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Abstract

Dust storms are believed to play an essential inlemany climatological, geochemical, and
environmental processes. This atmospheric phenamean have a significant negative impact on

public health and significantly disturb natural ggstems. Identifying dust-source areas is thus a
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fundamental task to control the effects of thisandz This study is the first attempt to identifystu
source areas using hybridized machine-learningrigthgos. Each hybridized model, designed as an
intelligent system, consists of an adaptive neuzzy inference system (ANFIS), integrated with a
combination of metaheuristic optimization algorigirthe bat algorithm (BA), cultural algorithm (CA),
and differential evolution (DE). The data acquifeam two key sources — the Moderate Resolution
Imaging Spectroradiometer (MODIS) Deep Blue and @®ne Monitoring Instrument (OMI) — are
incorporated into the hybridized model, along wigkevant data from field surveys and dust samples.
Goodness-of-fit analyses are performed to evaltreepredictive capability of the hybridized models
using different statistical criteria, including ttree skill statistic (TSS) and the area underrdoiver
operating characteristic curve (AUC). The resuksndnstrate that the hybridized ANFIS-DE model
(with AUC=84.1%, TSS=0.73) outperforms the othemparative hybridized models tailored for dust-
storm prediction. The results provide evidence tthet hybridized ANFIS-DE model should be
explored as a promising, cost-effective methodeficiently identifying the dust-source areas, with
benefits for both public health and natural envinemts where excessive dust presents significant

challenges.

Keywords: Environmental modeling; dust; neural fuzzy; ensembhn

1. Introduction

Dust storms are natural atmospheric events thatlynaccur in arid areas, reducing air quality and
visibility (Nazari, 2016). Dust is comprised of dergrained particulate matter (PM) that is light
enough to be entrained by horizontal atmospheowd! However, dust storms also carry minute and
fine-grained solid matter that is small enough éontore easily elevated aloft and carried by prengil

winds. The occurrence of dust storms has increasdtie Middle East in recent years, providing
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compelling evidence that dust particles are cailoed distances (Khaniabadi et al., 2017; Soleineani
al., 2016). From a sustainable development viewpdirst storms present challenges to people timat ru
counter to the sustainable development goals (S@GHNed the United Nations in its 2030 Agenda
on Sustainable Development. For example, out ajdads, goal 3 (good health and well-being), goal 6
(clean water and sanitation), goal 7 (affordabld alean energy), goal 9 (industry, innovation and
infrastructure), goal 11 (sustainable cities anchiminities), goal 13 (climate action), and goal life (
on land) are directly or indirectly made more obiadfing to achieve by dust storms. Since dust is
generated by wind erosion, it seems rational taatlduse practices are a cause (Lu and Shao, 2001;
Keesstra et al., 2016). Land degradation and desergtion can directly affect SDGs. Therefore,
prevention of land degradation by maintaining ohacting the natural capital and associated
ecosystem services of the land should dominattatieemanagement paradigm (Keesstra et al., 2018).
Dust storms are integral to Earth’s natural systand have impacts that are numerous and wide-

ranging. These include effects on-air chemistryl, dwaracteristics, water quality, nutrient dynasjic
and biogeochemical cycling in both oceanic andestrial environments (Crooks et al., 2016;
Khaniabadi et al., 2017; Middleton and Kang, 2010cal and regional climates can be affected by
dust storms for the scattering and absorption tHrsadiation by dust particles, but the impacts ca
extend great distances from the sources of dust €an modify the microphysical properties of clsud
and change precipitation efficiency. In totalitystl storms can affect atmospheric conditions atyman
different scales (Wang et al., 2018; Yilbas et2015).

The airborne PM is a health-damaging pollutant tadversely affects human cardiovascular
systems and causes respiratory problems (Croolk,€2016). Inhalation of PM can also exacerbate
various diseases and trigger health issues suchstsna in children and the elderly, ultimately

increasing morbidity (Kanatani et al., 2010). Pgtmic and non-pathogenic microorganisms
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(including Coxiella Burnetii, Mycobacterium, Aspéhgs, Mycobacterium, Brucella, Cladosporium,
Actinomycetes, Clostridium perfingens, and Bacillusxins, and influenza viruses can adhere to dust
particles and can be transported to great distafi@esdie, 2014; Leski et al., 2011; Soleimani et al
2016). Moreover, metallic elements are transposdinhalable dust particles, and these could
potentially affect the respiratory tracts and cause neurological and other physiological impacts
(Neisi et al., 2016; Yamaguchi et al., 2012). Irdiddn to the health impacts, there are economic
impacts from sand and dust storms. Crops and tekshave also been destroyed by dust and
sandstorms (Schepanski, 2012). Recently, Gholaral. €2020) used several data-mining models to
map the provenance of storm dust in Khuzestan Reeyilran. Although they provided information
about dust movement that can be used to mitigatefitsite effects, the control of wind erosion and
dust production in dust-source areas was not esglor

