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Part A 

1. PROJECT MANAGEMENT AND EXECUTION 

The project is progressing smoothly on schedule as shown below. The projected milestones and 

deliverables have all been achieved as detailed in Section “Results and Discussion”. As of July 2014, we 

have completed the optimization of in-house enzyme production. The saccharification of food wastes 

from cafeteria was investigated with in-situ produced enzymes, while the conditions were optimized. In 

addition, the solid residuals after saccharification were further used for anaerobic digestion.  

 

Milestones and Deliverables 

Implementation Schedule 

Year 1 Year 2 Remarks 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  

Literature Review 
           

1: Characterisation of KW 
           

2: Construction of 2 HRs (2-5L)            

3: Liquid state fermentation of FW by 

Aspergillus: characterization of 

enzymes 

           

Actual Implementation 
         

4: Solid State fermentation of FW by 

Aspergillus characterization of enzymes 
         

5: Optimization of in-house enzymes 

production 
         

6: Enzymatic hydrolysis of KW using 

in-house enzymes cocktail produced by 

Aspergillus 

         

Actual Implementation 
         

  

2. RESULTS & DISCUSSION 

2.1 Optimization of enzyme production 

The production of enzyme was studied in both solid state and submerged fermentations inoculated with 

Aspergillus awamori, one of the well-known glucoamylase (GA) producing microorganisms. Compared 

to submerged fermentation, solid state fermentation (SSF) can significantly improve the production of 

glucoamylase (GA) from food waste. Therefore, SSF was used subsequently for producing enzymes. The 

production of GA by Aspergillus awamori with different kinds of food wastes (e.g. bread, cake, savory, 

vegetable, fruit, potato and mixed type food waste (MFW) from a cafeteria) was investigated (Figure 1). 

To analyze the effect of food waste type on enzyme production, the compositions of various types of food 
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wastes were determined (Table 1). For example, the solid content of pastries, like cake, bread and savory, 

were higher, while higher moisture contents were found in vegetable, potato and fruits. The bread and 

cake wastes had higher starch content, which eventually might favor better microbial growth and 

amylolytic enzyme production during fermentation.  

 

 a 

 b 

Figure 1. Solid state fermentation for enzyme production. a) Different FWs after fungal inoculation on 

day 0; b) Fungal micelles on cake wastes on day 4. 
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Table 1. Compositions of different kinds of FWs.  

 FW (origin) 

Moisture 

(%) 
TS  

(%) 
VS/TS 

(%) 
Starch 

(%), db 

RS 

(%), db 
Protein 

(%), db 

Lipid Ash 

(%), db (%), db 

Bread 

(Supermarket) 34.4±0.2 65.6±0.2 96.7±0.0 71.6±0.5 

 

0.5±0.1 8.6±2.1 3.9±2.6 3.2±0.0 

Cake  

(KG catering) 29.9±1.9 70.1±1.9 96.0±0.3 33.5±3.0 

 

16.8±0.5 4.1±0.8 16.1±7.5 3.9±0.2 

Fruits 

(ShengSiong) 83.8±2.2 16.2±2.2 96.6±0.6 24.8±4.5 

 

11.7±1.5 3.5±0.4 1.0±0.2 3.4±0.6 

Potato 

(ShengSiong) 82.4±0.7 17.6±0.7 97.2±0.7 47.6±5.5 

 

1.2±0.1 6.9±2.2 0.2±0.0 2.7±0.5 

Savory  

(KG catering) 37.8±0.4 62.2±0.4 96.6±0.3 45.7±2.8 

 

0.3±0.0 2.3±1.1 22.1±0.3 3.3±0.4 

Vegetables 

(ShengSiong) 95.2±0.6 4.8±0.6 85.7±2.0 16.4±0.1 

 

0.0±0.0 0.5±2.2 1.5±0.1 11.3±1.3 

MFW 

(ShengSiong’s 

Cafeteria) 80.3±1.1 19.7±1.1 95.2±0.4 19.0±1.3 

 

 

0.7±0.0 15.4±2.4 19.4±0.1 4.7±0.4 

Total Solid, Starch, Reducing sugar (RS) Lipid, Protein and Ash Contents were given in wt% on the basis of dry weight (db). Volatile solid (VS) contents were given 

as the %VS ratio on total solid basis. Data points show the averages from duplicate analyses.  
 

