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Never-Ending Learning for Explainable Brain Computing

Hongzhi Kuai, Jianhui Chen, Xiaohui Tao, Lingyun Cai, Kazuyuki Imamura,
Hiroki Matsumoto, Peipeng Liang,* and Ning Zhong*

Exploring the nature of human intelligence and behavior is a longstanding
pursuit in cognitive neuroscience, driven by the accumulation of knowledge,
information, and data across various studies. However, achieving a unified
and transparent interpretation of findings presents formidable challenges. In
response, an explainable brain computing framework is proposed that
employs the never-ending learning paradigm, integrating evidence
combination and fusion computing within a Knowledge-Information-
Data (KID) architecture. The framework supports continuous brain cognition
investigation, utilizing joint knowledge-driven forward inference and
data-driven reverse inference, bolstered by the pre-trained language modeling
techniques and the human-in-the-loop mechanisms. In particular, it
incorporates internal evidence learning through multi-task functional
neuroimaging analyses and external evidence learning via topic modeling of
published neuroimaging studies, all of which involve human interactions at
different stages. Based on two case studies, the intricate uncertainty
surrounding brain localization in human reasoning is revealed. The present
study also highlights the potential of systematization to advance explainable
brain computing, offering a finer-grained understanding of brain activity
patterns related to human intelligence.

1. Introduction

Artificial intelligence (AI) is increasingly integrated into the
study of decoding brain cognition, aiming to clarify high-order
cognitive functions with complex brain mechanisms, especially
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to meet the high requirements on ex-
plainability. While recent research has con-
centrated on large-scale and multi-view
neuroimaging analyses to enhance confi-
dence and explainability, effectively syn-
thesizing findings from various separate
investigations over time remains a chal-
lenge. This hinders the comprehensive
expression and global interpretation of
complex brain cognition.[1–3] To address
this challenge, refining fusion comput-
ing on multi-source knowledge, informa-
tion, and data is necessary to improve
joint learning from diverse evidence. This
approach can contribute to understanding
the nature of human intelligence, brain
function, and behavior while advancing
the development of brain-inspired intel-
ligence technology for realizing human-
level AI society. To achieve this goal, brain
computing is performed to uncover hu-
man intelligence, with the core task of
decoding the many-to-many mapping re-
lationships between brain patterns and
cognitive functions. For instance, a spe-
cific brain activity pattern may relate to a

variety of cognitive functions and a specific cognitive function
may be identified as a number of brain activity patterns.[4–6]

Especially for high-order cognitive functions, such as the key
components of inductive reasoning, rule identification and
rule extrapolation are found to be highly correlated to the
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dorsolateral prefrontal cortex (DLPFC).[7–9] However, it is also
reported that the DLPFC is significantly relevant to other cog-
nitive functions with delicate uncertainty and high unexplain-
ability, such as calculation, decision-making, problem-solving,
and working memory.[10–12] Therefore, new brain computing ap-
proaches are needed from systematic, robust, and explainable
viewpoints to interpret the relative specificity of brain activity pat-
terns to various cognitive functions.[13–15]

Presently, the prevailing approaches for decoding brain cog-
nition involve integrating multiple results from different in-
vestigative viewpoints. This process encompasses two analytical
strategies: correlation and comparison across multiple cognitive
domains.[16–19] These approaches play a crucial role in decoding
the specificity and generality of brain patterns. Subsequently, they
provide a uniform expression and global interpretation that can
model numerous external stimuli experiments with both simi-
lar and different task characteristics. For instance, by repeating
the same and similar experimental paradigm, an intra-domain
brain computing strategy can increase the confidence of results,
while an inter-domain brain computing strategy can elucidate the
diversity of multiple cognitive components and brain patterns
through performing different types of experimental paradigms.
A key point in these strategies is the selection and prioritization of
cognitive experiments with sophisticated design properties to en-
hance the explainability and interpretability of brain computing.
Furthermore, these properties can be integrated into algorithms
and machines to enable them to perform systematic experimen-
tal planning like human beings, wherein experimental evidence
from different views can be systematically learned and used to
support future brain computing studies.

To achieve such a brain computing method that can address
the large-scale and multi-source fusion issues from various sep-
arate investigations systematically, existing analysis methods,
such as meta-analysis approaches,[20,21] have been widely used
but with several limitations. First, such analyses mainly focus
on a single data scale under a similar topic, such as peak coor-
dinates of an investigative topic, which cannot provide sufficient
explanations for multi-scale computed results. For instance, peak
coordinates of activated brain regions published in scientific arti-
cles corresponding to the same cognitive domain are extracted as
a single data source, which can enhance statistical strength but
cannot provide a global explainability from the view of multiple
cognitive domains. Second, all fused data are analyzed equiva-
lently at once, which is not continuous and neglects the delicate
association of various evidence with implicate functions and ex-
perimental factors, insufficiently developing the systematic fu-
sion of different types of evidence for decoding cognition. Third,
it is challenging to integrate increasing resources flexibly, includ-
ing multisource knowledge, information, and data, through pre-
vious experiences like human beings. For example, it is difficult
to robustly integrate findings from new resources and accumu-
lated diverse experience with previous knowledge, information,
and data, and learn over time. All of these limitations prompt
discussions on the explainability of brain computing processes
and results. Those align with the current and future trends of
advanced brain computing in cognitive neuroscience, that is the
viewpoints of researchers are shifting toward a relative definition
rather than an absolute one. This adjustment acknowledges the
complexity of high-order cognition within the brain, leading re-

searchers to approach the explainability subject with a more nu-
anced viewpoint instead of seeking a definitive conclusion.

The pursuit of explainability in brain computing holds the
potential to uncover the biological underpinnings of the hu-
man mind by enhancing the algorithmic transparency and the
comprehension of high-order cognition. Currently, explainable
AI finds widespread applications in neuroscience and medi-
cal domains, spanning functional brain development, behav-
ioral decoding, imaging biomarker analyses, and medicine.[22–26]

Especially, explainability can be strengthened during various
stages corresponding to multiple objects of data, computing,
and results in an AI method, which can be grouped into pre-
modeling explainability, interpretable model, and post-modeling
explainability.[27] Previous evidence has shown that the pre-
modeling explainability can be strengthened by characterizing
the input data such as dataset description, standardization, and
summarization; the modeling explainability can be improved by
designing an explainable model architecture and algorithm such
as rule/decision sets and case-based reasoning methods; and the
post-modeling explainability can be enhanced by extracting ex-
planations from outputs such as explanation targets at different
levels of uncertainty and macro-explanations.[28,29] Inspired by re-
cent advances in brain computing and explainability studies, we
hypothesized that all of these strategies need to be taken into ac-
count jointly to support us to give a comprehensive observation
of high-order cognition through achieving explainable large-scale
brain computing analyses, together with expert preferences.