Dust particles emitted from different sources (tedndust-source) are likely to affect a plant’s life
different ways (Supe and Gawande, 2015). The lagymsces of dust in Earth’s atmosphere are from
the Sahara and Sahel regions of North Africa (sleddAfrican dust”), the Gobi, Taklamakan, and
Badain Juran deserts of Asia (“Asian dust”), andstfalian desert environments (“Australian dust”)
(Griffin, 2004; Uno et al.,, 2009). Asian dust peclgs can also migrate globally, perhaps
circumnavigating the Earth in as minimum as 13 dagsrecorded in the French Alps (Grousset et al.,
2003) and ice and snow cores from Greenland (Boa}.£2003). Recent changes to regional climates
have considerably increased the frequency of dashsevents in the Middle East (Yilbas et al., 2015
Given the hazardous effects of dust storms, newsurea are needed to identify and control their
genesis regionally proactively. Furthermore, iéliso crucial for all sectors to mitigate the catgstic

effects of dust storms.
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Although the dust has long been known to be impbrta weather processes and storms and can
influence local weather, the prediction of dusttseuareas is challenging, rudimentary and somewhat
not effective in current systems. Despite the ssiffdted weather models, it remains difficult to
forecast the entrainment and transport of dushénléwer atmosphere. One reason for this is adohit
understanding of the distribution of the sourced hahavioral mechanisms of dust concerning their
spatiotemporal volatility in response to variousivaites and processes (Feuerstein and Schepanski,
2019). For the analysis of dust sources, and theefimg of their impact on Earth’s natural systenis i
crucial to identify the spatial and temporal diffus rates of sources (Feuerstein and Schepanski,
2019). In some previous studies, a diverse rangeermobtely operating methods have been used to
identify dust source areas including, but not leditto: (1) remote sensing analysis, (2) horizontal
visibility, (3) mineralogy of dust samples, and (Hgrangian back-trajectory (Baddock et al., 2009).
The drawbacks of each have been discussed in Sdiepat al. (2012). Although these approaches
provide useful information regarding the potensialirces of dust and the coupling and analysis @f ge
environmental and weather conditions, to recogudizst sources over large areas remains relatively
difficult.

Considering this need, artificial-intelligence mtsdéhat apply machine-learning techniques have
been developed in the context of geo-environmemtsdarch. Adaptive neuro-fuzzy inference system
(ANFIS) is a common machine-learning techniqueensgiences due to its advantages, such as having
the abilities to integrate information from sevesalrces, to handle large amounts of noisy, arfithdio
non-linear relationships between inputs and outgS&mbariya et al., 2014). However, the main
drawback of the ANFIS model is its poor generai@atcapability for unseen data. Another
disadvantage is weak scalability with the numbemaimbership functions and a number of inputs

(Jang, 1991; Jang, 1993; Jang et al., 1997). Runtire, it often requires relatively large data dets



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

calibration and validation purposes (LiSka et aD18). In dust-source assessments, however, it is
difficult to collect and/or generate adequate an®wf data, particularly over large regions (e.g.,
deserts), due to the constraints of time, costs,na@asurement difficulties. To address this sigaiit

gap in dust-source prediction methodologies, thidysaims to develop a suite of hybridized artélei
intelligence models using ANFIS where metaheurigfitimization algorithms are used to improve the
resulting predictive model. To determine the accyraf the models, field investigations were
conducted, and statistical analyses were perfotmedentify the dust-source areas in three prownce
of eastern Iran. This research promotes the SDGfebgloping a modeling approach that can identify
dust-source areas. Sustainable land managementsirsdurce regions can focus on reducing wind

erosion (Cerda et al., 2018a, b).

2. Material and methods
2.1. Study area

The study region, the provinces of Razavi Khoradanpbi Khorasan, and Sisstan-Balochistan in
eastern Iran (Fig. 1) covers an area of 444,904 &md forms a homogenous geographical unit with
specific characteristics: proximity to the eastéeserts of the Iran plateau, variability and deficy of
precipitation, desertification, high evaporatiortes frequent high wind conditions, and lack of
permanent surface water bodies. The climate ofrdgsn is hot and arid. The wind is more frequent
here than in other parts of the country with apprately 120 high-wind days annually. To develop a
predictive model for dust storm sources, model iolyation was achieved by combining ANFIS with
three metaheuristic optimization algorithms: thé &gorithm (BA), the cultural algorithm (CA), and

the differential evolution (DE) approach. This framork integrated several modeling approaches and
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achieved a model with superior performance anaiefit computing time. The method presented here
can be used to distinguish source regions of dustid and semi-arid regions.

