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A B S T R A C T

Phosphorus (P) is an essential plant macro-nutrient, yet it is deficient in 65 % of agricultural soils worldwide. 
Agricultural systems models enable the integration of plant-soil-climate-management interactions to investigate 
crop responses to P fertilisation and improve P use efficiency. However, current models cannot align their 
modellable P pools with values obtained from soil tests. This limits their applicability since soil testing is the most 
widely used tool to assess soil P status, which is then used to predict fertiliser P requirements based on assumed 
crop P demand for optimal growth in the field. Our study introduces a modelling framework akin to inversely 
modelling in the Agricultural Production Systems sIMulator (APSIM) to quantitatively derive the most likely P 
modelling parameters for different soils and empirically link them to common soil P test values. The method
ology was first tested using data from an 8-year alfalfa (syn. lucerne) experiment (1997–2004) on two soil types 
in the mid-west of the United States to establish the adequacy of the P modelling framework in APSIM. We then 
extended this approach to eight Australian soil types using a simulation study based on known wheat yield 
response curves to soil P tests to derive empirical relationships between the labile P values in APSIM and 
common soil test P values (Bray-2 P and Colwell P) for the soils studied. Cross-validation yielded an average R2 of 
0.98 and an average Lin’s Concordance Correlation Coefficient (CCC) of 0.92. Our work thus enables the initi
alisation of the labile P pool in APSIM using Bray-2 P and Colwell P data, enhancing the usability and accuracy of 
agricultural systems models in predicting crop P requirements and optimising P fertiliser use across diverse soil 
types in different agro-climatic regions.

1. Introduction

Phosphorus (P) is essential to life, yet tightly cycled ecologically, 
with a widespread deficiency in marine, freshwater, and terrestrial 
ecosystems (Childers et al., 2011). The availability of P limits crop 
production on more than 65 % of arable soils globally (Cakmak, 2002). 
The application of P fertilisers is therefore often required to increase the 
pool of plant-available P due to P uptake by crops and subsequent 

removal off site (Jiménez et al., 2019). Mineral P supplies are spatially 
variable, non-renewable, and rapidly depleting (Childers et al., 2011). 
At the same time, P is an aquatic pollutant with off-site migration risking 
the health of waterways (Carpenter et al., 1998; Metson et al., 2015). 
The active management of P cycling is thus considered one of the 
twenty-first century’s greatest global sustainability challenges (Cordell 
and White, 2014).

Process-based agricultural systems models allow the understanding 
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of nutrient cycling and investigation of phenological and physiological 
crop responses to improve fertiliser use efficiency by integrating geno
type × environment × management interactions (Brown et al., 2014). 
However, research in soil-crop P modelling has received less attention 
compared to nitrogen (N) and carbon (C) modelling (Das et al., 2019). 
One major challenge in P modelling is that current agricultural systems 
models have a limited ability to match laboratory-measured (soil test) P 
fractions to the conceptual P pools of the models for soils with different 
mineral properties (Das et al., 2019). Since soil testing is the most widely 
used tool to predict the P demands for optimal crop growth, this limits 
the potential of P modelling to improve P efficiency for agricultural 
production.

The Agricultural Production Systems sIMulator (APSIM; Keating 
et al., 2003; Holzworth et al., 2014) has been tested for its ability to 
simulate crop responses to soil solution P fractions through the con
ceptual labile P pool (e.g. Fosu-Mensah et al., 2012; Wang et al., 2014; 
Ahmed et al., 2018; Raymond et al., 2021), which represents readily 
available P for crops (Delve et al., 2009). The initialisation of P 
modelling parameters in such research, however, largely relied on 
expert knowledge and manual adjustment. The uncertainties with this 
model initialisation approach are then propagated through the simula
tion, and therefore, to the model outputs increasing the model predic
tion error (Wang et al., 2014; Chapagain et al., 2022). Site- and 
soil-specific empirical relationships were reported between the labile P 
pool in APSIM and different soil P tests (e.g. Wang et al., 2014; Micheni 
et al., 2004; Raymond et al., 2021), though the validity of extrapolating 
such relationships to other locations and cropping systems is still 
unknown.

An incorporation of soil test P values into process-based agricultural 
systems models such as APSIM will improve the understanding of soil P 
dynamics, and enable the quantitative soil P pool initialisation. The 
present study, using an optimisation framework that is akin to inverse 
modelling APSIM against crop P response data, quantitatively derived 
the most likely P modelling parameters to enable the initialisation of the 
labile P pool using soil test P values across a wide range of soils. Our 
objectives were to: (1) Validate the conceptual P modelling framework 
in APSIM using a long-term study (1997–2004) in Indiana, United States 
(US). This involved extending APSIM’s parameterisation to simulate P 
responses in alfalfa (syn. lucerne, Medicago sativa L.); and evaluating 
model performance across various P fertilisation rates. (2) Optimise 
APSIM’s labile P conditions to align modelled wheat (Triticum aestivum 
L.) yield responses with known Colwell-extractable P (Colwell P) 
response curves, for common grain-cropping soils in Australia. (3) 
Empirically link measured soil P values to APSIM’s labile P pool for the 
studied soils. This research will assist in the understanding of P dy
namics and support improved P management for greater P use efficiency 
in agricultural systems.

