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Capsule 15 
The Bureau of Meteorology serves the Australian community to reduce its climate risk and is 16 

developing a suite of tools to explain the drivers of extreme events. Dynamical sub-seasonal to 17 

seasonal forecasts form the backbone of the service, potentially enabling it to be run in near real-18 

time.  19 

Introduction 20 
 21 

The Australian Bureau of Meteorology (BoM) provides forecasts at daily, multi-week and seasonal 22 

timescales along with a range of other services. Customers are keen to be informed about the causes 23 

of extreme weather and climate events to help them in their planning and decision making. While 24 

attribution is often framed in terms of understanding the role of climate change, it is also useful to 25 

understand the role of climate variability and circulation changes in causing extreme events (e.g. 26 
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Mindlin et al., 2020). The focus of the Event Explainer is to reduce climate risk by informing decision 27 

makers about the causes of extreme events and, if there are persistent underlying drivers, the 28 

event's likelihood of recurrence over the coming season or decade. 29 

 30 

This article describes the tools that are being developed at the BoM to explain the causes of extreme 31 

weather and climate events, and how those tools would add value to existing services. The novel 32 

aspect of the tools is that they will link with the dynamical sub-seasonal to seasonal (S2S) forecasts 33 

currently in operation. Thus, operational staff are alerted to the upcoming extreme event, and have 34 

time to diagnose and quantify the causes - facilitating earlier and more effective communication 35 

with the public and stakeholders, potentially tailoring the service to users' needs. Hence there is 36 

strong appeal in using an operational forecast system as the backbone of a real-time attribution 37 

system.  38 

Tools being developed for the Event Explainer 39 
We propose using a suite of applications for the Event Explainer service to enhance the benefits that 40 

can be drawn from different approaches and increase confidence in the final messages (Philip et al., 41 

2020). Initially, regional heatwaves will be the focus of the BoM’s attribution service, but the 42 

techniques can be used to explain the causes of other extremes, including the circulation changes 43 

associated with high intensity rainfall or fire weather. The applications are still under development 44 

and the skill of the techniques will be tested for each type of event, and any relevant caveats will be 45 

considered.  46 

To illustrate the methods described here we apply the preliminary developmental versions to the 47 

heatwave preceding the ‘Black Saturday’ fires over south-east Australia in late January and early 48 

February 2009, see Figure 1a (Bureau of Meteorology, 2009).   49 

Modified initialization S2S Prediction Attribution (SPA) method 50 
 51 
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In the BoM's Research section, scientists developed a system to quantify the influence of increasing 52 

levels of greenhouse gases on extreme events using an initialized global dynamical coupled ocean-53 

atmosphere S2S climate prediction system (Wang et al., 2021). In a series of case studies, the system 54 

was applied to quantify the influence of carbon dioxide increases since ~1960 on several Australian 55 

events:  56 

• heat events on a sub-seasonal timescale (Arblaster et al., 2014; Hope et al., 2015, 2016); 57 

• fire weather over two weeks in 2017 (combining the zero-lead forecast with observed 58 

antecedent rainfall and cooler (minus 1 ⁰C) antecedent temperature observations to define 59 

the drought factor) (Hope et al., 2019); 60 

• extreme monthly rainfall and associated circulation changes (Hope et al., 2018); 61 

• frost events in south-west Australia and circulation (Grose et al., 2018); and  62 

• extreme dry in Tasmania (Grose et al., 2019).  63 

As this approach uses initialized forecasts, there was a potential interest in the benefit that the 64 

attribution system could be used to describe the influence from increasing greenhouse gases prior to 65 

the event occurring (presented at the 2018 annual meeting of International Detection and 66 

Attribution Group (IDAG) in Berkeley, USA). At the time, the approach used the BoM's low-resolution 67 

operational S2S forecast system POAMA, presenting the option of running attribution experiments 68 

alongside the operational forecast service. Since then, a major operational upgrade has provided an 69 

opportunity to use a much higher resolution coupled model with advanced physics, the Australian 70 