Fig. 1 here

2.2. Methodology

The methodology (Fig. 2) involved several stepgluding conducting a dust-source inventory,

identification of the factors that influence dusngration, and modeling.
Fig. 2 here
2.2.1 Dust-source inventory

This study has used two common satellite remotstsgrproducts to identify dust sources in the study
region: the “Moderate Resolution Imaging Spectromatter (MODIS)” Deep Blue and the Ozone
Monitoring Instrument (OMI). These have been widapplied in previous research as not only they
are cost-effective and robust sources of data lsatthey provide the first direct characterizatadrihe
origin of individual sources possible (Baddock let 2009; Ginoux et al., 2010; Prospero et al.,200
Following these studies, we have also used theiémecy-of-occurrence (FOO) to localize dust sources.
As one of its advantages, the use of this methambtdimited to arid regions but can be used beyond
FOO is the number of days that aerosol opticalktiéss ) is greater tharreshod and Angstrém
exponent ¢), and single scattering albedeoj satisfy criteria of freshly emitted dust partglé.e.,
large particles which have not yet been omittedgbgvitational settling). Therefore, the satellite-
retrieved values of, «, andwg for each day should be monitored. Simultaneousideration of these
factors provides comprehensive information on tb&iran-averaged features of the air mass that
allows the distinction of dust from aerosols (e.gnthropogenic pollution aerosols). A detailed

description of this method is given by Ginoux et(2010) and Prospero et al. (2002), and we provide
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only a brief overview. We investigated dust stoumsg the previously described indices during April
and July (2014-2018). In the analyses, the higlalues were not observed which implies that tlaeee

not fine-mode anthropogenic pollutions (smoke) ia study area (i.e., dust can be recognized by a
small Angstrom exponent), reducing the complexitydost identification. After July 2018, several
field surveys were conducted, and geo-environmegmal terrain characteristics were identified and
investigated. The most frequent (i.e., having tlghdést FOO) were significantly associated with the
dried bed of the Jazmurian wetland, the HirmanceRidamun Lake and some ephemeral wetlands. A
relatively similar spatial distribution of dust sto occurred in these areas during April and Julglin
five years. Beyond these areas, there were alsy tbations that are sensitive to wind erosionthBo
the frequency and intensity of dust storms haveesmed in 2017 and 2018 compared to previous
years. A total of 85 dust-source areas were deteutd geolocated with a GPS receiver. These regions
are quite active, and they pumped significant arteohdust particles into the atmosphere during thi
period. The locations were randomly divided intootgroups for training (n=56 or 70%) and for

validation (n=29 or 30%) of the models (Figure 1).
2.2.2 Factors that influence dust generation

There is no predetermined set of geo-environmeantdl topographical factors known to be linked to
dust-source areas. According to the field invesiigg and previous studies, a total of eight facter
wind speeds, geology, maximum air temperaturesl leses, slopes, soils, precipitation amounts, and

land cover were considered to be potential pragidiactors for modeling locations of dust generatio
(Fig. 3).

Wind speed. Wind is the primary factor for aeolian erosion (dli et al., 2014). Generally, winds can
transport sands and dust at various altitudes;ishdictated by wind speed and uplift. In this stud

wind speed data were obtained from weather stati®ageral interpolation techniques were used to

8
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generate a wind speed map and their accuraciesomerpared. Subsequently, kriging was selected as
the technique to use, as it yielded the lowest mean square error (RMSE). The wind speed in the
study region averages between 10 to 17 m/s atuhace (Fig. 3a). Therefore, wind speed is an
essential factor for mapping dust-source potentiatause it increases the probability of dust
entrainment. The wind-speed map demonstrates preeds are high in the eastern part of the region

and are moderate in the western part. Winds teihe tower in the northern portion of the study area

Geology. A geological map of the study area was obtainethftibe Geological Survey of Iran (GSI).
The study area’s geology is comprised of alluviwphiolites, conglomerates, sandstones, acidic and
basic igneous, and volcanic rocks (Fig. 3b). Dotes)ilimestones, mud volcanics, recent volcanics,
and some colored series are also found in the &@ae areas have not been surveyed geologically,
however. The Jazmurian basin is the largest badiina study area. However, rocks from the Cambrian
to the Triassic period are found in this regionofRtin, 1968). Pyroclasts, alluvium, limestone,
sandstone, basic and ultra-basic stones, and dpbkidre easily eroded by wind and provide for

abundant sources of dust production.

Air temperature. Air temperature plays a vital role in dust prodactiHigher air temperatures increase
rock decomposition to rapidly generate significauantities of dust particles (Kimura, 2012). Amlien
air temperature measurements were obtained frontheseatations in the study area. Like the wind
speed map, several interpolation techniques torgenan air temperature map were compared and
kriging was deemed the most appropriate becaus@stmost accurate (i.e., had the lowest RMSE).

The maximum air temperatures in the study regioged from 49°C to 42.1°C (Fig. 3c).

Land use. Land use is also an indicator used to map dusinpatgKimura, 2012). Land use reflects

the intensity of human activities and the poterfbalenvironmental degradation and disturbancéef t
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surface. This study used a land-use map derivaen fioLandsat OLI image (2016) employing an
object-based image-classification technique (F&). Ihe image was radiometrically corrected with a

pre-processing technique by converting the detaagidmetrics into reflectance values.

Sope. Slope is crucial to dust production and it is inmoated into dust emission and transport models.
The dust sources are widely distributed in aredswaér slopes and can be identified and assesgéd wi
remotely sensed time-series data (HahnenbergeNmadl, 2012). The slope value is represented as a

percentage; the highest slope value was 185.3 3Eig.