2. Materials and methods

2.1. The APSIM-SoilP module and its interaction with crop modules

The APSIM is a process-based agricultural systems model that sim
ulates the growth and development of a wide range of crops, pastures 
and soil processes including water, C, N, and P dynamics under con
trasting environments (climate × soil) and crop management practices. 
APSIM Version 7.10 simulates P dynamics in soil-crop systems through 
its SoilP module and crop modules (Probert, 2004; Delve et al., 2009). 
The crop modules contain information on the critical P concentrations in 
different organs of various crops, determining their P demands and the 
extent of P stress experienced, should P supply from the soil, modelled 
by the SoilP module, be inadequate to meet this demand.

The SoilP module (Probert, 2004; Delve et al., 2009) consists of three 
major P conceptual pools: (1) the labile P pool, which represents the 
pool of plant-available P, comprises both P in the soil solution and that 
loosely adsorbed on the soil surface that is available for crop uptake; (2) 

the stable inorganic P pool, which contains the P that is not readily 
available to crops during the growing season with first-order temper
ature-dependent processes assumed to determine loss or gain of avail
ability relative to the labile P pool; and (3) the organic P pool that 
contains the P in soil organic matter (Fig. 1). The soil solution P is 
conceptualised as a secondary pool within the labile P pool in the APSIM 
SoilP module, with its equilibrium with the larger labile P pool 
controlled by a Freundich sorption equation, with coefficients (“a” and 
“b”, which control the sorption capacity and the sorption rate respec
tively) that can be analytically derived through P sorption curves and 
are theoretically soil-specific. However, they are often adjusted empir
ically to match the dynamics of plant P uptake (e.g. Wang et al., 2014; 
Raymond et al., 2021). Users initialise the SoilP module by specifying 
the size of the labile P pool via labile P concentrations in various soil 
layers, while initial values for the rock P and banded P pools may also be 
set for each depth interval. In addition, several key input parameters 
must be defined: the rate of dissolution of rock P (default value of 
0.2year− 1), the rate loss available (or r coefficient), and the root C:P 
ratio. The rate of dissolution of rock P governs the release of available P 
from any rock phosphate present at initialisation. The r coefficient 
modulates the transformation rate between the labile and unavailable P 
pools, and the root C:P ratio determines the carbon-to-phosphorus bal
ance of the initial root biomass, thereby influencing both phosphorus 
mineralisation and immobilisation processes. The fertiliser module en
ables the addition of P fertiliser to the labile P pool of the SoilP, with the 
model differentiating between the types of fertiliser used and their 
placement methods. Banded and water-soluble forms of P fertilisers are 
considered more effective than broadcast non-water soluble fertilisers.

2.2. Data sources, model parameterisation and evaluation

We first investigated the effectiveness of the APSIM-SoilP module in 
representing soil P dynamics and simulating the P response of crops 
using data from a long-term P experiment cropped with alfalfa on two 
soils in Indiana, US as reported by Berg et al. (2020) in the Purdue 
University Research Repository (Phosphorus and Potassium Influence on 
Alfalfa Nutrition, Version 2.0). This was achieved by (1) calibrating the 
crop P parameters for alfalfa based on literature and field measurements 
of Berg et al. (2020) (Section 2.2.1) to enable P response of the 
APSIM-Lucerne module (Robertson et al., 2002); (2) using an optimi
sation function (Singer and Nelder, 2009) to initialise labile P pools for 
different mineral P fertilisation rates to increase Lin’s concordance 
correlation coefficient (CCC) (Lin, 1989) of observed and modelled 
aboveground dry matter (DM) yields for alfalfa; and (3) assessing the 
agreement between observed and modelled plant biomass P content 
through graphical comparison and statistical analyses (Tedeschi, 2006). 
The empirical relationship between modelled labile P and measured soil 
Bray-2 P was examined. Section 2.2.2 details the US experimental data, 
simulation configuration, model parameterisation and evaluation of 
APSIM’s capability to represent crop and soil P dynamics.

The optimisation function for labile P initialisation was subsequently 
used in an inverse-modelling approach to determine the labile P con
ditions that are likely to result in similar grain yield responses of wheat 
to measured Colwell P in different cereal-cropping soils in Australia. 
Inverse modelling is a technique used to estimate model parameters by 
comparing model outputs with observed data and iteratively adjusting 
the parameters until the model output matches the observations as 
closely as possible (Dokoohaki et al., 2018). Bell et al. (2013) derived 
empirical yield response curves for wheat for the major cropping soils of 
Australia using data from 1777 wheat P trial data between 1958 and 
2011 from the Better Fertiliser Decisions for Crops (BFDC) database. The 
APSoil database contains parameterised soil profile information in 
Australia for the explicit use in APSIM (Dalgliesh et al., 2012). We un
dertook extensive simulations at the APSoil locations of these soil types 
by iteratively adjusting the labile P parameters to achieve wheat P yield 
responses as represented by the yield response curves in Bell et al. 
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(2013). We then correlated Cowell P values to the modelled labile P 
empirically for each soil type. Section 2.2.2.1 describes the 
inverse-modelling approach, its application to the simulations, and the 
empirical model formulation for the estimation of labile P using Cowell 
P values.