To support this notion, we contend that explainable brain com-
puting encompasses not only the upscaling of data through a
multi-view integration of cognitive domains but also the inte-
gration of diverse data sources and experimental factors across
various dimensions of analyses and tasks. This study introduces
a novel explainable brain computing framework for the joint
learning of multisource brain knowledge (K), information (I),
and data (D) within a never-ending learning paradigm, using a
three-layered KID architecture. This includes fundamental learn-
ing in separate knowledge, information, and data viewpoints,
together with systematic operations in a higher meta-learning
viewpoint. On the one hand, we highlight the systematic orga-
nization and management of multiple resources from the data
science view. On the other hand, we focus on the explainable op-
erations of knowledge-information-data from the computing per-
spective, especially highlighting how to use these resources sys-
tematically to produce more explainable computing results. Ac-
cordingly, the framework realizes never-ending learning by con-
ducting evidence combination and fusion computing within a
KID loop for systematic and explainable brain cognition decod-
ing inspired by human thinking. Key features have been encoded
into this framework as follows. First, it engages in internal ev-
idence learning, conducting task-state fMRI analyses based on
both forward and reverse inference for specific hypotheses at the
regional scale. Second, it incorporates external evidence learn-
ing by leveraging pre-trained language modeling techniques to
enrich the evidential scale, supporting the extension of decod-
ing ideas from related neuroimaging scientific articles. Thirdly,
it achieves evidence combination and fusion computing through
systematic experimental planning and continuous integration of
internal evidence from functional neuroimaging data and ex-
ternal evidence from neuroimaging articles. Consequently, the
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framework enhances layered and detailed explainability, facili-
tating the understanding of brain patterns from different cogni-
tive domains through knowledge-driven forward inference and
the comprehensive analysis of cognitive functions from brain
patterns through data-driven reverse inference. These features
collaboratively operate within a human-machine interaction
process, constituting a human-in-the-loop mechanism for the
never-ending learning processes. This approach systematically
integrates large-scale task-state fMRI and text data across diverse
cognitive domains into a continuous investigation process when
confronted with different cognitive hypotheses.

2. Results

2.1. Overview

Figure 1 illustrates the explainable brain computing framework
of never-ending learning, which is found on a hierarchical ar-
chitecture that relies on prior knowledge and rule reasoning for
conducting a systematic exploration of brain functions and high-
order cognition (Figures S1 and S2; Table S1, Supporting Infor-
mation). Within the architecture, the explainable learning pro-
cess can be directed by systematic experiment planning, similar
to how humans do it, in conjunction with both forward and re-
verse inference mechanisms. Additionally, it utilizes the human-
in-the-loop mechanism, ensuring that individuals can support
the learning process in a simple yet impactful way.

To investigate the specific associations between the brain and
cognition, the evidence combination and fusion computing ap-
proach is utilized to learn multi-aspect and multisource func-
tional neuroimaging resources, enabling the interpretation of
both task-activated brain patterns and brain pattern-supported
functions. As shown in Figure 1A, the core components and
paradigms in the explainable brain computing framework are
given. Herein, a complex brain science problem can be inves-
tigated by testing various hypotheses, for example, how a spe-
cific neuronal structure, such as the DLPFC, participates in a
specific cognitive process, such as human reasoning, and ex-
hibits stronger specificity among multiple cognitive processes.
To achieve this goal, systematic brain computing highlights ex-
plainable experiments and multiaspect evidence to decode high-
order cognitive functions from both perspectives of forward and
reverse inferences, ensuring intra- and inter-analyses within ev-
idence combination and fusion computing toward never-ending
learning. During the knowledge-driven forward inference pro-
cess, the task-evoked brain activity patterns are analyzed to an-
swer the Q-I related questions. While the brain pattern-supported
function specificity is analyzed to answer the Q-II related ques-
tions during the data-driven reverse inference process. A detailed
explanation of the framework and its workflows for exploring
cognitive functions and brain activity patterns can be found in
the following sections.

Figure 1B presents a generated case demonstrating the im-
plementation of human reasoning-centric systematic brain com-
puting, as evidenced by sampling a personal subgraph obtained
from the conceptual Data-Brain that is a fragment of a global
graph from the knowledge layer. In the current case study, the
connected highlighted cognitive functions in pink boxes rep-
resent intra-domain relations, while the inter-domain relations

are represented between the cognitive functions in pink boxes
and those highlighted in orange boxes. Meanwhile, each cogni-
tive concept connects one or multiple brain resources obtained
by various cognitive tasks with various experimental and ana-
lytical elements. Based on the personal subgraph as a clue, the
reasoning-centric resources were integrated and processed to
support evidence combination and fusion computing, thereby
being learned to generate the explainable results during the
knowledge-driven forward inference and data-driven reverse in-
ference processes. Finally, the causal effects of brain patterns
and cognitive functions are interpreted via the learned 𝜏 and
𝛾 distributions.

In Figure 1C, multi-view evidence resources, encompassing
knowledge, information, and neuroimaging data, have been
integrated into a sample library to support explainable brain
computing operations within the three-layered KID architecture
(Tables S1–S3, Supporting Information). The knowledge layer
represents the complete process of systematic brain investiga-
tion from four dimensions: brain functions, experimental tasks,
data management, and analytical methods. The information layer
records provenance information and procedural details, which
are derived from neuroimaging metadata and published research
articles. The data layer integrates multimodal and multiscale
brain big data from both perspectives of internal and external evi-
dence (including the neuroimaging data as the internal evidence,
Di, and the published articles as the external evidence, Ei, with
details in Table S1, Supporting Information), both of which align
with the conceptual Data-Brain, such as original neuroimaging
data, procedural data, and study results, along with their respec-
tive metadata.

As shown in Figure 2, the workflows of the framework involve
several core steps. In particular, the implementation of never-
ending learning relies on the KID loop within the three-layer KID
architecture, which continuously iterates and fuses aligned com-
puting results from multiple sources of knowledge, information,
and data. As the foundations, the conceptual Data-Brain in the
knowledge layer is learned by integrating pre-trained language
modeling techniques, which is designed to transform large-scale
text data to domain-specific knowledge graphs as a global graph,
providing prompts during never-ending learning and human-
in-the-loop processes. The types and weights of evidence are
learned in the information layer to execute the internal and ex-
ternal evidence combination and fusion computing operations
constrained by such a personal subgraph. In the data layer, mul-
tisource data are represented by provenances of the information
layer, and then mapped and aligned to the global graph of the
knowledge layer. During the dynamic learning stages, investiga-
tors formulate questions related to cognitive functions and brain
patterns to trigger the never-ending learning process, in com-
bination with the human-in-the-loop mechanism. For example,
the effect of reasoning on DLPFC can be investigated using the
framework.