Soil. The characteristics of soils, directly and indikgcaffect the dust-storm initiation (Hahnenberger
and Nicoll, 2012; Kimura, 2012). Eroded particlemyin size (i.e., from dust particle to boulder).
Heavier materials cannot be moved very far by wibdt dust particles can be transported long
distances and are deposited when they collide witstacles in their paths or when wind speed
diminishes and loses its capacity to move theml. tgpe is also a primary influence on plant growth.

Fig. 3f shows the distribution of the dominant ¢gdes in the region.

Rainfall. Rainfall influences soil moisture, significantlynpacting the strength of some soils against
erosion and, consequently particulate productidnrainfall and or soil moisture decreases, dust
increases. It, therefore, has a significant infagenn the spatial distribution of dust potential.this
study, precipitation data were obtained from tlamilin Department of Water Resources Management
(IDWRM). The rainfall map was also produced by gskriging. The study area is dominated by
landscapes of sparse shrubs and annual plantseftetdt the arid climate with low precipitation;eth

northern and southern parts receive more predipitdhan the central region of the study area (Fig.

30).
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Land cover. Land cover is relevant to discerning dust-sourctemqtel. Land cover influences the
susceptibility of the soil to erosion. Compareddrests, land degradation is more severe on latid wi
scant vegetation. A land cover map of the study am@as obtained from the Forest, Range and

Watershed Organization (FRWO) of Iran (Fig. 3h).

Fig. 3 here

2.2.3 Basics and application of models

While artificial neural networks (ANNs) can modelyafunction regardless of its complexity and are
characterized by excellent learning and generadizatapacities, they have drawbacks: difficulty
selecting the optimal number of layers and neutante model and interpreting functionality (Al-
Mahasneh et al., 2016; Jahani, 2019; LiSka et2@ll8). Fuzzy inference systems (FIS) are based on
fuzzy logic, enabling classifications that allowred membership in multiple classes. The advardage
and disadvantages of fuzzy inference systems andsAive explained in Al-Mahasneh et al. (2016).
ANFIS, also known as the universal estimator, esdbmbination of artificial neural networks (ANNS)
and the Takagi—Sugeno fuzzy-inference system whiak first developed in the early 1990s (Jang,
1991; Jang, 1993; Jang et al., 1997). Combiningahenetworks and fuzzy logic is one way to
overcome the disadvantages of both techniques{&hgl., 2012). Several studies report that ANFIS
integrates the advantages of neural networks idindeavith the implicit knowledge that can be
acquired by learning and fuzzy systems and in dgalith the explicit knowledge that can be
explained and understood (Heddam et al., 2012;,62@L2; Wei, 2016)ANFIS also analyzes, learns,
and adapts quickly (Chen et al., 2013). Furthermimzzy if-then rules serve as inference-engines th
enable ANFIS to approximate non-linear patternpénpetually updating the knowledge of that system

based on newly defined rules, and concurrently tipgldhe linear and nonlinear parameters based on
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gradient descent and recursive least-square digmwi{Polat and Glge2006). Therefore, ANFIS is

an artificial intelligence approach used for solyicomplicated problems in several scientific fields
(Premkumar and Manikandan, 2016; Wang and ElIha@8)2® feed-forward network that includes
different layers with various functions is the fameental configuration of the ANFIS. One of the
important steps in an ANFIS model is the fuzzificatof input data which is implemented using fuzzy
membership functions. There are different membpréimctions including the triangular, trapezoidal,
Gaussian, and bell (Chen et al., 2017). The Gaugsizction was used in this study. It is popular fo
specifying fuzzy sets, and its curve is smooth @ener equals zero (Tzeng, 2010). It is definedEas (

1):

90 = e ®

whereu and o are parameter sets that change the shape of th#éenghip function. Optimizing
parameters of the Gaussian function increasesctheacy of the ANFIS model. One crucial feature of
ANN and ANFIS models is the activation functionttdacides whether a neuron should be activated or
not (Yilmaz and Kaynar, 2011; Sun et al., 2015) eWlhe activation function is not used, weights and
bias simply do a linear transformation; conseqyestich ANNs and ANFIS models are substantially
linear regressions (Rani et al., 2019). In fact, dltivation function applies a non-linear trangfation

to input to enable the learning and prediction omplex tasks (Toghyani et al., 2016). The most
common activation functions are identity, binargpstsigmoid, tanh, ramp, ReLU, leaky RelLU, and
softmax (Mishkin et al., 2017). In this study, gigmoid activation function was used. It has bessdu

in several subfields (Top¢u and Saridemir, 2008jd8air, 2009; Hajduk, 2017). Sigmoid also has

advantages: it is characterized as a smooth funtie., it ranges from zero to one and has anapesh

and it is continuously differentiable (Algin et,a2016). When multiple neurons include a sigmoid

12
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function, the output will be nonlinear (Da and Xiar 2005). To achieve the best fit between estidhate

and measured values, the RMSE was used as thkinogon (Eq. 2):

n — 2
RMSE = /M 2)

where Xeg and Xqps are defined as the estimated and observed (actust) respectively, and is the
number of dust observations. However, it is crutodlune the learning parameters because it rexjuire
considerable time and requires a significant amafninput data. Also, the accuracy of ANFIS
significantly depends on the adequacy of trainirgad(Chen et al., 2017). Therefore, many
optimization algorithms have been developed toraatwally optimize these learning-parameters with
inadequate data (Polat and G§in2006; Tien Bui et al., 2018a). Among metaheuwrisiptimization
algorithms, bat, cultural, and differential evotutialgorithms were adopted and fused into the ANFIS

model as ANFIS-BA, ANFIS-CA, and ANFIS-DE.