As this study focused primarily on the interaction between labile P 
values and the sorption capacity coefficient “a” to ensure a conservative 
approach that enables quantitative initialisation of labile P values based 
on measured soil P values across wide geographical regions, the sorption 
coefficient b was set to a value of 0.7 i.e., the default value in APSIM- 
SoilP (Probert, 1985). The r coefficient was set to 0.3, consistent with 
values reported by Wang et al. (2014) and used as a baseline in Raymond 
et al. (2021). The root C:P ratio was set at 200, consistent with that used 
in previous studies (Micheni et al., 2004; Delve et al., 2009; Wang et al., 
2014; Raymond et al., 2021). The rate of dissolution of rock P was set to 
0.2year− 1. The rock P content and banded P content at each soil layer 

were initialised to 0.

2.2.1. Crop P parameterisation
The P concentration ranges of plant organs at different growth stages 

are used in APSIM to calculate crop P demand. The parameter values 
used in the simulations of this study are given in Table 1. The P con
centrations for alfalfa were derived based on Lu et al. (2016), Lu et al. 
(2019), Lu et al. (2020), He et al. (2017), combined with the P con
centrations measured in the experiment (Berg et al., 2020). The original 
values were specified for the start of each growth stage and interpolated 
between stages. For wheat, P concentration limits followed Wang et al. 
(2014).

2.2.2. Long-term P trial, Indiana, United States
A field experiment was conducted from 1997 to 2004 on two soils at 

Throckmorton Purdue Agricultural Center (TPAC), Indiana, US, to study 

Fig. 1. Diagrammatic structure of soil phosphorus (P) pools in the Agricultural Production Systems sIMulator (APSIM). The boxes represent pools of the various 
forms of P, while the arrows represent translocations and transformations among these pools. Thick arrows represent the principal pathways. Arrows among the three 
organic pools also represent immobilisation/mineralisation pathways. FOM is fresh organic matter (adapted from Wang et al., 2014).
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the influence of P and potassium (K) nutrition on alfalfa (Berg et al., 
2020). The experiment details and findings were discussed extensively 
in Berg et al. (2005), (2007), 2009); Lissbrant et al. (2009) and Woodson 
et al. (2013). Alfalfa cultivar Pioneer Brand “5454” was sown in April 
1997. The fertilisation treatments consisted of four annual P rates (0, 25, 
50, and 75 kg ha− 1) and five K rates (0, 100, 200, 300, and 400 kg ha− 1) 
arranged in four replicates of a randomised complete block design, with 
two replicates placed on a Drummer silty clay loam (fine-silty, mixed, 
super-active, mesic Typic Endoaquoll; World Reference Base [WRB] 
equivalent: Gleysols) and the other two placed on a Lauramie silt loam 
(fine-loamy, mixed, active, mesic, Mollic Hapludalf; WRB equivalent: 
Luvisols). Four forage harvests occurred each year at approximately 
30-day intervals beginning in late May from 1998 to 2004. Fertilisers 
(both P and K) were applied in split applications, with one-half the 
annual amount surface broadcast after the first forage harvest in late 
May, and the remainder surface broadcast after the last forage harvest in 
mid-September from 1998 to 2004. Chemical control of pests occurred 
when threshold limits were surpassed. As alfalfa is a perennial, no 
annual re-sowing or soil tillage was implemented. Soil test P and K levels 
were monitored following each growing season. In 1998 and 1999, soil 
tests were conducted after the final harvest and the second fertilisation, 
in October 1998 and November 1999, respectively for the 0–20 cm 
depth. From 2000 to 2004, soil tests were conducted using soil samples 
at 5 cm increments from 0 to 20 cm in conjunction with each harvest. 
Soil P availability was estimated using the Mehlich III extraction pro
cedure and then interpolated to Bray-2 P (Denning et al., 1998). As only 
Bray-2 P values were reported in Berg et al. (2020), these values were 
used for subsequent comparisons with APSIM labile P estimates in this 
study.

2.2.2.1. APSIM configuration. Since APSIM 7.10 has no ability to model 
K dynamics, we only retained experimental results from maximum K 
rate application treatments (i.e. 400 kg ha− 1 K) to use in our simulations, 
with the assumption that K deficiency was not present in these K 
treatments. Alfalfa cultivar Grasslands Kaituna was selected in APSIM to 
represent the winter-dormant Pioneer “5454” sown (as this cultivar 
behaves like a winter-dormant cultivar; Pembleton and Sathish, 2014). 
Simulations for the experimental period (1997–2004) were undertaken 
using a daily time-step of APSIM with the two soil profiles characterised 
following Ojeda et al. (2017) (Supplementary Table S1). The simulation 
start date was April 1, 1997, with alfalfa sown on April 15, 1997, at a 
sowing density of 1000 plants m− 2 at a sowing depth of 15 mm and row 
spacing of 150 mm. However, as APSIM-Lucerne represents populations 
in terms of stems rather than individual plants, and each plant typically 

produces 5–10 stems depending on stand age, this corresponds to an 
estimated plant density of 100–200 plants m− 2. It is also important to 
note that the APSIM-Lucerne module is not sensitive to row spacing, 
meaning it does not impact model outputs. The four harvests were 
arbitrarily set to May 25, June 30, August 10, and September 15 as the 
exact dates of harvests were unavailable, and P was applied on May 26 
and September 16 until 2004. The model was run continuously without 
resetting soil variables for the entire experimental period.