Community Climate and Earth-System Simulator subseasonal-to-seasonal prediction system 71 

(ACCESS-S; Hudson et al., 2017). Development is now underway to assess the skill and utility of 72 

ACCESS-S as a tool for attribution. A preliminary forecast experiment of the Black Saturday heatwave 73 

has been performed using an early version of the ACCESS-S system, ACCESS-S1. The ensemble mean 74 

ACCESS-S1 forecast reasonably captured  the temperature anomaly pattern during 27 January - 8 75 

February 2009 over south-east Australia from 17 January 2009 (i.e., 10-day lead time (Figure 1b). In 76 
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comparison to the forecast with the present level of CO2, a set of ensemble forecasts was generated 77 

for the same event but under the low CO2 climate conditions of the early 20th Century, with CO2 set 78 

to 297ppm (equivalent to 1905 levels) and the removal of the changed ocean-atmospheric mean 79 

state due to human influence over the last century from the initial conditions. The change state was 80 

estimated from a five-member ensemble of the HadGEM3 CMIP5 long run (2000-2020 minus 1861-81 

1950). The resultant ensemble mean forecast difference indicates about 3 °C warming over the 82 

south-east Australia due to atmospheric CO2 increase and the associated ocean and atmospheric 83 

mean state change for this event (Figure 1c). Further details are discussed in Abhik et al. (to be 84 

submitted). Development is still underway to apply this method in the current operational version, 85 

ACCESS-S2. A detailed analysis of the circulation changes associated with the event can be drawn 86 

from the results of the SPA technique, as shown in Grose et al. 2018.  87 

 88 

Figure 1. Application of developmental versions of the Event Explainer methods to the 89 

heatwave period preceding Black Saturday fires in late January and early February 2009. 90 

Temperature anomalies 27 January – 8 February 2009 from a) ERA-Interim (Dee et al., 91 
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2011) and b) ACCESS-S1 forecasts initialized on 17 January 2009  and c) the present-day 92 

forecast minus the same forecast on a low CO2 background mean state.  CMIP5-based 93 

(Taylor et al., 2012) distributions (d) of average January daily maximum temperature for 94 

Victoria from the present climate (orange: 2006-2026, RCP8.5) and natural-forcing only 95 

simulations (blue: 1985-2005), based on the method of Lewis et al. (2014). The observed 96 

2009 January anomaly (Jones et al., 2009) is shown as a vertical black line). Finally, 97 

January 2009 loading values from a multiple linear regression (MLR; 1979-2019) of known 98 

drivers of Victorian climate in January (e). Drivers include (from the right) detrended indices 99 

of Southern Annular Mode (SAM)1, Niño3.4 (Reynolds et al., 2002), antecedent seasonal 100 

rainfall (Jones et al., 2009) and the trend (years).  The reconstructed anomaly in January 101 

2009 is primarily driven by the trend, with some contribution from the moderate La Niña.  102 

Fraction of Attributable Risk (FAR) Method 103 

A second, established approach that can be applied to understand the likelihood of surpassing 104 

certain thresholds for a particular variable (e.g., Victoria state-averaged month-long temperature) is 105 

to define the probabilities of exceedance in large ensembles of climate model simulations with full 106 

historical (or near future) forcing versus those with natural forcing (e.g., Lewis et al., 2014). The PDFs 107 

are being re-created so that we have scope to update the thresholds used and move to include new 108 

CMIP simulations as they become available. Preliminary results suggest that the average January 109 

2009 daily maximum temperature in Victoria, Australia, was 2.8 times more likely in the modelled 110 

present climate compared to a world with only natural forcing. The FAR technique could be applied 111 

to extremes forecast in the S2S outlook period using appropriate bias correction to instantly provide 112 

an estimate of the contribution from anthropogenic climate change to the likelihood of that event 113 

under different climate conditions. An evaluation of the forecast skill would precede efforts using 114 