Through the goal hypothesis initialization, computational pa-
rameters such as the number of loops and algorithmic details
are determined from the experimental and analytical factors of
interest. The multiaspect evidence is then sampled and inte-
grated with an evidence combination and fusion computing ap-
proach, followed by systematic experimental planning. Similar
to the thinking processes of human beings, that is how to design
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Figure 1. Schematic description of the never-ending learning and its applications with the multidimensional brain data representation. A) The complex
brain science problem is investigated by systematically testing various hypotheses. B) The concepts of cognitive functions and their relations from the
conceptual Data-Brain are rebuilt to generate a reasoning-centric operation subgraph. C) The interconnected knowledge, information, and data are
organized in the knowledge (K) – information (I) – data (D) architecture, producing a sample library to support explainable brain big data computing.
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Figure 2. Illustration of the Knowledge (K)-Information (I)-Data (D) loop and its key components during the never-ending learning, together with
human-in-the-loop.

the next experiment to support systematic and continuous hy-
pothesis testing? For a machine, it performs programs to address
the issues of which is the next experiment, which is determined
by the predefined rules-based data selection and sampling meth-
ods, as shown in Section 4 for details on evidence combination
and fusion computing. In this step, related experiments are de-
termined by running various inference rules that correspond to
different experimental types, including the main and supplemen-
tary experiments (Figure S2, Supporting Information). Moreover,
the functional neuroimaging data obtained from these experi-
ments and related scientific articles are systematically analyzed
using intra- and inter-computing strategies to enhance under-
standing of cognitive functions in brain localization. In addition,
preferences and individuals are important characteristics to un-
derstand the brain and cognition. Facing such complex cognitive
neuroscience issues, we contend that human factors are essential
to support and supervise the learning processes, compared with
the fully automation mode. In Figure 2, it can be found that the

human-in-the-loop mechanism is embedded into the framework
with the human signs.

Furthermore, a loop includes two core schemes, namely,
knowledge-driven forward inference and data-driven reverse in-
ference. On the one hand, the former performs the mapping pro-
cess from the hypothesized brain functions (reorganized knowl-
edge and information) to multiview evidence combination and
fusion computing. During this process, through fusing the brain
patterns of various cognitive functions, the 𝜏 maps are computed
to interpret the generality of various brain patterns for a hypoth-
esized cognitive function. On the other hand, the latter performs
the mapping process from a specific brain pattern (computed
by reorganized data and information) to various brain functions
(knowledge refining). During this process, the support coeffi-
cients 𝛾 of the brain patterns on various cognitive functions are
computed to evaluate the extent to answer which a specific brain
pattern supports different cognitive processes significantly. Sim-
ilarly, the human-in-the-loop mechanism is utilized in each step
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of the KID loop as needed to provide interactive input or qualita-
tive evaluations.

In this study, to gain a comprehensive understanding of hu-
man reasoning, reasoning-centric intra- and inter-cognitive com-
ponents were analyzed from the brain localization perspective.
For this, multitype resources were integrated and learned, in-
cluding four-dimentional concepts of the knowledge layer in the
conceptual Data-Brain, twelve categories of neuroimaging en-
tities, and fifty-five categories of neuroimaging entity interac-
tions in the information layer, as well as six task-state fMRI
datasets and over ten thousand scientific articles in the data layer
(Tables S1–S5, Supporting Information). These neuroimaging
data, serving as internal evidence, were prioritized in loops dur-
ing never-ending learning (Section 4 for details on internal ev-
idence learning). Additionally, thirty-two reasoning-related neu-
roimaging studies were sampled as external evidence from over
seven hundred neuroimaging-related full-text articles using the
BI (Brain Informatics[30]) provenance-based neuroimaging topic
modeling method (Section 4 for details on external evidence
learning). The reported results in external evidence further con-
tributed to never-ending learning, thereby extending the learn-
ing scale. Moreover, the identified topics and their interactions
could be utilized to refine and explain the specificity and gen-
erality of high-order cognition. In the following parts, the hu-
man reasoning-related results are given during the never-ending
learning process.

2.2. Never-Ending Learning of Integrating the Forward and
Reverse Inference for Systematic Understanding of Human
Reasoning

To validate the explainable brain computing framework, we
conducted a scenario to test the hypothesis regarding the role
of DLPFC in human reasoning (Figure 3). The conceptual
Data-Brain outlines the reasoning-centric cognitive subcompo-
nents and their relationships with other domain dimensions
(Figure S1, Supporting Information). Investigators determined
the experimental and analytical factors, including reasoning in
the function dimension, factorial and block design in the exper-
iment dimension, task-state fMRI data in the data dimension,
and statistical parametric mapping and machine learning in the
analysis dimension, based on the human-in-the-loop mechanism
that reflects their specific interests. The never-ending learning
process was guided by systematically planning experiments and
continuously sampling various types of evidence from the sample
library, which generates multiple loops, such as D81 in LOOP-1,
D1 in LOOP-3, D51 in LOOP-7, and D72 in LOOP-9 (Figure 3A
for details of loops).

During the knowledge-driven forward inference process, the
task-state fMRI data as internal evidence were analyzed and ex-
tracted from the sample library to measure the effect size of rea-
soning on regions of interest, including the DLPFC and the pri-
mary motor cortex (M1) as the control region, through comput-
ing parametric brain maps.[31] Next, the 𝜏-maps are generated by
the evidence combination and fusion computing approach (Sec-
tion 4 for details on evidence combination and fusion comput-
ing), which continuously updates the reasoning-related brain pat-
terns during this knowledge-driven process. For each loop, the

voxel clusters can be obtained in two ways: one is obtained by per-
forming the general linear model methods to compute statistical
parametric maps; another is obtained by the reverse computation
extracted by studies from selected coordinates to brain maps.

We extracted the clusters with larger 𝜏 values compared
with the maximum 𝜏-value in M1, including Lt.M1 and Rt.M1
(Figure 3B). In the present case, the D81 sample is the main
experiment, as the starting point of never-ending learning. The
rest of the samples are the supplementary experiments, where
D1 and D51 are identified as Type-I evidence and D72 is iden-
tified as Type-II evidence. In each loop, the sample was com-
puted by statistical parametric mapping and then converted to
𝜏-Values to fuse the results from the previous loops. Accordingly,
the Type-I evidence was fused to select brain regions showing
specificity for reasoning from LOOP-1 to LOOP-7, such as the
prefrontal cortex.[32] Furthermore, the Type-II evidence was fused
from LOOP-8 to LOOP-9 to reduce uncertainty created by other
functional domains, such as calculation. It can be found that the
clusters changed from the peak coordinates (such as R1 in LOOP-
1) to other peak coordinates (from R2 to R6 in LOOP-3). As a
result of the staged never-ending learning process, reasoning-
specific brain patterns were explained in LOOP-9, including the
first four clusters (two in the left hemisphere and two in the right
hemisphere) with the maximum peak values in the DLPFC (the
left side of Figure 3C). Herein, the first four clusters with the
maximum 𝜏-Value were observed in R2, R7, R9, and R11. The
left primary motor area, i.e., Lt.M1, and the right primary motor
area, that is, Rt. M1 was taken as a control brain region.