2.2.2.1.1. Alfalfa winter dormancy rules. The manager component in 
APSIM allows users to dynamically control their simulations through 
scripted conditional rules. To ensure that the APSIM-Lucerne model 
captured the process of winter dormancy, we initialised temperature and 
photoperiod rules using a crop manager script as described in Pembleton 
et al. (2011) and Ojeda et al. (2016). We then optimised the parameters 
using the Nelder-Mead method (Singer and Nelder, 2009). This method 
allows efficient direct optimisation of the response function by 
comparing function values, which is suitable for situations where de
rivatives are difficult to compute, such as ours, when a complex agri
cultural systems model is used (Gao and Han, 2012). This involved 
iteratively optimising the set of parameters to improve the agreement 
between the observed aboveground DM yields and corresponding 
modelled aboveground DM yields using data from both soils for the 
maximum P treatment (i.e. 75 kg ha− 1) with the SoilP module disabled. 
This assumes that under the maximum P treatments, the crops were 
under a non-P-limiting environment.

2.2.2.1.2. SoilP calibration and harmonisation. We initialised the P 
sorption capacities of the Drummer and Lauramie soils with respect to 
their clay contents, with the assumption that labile soil P concentration 
decreases while P sorption increases with soil depth (Wang et al., 2014). 
For each soil, we iteratively adjusted the initial labile P for the top soil 
layer with the Nelder-Mead optimisation so that the agreement between 
modelled aboveground DM yield and observed aboveground DM yield 
was maximised, while labile P for the remaining soil layers were ini
tialised with a value of 1 mg kg− 1. We selected 0–20 cm as the target 
depth interval to derive empirical relationships between field-measured 
soil Bray-2 P values and the labile P pool values in APSIM, as Bray-2 P 
were measured to 20 cm in the field experiment. We retained the 
measured Bray-2 P values from 1998 and 1999, and harmonised the 
5-cm Bray-2 P increments from 2000 to 2004–0–20 cm using an 
equal-area quadratic spline (EA-spline) (Bishop et al., 1999). In addi
tion, the surface soil depths for the characterised soil profiles used in 
APSIM (Ojeda et al., 2017; Supplementary Table S1) were 0–23 cm for 
Drummer and 0–20 cm for Lauramie. Therefore, for Lauramie soil, the 
labile P output from APSIM at the soil sampling dates for the top layer, i. 
e. 0–20 cm, was directly used. For Drummer soil, APSIM-modelled labile 
P values were first harmonised across the full soil profile depth using the 
EA-spline interpolation method, and the values corresponding to the 
0–20 cm depth were retained for analysis.

2.2.3. Better Fertiliser Decisions for Crops National Database, Australia
Bell et al. (2013) interrogated data from 1777 wheat field treatment 

series from 1958 to 2011 held in BFDC National Database in Australia 
and developed empirical relationships between relative grain yield (RY) 
of wheat and the Colwell P measured in surface soil (0–10 cm) for the 
eight major soil types within five Australian Soil Orders (Isbell and the 
National Committee on Soil and Terrain, 2021) (Fig. 3). Table 2 shows 
their respective Soil Taxonomy classification (Isbell and the National 
Committee on Soil and Terrain, 2021). We applied an inverse-modelling 
approach to the APSoil locations of these soil types (Fig. 2) to determine 
the labile P conditions that were likely to result in similar yield re
sponses of wheat to the Colwell P in surface soils as illustrated in Fig. 3, 
then correlated the Colwell P to the APSIM-modelled surface and sub
surface labile P empirically. Fig. 4 illustrates our methodology in detail 
using Red Chromosols as an example.

The relative yields (RY1:n, %) to Colwell P of 1 to n, where n is the 
largest integer of the Colwell P value whose corresponding relative yield 

Table 1 
Minimum (min) and maximum (max) phosphorus concentrations (% dry matter) 
of plant organs used in APSIM modelling.

Plant organs Emergence Flowering Grain filling Physiological 
maturity

min max min max min max min max

Alfalfaa
Leaf 0.25 0.40 0.115 0.50 0.15 0.28
Stem 0.25 0.35 0.065 0.35 0.12 0.20
Root 0.04 0.18 0.04 0.18 0.04 0.15
Pod 0.00 0.00 0.15 0.25 0.15 0.25
Meal 0.00 0.00 0.30 0.45 0.30 0.45
Oil 0.01 0.01 0.01 0.01 0.01 0.01
Wheatb
Leaf 0.20 0.60 0.08 0.16 0.07 0.13 0.02 0.08
Stem 0.20 0.60 0.08 0.16 0.07 0.13 0.02 0.08
Root 0.10 0.22 0.08 0.16 0.07 0.13 0.02 0.08
Chaff 0.08 0.16 0.07 0.13 0.02 0.08
Grain 0.20 0.30 0.20 0.30

a Values derived based on Lu et al. (2016), Lu et al. (2019), Lu et al. (2020), He 
et al. (2017) and the measured values in Berg et al. (2020).

b Values adapted from Wang et al. (2014).
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is ⩽100 % were extracted for the wheat P yield response curve of Red 
Chromosols. For all APSoil sites, daily historical climate data 
(1958–2011), including daily maximum and minimum air temperatures, 
solar radiation, and rainfall were sourced from SILO patched database 
(Jeffrey et al., 2001, https://silo.longpaddock.qld.gov.au/, accessed on 
March 30, 2020). The P sorption capacities of the five soil orders were 

parameterised based on the median P buffering capacities (PBC) of the 
surface soils described in Burkitt et al. (2002). Since P sorption generally 
increases with soil depth, subsurface P sorption capacity was assumed to 
be at 1.5 times that of surface soil and all subsoil depths at 1.8 times the 
surface soil sorption (Table 2). Simulations were conducted over twenty 
randomly selected years between 1958 and 2011 at each APSoil 