In summary, the bat algorithm, as the name impliegates the echolocation behavior of bats (i.e.
sound pulses) and was first developed by Yang (RAi@ntails three main components: frequency,
loudness, and pulse emission rate (See Yang (20tQJetails). Flying with random velocity in a
random space (i.e., randomly moving through thammaters’ space) and analyzing the three variables
mentioned above, bats distinguish an object fromstasbes and obstacles from open space (i.e., the
presence and absence of localities) (Ali, 2014;&aiya and Prasad, 2014). With this informatiow, th

bat optimizer can tune the learning parametersNfis.

The CA algorithm, on the other hand, develops \eiblutionary computations. It is a mathematical
representation of how societies evolve or adagh&ir environments. First expounded by Reynolds
(Reynolds et al., 2008), the algorithm is underpohibby a two-level computational process, termed a

dual-inheritanceJoza et al.(Soza et al., 2002). The first level focuses omputation that shares a set

13



301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

of behavioral traits that is continuously hande@dahrough the generations and is possibly spread t
others in society by social motivators. The sedeneél focuses self-experiences and self-forecasts t

can be generalized and merged into a global béliedis, the circulation between the population, a
belief and subcomponents therein provide an oufiimea cultural-evolution framework that can be

mathematically represented by various models, asdenetic algorithms (Schepanski et al., 2012).

DE, as a stochastic global-optimization method, apimmize the properties of a non-linear and non-
differentiable problem in a continuous space (Wahgl., 2014; Wu et al., 2016). The DE targets an
objective function (e.g., a cost function) and mmizies it under certain constraining functions véth
easy-to-operate implementation process (Soleimanale 2016). Using a vector (or parameter)
population and reliable handling of stochastic ydtions in the population enables DE to fairly
quickly provide practical results. The DE has based to contribute to evolutionary optimization and
is one of the fastest and most practical optimiratmethods, particularly in comparison to other
prominent minimization methods such as annealimggemetic algorithms. The DE algorithm contains
four basic steps: initialization, mutation, crossoyalso known as recombination), and seleétidhe
last three steps are reiterated until a terminatrderion is satisfied. Several termination cideran be
considered in the modeling process. In this stitdyiterative process was terminated when the root-

mean-square error (RMSE) was minimal.

A schematic of each metaheuristic optimization atgm (i.e., BA, CA, and DE) is given in Fig. 4.
There are some notable differences between thehitactures and their data analytical processes.
Detailed descriptions of these popular algorithras ©e found in the literature (Premkumar and
Manikandan, 2016; Tien Bui et al., 2018a; Tien Buial., 2018b). In this study, all individual and
hybrid models (i.e., ANFIS, ANFIS-BA, ANFIS-CA, andNFIS-DE) were executed with MATLAB

software.
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324 Fig. 4 here

325 To apply the ANFIS model (i.e., standalone), thespnce/absence of a dust source was used as the
326 dependent variable, whereas the dust-influencirggofa were independent variables. ANFIS was
327 calibrated using the training data set (70% of -dasirce locations in inventory) as explained in the
328 previous sections. Therefore, a dust-source probabiap was generated with the standalone ANFIS
329 model. Subsequently, the training data set was afsal for training the hybridized models (i.e.,
330 ANFIS-BA, ANFIS-CA, and ANFIS-DE). Three dust-soarprobability maps were produced for the
331 study area using the hybridized models. It shoddbted that the validation data set (30% of dust-

332 source locations) was not used in the trainingestag

333  2.2.4 Accuracy assessment

334 In this study, some standard evaluation metrictutching root mean square error (RMSE), the area
335 under the receiver operating characteristic cuAMdQ), and true skill statistic (TSS) were used. The
336 RMSE was described in the previous sections. Thestgics are used to assess goodness-of-fit and

337 predictive performance.