During the data-driven reverse inference process, the sup-
port coefficient 𝛾 of brain patterns of interest was computed
to measure the effect size of those on various cognitive pro-
cesses, such as reasoning and calculation, using information-
based mapping.[33] Initially, without considering the lateraliza-
tion of the left and right DLPFC, the support coefficient 𝛾 = 0.405
of the brain pattern selected by the 𝜏-map (𝜏 > the maximum
peak value of 𝜏 in M1) for reasoning was found to be higher than
that for calculation (𝛾 = 0.335), as shown on the right side of
Figure 3C. Next, the lateralization of the left and right DLPFC was
considered to evaluate the support coefficients of the 𝜏-selected
brain patterns. The left DLPFC brain pattern could attain a sup-
port coefficient of 0.346 for reasoning and 0.311 for calculation,
whereas the right DLPFC brain pattern could attain a support
coefficient of 0.397 for reasoning and 0.325 for calculation. Addi-
tionally, the support coefficients of the first four clusters selected
by the 𝜏-map for reasoning (R7 and R9 in the left DLPFC and
R2 and R11 in the right DLPFC) were evaluated. The integrated
R7 and R9 in the left DLPFC could attain a support coefficient of
0.407 for reasoning and 0.327 for calculation, while the integrated
R2 and R11 in the right DLPFC could attain 0.400 for reasoning
and 0.325 for calculation.

2.3. Never-Ending Learning of Integrating the Internal and
External Evidence on the Core Brain Regions of Human
Reasoning

The extensible capabilities of never-ending learning were put
to further test by integrating multisource and multilevel evi-
dence from internal and external views. On the one hand, the
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Figure 3. Understanding the brain mechanism of reasoning based on the never-ending learning from the brain region perspective. A) The generated
experiment sequence is shown based on the internal evidence, toward never-ending learning of reasoning within hypothesized brain regions. B) The
changes in the forward inference actions occur in each loop and have an impact on the interpretations of the outcomes given by different loops, where
the selected results are shown in this figure. C) The left part gives the results from the knowledge-driven forward inference, showing that some clusters
in the DLPFC are significantly activated by the reasoning-oriented tasks. The right part gives the results from the data-driven reverse inference, showing
that the DLPFC provides relatively stronger support for human reasoning in contrast to calculation. The integrated results from the forward and reverse
inference prompted us to causally correlate reasoning with the DLPFC.
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internal evidence was obtained from the sample library which
contained six task-state fMRI datasets collected from over 100
subjects. On the other hand, the external evidence was derived
from published neuroimaging articles. A total of 677 open-access
full-text neuroimaging-related articles, published between July
2014 and July 2019, were crawled from the PLOS series of jour-
nals using relevant keywords, such as “reasoning”. In addition,
44 neuroimaging articles that focused on reasoning were down-
loaded from PubMed, based on published time and keywords.
The BI provenance-based neuroimaging topic modeling method
was employed to identify the experimental and analytical fac-
tors in each article (detailed factors in Tables S2 and S3, Sup-
porting Information). As presented in Figure 4, the text data of
each neuroimaging article could be extracted as a BI provenance,
consisting of a group of factors (neuroimaging topics). The ex-
tracted BI provenances, including factors and reported results,
were stored in the sample library for evidence combination and
fusion computing. During the testing stage, reasoning-related ev-
idence was extracted based on systematic experimental planning
with similarity assessment. Thirty-two articles were matched as
supplementary experiments (Table S4, Supporting Information),
including their three types of representative factors of experi-
mental paradigms, experimental protocols, and explicit stimuli
(Table S5, Supporting Information).

The entire learning process comprised of the following
steps: (1) utilizing external evidence learning, through the BI
provenance-based neuroimaging topic modeling method, to
identify multiple factors in experiments, analyses, and reported
results from published neuroimaging articles, and storing them
in the sample library; (2) extracting evidence related to the goal
hypothesis, such as reported coordinates, from the sample li-
brary based on systematic experimental planning; (3) tracking
and reconstructing original data extracted from external evidence
to the greatest possible degree; and (4) performing alignment
and fusion computing of internal and external evidence to ver-
ify and enhance the understanding of human reasoning. The
external evidence is continuously added after internal evidence
learning, expanding the observed views and boosting the con-
fidence of the learned results (the detailed loops illustrated in
Figure 4A).

Figure 4B illustrates some of the learned results in relation
to human reasoning. Herein, internal evidence learning affects
from LOOP-1 to LOOP-7, LOOP-11, and LOOP-12, while external
evidence learning affects from LOOP-8 to LOOP-10, and LOOP-
13 to LOOP-23. To observe all changes that occurred during the
never-ending learning process, the learned 𝜏-Values in the peak
coordinates selected from the last loop, LOOP-23, were examined
throughout all the learned loops (Table S6, Supporting Informa-
tion). The computed 𝜏-maps were found to change from LOOP-1
to LOOP-23 as the use of internal and external evidence incre-
mentally. In the last loop, the selected top clusters in the DLPFC
were reported based on the intensity of the peak 𝜏-Values. The 𝜏-
Values of R1 and R2 were found to be larger than that of the max
𝜏-Value in M1 (i.e., the control area), indicating that they were
more closely related to reasoning. These results were obtained
through the extensive use of external evidence from the eleventh
loop onwards. To increase the confidence in the results obtained
by internal evidence learning, only results with 𝜏-Values > 0 and
Voxels > 500 were considered. 𝜏-Values > 0 means that the se-

lected results are related to the hypotheses, while Voxels > 500 is
dependent on individual preference.

Furthermore, due to the effects of inter-type evidence, the 𝜏-
Values of some regions such as R7 decreased from LOOP-10 to
LOOP-23, indicating that these regions had weak cognitive speci-
ficity for human reasoning. On the other hand, some new regions
were generated through continuous evidence learning, which
had a positive impact on human reasoning. Notably, the num-
ber of clusters that matched the selection conditions of peaks in-
creased from 0 in LOOP-1 to 6 in LOOP-7 and 7 in LOOP-10 and
LOOP-23. Herein, D81 in LOOP-1 and D51 in LOOP-7 belong
to the internal evidence type, while E6 in LOOP-10 and E13 in
LOOP-23 are gathered by reported results from selected articles
using external evidence learning, belonging to the external evi-
dence types. All of them were extracted and computed systemat-
ically through prompts and personal graphs.

3. Discussion

In this study, we developed a novel brain computing framework
that utilizes a never-ending learning paradigm in combination
with a human-in-the-loop mechanism. Never-ending learning is
a typical paradigm in the AI field, which has a similar concept
to a series of specific methods like incremental learning (also
referred to as lifelong learning, continuous learning, and con-
tinual learning).[34–37] In the current study, we enlarge its func-
tions on enhanced systematization, robustness, and explainabil-
ity. Accordingly, the framework allows us to explore the relative
specificity relationships between cognitive functions and brain
patterns, thus enhancing our ability to decipher the neural ba-
sis of complex human cognitive functions, together with expert
preference.