(g) Black and Brown Vertosols (h) Grey Vertosols

(e) Grey Tenosols (f) Yellow, Brown and Red Tenosols

(c) Kandosols (d) Grey, Yellow and Brown Sodosols

(a) Red Chromosols (b) Yellow, Brown and Grey Chromosols
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Fig. 3. Relationships between relative wheat grain yield (as a percentage of maximum) and Colwell-extractable P in 0–10 cm soil depth by soil types (Bell 
et al., 2013).
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location. The simulations modelled annual wheat crops, initiated on 
December 1 of the preceding year with soil water levels reduced to the 
crop lower limit. This assumes that the soil profile’s plant-available 
water was depleted at the end of the season by a prior winter crop. 
The sowing window was set from 26 April to 15 July, during which 
wheat was sown if accumulated rainfall over three days exceeded 
15 mm. If this rainfall criterion was not met by the end of the sowing 
window, the crop was sown on the final day, 15 July. The wheat cultivar 
Hartog was planted at a density of 150 plants m− 2, with a sowing depth 
of 30 mm and a row spacing of 250 mm. To prevent nitrogen stress, 
500 kg ha− 1 N was applied as urea fertiliser at the time of sowing (Meier 
et al., 2021). Using the check variety Hartog with a consistent man
agement regime across the modelled temporal periods ensures a focused 
analysis of how the initialisation of labile P values in APSIM for soils 
with different P sorption characteristics interacts with climatic variables 
to influence yield responses.

For the US experiment-based study, we established a relationship 

between Bray P and the APSIM-modelled labile P using the mean APSIM- 
modelled labile P values (mg kg− 1) for the months where soil samples 
were taken to measure soil Bray P, then fitting various linear and non- 
linear regressions, including log-logistic functions, Weibull functions, 
asymptotic regressions, and Michaelis-Menten functions with different 
parameters, to the Bray P and labile P values at 0–20 cm soil depth in
terval. The best model was chosen using the Akaike Information Crite
rion (AIC, Sakamoto et al. 1986). Leave-one-soil-out cross-validation 
was performed to assess the predictive accuracy of the chosen model. 
For the Australian simulation-based study, relationships between Col
well P and APSIM-labile P across different soil types were analysed by 
applying the same regression models as in the US study to the Colwell P 
values in the 0–10 cm soil depth and labile P values for the surface and 
subsurface soil depths, which are the most important two soil depths for 
P modelling initialisation in APSIM. The model with the lowest AIC was 
selected. Five-fold cross-validation was performed for the APSoil loca
tions associated with each soil type, in which all the APSoil locations for 

Table 2 
Phosphorus sorption capacities used for the five Australian soil orders and their respective Soil Taxonomy and World Reference Base classification.

Australian Soil Classification Chromosols Sodosols Tenosols Kandosols Vertosols
Soil Taxonomya Alfisols Alfisols Inceptisols Alfisols Vertisols

some Aridisols Aridisols Aridisols, Entisols Ultisols, Aridisols
World Reference Base Abruptic Solonetz, Abruptic Cambisols, Leptosols Ferralsols Vertisols

Luvisols/Lixisols Luvisols, Planosols Plinthosols Luvisols, Lixisols

Depths (cm)
0–15 50 10 30 109 80
15–30 75 14 45 163 120
30–60 89 18 54 197 143
60 and lower 89 18 54 197 143

a These correlations are approximate as differentiating criteria often differ among soil classification systems (Isbell and the National Committee on Soil and Terrain, 
2021).
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a soil type were divided into five folds, where one fold is reserved for 
model validation while the remaining folds are used for training. This 
process is repeated until each fold has been used as the validation set.

3. Results

3.1. Empirical relationships between measured P fractions and labile P

3.1.1. Empirical relationship between Bray P and labile P
A Weibull2 function y = 0 + (102.26 − 0)(1 − exp( − exp(1.62 

(log(x) − log(20.73)) ) ) ) as described by Seber and Wild (1989)
expressed in the generic form (Equation 1) was considered the best fit for 

correlating Bray P and labile P (Fig. 5, Table 3). This parameterisation 
shifts the standard curve f(x; δ) = 1 − exp( − xδ), x > 0 vertically. The 
labile P y increases sharply from c, 0–64.66 mg kg− 1 when Bray-2 P x 
increases from 0 to the value of e: 20.73 mg kg− 1, then asymptotically 
approaches the value of d: 102.26 mg kg− 1 with the steepness of the 
transition from 0 to d being controlled by the parameter b: 1.62. A larger 
b makes transition sharper, while a smaller b makes it more gradual. The 
Leave-one-soil-out cross-validation showed an R2 of 0.87 and a CCC of 
0.92 for the labile P and Bray P relationship. The b, d, and e fitted to 
Drummer data is 1.80, 96.54 and 20.01 respectively and the b, d, and e 
fitted to Lauramie data are 1.45, 115.61 and 22.97 respectively, while c 
= 0 (Table 3). 