338 The AUC metric is calculated with the receiver @pierg characteristic (ROC) curve and measures
339  how well a model generally performs (Pham et 2112 Tien Bui et al., 2018b). ROC curve plots the
340 *“1-specificity” (also known as false positive raR) on the horizontal axis against the sensitivity
341  (also termed as true positive rates, TPR) on tiecaé axis (Tien Bui et al., 2018a). The sensitivi
342 reflects the probability of correctly predictingetpositives (i.e., dust source sites) as obsewkdreas
343  the “1-specificity” shows the probability of incoctly predicting a non-event location (i.e., nonddus
344 source) as an event (i.e., dust source). “1-spigifiand sensitivity can be calculated using the

345 components of the confusion matrix, including tpasitives (TP), false positives (FP), false negstiv
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(FN), and true negatives (TN). TP and TN are dosirce and non-dust source locations correctly
classified, respectively. FP and FN are the numbémnisclassified positives (i.e., dust source) and

negatives (i.e., non-dust source). TPR and FPRbearalculated:

TP
TP+FN

TPR = (3)

FP
FP+TN

FPR = (4)

In an analytic expression of the ROC curve, itaaated a$. The AUC is formulated as (Eq. 5):
AUC = [} f(FPR)YdFPR = 1 — [, f(TPR)dTPR (5)

TSS is the other metric used to check the moddbpeance based on the TPR and FPR statistical

measures. It can be expressed as follows (Eq. 6):

TP FP

TP+FN FP+TN

TSS = = TPR — FPR (6)

To suggest or reject a model for other susceptibéas, its reliability and performance should be
evaluated using training and validation dataseth(Bminejad et al., 2018; He et al., 2019). Theegfo
all three evaluation metrics were calculated durirggning (i.e., using the training data set) and

validation (i.e., using the validation data set).

3. Results and discussion

3.1 Preparation of maps of potential dust-sources

The spatial distribution of potential dust sourdesived from standalone ANFIS models and from the
equivalent hybridized models in which optimizatialgorithms used are illustrated in Fig. 5. Upon

initial inspection, the spatial distribution of patial dust sources seems to be clearly differeatia
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across the study area. Notably, all four predictivadels (i.e., the standalone ANFIS, as well as the
ANFIS-BA, ANFIS-CA, and ANFIS-DE hybridized modelspveal a relatively similar spatial pattern
of dust potential across the study region. Thehmor, eastern, and southwestern parts of the regen
highly active dust-production sources, while theta parts show significantly less dust-potendiadi

are a rather low-dust zone. Visual comparison eféhlarged insets clipped from the dust-potential
maps reveals the less precise classifications ghtstatial produced by the standalone ANFIS model
(Fig. 1a inset), particularly in areas without amgy source-data. The hybridized models produce a
clearer and more precise differentiation of logaditwith and without dust storms. This is discemib

the proportional distribution of the dust-potentkdsses each hybridized model generates (Table 1).

The ANFIS model has classified nearly 69% of thgiae as highly dust storm active, which
contradicts the empirical evidence of dust stonmihis particular region. These predictions arbtiyé
practical value to guide pragmatic action to miigéne impacts of dust storms. Conversely, theystud
areas classified as ‘high’ and ‘very high’ by thgbhdized models are smaller proportions of the
whole; they present more realistic representatiohslust storm occurrence. This attests to the
enhancement that optimized ANFIS models provide mfare differentiation between classes and,
therefore, perhaps, a more accurate solution.hidlg hybridized models indicated that the dried dfed
the Hirmand River, the Jazmurian wetland, HamunrelLaikd some ephemeral lakes are the most active
dust sources. These findings are consistent wighRaet al. (2015) who also investigated transport
pathways and mechanisms of dust using meteorologfiméon datasets describing the southern part of
the study area (the Sistan region). Their resaligcated that the dried bed of the Jazmurian wetlan
and Hamun Lake were the most active dust sourctgisistan region. Specific management should
be implemented in dust-source areas. For exampieah activities related to water resources and land

cover should be rationally controlled.
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Table 1 here
Fig. 5 here

3.2 Validation and comparison of the novel hybridied- and standalone-ANFIS models

To determine the accuracy of the hybridized ANFI&sis, a goodness-of-fit test assessed the models
in terms of mean-square error (MSE), root-mean+sgeaor (RMSE), mean, and standard deviation
(StD) metrics from the observed and predicted datipplementary Figures S1-S4). All performance
metrics computed for the ANFIS model with the tnaghdataset were set to O (Fig. S1b, c). However,
the values generated by the validation dataseMBE, RMSE, mean, and StD were about 0.072,
0.269, 0.018, and 0.271, respectively (Fig. SleTHjs indicated that the model had over-fitted the
training dataset during its learning stage. Thesellts demonstrated the tendency of the standalone
ANFIS model to over-fit, as was shown in the studyTien Bui et al. (2018b). By contrast, in the
ANFIS-BA model, the values of 0.023, 0.153, 0.06¢d ®.154 were obtained for the MSE, RMSE,
mean, and StD, respectively, in the training ph@sg. S2b, c). The values for the same variables

generated with validation data were 0.020, 0.14R13 and 0.144, respectively (Fig. S2e, f).