We demonstrated the effectiveness of the explainable brain
computing framework through several case studies, aimed at sys-
tematically understanding how human reasoning occurs in the
brain. Depending on the proposed hypotheses, a series of ex-
perimental plans, together with the computational details, were
generated during the increasing loops (Figure 3A and Figure 4A
for detailed loops). These cases clearly demonstrated the speci-
ficity of human reasoning within the hypothesized brain region
(i.e., DLPFC). On the one hand, the effectiveness of this under-
lying mechanisms has been verified during the forward infer-
ence process (Figure 3B and Figure 4B), and is highly benefi-
cial for never-ending learning. On the other hand, the explain-
able brain computing framework also provides a view to ver-
ify the causal effects through the joint forward and reverse in-
ference processes. The brain computing results from the for-
ward inference process exhibited a strong correlation between
the DLPFC and reasoning, in contrast to the control region
M1 (the left panel of Figure 3C). Conversely, the reverse in-
ference process revealed a significantly greater support coeffi-
cient value on the DLPFC to reasoning than calculation (the
right panel of Figure 3C). Taken together, multiview analyses
based on the proposed framework thus provided strong evidence
suggesting that the DLPFC plays a causal role in human rea-
soning. This result extends our previous findings, which re-
ported a correlation between the DLPFC and reasoning by in-
tegrating as much worldwide experimental evidence as possi-
ble. Furthermore, the current outcomes could serve as a starting
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Figure 4. The never-ending learning of integrating internal and external evidence for systematic understanding of human reasoning. A) The whole
planned experiment sequence is shown based on the combination of internal and external evidence toward the never-ending learning of human reasoning.
The planned internal and external evidence is extracted from the sample library (Tables S1 and S4, Supporting Information). B) Based on internal evidence
learning, some finer-grained changes to the clusters and their uncertainty distributions can be found during the fusion computing of external evidence,
where the selected results are shown in this figure.
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point for subsequent learning with the inclusion of larger re-
sources during the never-ending learning process in the future.

Unlike conventional brain analytical methods, such as meta-
analyses, the fundamental idea behind it comes from examining
research outcomes across different studies with similar topics,
measuring the same variables, and having comparable method-
ologies, as with randomized controlled trials. Accordingly, the
meta-analyses and their advanced methods are good at the ho-
mogenous resources such as processing large-scale study results
with the similar cognitive experiments and topics, even though
the evidence with different weights. Our proposed brain com-
puting framework highlights a never-ending learning process,
in which the computing operation is not at once, but heteroge-
nous, incremental, and dynamic. First, the current framework
can handle with heterogenous evidence with different proper-
ties and profiles to explain a cognitive hypothesis comprehen-
sively, based on the integration of multiple homogenous com-
puting operations. Second, the framework does not limit itself
to modeling a single viewpoint of the functional domain, cogni-
tive experiment, data source, or analysis method during the brain
investigation process. Instead, it is guided by a unified strategy
that combines knowledge-driven forward and data-driven reverse
inference with fusion computing from multisource knowledge,
information, and data to learn brain functional representations
systematically. Thirdly, the never-ending learning paradigm al-
lows for bidirectional switching of learned patterns, and regula-
tion of operated parameters at each step of the learning process.
These unique features facilitate the generation and verification of
new hypotheses by integrating worldwide knowledge, informa-
tion, and data, as well as provide a powerful tool for investigating
the brain cognition and advancing our understanding of its func-
tional mechanisms.

To achieve a balance between stability and plasticity, we adopt
the “local- and internal-evidence learning prior” principle. This
principle prioritizes data with stronger relevance and richer
metadata to predefined goal hypotheses for initial selection, in-
tegration, and computation. Our experimental observations sug-
gest that the variations in clusters and coordinates across differ-
ent loops effectively reflect the stability and plasticity inherent in
our framework. To corroborate these findings, we conducted sta-
tistical analyses on the 𝜏-maps obtained across all loops, as il-
lustrated in Figure 5. In this figure, the left table’s first column
denotes the number of clusters, the second column displays the
mean values and their respective standard deviations for selected
peak values, and the third column specifies the loop index. The
right section of the figure showcases the spatial diversity of clus-
ter distributions, determined by the calculated distances between
all peak coordinates and the origin coordinates. Our findings in-
dicate that the number of clusters is approaching 100, peak values
are trending toward 0.8 with a standard deviation of ≈ 0.6, and the
diversity of cluster distributions falls between 60 and 65. In sum-
mary, our framework exhibits both stability, as evident from the
left table, and computational plasticity, as observed in the right
figure.

Utilizing a human-in-the-loop mechanism, our approach fa-
cilitates interactive learning with investigators across various un-
certainty scales within a hypothetical space. This interactive pro-
cess empowers us to define computing details and search scopes
based on both internal and external evidence, while also con-

straining the never-ending learning processes. Investigators can
oversee and adjust each step during these loops, thereby ensur-
ing that the generated output is unique for each individual pref-
erence based on their respective background knowledge and in-
terests, even when facing the same research hypothesis. In par-
ticular, the rapid expansion of external evidence accelerates the
iteration and updating of the conceptual Data-Brain, ensuring
the potential of the framework on continuous learning. More-
over, the design of automation strategies promotes the continu-
ous integration of resources into the sample library, which fur-
ther supports large-scale brain studies. However, it is possible
to bring about biases from learning processes. Accordingly, the
key point lies in achieving a balance between bias and prefer-
ence. That is to say, the finalized learned results remain stable
and unchanged when maintaining the same initializing param-
eters and input resources, even though the sequence of loops
can change the intermediate computing operations depending
on individual preference. Facing this, one strategy for mitigat-
ing biases is to enhance the robustness of the framework. To
verify the ability, we performed experiments that simulate the
personal computing processes corresponding to different hu-
man preferences as shown in Figure 6. In this figure, the re-
sults from the first column are associated with Figure 4, while
those from the other columns are based on the random comput-
ing sequences. Throughout the five program runs, the largest
peak appears in (−50, 22, 26) with the same 𝜏-Value of 2.349
from the final loop, while the reported results are different dur-
ing the intermediate loops. By observing the results, it can be
found that the finalized outcomes remain stable and unchanged
when retaining the same initialization parameters and inputs,
even with varying computing sequences of sampled resources. In
conclusion, our framework demonstrates robustness in mitigat-
ing biases and maintaining stability, confirming its reliability and
effectiveness.

In addition, we contend that the complexity of high-order cog-
nition determines the crucial issues of descriptive information,
including better explainability from joint pre-, mid-, and post-
modeling studies, as opposed to relying solely on a single ap-
proach with limited goals and explainability. Specifically, it re-
quires that a method/system should explain its abilities and
understandings comprehensively—knowing what it has done,
what it is doing now, and what will happen next; and disclose
the salient information that it is acting on.[38] To address this,
the KID loop is designed to execute knowledge-inspired and
information-constrained multisource data fusion computing, to-
gether with expert preference and rules. In the realm of data sci-
ence and knowledge management, diverse definitions have been
given to the concepts of knowledge, information, and data.[39]

In the present study, we emphasize the systematic organization
and management of resources in the KID architecture from the
data science perspective. Simultaneously, we further focus on
the knowledge-information-data operations from the explainable
computing perspective, particularly emphasizing how these re-
sources contribute to producing more systematic and explainable
computing results. Consequently, we integrate some text mining
and semantic techniques to enhance the data explainability, a se-
ries of explicit rules to enhance the computing explainability, and
uncertainty-oriented evidence combination and fusion comput-
ing methods to enhance result explainability.