Fig. 4. Inverse-modelling framework to derive empirical relationships between surface and subsurface labile P in APSIM and Colwell-extractable P (Colwell P) using 
Red Chromosols as a demonstration. RY1:n represent the corresponding relative yield (%) to Colwell P of 1 to n, Yw represents the water limited yield potential (kg 
ha− 1) for the simulation year at the APSoil location, i.e. the maximum attainable yield under rain-fed conditions; therefore at Yw, RY is 100 %. Yr1:n represents the 
expected yield (kg ha− 1) for Colwell P of 1 to n, while Yro represents the yield derived based on Yw and RY, and Yrp represents APSIM-predicted yield by optimising 
surface and subsurface labile P values so that difference between Yro and Yrp is minimised. Surface and subsurface labile P values are indicated in the selected cells 
(blue) of the APSIM Soil P interface with the P sorption capacities parameterised based on Burkitt et al. (2002). Simulations were repeated for 20 randomly sampled 
years between 1958 and 2011 (small circle) at each APSoil location of the soil type—Red Chromosols (big circle).
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Table 3 
Estimated model parameters for different soil types and layers, linking measured Bray-2 P values (mg kg− 1) from long-term alfalfa experiments (United States) and 
discrete Colwell P values (mg kg− 1) from Colwell P-wheat yield response curves in the Better Fertiliser Decisions for Crops Database (Australia) to APSIM-modeled 
labile P (mg kg− 1). The table includes the fitted function type and associated parameter values (b, c, d, e).

Soils Depth layer b c d e Function

​ ​ United States ​
Drummer 0–20 cm 1.80 0 96.54 20.01 Weibull2
Lauramie 0–20 cm 1.45 0 115.61 22.97 Weibull2
Overall 0–20 cm 1.62 0 102.26 20.73 Weibull2
​ ​ Australia ​
(a) Red Chromosols Surface − 0.94 2.47 65.03 17.57 Weibull1
​ Subsurface − 0.55 1.72 166.60 92.73 Weibull1
(b) Yellow, Brown and Grey Chromosols Surface − 0.38 0.00 338.14 143.25 Weibull1
​ Subsurface − 0.46 1.74 307.74 143.62 Weibull1
(c) Kandosols Surface 0.63 − 9.07 735.13 468.02 Weibull2
​ Subsurface 0.85 0.00 401.49 362.68 Weibull2
(d) Grey, Yellow and Brown Sodosols Surface ​ 1009.21 613.25 Michaelis-Menten
​ Subsurface 1.29 1.10 396.13 201.75 Weibull2
(e) Yellow, Brown and Red Tenosols Surface 1.46 5.47 4085.72 477.20 Weibull2
​ Subsurface 1.43 2.80 1412.56 349.94 Weibull2
(f) Grey Tenosols Surface − 4.07 5.08 44.08 12.65 Log-logistic
​ Subsurface − 2.54 2.16 40.48 17.33 Log-logistic
(g) Black and Brown Vertosols Surface − 0.69 2.31 97.40 26.22 Weibull1
​ Subsurface 1.17 0.59 163.20 131.29 Weibull2
(h) Grey Vertosols Surface − 1.28 4.34 59.29 8.55 Weibull1
​ Subsurface − 0.46 1.88 198.82 99.77 Weibull1
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y = c + (d − c)(1 − exp( − exp(b(log(x) − log(e))) ) ) (1) 

where x is the independent variable, here the APSIM-modelled labile P 
initialisation values (mg kg− 1) for the 0–20 cm layer; y is the dependent 
variable, here the measured Bray-2 P values for the 0–20 cm layer; c 
represents the minimum possible value of y; d determines the upper limit 
of y as x → ∞ ; b controls how quickly the function transitions from c to 
d; and e adjusts the location of the inflection point, determining at what 
x the function transitions most rapidly.

3.1.1.1. Harmonisation of labile P for Drummer soil. Fig. 6 showed the 
fitted EA-splines at the first soil sampling in October 1998 and at the last 
soil sampling in September 2004 for the Drummer soil. This was per
formed at all sampling dates to enable the derivation of harmonised soil 
labile P concentrations at our target soil depth interval (0–20 cm). The 
labile P concentrations increased in the surface soil due to fertilisation in 
1998. This increase was enhanced after 6 years. The 50 kg ha− 1 and the 
75 kg ha− 1 treatments doubled and tripled their labile P concentrations 
in the surface soils respectively in 2004 compared to in 1998. Under no P 
fertilisation, however, the labile P concentrations remained low and 
slightly decreased over the course of the experiment.

3.1.2. Empirical relationship between Colwell P and labile P
The fitted empirical relationships between Colwell P in the 0–10 cm 

soil depth and labile P for the surface and subsurface soil layers in APSIM 
are shown for different cereal-cropping soils in Australia (Fig. 8, 
Table 3). A two-parameter Michaelis-Menten model y = d

1+
(

e
x

) (AIC: 

66.23) was considered the best fit for the surface soil layer of Grey, 
Yellow and Brown Sodosols. A four-parameter log-logistic function of 
the form y = c + d− c