Similarly, the values of MSE, RMSE, mean, and Shibamed with the training dataset as input into the
hybridized ANFIS-CA model were about 0.021, 0.186)16, and 0.146, respectively (Fig. S3b, c).
And for the validation dataset, they were abouB,®.149, 0.010, and 0.150, respectively (Figure
S3e, f). For the hybridized ANFIS-DE model, theirtnag-data generated values for MSE, RMSE,
mean, and StD were 0.016, 0.126, 0.005, and Or&8pectively (Fig. S4b, c) and the validation-data
values were 0.020, 0.142, -0.016, and 0.143, réspc(Fig. S4e, f). In this regard, similar toeh
Bui et al. (2018a, 2018b), we have demonstratedatgbridized-ANFIS model can be considered to
be a more robust predictive model for dust-storedjmtion, as it attained a much greater accuraay th

with the standalone-ANFIS model.
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Therefore, it is evident that as MSE and RMSE valdieninish, goodness-of-fit increases, as does the
overall performance for each optimized hybridized/AS model. The ANFIS-DE model performed
the best, followed by the ANFIS-BA, ANFIS-CA, and\NRIS models. There are several possible
reasons for these results. DE has several advantage the other algorithms. There are no resinsti
on the regularization methods and error functioa.,(inon-differentiable transfer functions may be
used). Easy tuning of the algorithm parametersr{lpg@opulation size). Not only can convergence to a
global minimum be expected, but the linear time apdce complexity of the algorithm can also be
established. llonen et al. (2003) confirmed that #tructure of the DE algorithm influences its
capabilities. Our study indicated that DE’s chaggstics (compact structure, reliable search céipgbi
high convergence characteristics, and few contevhimeters) have made it a powerful population-
based stochastic optimizer. Some researchers balat the main reason for its strength is itsglesi
principles (simplicity, efficiency, and real codingNoman and Iba, 2008; Price, 2013; Das et al.,
2016). As discussed by Khazraee et al. (2011)uieeof the differential evolution (DE) algorithm is
likely to generate a more robust and efficient mation tool for any predictive model, given its
ability to perform a direct search of data featurdthout requiring any derivative estimation or

assumptions. This explains the enhanced performaageability of the ANFIS-DE hybridized model.

To evaluate the validity of the models developeddast-storm prediction, the resulting susceptipili
maps were also evaluated spatially for their vglidiVe tested the accuracy of the prediction oft dus
storms that have occurred and those that are egdot occur using the training and validation
datasets. The results showed that the AUC in tieiig step (i.e., a measure of the goodness)of-fit
were about 88.1%, 84.9%, 83.0%, and 85.4% for tNE&IS, ANFIS-BA, ANFIS-CA and ANFIS-DE
models, respectively. These values in the validastep (i.e., predictive performance) were about

63.7%, 83.4%, 80.3%, and 84.1%, respectively (Tahle
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Another robust statistical metric applied to valedthe dust-susceptibility maps is the true skatistic
(TSS). Accordingly, the training TSS value for tABIFIS, ANFIS-BA, ANFIS-CA and ANFIS-DE
models was found to be about 0.78, 0.74, 0.73,0aR8, respectively. Slightly lower values of about
0.64, 0.72, 0.70 and 0.73 were produced with tHelatéon dataset. Although the AUC and TSS
metrics produced from the training data and the KENfRodel had the highest performance, ANFIS-
BA’s metrics using the validation dataset indicateel highest power of prediction. Therefore, thstbe

hybridized models in order of performance are ANBES, ANFIS-CA, and ANFIS-BA.

A direct comparison of our results to the findingsother studies is difficult and must be done with
caution because the prediction performance of thgsadized models has not been compared in other
studies. As described by Das et al. (2016), thierihtial evolution algorithm’s automatic adaptatio
property, used as a unique feature extraction tol, significantly enhance the search processeof th
algorithm for solving multi-objective, dynamic, cgrained, and large-scale optimization problems.
Besides, both Wang et al. (2008) and Wu et al. §20iave also explained that the differential
evolution algorithm, when used as a populationhaséochastic search technique, exhibited
remarkable performance in terms of final accuraopustness, computational speed. On the other
hand, this algorithm requires only three controtapaeters (i.e., crossover rate, scale factor, and
population size) which can be applied to solvefgewdint real-world problem from a diverse array of

science and technology areas in practical ways.

According to the literature, the standalone ANFI8del can also have some drawbacks (Jang, 1991,
Jang, 1993). The main one is the poor generalizatapability for unseen data. Another disadvantage
is its weaker scalability when using several memsier functions and inputs required to train and

execute the model. Also, this model often requir@serous recalibrations. In dust-source assessments

however, it is difficult to collect sufficient datawver large regions (e.g., deserts) for variousoes
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such as time and cost constraints, and measurediffidulties. In this study, metaheuristic
optimization algorithms, notably the DE algorithwere intended to address these significant gaps and
enabled not only efficient fitting of data to thedel but also enhanced the generalizability offitte
model. Consequently, metaheuristic optimizationoatgms are likely to dramatically improve the

predictive performance of the ANFIS model when agapfor spatial prediction of dust storms.

Table 2here

3.3 Comparison of the models’ predictions

Scatter plots for the standalone ANFIS model ptexhs were compared to those from each
hybridized ANFIS model predictions (Fig. 6). Thetdbutions are very near and evenly distributed on
both sides of the 1:1 line implying strong agreetieween the two data series (i.e., the predistain
ANFIS and each hybridized model are shown accolgdin@lear patterns are not discernable in these
plots, indicating that there is almost no agreentsettiveen the predictions of the ANFIS and the
hybridized ANFIS model. However, two distinct pepdtterns are visually discernable on the plots
and they are grouped as two clusters of pointggudimster analysis. Most of the high values predict
by the ANFIS model (roughly higher than 0.5 on %kaxis) lie below the 1:1 line, which means that
they are under-predicted by the hybrid model. Intiast, most of the low values produced by the
ANFIS model (values lower than 0.5 on the x-axig) @aver-predicted by the hybrid models.