Adv. Sci. 2024, 11, 2307647 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307647 (10 of 18)
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Figure 5. The evaluation of stability and plasticity for computed results during never-ending learning within the explainable brain computing framework.

Generally, the explainable brain computing framework can
work while the resources are operated and computed in a KID
architecture to satisfy the following principles: a component to
represent the commonsense knowledge that we would like to
study, which inspires the users to propose hypotheses and guides
the machines to execute computing; a component to systemati-
cally represent multi-type resources that can be interconnected
and used easily, which improves the data explainability and com-
putability; a component to align data resources and processed re-
sults to make fusion computing available. Based on that, resource
quality also plays an important role, especially in the large-scale
computing scenario. In an extreme case, if all input resources
are homogenous, that is the computed resources have a similar
property and inner mechanism, it will make learned results un-
changed across different loops. Conversely, if all resources are
entirely different, that is the computed resources have extremely
high diversity, it can make results instability. To address this, we
need to consider the impact of diversity by taking control of the

operating rules. In particular, the framework prioritizes internal
evidence with high confidence (from intra-experiment to inter-
experiment evidence), followed by external evidence with rela-
tively lower confidence. This sequential strategy allows the ex-
plicit design of rules and detailed methods, guiding the never-
ending learning process in analyzing multisource neuroimaging-
related resources for a nuanced understanding of high-order cog-
nition in different scenarios.

As a highly modular and scalable framework, explainable brain
computing adeptly handles multi-task functional neuroimaging
studies during the never-ending learning processes with accept-
able robustness and stability (Supplementary Text in Support-
ing Information). However, in order to achieve a nuanced un-
derstanding of high-order cognition, this proposed framework
still has limitations in some specific scenarios. First, the cur-
rent framework is limited to task-based neuroimaging data and
text. However, the mechanisms of cognitive functions need to be
further explored to obtain more refined patterns on larger and

Adv. Sci. 2024, 11, 2307647 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307647 (11 of 18)
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Figure 6. The observation and validation of bias from multiple simulations during never-ending learning within the explainable brain computing frame-
work.

broader scales. In the future, the framework should enhance its
flexibility and alignment ability in integrating task-free data,[40]

multiscale data,[41] and so forth. Second, the current framework
mainly focuses on understanding the mechanisms of high-order
cognition. However, understanding the interactions and associa-
tions among cognitive functions during conditions and diseases
are other valuable topics, where the structural and functional
alignment problem needs to be further investigated to reduce the
gap between cognitive and clinical findings.[42,43] In the future,
we aim to further confront challenges in translational research

to make it available in clinical practices. In particular, other tech-
nologies are further integrated, such as brain stimulation, provid-
ing a novel perspective for decoding cognitive mechanisms.[44–46]

We encourage more scientists from different backgrounds to ex-
plore and recognize its value in various scenarios, contributing
to a more profound understanding.

In a broader sense, our study may contribute to advancing
the machine intelligence paradigm through decoding com-
plex information-processing mechanisms in the human brain.
While single-view learning is essential, it has limited utility in

Adv. Sci. 2024, 11, 2307647 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2307647 (12 of 18)
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systematic understanding and multiaspect interpretations.
Therefore, our framework, which integrates internal and external
evidence, offers a promising direction for future investigations
in the brain. It can further enhance evidence combination and
fusion computing toward never-ending learning, providing a
more comprehensive and dynamic approach to understanding
the complex brain mechanisms, and paving the way for further
advancements in machine intelligence.

4. Experimental Section
In this section, we present the theoretical derivations and never-ending

learning mechanisms of the explainable brain computing framework. De-
tailed technical workflows and performance analyses can be found in Sup-
porting Information.

Never-Ending Learning on Multi-Source Brain Big Data Computing: The
never-ending learning paradigm utilizes existing knowledge, integrates big
data from the brain, and guides the next steps of learning to ensure contin-
uous updates and interpretations of brain computing results. In this study,
the human-centric KID loop was designed to drive never-ending learning
of human brain intelligence, performing the systematic investigation pro-
cess through multisource integrated neuroimaging-related knowledge, in-
formation, and data. The KID loop was a hypothesis-triggered closed loop
along with continued expansion of the conceptual Data-Brain and brain
resources. It includes knowledge-driven forward and data-driven reverse
inferences involved in systematic experimental planning, intra- and inter-
analyses, evidence combination and fusion computing, and human-in-the-
loop interactive learning. During such a never-ending learning process, the
forward inference was performed to understand cognitive function-related
brain patterns at each loop, while the reverse inference was performed to
validate the support coefficient of brain patterns to various cognitive func-
tions, along with the incremental combination of new evidence.

In the first loop, a cognitive experiment was planned that aligned with
the interests of investigators and drew upon relevant evidence from the
sample library. In subsequent loops, a combination of knowledge-driven
forward and data-driven reverse inferences was employed to continuously
calculate various distributions and coefficients through evidence combi-
nation and fusion computing. The entire process can be conceptually rep-
resented by the following Equation (1):

NEL =
∞∑

loop=1

loop (GHP) (1)

where GHP indicates a single computed brain map from an independent
study, loop(GHP) is the evaluation indicators at one given point of never-
ending learning, including the uncertainty distribution 𝜏 and the support
coefficient 𝛾 . Through evidence combination and fusion computing, these
indicators are aggregated to produceNEL, which provides an overall eval-
uation of the learning process. Theoretically, this process of never-ending
learning is indefinite if there is sufficient data, along with systematic and
explainable experimental planning. In addition, the framework proposed
can be mathematically indicated as the following Equation (2):


t
NEL : FRULEs

⟨
f i
t−1, (xt, yt), Mt−1⟩ → ⟨{f i}, Mt

⟩
(2)

where FRULEs indicates our computing framework embedding by rules, f i
t−1

indicates a method used at t − 1, which can be changed or be kept during
the subsequent learning processes.

One different point between our framework and other never-ending
learning methods (such as lifelong learning, continuous learning, and con-
tinual learning) is the optimized object. In particular, the computing frame-
work FRULEs is non-changed during the learning process, while the com-
puting methods can be changed from f i

t−1 to {fi}, and the memory changes
from Mt − 1 to Mt after an iterative process.