The incubation time is related to the characteristics of the substrate, inoculum and microbial growth. 

Enzyme activity was mainly affected by the characteristics and homogeneity of the food waste (FW). 

Maximum GA production was normally achieved after 2-5 days of incubation in solid state cultures with 

bacteria and fungi (Melikoglu et al., 2013b; Soni et al., 2003). In this study, the maximum activity of GA 

was obtained with waste cakes after 4-day fermentation (Figure 2). Cake waste has a more balanced 

composition with high reducing sugar and protein content, thus the highest GA activity of 85.1±6.8 U/gds 

was obtained. Therefore, the following experiments were then conducted using cake waste as primary 

substrate.  

 

Figure 3 shows that particle size of FW had a significant effect on GA production in solid state 

fermentation. The highest GA activity was obtained at a particle size of 0.6 mm≤X≤1.18 mm. In solid 

state fermentations, smaller particles can provide larger contact area for reaction. However, reduced 

particle size would in turn lead to increased packing density, and subsequently causing reduction in 

microbial growth and enzyme production (Ruiz et al., 2012). Therefore, an optimum for particle size 

would exist. As the highest GA activity was obtained at a particle size of 0.6≤X≤1.18, in the following 

experiments, size of FW was controlled in a similar range. 
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Figure 2. Effect of substrate on GA production using moisture content of 70% (wb), inoculum loading of 

106/g substrate at neutral initial pH and 30oC. Data points show the averages from triplicate analyses.  

 

 

 

Figure 3. Effect of cake particle size on GA production using moisture content of 70% (wb), inoculum 

loading of 106/g substrate at neutral initial pH and 30oC for 6 days. Data points show the averages from 

duplicate analyses. 
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Response Surface Methodology (RSM) was also employed to optimize operation parameters (initial 

moisture content, inoculum loadings, initial pH and duration) for GA production from cake waste. The 

roles of each variable, their interactions in fermentation were analyzed with a quadratic model. Under the 

optimal conditions (moisture content of  69.6%, initial pH of 7.9, inoculum loading of 5.2*105/g and 

incubation time of 6 days), 108.47 U/gds GA activity was obtained, which is 1.4 fold of the yield 

obtained with cake wastes at 6th day of the fermentation without optimization.  

 

2.2. Saccharification of FWs with the produced enzymes 

2.2.1. Optimization of saccharification 

Many factors may affect enzymatic hydrolysis including the temperature, enzyme dose, substrate 

concentration and the duration. The effect of reaction temperatures on hydrolysis of domestic FW (10% 

w/v) using in-situ produced GA was evaluated in the temperature range of 50oC and 90oC (Figure 4). 

During the first 6 hours, the glucose production was the highest at 70oC (6.59 g/L), and then it slowed 

down. After 6 hours, the glucose production at 50°C and 60oC became higher than that at 70oC. This 

might be because of enzyme denaturation at temperatures higher than 60oC. These findings are similar to 

the results reported in the literature. Melikoglu et al. (2013a) evaluated the kinetics of the GA using the 

same microorganism and found that the maximum enzyme activity was achieved at 60oC and then tended 

to decline at higher temperatures, due to thermal deactivation of the enzyme. The highest glucose 

concentration of 10.4 g/L corresponding to a saccharification degree of 97.9% was obtained at 60oC after 

24 hours. Hence, the following studies were conducted at 60oC for 24 hours.  
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Figure 4. Effect of temperature on glucose formation during the hydrolysis of domestic FW with the 

produced GA preparation. Data points show the averages from duplicate analyses. 

 

To study the effect of FW concentration on the enzymatic hydrolysis, GA treatment was conducted at 10, 

20, 30, 40 and 50% (w/v) FW loadings with 2U/g FW enzyme loading for 24 hours. The waste 

concentrations higher than 50% were not studied due to high viscosity of the suspension, which certainly 

would inhibit enzyme activity. The glucose released increased dramatically with an increase in substrate 

loading, while the hydrolysis continued until 24th hour (Figure 5). The hydrolysis rate was sluggish at the 

waste loadings of 30, 40 and 50% during the first 4 hours and increased dramatically afterwards. This 

might be related to elongated gelatinization of starch. At t=24 hour, the maximum glucose concentrations 

of 9.3±0.9, 14.8±0.77, 19.7±0.77 and 39.1±2.93 and 52.3±2.97 g/L were obtained at the respective FW 

loadings of 10, 20, 30, 40 and 50% (w/v). Moreover, the saccharification degree at t=24h reached 99.8% 

at the FW loading of 50%. In these experiments, no substrate inhibition was observed, i.e. no dilution of 

FW would be needed in the loading range studied, which would help to reduce generation of wastewater. 