1+exp(b(log(x)− log(e))) was considered the best fit for both 
the surface and subsoil surface layers of Grey Tenosols. Of all other soils, 
either a Weibull1 (Equation 2) or a Weibull2 (Equation 1) function was 

considered the best fit for the surface and subsurface layers. A Weibull1 
parameterisation shifts the standard curve horizontally rather than 
vertically compared to the Weibull2 parameterisation and when b is 
negative, y increases as x increases (Fig. 7). Either a Weibull1 or Wei
bull2 function was also considered the top three best fits for both layers 
of Grey Tenosols and for the surface layer of Grey, Yellow and Brown 
Sodosols. The average AIC difference between the best fit and the 
Weilbull fit was 1.03. This very small difference suggested that a Weibull 
distribution can also adequately represent the relationship between 
Colwell P in the 0–10 cm soil depth and APSIM-modelled labile P for 
these soils. A five-fold cross-validation showed that the fitted models 
exhibit high predictive accuracy (R2 mean: 0.97, median: 0.98; CCC 
mean: 0.91, median: 0.94) and low overall error (RMSE mean: 
4.12 mg kg− 1, median 2.44 mg kg− 1) and minimal systematic bias (bias 
mean: − 0.01 mg kg− 1, median: 0.02 mg kg− 1). Table 4 illustrates the 
performance of the cross-validation for each of the soil types studied. 
The surface layers of Kandosols, Yellow, Brown and Red Tenosols and 
Grey Tenosols appeared to perform slightly worse than the other soils, 
with an average CCC of 0.82, 0.83 and 0.81 respectively and an average 
RMSE of 17.08, 10.3 and 8.37 mg kg− 1 respectively. 

y = c + (d − c)exp( − exp(b(log(x) − log(e))) ) (2) 

where x is the independent variable, here the APSIM-modelled labile P 
initialisation values (mg kg− 1) either in surface or subsurface layers of 
the APSoil profiles for a specific soil type; y is the dependent variable, 
here the discrete Colwell P values (mg kg− 1) extracted from Colwell P- 
wheat yield response curves of BFDC database for the corresponding soil 
type; c represents the minimum possible value of y; d determines the 
upper limit of y as x → ∞ ; b controls how quickly the function transi
tions from c to d; and e adjusts the location of the inflection point, 
determining at what x the function transitions most rapidly. Fig. 8.

Table 5 shows critical labile P concentrations corresponding to the 
critical Colwell P concentrations at 0–10 cm depth interval reported in 
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Bell et al. (2013) to achieve 80 %, 90 % and 95 % relative yields for each 
soil group. Red Chromosols and Kandosols have the same critical Col
well P concentrations. However, the labile P pool in APSIM for Kando
sols needs to be initialised with much higher values compared to Red 
Chromosols to achieve the same relative yields due to the higher P 
sorption capacities of Kandosols (Table 2). Similar trends are also 
observed between Grey, Yellow and Brown Sodosols and Yellow, Brown 
and Red Tenosols, of which higher P sorption capacities were used for 
Tenosols compared to Sodosols (Table 2). Within the same soil orders 
where we had used the same P sorption capacities in our simulations, 
Yellow, Brown and Grey Chromosols require higher labile P values in 
both surface and subsurface APSIM soil layers to achieve the same 
relative yields compared to Red Chromosols though their critical Colwell 
P concentrations at 80 %, 90 % and 95 % relative yields were all lower 
than Red Chromosols. This is attributed to the steeper rate of change in 
relative yields in response to Colwell P for Yellow, Brown and Grey 
Chromosols than that for Red Chromosols (Figure 3). A similar trend is 
also observed between Grey Vertosols and Black and Brown Vertosols. 
On the other hand, Yellow, Brown and Red Tenosols require higher 
critical Colwell P concentrations and higher labile P values to achieve 
the same relative yields compared to Grey Tenosols.

3.2. P dynamics modelling in APSIM

3.2.1. Alfalfa

3.2.1.1. Winter dormancy rules of Alfalfa. Using the optimisation func
tion to parameterise the photoperiod threshold and temperature 
thresholds for entry and exit from alfalfa dormancy (Table 6) achieved 
reasonable accuracy with an overall predictive accuracy of R2 = 0.71, 
CCC = 0.78, RMSE = 939.54 and bias = − 383.6 kgha− 1 between 
observed and modelled DM yields for the maximum P treatment on both 
soils, at TPAC, Indiana, US. With this winter dormancy setting, the 
model generally over-predicted DM yields for the first harvests and 
under-predicted DM yields for the subsequent harvests (Fig. 9). This is 
particularly evident in the last harvests in September which were always 
underestimated, contributing to the overall underestimation of DM 
production (Fig. 11). A higher agreement was achieved on the Lauramie 
soil compared with the Drummer soil (Fig. 9). This winter dormancy rule 
thus enables the APSIM model to simulate seasonal variability in DM 
yields of alfalfa over the seven-year experimental period.

3.2.1.2. Response of alfalfa growth to P addition. The seasonal patterns 
of alfalfa aboveground DM yields under several P fertilisation rates were 
satisfactorily modelled by APSIM (Figure 10, left panel; Figure 11 (a)). 
The DM yields from the Drummer site were generally underestimated 
(bias = − 213.95 kg ha− 1) while those from the Lauramie site were 
overestimated (bias = 96.74 kg ha− 1). Across both sites, APSIM ach
ieved a prediction accuracy of R2 = 0.57, CCC = 0.74, RMSE = 1033.4 
and bias = -58.61 kg ha− 1. Reasonable prediction accuracy for the DM 
yields each year was also achieved except in 2002 (Table 7). The model 
accuracy on the seasonal patterns of P contents in plant biomass of al
falfa for the different P fertilisation rates was less accurate compared to 
the DM yields (Fig. 10, right panel, Fig. 11 (b)). The APSIM model 
achieved an overall prediction accuracy of R2 = 0.43, CCC = 0.74, 
RMSE = 4.14 and bias = 1.89 kg ha− 1 with better performance on the 
Drummer soil compared with the Lauramie soil. The model represented 
the effects of different P fertilisation rates on alfalfa production without 
significant differences in its ability to simulate crop responses under 
both low and high P fertilisation rates, indicating it can reliably simulate 
crop responses to varying levels of soil P availability and fertilisation 
rates.