Systematic and Explainable Experiment Planning: The purpose of sys-
tematic experiment planning was to gain a comprehensive understand-
ing of human intelligence and health through a structured approach that
mimics human thinking processes. Existing systematic studies often fo-
cus on integrating multitask datasets to compare various cognitive func-
tions, treating diverse datasets obtained from different experimental tasks
as equally important. However, these approaches overlook the variations
in the computational role when modeling multitask datasets, leading to
different weights of evidence. To address these issues, the types of exper-
iments based on factors such as cognitive hypotheses and experimental
paradigms were differentiated. These experiments were then linked within
an experimental template graph, guided by various matching rules based
on the function and experiment dimensions of the conceptual Data-Brain.
In an experimental graph, the main experiment (Tmae), which directly cor-
responds to a target hypothesis, serves as the starting point for system-
atic experimental planning, while supplementary experiments branching
out from the main experiment were continuously designed to support
evidence combination and fusion computing. Furthermore, these sup-
plementary experiments (Tsue) can be classified into different types, in-
cluding similar experiments, parallel experiments, deeper experiments, in-
spired experiments, missed experiments, subprocessing experiments, and
so forth (Figure S2, Supporting Information).

By continuously planning multiple experiments across various experi-
mental types, a hierarchical experimental sequence was generated to guide
the integration of related brain resources. The primary challenge lies in
planning cognitive experiments within each loop to facilitate never-ending
learning. To address this issue, the study employs the strategy of exper-
imental similarity assessment. Evaluating the similarity among different
experiments requires a description of the experimental profile, includ-
ing factors related to paradigms and stimuli, which could be quantified.
These experimental profile-related factors are represented as the concepts
and properties in the experiment dimension of the conceptual Data-Brain
(Figure S1, Supporting Information). In this study, three types of repre-
sentative factors, the experimental paradigm (EPA), experimental proto-
col (EPR), and explicit stimulus (SEN), are selected to calculate the exper-
imental similarity as follows:

(Tmae, Tsue) = 1
the size of facs

∑
fac∈ facs

Bin
(
T fac

mae, T fac
sue

)
(3)

where (Tmae, Tsue) indicates the similarity of two experiments; facs =
{EPA: [categorical design, parametric design, factorial design]; EPR: [event-
related design, block design, mixed design]; SEN: [pictures, digits]; …} re-
flects the selected factors presented by the dictionary type; T fac

mae and T fac
sue

indicate one of the factors fac from the experiments Tmae and Tsue, respec-
tively; the function Bin(T fac

mae, T fac
sue) evaluates the consistency between the

factors T fac
mae and T fac

sue, in which Bin (·, ·) = 1 if both factors are the same,
or Bin (·, ·) = 0 if not, which supports intra- and inter-analyses.

Internal Evidence Learning Based on Intra- and Inter-Analyses: Accom-
panied by systematic experiment planning, neuroimaging resources cor-
responding to various experimental details are collected and analyzed to
test hypotheses based on two types of analysis strategies:

1) The intra-analysis strategy constructs an analysis within a specific do-
main of cognitive functions. When a hypothesis declares a cognitive
function domain and a brain pattern (e.g., human reasoning depends
on DLPFC.), the intradomain cognitive functions (e.g., child nodes of
reasoning, Figure 1B; Figure S1, Supporting Information) are deter-
mined according to the function dimension of the conceptual Data-
Brain. This type of analysis increases the level of generality in a given
hypothesis.

2) The inter-analysis strategy works among multiple different domains
of cognitive functions. When a hypothesis is made, the interdomain
cognitive functions (i.e., the sibling node of the target cognitive func-
tion domain in the function dimension of the conceptual Data-Brain)
are determined accordingly. This type of analysis increases the level of
specificity in a given hypothesis.
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Figure 7. The learning and application of external evidence. The first step is neuroimaging article mining based on open-access articles, while the second
step is systematic experiment planning based on external evidence.

These different analysis types depend on the experimental planning,
and then determine different roles of data samples that are computed in
each loop. The combination of these two types of analyses reduces re-
lational uncertainty between a cognitive function and multiple brain pat-
terns, and contributes to the stronger hypothesis testing during the for-
ward inference process. Meanwhile, these two types of analyses also have
a significant impact on calculating the support coefficient, contributing
to the functional interpretations of a brain pattern on different cognitive
function domains during the reverse inference process. During this never-
ending learning process, brain-computed results in each loop are treated
as evidence, and then are fused continuously through evidence combina-
tion and fusion computing.

External Evidence Learning Based on Pre-Trained Language Modeling Tech-
niques: The external evidence comes from outside of our research team.
A practical method for large-scale external evidence learning is through
neuroimaging article mining from open-access articles related to neu-
roimaging studies (Figure 7). The BI provenance-based neuroimaging
topic modeling method is adopted to extract key factors in experiments
and analyses as external evidence. Then, the evidence is stored in the sam-
ple library. During learning processes, by the factors-based experimental
similarity assessment, different types of supplementary experiments can
be recognized from aligned external evidence and used to support evi-
dence combination and fusion computing.

To achieve this, the BI provenance-based neuroimaging topic modeling
method for external evidence learning was used, which involves the fol-
lowing two key steps (Figure 8). The first step involves the task definition
of neuroimaging article mining, guided by the BI provenance model that
characterizes the key factors of experiments and analyses for systematic
experiment planning. To capture the factor demands of systematic exper-

iment planning, a new BI provenance model (Figure 8A) is reconstructed
based on the Neuroimaging Data Model (NIDM),[47] which consists of
three categories with respect to elements: entity (circle), agent (hexagon)
and activity (rectangle), and characterizes the key factors in experiments
and analyses. This model is then transformed into neuroimaging article
mining tasks, which consist of categories of neuroimaging entities and
interactions, using the following rules:

1) Entities: Each agent or entity in the BI model is transformed into a
category of neuroimaging entities.

2) Interactions: Each relation between agent and entity in the BI model is
transformed into a category of neuroimaging interactions. To account
for the flexibility of language expression, each potential pair of entities
or agents connected to the same activity is considered as a candidate
relation. After removing duplicate relations, the remaining candidate
relations are also transformed into interaction categories.

Applying these rules, we obtained 12 categories of neuroimaging enti-
ties and 55 categories of neuroimaging interactions in the current study
(Tables S2 and S3, Supporting Information).

The second step involves interaction-based neuroimaging topic mod-
eling as shown in Figure 8B, which is the text embedding layer, the
joint extraction layer, and the topic modeling layer. The text embedding
layer encodes the sentences in neuroimaging articles and constructs text
vectors as the input for the subsequent layer. The joint extraction layer
adopts a joint deep learning model fusing Transformer and weighted con-
straint learning to extract neuroimaging entities and their interactions
as BI provenance from the input text vectors. The topic modeling layer
recognizes research topics as the key factors based on interactions of
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Figure 8. The BI provenance-based neuroimaging topic modeling method. A) The conceptual BI provenance model is used to capture evidence demands
from systematic brain computing. B) The neuroimaging topic modeling pipeline is used to extract external evidence and recognize key factors from open-
access neuroimaging articles. C) BI provenance with key factors is stored in the sample library for evidence combination and fusion computing.
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neuroimaging entities in BI provenance. In particular, the text embedding
layer transforms the inputted neuroimaging texts into text vectors by using
BioBERT[48] and character embedding. The joint extraction layer combines
Transformer[49] and weighted constraint learning[50] to extract neuroimag-
ing entities and interactions as the BI provenance in a few-shot learn-
ing manner. The topic modeling layer identifies key factors of experiments
and analyses from extracted neuroimaging entities and interactions, in
which the word distribution of the Biterm Topic Model is replaced by the
interaction density.