It should be noted that even at t=12h, the saccharification degree was found to be 55-88%, depending on 

the waste concentration.  
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Figure 5. The effect of substrate loading on saccharification. The FW loadings studied were 10, 20, 30, 

40 and 50% (w/v) using GA loading of 2 U/g substrate for 24 hours at 60oC for 24 hours. Data points 

show the averages from duplicate analyses. 

 

As maximizing production of glucose is the main target of this study, saccharification at higher enzyme 

loadings should need to be investigated for increasing glucose concentration, while shortening hydrolysis 

time. For this purpose, experiments were carried out at two different GA loadings of 5 and 10 U/g FW, 

respectively. The activity level of the in-situ produced enzyme extract was not high enough for treating 

the suspensions of 50% (w/v) FW; hence the experiments were conducted in a waste loading range of 10-

40%. Figure 6 shows the glucose concentrations obtained at 5 U/g FW and 10-40% of waste loadings. 

Almost complete saccharification was achieved within 12 hours at 10 and 20% FW loadings, while 24 

hours were needed at the waste loading of 30 and 40% (Figure 6). The hydrolysis rates of 30 and 40% 

waste suspensions were lower until t=2h, possibly due to elongated gelatinization. Afterwards, it 

increased quickly. The gelatinization process at 5U/g FW was found to be much shorter than that at 2U/g 

FW, showing advantage of using higher enzyme dosages.  
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Figure 6. The effect of substrate loading on saccharification. The FW loadings studied were 10, 20, 30, 

40 (w/v) using GA loading of 5U/g substrate for 24 hours at 60oC for 24 hours. Data points show the 

averages from duplicate analyses.  

 

The tests using 2U/g FW and 5U/g FW were conducted using extracted enzyme. The experimental sets 

using 5U/g FW for 50% FW loading and the experiments using 10U/g FW were not possible due to the 

dilution of enzyme by the extraction. Therefore, these experiments were conducted using crude enzyme-

cake instead of extracted enzyme solution as it has lower enzyme activity due to the dilution with water. 

The crude enzyme-cake contains the enzymes, substrate (cake waste) residues and the fungal biomass, 

and was directly added to the FW suspension, without further extraction. The glucose production with10 

U GA/g FW was conducted at the waste loadings of 10, 20 and 30% for 24 h. It was found that glucose 

production was improved and reached 28.9±1.44, 51.7±1.8 and 86.9±1.8 g/L at the waste loadings of 10, 

20 and 30%, respectively (Figure 7). Such significant improvement in glucose production would be 

related to a greater starch content of the suspension, which results from the crude enzyme cake.  
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Figure 7. The effect of substrate loading on saccharification. The FW loadings studied were 10, 20, 30 

and 50% (w/v) using GA loading of 10U/g substrate at 60oC for 24 hours. Data points show the averages 

from duplicate analyses. 

 

2.2.2. Volume reduction of FW after enzymatic hydrolysis 

In this part of the study, the effect of in-situ produced enzyme solution on the solubilization of FW, i.e. 

volume reduction of solid FW was investigated. And Total Suspended Solids (TSS) and Volatile 

Suspended Solids (VSS) were determined at the end of the 24 hour-enzymatic hydrolysis. Initial FW 

suspension contained 49.35±1.75 g/L TSS with a 49.08±1.68 g/L VSS (Table 2). After hydrolysis, 51.1 to 

62.4% of the FW was solubilized. The in-situ produced enzyme solution can significantly improve 

hydrolysis of the starch polymer, but also help to reduce the volume of FW. 
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Table 2. The effect of enzymatic hydrolysis on VSS & TSS contents and VSS reduction (%).Data points 

show the averages from duplicate analyses. 