The ANFIS model tends to generate results thatameposed of a greater number of extreme
outliers, while the hybridized models seem to poedpredictions with outliers that have moderate
values. Although this does not prove that hybridi2&FIS models perform significantly better than a
standalone ANFIS model, there is a significant eddhce between the prediction patterns of the
standalone ANFIS and hybridized ANFIS models. Sitlee ANFIS model by itself has not been

applied to topics in this field of study, a diredmparison to results from previous studies is not
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possible. However, to explore these results furtivee consider that several other studies in
environmental and hydrological fields have demaistt that the hybridized ANFIS models can
improve prediction of extreme observed values coetp#o a standalone ANFIS model. For example,
the study of Yaseen et al. (2017, 2pi8und that the standalone ANFIS model integratéith whe
firefly optimization algorithm (ANFIS-FFA) was abte capture heavy to extreme rainfall events more
accurately than did a standard, non-optimized ANfL®lel. In a study on streamflow forecasting, the
authors demonstrated that although both standaland- hybridized-ANFIS models were able to
forecast peak streamflow data points quite sucolgsthe hybrid ANFIS model could forecast low
flows more accurately.

Fig. 6 here

4. Conclusion

An ANFIS model was developed and hybridized with deleoptimization algorithms to
perform comparative analysis for the spatial ideraiion of dust source. The state-of-the-art medel
developed and tested were standalone ANFIS aneé #gaivalent hybridized models — ANFIS-BA,
ANFIS-CA, and ANFIS-DE. The resulting dust-sourcap® were validated using actual field data and
statistical metrics comparing predicted and obgkrmdest-source datasets divided into training and
validation subsets. Several model parameters erhluat dust-storm data, high-speed wind event data,
soil types, air temperatures, geomorphic unitgpesldand use, and rainfall — were used as predictor

that enabled mapping of potential dust-source ak&ascan draw several conclusions from this study.

« Based upon the models developed, there is a signifipotential for increasing amounts of dust in
the study region because of the interactions ofdbors that initiate and promote dust production;
* ANFIS hybridized models can be used to map dustegoareas at a regional scale, creating new

pathways to assess dust-storm potential and toiaraime effects of these storms on human health
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and the environment. The four ANFIS models achiesteoing predictive capacities as indicated by
the AUC and TSS statistical tests: standalone ANBISC=63.7%, TSS=0.64), and the hybridized
ANFIS-BA (AUC=83.4%, TSS=0.72), ANFIS-CA (AUC=80.3%TISS=0.7), and ANFIS-DE
(AUC=84.1%, TSS=0.73). These accuracy assessmemm®retrate that hybridization enhances
standalone algorithms, at least with models demiatiust-generation.

» This approach should be of interest to local emrirental and health agencies and to governments
to identify and mitigate sources of dust. They sta@onsider methods to transfer this approach to
other regions that are experiencing a similar @wblThis new dust-storm potential modeling
approach can be replicated to identify currentfahare dust sources in other regions.

* The Gaussian membership function was used in thidys Future studies should examine the
influence of it and other membership functionsatigular, trapezoidal, Gaussian, and bell functions)

on the performance of hybridized models.
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Table 1 The area of dust-source potential classes assigned by the four models (in percent)

Modd Type  Model Name Verylow Low Medium High Very high

Standalone ANFIS 22.30 1.56 7.49 60.25 8.33
o ANFIS-BA 5.60 17.95 20.97 33.60 12.85
Hﬁg'ddéied ANFIS-CA 3.28 18.47 31.10 24.41 22.71
ANFIS-DE 2.95 15.82 29.40 36.78 15.1

Table 2. The goodness-of-fit and predictive performance of hybrid and individual models based on

AUC and TSS metrics.
AUC (%) TSS
Model Type Model Name Training Validation Training Validation
Standalone  ANFIS 88.1 63.7 0.78 0.64
Hybridized ANFIS-BA 84.9 834 0.74 0.72
ANFIS-CA 83.0 80.3 0.73 0.7
M odels

ANFIS-DE 85.4 84.1 0.75 0.73
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Fig. 1 A map of the study area and field photographs of some mgjor dust storms that have occurred in
(A) Zabal, (B) Zahedan, and (C) Iranshahr, Iran (field photographs were taken by the third author
(SS.G)).
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Highlights
* A new framework was developed for identification of dust-sources.
» Three nove hybridized ANFIS models were developed: ANFIS-BA, ANFIS-CA, ANFIS-DE.
» Thehybridized ANFIS-DE model had the highest accuracy (AUC=84.1%, TSS=0.73).

* All hybridized models outperformed the standalone ANFIS model.
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