes-
sionals, and industry, coupledwith advancements in hardware
and signal processing techniques, can transform the analysis
of heart sounds. This approach could enable accurate, non-
invasive, and affordable screening and diagnosis of heart
conditions in the future.
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