Conditions VSS (g/L) TSS (g/L) VSS reduction (%) 

FW (no hydrolysis) 49.08±1.68 49.35±1.75 

 10% FW suspension with 2U/g FW GA 24.00±0.60 24.33±0.58 51.10±1.22 

10% FW suspension with 5U/g FW GA  21.48±3.33 22.08±3.58 56.24±6.78 

10% FW suspension with 10U/g FW GA  20.10±5.70 22.78±3.33 59.04±11.62 

20% FW suspension with 2U/g FW GA  19.30±0.80 19.63±0.93 60.67±1.63 

20% FW suspension with 5U/g FW GA  18.48±0.43 26.10±2.85 62.35±0.87 

 

2.2.3. Utilization of different crude enzymes for FW saccharification 

FW contains some other carbohydrates like cellulose and hemicellulose other than starch. Therefore, the 

addition of cellulases and hemicellulases might further improve the final glucose concentration. For this 

reason, a fungus (Trichoderma reesei) was used to produce crude enzyme for high activity cellulase 

production.  

 

Various agricultural and kitchen waste residues were assessed for their ability to support the production of 

cellulase by Trichoderma reesei in solid state fermentation. Different FWs such as banana peel, soybean 

flour, potato peels, oat meal and orange waste were used as substrate to produce cellulases as the highest 

cellulase activities were reported using these substrates in the literature. The substrates simply moistened 

with water (to a 70% final moisture content), were found to be well suited for fungal growth, producing 

good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. The 

highest cellulase activity (12.2 FPU/mL) was obtained using oat meal (Figure 8).  
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Figure 8. The effect of different substrates on cellulase production using T.reesei using SSF at 25oC, 6 

days. Data points show the averages from duplicate analyses. 

 

The effect of crude enzymes rich in GA and cellulase were evaluated. GA rich fungal enzyme cocktail 

resulted in 115 g/L glucose after 24 h hydrolysis, while only 36.5 g/L glucose can be achieved using 

cellulase rich enzyme cocktail (Figure 9). Even though the enzymatic hydrolysis using GA rich fungal 

enzymes cocktail resulted in higher glucose production compared to cellulase rich one, the hydrolysis of 

complex FW was improved by the co-utilization of both enzymes cocktails together. Using 7 U/g FW GA 

and 1 FPU/g FW cellulase, 140.1 g/L glucose was produced.  
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Figure 9. The effect of GA and cellulase rich enzymes cocktails on glucose production using FW loading 

of 50%, at 60oC for 24 hours. Data points show the averages from duplicate analyses. 

 

2.2.4. An integrated process for FW management 

Figure 10 presents the graphical abstract of the study. Using fungal enzymes cocktail, FW can be 

converted to glucose (140 g/L) and Free Amino Nitrogen (FAN) (2.5-4.2 g/L), which provide a well 

balanced potential fermentation feedstock that can be used to produce many high value products. 

Although direct biogas production from raw FW may not be an economically attractive option, the waste 

solid remained after enzymatic hydrolysis can still be used for anaerobic digestion to improve the 

efficiency of the whole process. A methane yield of 40 mL/g dry solid was obtained vis-à-vis 190 mL 

CH4/g dry solid obtained from untreated FW anaerobically. 
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Figure 1. Glucose and biomethane recovered from 100 g dry FW. 

 

Table 3 presents the potential amounts of the products can be generated and the price of the products 

using the glucose and FAN rich FW hydrolyzate. The amounts of products can be obtained from 1 ton 

FW are also presented. As can be seen, the market prices of liquid fuels and platform chemicals are higher 

than that of methane. Meanwhile, the market prices of platform chemicals are much higher than that of 

fuels. Therefore, more studies should be conducted to reduce the cost of fuel and/or platform chemical 

production process costs.  

 

 

 

 

 

 

 

 

 

 

 

Liquid Solid 

Anaerobic digestion 

56 g glucose 

0.52-1 g FAN 

42.4 g solid residue 

Hydrolysis using 

in-situ produced 

enzymes cocktail 

FW 

100 g dry 

FW 

1696 mL methane 
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Table 3. Some high value products that can be produced using FW hydrolysis and their market prices. 