 
1 http://www.nerc-bas.ac.uk/icd/gjma/sam.html 
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this approach, and discussion has begun with BoM Research to Operations staff working on 115 

verification and bias correction.  116 

Statistical multivariate analysis of drivers 117 

While climate change is one factor influencing extreme events over Australia,  large-scale drivers 118 

such as El Niño-Southern Oscillation (ENSO) (e.g., Black and Karoly, 2016; Karoly et al., 2016) and the 119 

Indian Ocean Dipole (IOD) (e.g., Abram et al., 2021) lead to large climate anomalies in Australia. 120 

Thus, both scientists and Australian climate information stakeholders are keen to understand the 121 

interplay of these factors. For instance, the extreme rainfall across eastern Australia in September 122 

2016 was linked to the negative phase of the IOD (King, 2018), and if this information were provided 123 

in real-time, decision-makers could anticipate a continuation of wet conditions through spring. If we 124 

have more accurate quantification of the impacts from influential large-scale climate drivers on the 125 

intensity or likelihood of regional climate extreme events and the influence of climate change on the 126 

drivers, then for future extreme events communities will be able to take appropriate adaptation 127 

measures, such as flood defences.    128 

To quantify the contribution from the large-scale drivers, we follow the approach of Wang et al. 129 

(2016), who describes a multiple linear regression (MLR) approach, with predictors chosen to 130 

represent the variability from ENSO, IOD, the Southern Annular Mode (SAM), gridded antecedent 131 

soil moisture over Australia and the mean global temperature, as used by Arblaster et al. (2014) and 132 

Hope et al. (2016). A deep understanding of the features that influence the climate of a region and 133 

season, and their interactions, is needed prior to setting up the system (e.g. Min et al., 2013), and 134 

further development of the statistical approach might be considered to help provide causal 135 

reasoning based on the statistical relationships (e.g. Kretschmer et al., 2021). Once that 136 

understanding is established, the evaluation of the seasons and regions where large-scale modes of 137 

variability have high forecast skill for the event in question will guide the development of the MLR 138 

system to be applied to forecast extremes (e.g. Marshall et al., 2013, 2021; White et al., 2014).  139 
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The average January 2009 Victorian daily maximum temperature is reconstructed in Figure 1e using 140 

the MLR approach. In this case, the majority of the anomalous heat can be explained by the linear 141 

trend, with small positive contributions from tropical and extratropical drivers. Slightly wet 142 

conditions in the months preceding January 2009 added a weak cooling effect to the reconstructed 143 

maximum temperature. Note that the current MLR holds little skill for January, explaining only ~25% 144 

of the average monthly daily maximum temperature. 145 

Summary of attribution message using three methods, and next steps 146 

For the 2009 heatwave event, preliminary results using three attribution methods indicate that the 147 

heatwave was made almost three times more likely and around 3 ⁰C hotter in the present climate 148 

than in a world without human influence on the climate. The usual drivers of heat in south-east 149 

Australia (ENSO, SAM) contributed only a small amount to the January temperature anomaly.  150 

The SPA approach can capture the magnitude of the anomaly due to the background human 151 

influence on climate, while the MLR approach uses only a linear trend, which may be appropriate for 152 

heat extremes, but may not work as well for rainfall. Likewise the circulation changes shown in the 153 

SPA experiments will capture the nuance of the forecast drivers of the event, which may differ from 154 

what might be captured with indices alone.  155 

Improvements and developments might include moving the MLR or FAR approaches to sub-monthly 156 

values to better encompass the heatwave dates, or including further predictors such as the Madden 157 