Finally, the BI provenance containing the key factors of experiments and
analyses extracted from the neuroimaging text data is stored in the sample
library as external evidence (Figure 8C).

Evidence Combination and Fusion Computing: First, the forward
inference-based evidence combination and fusion computing was de-
signed. The fMRI data were computed to obtain the parametric brain
maps, mainly relying on univariate analysis (such as statistical paramet-
ric mapping techniques). These computed results will be taken as inter-
nal evidence with inferred evidential types and computed weights. More
specifically, each piece of evidence was identified as an evidential type for
multiview analytical strategies. Moreover, these evidential types with vari-
ous weight coefficients 𝜆 are computed based on the function dimension
of the conceptual Data-Brain, including:

1) Type I-evidence related to intra-analyses, where 𝜆 = 1 if the rela-
tion of functional domains corresponding to Tmae and Tsue in the
function dimension of the conceptual Data-Brain is “descendants”;
𝜆 =

∏ 1
degree of node

if the functional domain of Tmae is the “ancestor”

relationship with that of a Tsue, in which the node is in the shortest
path from the functional domain of a Tsue to the parent of the func-
tional domain of the Tmae in the function dimension of the conceptual
Data-Brain;

2) Type II-evidence related to inter-analyses, where 𝜆 = − 1 if the relation
between Tmae and Tsue in the function dimension is different from Type
I-evidence, such as the “sibling” relationship.

This systematic experiment planning combined with the evidential type
inference assures evidence combination and fusion computing. At a given
loop, the task-related evidence is fused by calculating the uncertainty dis-
tribution 𝜏 and interpreting the effect size of brain patterns (e.g., brain re-
gion) to a cognitive function underlying a specific goal hypothesis, which
is given by:

𝜏loop(GHP) =
Nloop∑

i=1
R(Ti)⊆GHP

𝜆 × R(Ti), (−∞ < 𝜏 < ∞) (4)

where 𝜏 loop(GHP) indicates an uncertainty brain map at a loop; Nloop in-
dicates the amount of loops corresponding to various evidence from the
main and supplementary experiments; and R(Ti) indicates the computing
results of evidence related to the experiment Ti from an independent study.

Second, the reverse inference-based evidence combination and fusion
computing are performed by integrating the multivariate pattern analy-
sis methods. During this learning process, different machine learning and
deep learning methods defined in the analysis dimension of the concep-
tual Data-Brain can be selected to evaluate the distinctions of brain pat-
terns to different experimental conditions. Herein, the support vector ma-
chine method with grid search was performed to discriminate different
cognitive states for hypothesized brain regions in each loop. The recog-
nized results would taken as support coefficients, which were computed by
evidence combination and fusion computing from three views of cognitive
states, depending on the complexity, condition, and component. For the
view of complexity, the predictive results are used to test the information-
processing capability of a brain pattern, corresponding to experimental
tasks with varied complexity (such as the complex task vs. the simple task).
For the view of the condition, a brain pattern is tested by discriminating re-
lations between the same-level components of interest (such as addition
vs. subtraction within a mental arithmetic task). For the view of the com-

ponent, a brain pattern was tested by discriminating relations between
a component of interest and the baseline component (such as number
induction vs. number judgment within human reasoning). Considering
the experimental characteristics, a greater difference in experimental tasks
may induce a greater difference in brain activity patterns, and then impact
the classification effects. Hence, the weights are bounded by different pre-
dictive modes Φ, as follows:

⎧⎪⎨⎪⎩

𝛼(X), if X = the complexity level based classification.
𝛼(Y), if Y = the condition level based classification.
𝛼(Z), if Z = the component level based classification.

(5)

where 𝛼(·) indicates the computed weights, 𝛼(X) ≈ 𝛼(Y) > 𝛼(Z), and
𝛼(X) + 𝛼(Y) + 𝛼 (Z) = 1. Hence, the predictive results of multiple evi-
dence corresponding to the intra-analysis can be fused to answer the ques-
tion: how to interpret the information-processing capability of a specific
brain pattern (BRP) to different cognitive functions (CFD)? Its effect indi-
cator NEL is measured by the support coefficient 𝛾 , which is calculated
by:

𝛾(BRP → CFD) =
∑

Φ∈{X,Y,Z}

⎛⎜⎜⎝

∑N(Φ)
i=1 𝛼(Φ) × P(Φ)

N(Φ)

⎞⎟⎟⎠
, (0 ≤ 𝛾 ≤ 1) (6)

where N(Φ) is the number of the predictive mode Φ, and P(Φ) indicates
the predictive results (such as the classification accuracy obtained by ma-
chine learning and deep learning methods) corresponding to the predic-
tive mode Φ.

Human-In-The-Loop Interactive Learning: The human-in-the-loop[51,52]

mechanism was an integral part of the never-ending learning paradigm de-
signed to enhance its robustness and scalability. Throughout the learning
processes, investigators can interactively access each loop, including set-
ting requests, refining resources, and screening resources:

1) Request setting was an individualized process within the conceptual
Data-Brain. In this stage, investigators could constrain the graph of
cognitive components in the function dimension based on their re-
search interests and background knowledge.

2) During the experimental stage, investigators can design task-related
parameters of interest, such as experimental paradigms, experimental
protocols, and explicit stimuli.

3) In the data dimension, investigators can design data-related parame-
ters of interest, such as the data modality in fMRI, the data state in raw
and text data, and the subject type in healthy individuals.

4) In the analysis dimension, computing details can be designed individ-
ually. For example, if the general linear model is used in the forward
inference, the related parameters will include the statistical P value,
corrected methods, and the size of the cluster selected from the set
{10, 20, 30, 50, 100, 150, …}. Moreover, when machine learning meth-
ods are used in the reverse inference, the selection of classification
models is necessary.

5) Resource refining occurs at updating stages (such as add, modify,
delete, and query operations) of the sample library and the conceptual
Data-Brain. For example, during those processes of mapping the exter-
nal evidence to the internal sample library, an investigator can ensure
the correctness of the information and add any missing information.

Furthermore, an investigator is indispensable in extending and refining
the personal computing graph from the global graph surrounding the con-
ceptual Data-Brain. For this purpose, the pre-trained language models are
considered to construct a global graph from raw text to knowledge graph
easily.[53,54] In this work, an end-to-end pre-trained language model is used
to extract entities and relations from raw text data to a global graph, that is
the “Relation Extraction By End-to-end Language (REBEL)” generation,[55]

especially in the topic of brain research. Finally, the dynamic personal
computing graph is designed individually to guide the multi-source data
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extraction, evidence combination, and systemic fusion computing over
time through prompts.
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