Product Yield  

 

Quantity/

ton FW  

Price (USD) USD/ 

ton FW 

References 

Methane 546 mL/g VS 152.9 L 4-6/million 

metric BTU 

0.011 (Indexmundi, 2014; Uçkun 

Kiran et al., 2014) 

Ethanol 0.49 g/g glucose 173.9 L 2.21/gallon 101.4 (Uçkun Kiran et al., 2014; 

Wikipedia, 2014) 

Butanol 0.19 g/g glucose 53.2 L 3.75/gallon 52.6 (Bankar et al.; Wikipedia, 

2014) 

Lactic acid 1.29 g/g glucose 361.2 kg 1300-1600/ton 469.6 (Sakai & Yamanami, 

2006; Wee et al., 2006) 

Citric acid 0.80 g/g glucose 224 kg 1300-1600/ton 291.2 (Hamdy, 2013; 

Shojaosadati & 

Babaeipour, 2002) 

Succinic 

acid 

1.16 g/g glucose 324.8 kg 3000-5000/ton 974.4 (Leung et al., 2012; RCS, 

2014) 

PHA 0.44 g/g glucose 123.2 kg 4960-6062/ton 611.1 (PlasticsEngineeringBlog, 

2014; Xu et al., 2010) 

 

3. Discussion 

Current waste management strategies for food waste (FW) have been facing more and more challenges 

with strong environmental concerns. Nowadays, landfilling of organic waste still remains the most 

economic option for waste management (Tatsi & Zouboulis, 2002). However, uncontrolled releases of 

biogas and leachates may lead to serious environmental problems (Abu-Rukah & Al-Kofahi, 2001). 

Singapore has practiced incineration of FW for years, and the incineration ashes are disposed off in the 

Semakau offshore landfill which would be saturated in next 20-30 years due to rapidly increasing waste 

generation.  

 

Composting has a relatively low environmental impact and a high economic efficiency compared to other 

treatment methods. However, the high moisture content of FW will lead to substantial release of leachate 

(Cekmecelioglu et al., 2005). Indeed, compost is more expensive than commercial fertilizers and the 

current  market of compost produced from FW is limited (Aye & Widjaya, 2006).   

 

Incineration is the fastest way to treat FW and the weight can be reduced by 70–80% (Table 4) but it is 

not always feasible, typically due to the energy required to evaporate the large amounts of water in FW. 

The remaining ash, however, needs to be disposed in landfill sites. Together with this, the lack of public 

acceptance due to the possible generation of harmful emission makes incineration of FW unsustainable 

(Schumacher & Domingo, 2006). 

 



16 

 

Anaerobic digestion is another alternative which yields methane and carbon dioxide as metabolic end 

products and therefore could be feasible from an economic and environmental point of view because 

methane is used as an energy source (Othman et al., 2013). Hirai et al. (2001) evaluated the 

environmental impacts of FW treatment and found that utilizing a methane fermentation process prior to 

incineration reduces approximately 70 kg CO2eq/ton waste of the global warming potential, due to the 

substitution effect. Food waste is also used as animal feed. The disadvantages are its variable composition 

and the high moisture content, which favors microbial contamination (Esteban et al., 2007). To prevent 

this, animal feed is generally dried but greenhouse gas emission increases depending on the energy usage 

during the drying process, which is related to the water content of FW (Takata et al., 2012). 

 

Current waste management methods were compared considering their recycling strategies, volume 

reduction, process duration and final products (Table 4). One of the most important aspects is the overall 

weight of FW that can be reduced. Dry weight reductions of 80%, 66% and 43% were reported for 

anaerobic digestion, enzymatic hydrolysis using commercial enzymes and composting, respectively, 

while enzymatic hydrolysis using fungal enzymes cocktail is more advantageous in terms of weight 

reduction. More than 80% of the initial solid dry weight was reduced by enzymatic hydrolysis using 

fungal enzymes cocktail. A sustainable FW treatment process should efficiently reduce and allow a 

recycling of the organic matter. The conventional treatment and recycling strategies are based on 

conversions of waste into energy/heat and soil. Contrarily, enzymatic hydrolysis of FW using fungal 

enzymes cocktail provides the opportunity to hydrolyze FW. This facilitates the use of the obtained 

hydrolysate as fermentation feedstock for the production of high-value compounds such as platform 

chemicals and biofuels (Table 3). This is economically more advantageous than current waste 

management strategies (Tuck et al., 2012). Another advantage of FW hydrolysis using fungal enzymes 

cocktail is that it does not lead to any formation of contaminants affecting human health. The remaining 

solids from FW hydrolysis can be used as feedstock in methane production. 
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Table 4. Various FW treatment processes. 