Julian Oscillation in the MLR analysis e.g. (Marshall et al., 2021). More details about the drivers and 158 

circulation changes due to human influence could be gained from further examination of the S2S 159 

attribution experiment. Testing of the MLR and FAR for forecast events will also form part of the 160 

next steps. 161 

Note that in all of these approaches, there is a reliance on the veracity of the forecasts, and the 162 

service will describe the forecast event, rather than an actual event. In the development of the 163 
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system the hindcast skill will inform how much confidence can be given to the attribution 164 

assessments. For events with known low forecast skill, guidance would be given that more certain 165 

results will be provided shortly following the event using the two statistics-based methods (MLR and 166 

FAR) based upon observations.  167 

Other methods 168 

Another approach to determining the influence from large-scale drivers and their interplay with 169 

long-term trends on an event again uses the BoM's S2S prediction attribution system with modified 170 

initial conditions, such as the addition of the observed long-term trends on the canonical state of the 171 

ocean during El Niño (Lim et al., 2019) or La Niña (Lim et al., 2016). In each of those studies, the 172 

interactions with the underlying observed ocean trend were accounted for in the experimental 173 

design. These sorts of experiments could be pre-defined and triggered with the forecast of an 174 

extreme event; however, they are computationally expensive and thus are likely to form part of a 175 

post-event review rather than an integral part of the real-time service. 176 

Another source of information could be drawn from methods being developed for other real-time 177 

attribution services in Europe2 and New Zealand3.  178 

The potential of the Extreme Event Explainer Service to boost existing services within 179 

the Bureau of Meteorology  180 

Decision support: Staff in this area of the BoM work to support the weather and climate information 181 

needs of users, such as fire agencies. As we described our plans for the real-time Event Explainer 182 

systems to these staff, they were quick to see the value for the post-event reviews that they produce 183 

following major fires. These reviews help highlight what worked well and what could be improved 184 

across the actions taken towards preparedness and response to the event. A part of this is an 185 

 
2 European Climate and weather events: interpretation and attribution | Copernicus 
3 Extreme weather event real-time attribution machine - Bodeker Scientific 

https://www.copernicus.eu/en/european-climate-and-weather-events-interpretation-and-attribution
http://www.bodekerscientific.com/projects/eweram
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understanding of the drivers of the event – including the meteorological set-up and the larger-scale 186 

modes of variability such as ENSO, IOD and the SAM and their interactions. The contribution of 187 

climate change is also important because it will add to the information around the conditions 188 

forecast for any upcoming fire season, allowing for informed risk assessments and longer-term 189 

planning that incorporates the changing likelihood and nature of extremes.  190 

Seasonal prediction: The development of the Event Explainer service is closely linked to the 191 

operational seasonal forecast service. Understanding and quantifying the various causes of events in 192 

the outlook helps provide clarity and confidence in the messages provided. The tools used can also 193 

inform the model forecast skill verification and understanding – for example, the reasons that a 194 

seasonal forecast verifies poorly may be untangled if one looks to the relative contributions post 195 

priori (Lim et al., 2021).   196 

Climate services for emergency management, hydrology, agriculture: The BoM provides targeted 197 

services for key sectors across the community. For instance, forecasts are used to provide a 198 

heatwave service following learnings from the 2009 heatwave (Bettio et al., 2018). The service for 199 

hydrology presents historical risk, real-time forecasts and projections information all in one place: 200 

http://awo.bom.gov.au/. An additional statement around the drivers of extremes as they are 201 

forecast would complement those services and provide the link between what we are currently 202 

seeing and the projected changes in those same variables. Extending the Event Explainer service to 203 

include hydrological variables could form an important next step.  204 

Weather forecasters: the real-time aspect of the system will help forecasters articulate informed 205 

answers to questions such as 'how much did climate change influence this particular weather 206 

event?', often asked during media interviews about recent extremes. Furthermore, climate change 207 

can influence extreme weather events, pushing them outside the range of past experience. This 208 

information is thus important in communicating the current forecast risk, so actions are equal to the 209 

actual risk and not dependent on past behaviour. 210 

http://awo.bom.gov.au/
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