Process Dry weight reduction, 

duration 

Products Recycling strategy 

Disposal in landfill sites a Years Methane, leachate Waste to soil 

Composting b, c, d, e 43%, weeks to months Fertilizers Waste to soil 

Anaerobic digestion b, f, g 80%, weeks Methane, fertilizers Waste to energy/heat 

and soil 

Incineration b, h, i 70-80%, minutes Heat, ash Waste to energy/heat 

and soil 

Enzymatic hydrolysis 

using commercial 

enzymes j 

66%, hours Sugar monomers, 

fertilizer 

Waste to high value 

products, feed, soil and 

energy/heat 

Enzymatic hydrolysis 

using fungal enzymes 

cocktail 

80-90%, days Sugar monomers, 

amino acids, 

fertilizer 

Waste to high value 

products, feed, soil and 

energy/heat 
a 

Kjeldsen et al. (2002), b Arvanitoyannis et al. (2008), c Adhikari et al. (2009), d Zhang and Jahng (2012), e Seo et al. (2004), f Kim et al. (2011), g 

Zhang et al. (2007), h Pirotta et al. (2013), i Cherubini et al. (2009), j Lam et al. (2013). 

 

2. Plans for the Next 6 Months Period  

 The final report, publications and project proposal for the continuation of the project will be prepared. 

The proposed milestones and deliverables are summarized in Table 5.  

 

Table 5. Updated Gantt chart with completed tasks 

  

Milestones and Deliverables 

Year 1 Year 2 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

 Literature Review           

 Characterisation of KW           

 Construction of 2 HRs (2-5L)           

 Liquid state fermentation of FW by 

Aspergillus: characterization of enzymes 
    

 
     

 Milestone 4: Solid State fermentation of 

FW by Aspergillus characterization of 

enzymes 

  

 

     

 Optimization of in-house enzymes 

production 
  

 
     

 Enzymatic hydrolysis of KW using in-

house enzymes cocktail produced by 

Aspergillus 

  

 

     

 Enzymatic hydrolysis of KW using 

commercially available enzymes for 

benchmarking 

  

 

     

Deliverable 1: Bench-scale process for sugar 

production 
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3. PERFORMANCE INDICATORS 

Items Target Achieved 

Numbers of patents or intellectual properties 1 2 TD 

Numbers of researchers* 1 1 

Numbers of research man-months* 24 18 

Numbers of publications in leading journals 2-3 5 

*Include researchers, scientists and engineers (RSEs) and research scholars (Masters & PhDs) 

We have already prepared five articles and two Technical disclosures: 

 

Journal Articles:  

1. Uçkun Kiran, E., Trzcinski, A. P., Ng, W.J., Liu Y. 2014. Bioconversion of food waste to energy: a 

review, Fuel (134) 389-399. 

2. Uçkun Kiran, E., Trzcinski, A. P., Ng, W.J., Liu Y. 2014. Enzyme production from food wastes 

using a biorefinery concept: a review, Waste and Biomass Valorization 

(http://link.springer.com/article/10.1007/s12649-014-9311-x ). 

3. Uçkun Kiran, E., Trzcinski, A. P., Liu Y. 2014. Enhanced glucoamylase production from food waste 

using solid state fermentation and its evaluation in the hydrolysis of domestic food waste, Waste 

Biomass valorization (under review). 

4. Uçkun Kiran, E., Trzcinski, A. P., Liu Y. 2014. Biorefineries for chemical production from food 

waste, (submitted to Journal of Chemical Technology and Biotechnology). 

5. Uçkun Kiran, E., Trzcinski, A. P., Liu Y. 2014. Enhancing methane production from food waste 

using enzymatic pretreatment, (to be submitted to Renewable Energy). 

 

Technical disclosures: 

1. Uçkun Kiran, E., Trzcinski, A. P., LiuY. 2014. Enzyme production from food waste for sludge and 

wastewater treatment. 

2. Uçkun Kiran, E., Ong, Y.P., Trzcinski, A. P., Liu Y. 2014. Enhancing food waste saccharification by 

microwave pretreatment. 

 

 

 

 

 

 

 

https://webmail.ntu.edu.sg/owa/redir.aspx?C=GpTReHP6IUqHZegrFg9rs9g2-GVuc9EINyBh-w7EH9hHozaq43uT2EhZ0cFFLkckEMzgD9CWCv4.&URL=http%3a%2f%2fwww.springer.com%2falert%2furltracking.do%3fid%3dL53058ebMfa59a9Saa7f7e7
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