4. Discussion

The APSIM-SoilP module was developed to work with APSIM crop 
modules to simulate crop response to P availability in soils. Availability 
of P is determined by sorption/desorption processes and the total 
amount of P available. There have been no previous studies on whether 
the model is able to predict growth response to P additions for alfalfa. 
Our parameterisation for alfalfa based on previous literature and the 
subsequent simulation results for their growth indicate, using an inverse 
modelling approach to calibrate the model, APSIM was able to 
adequately predict alfalfa growth, DM yield, P uptake and plant biomass 
P content in response to different fertiliser P inputs and amounts of re
sidual P in two different soils in a detailed long term experiment. The 
consistent under-estimation of DM yields by the model at the last har
vests in September can be attributed to the parameterisation of the 
winter dormancy rule which defined crop growth stages based on the 
temperature change on a daily drop or rise, which does not reflect the 
true conditions in the field. We also assumed that the highest P fertil
isation rate treatment of 75 kg ha− 1 was a non-limiting P environment to 
calibrate the winter dormancy rule. However, Berg et al. (2005) showed 
that the treatments were P limited until 2000 with the P applications 
resulting in significant differences in yields. Nonetheless, the winter 
dormancy rule achieved reasonable prediction accuracy (R2 = 0.71 and 
CCC = 0.78) for the DM yields without the Soil-P module (i.e. with no P 
limitations) using the maximum P fertilisation rate of 75 kg ha− 1. This is 
consistent with Pembleton et al. (2011) of R2 = 0.53 and CCC = 0.73 
and with Ojeda et al. (2016) of R2 = 0.5 and CCC = 0.77, which cali
brated winter dormancy rules for alfalfa grown in Tasmania, Australia 
and in south-eastern Australia and the Argentine Pampas respectively. 
The reported RMSE of 939.54 kg ha− 1 with an observed mean of 
3529.73 kg ha− 1 for the winter dormancy rule aligns well with findings 
from previous studies. For instance, Dolling et al. (2005) simulated al
falfa growth and water use across nine sites in Western Australia using 
ASPIM, reporting an RMSE of 1.3 Mg ha− 1 relative to a mean observed 
biomass of 4.17 Mg ha− 1. Similarly, Chen et al. (2008) reported an RMSE 
of 1132 kg ha− 1(30 % of the mean observed biomass) for 
APSIM-simulated alfalfa seasonal biomass production over three 
growing seasons in a continuous alfalfa treatment on the Loess Plateau 
of Northern China. It is also important to acknowledge that the lucerne 
module in APSIM 7.10 is relatively less advanced than well-developed 
models, such as APSIM-Wheat, which may contribute to the observed 
model error. As the DM yields were used in our optimisation framework 
to enable labile P initialisation, the plant biomass P simulation perfor
mance reflects the moderate ability of APSIM to capture the P dynamics 
in alfalfa.

Table 4 
Summary of averaged validation statistics across the five-fold cross-validation, 
including R2, Lin’s Concordance Correlation Coefficient (CCC), Root Mean 
Square Error (RMSE), and bias for different Australian soil types. Surface and 
subsurface layers correspond to the top two depth layers in APSIM for labile P 
initialisation.

Soil Layer R2 CCC RMSE bias

(a) Red Chromosols Surface 0.98 0.95 2.08 0.11
​ Subsurface 1.00 0.96 0.79 0.07
(b) Yellow, Brown and Grey 

Chromosols
Surface 0.98 0.90 4.13 0.25

​ Subsurface 0.99 0.93 1.93 0.28
(c) Kandosols Surface 1.00 0.82 17.08 − 0.74
​ Subsurface 1.00 0.96 1.81 0.03
(d) Grey, Yellow and Brown 

Sodosols
Surface 0.98 0.93 2.51 − 0.04

​ Subsurface 0.99 0.94 1.78 0.15
(e) Yellow, Brown and Red 

Tenosols
Surface 0.94 0.83 10.30 0.15

​ Subsurface 0.98 0.94 2.37 − 0.15
(f) Grey Tenosols Surface 0.91 0.81 8.37 − 0.23
​ Subsurface 0.85 0.86 4.19 0.06
(g) Black and Brown Vertosols Surface 0.99 0.95 2.52 − 0.01
​ Subsurface 1.00 0.96 0.88 − 0.00
(h) Grey Vertosols Surface 0.98 0.93 4.04 − 0.10
​ Subsurface 0.99 0.95 1.09 0.00
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Fig. 8. Comparison of modelled labile phosphorus (P) concentrations and Colwell-extractable P (Colwell P) concentrations for the 0–10 cm soil depth interval. The 
dots represent discrete Colwell P values from the Colwell-P-wheat-yield response curves of Bell et al. (2013) on the x-axis and their corresponding modelled labile P 
values on the y-axis. The solid red line (surface layer) and the dotted navy line (subsurface layer) represent the fitted function describing the relationship between 
modelled labile P and Colwell P.
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This gave us confidence to apply the inverse modelling approach to 
APSIM to simulate crop response to different levels of labile P in a wide 
range of soils under diverse climates using known relationships between 
surface Colwell P measurements and wheat yield responses in such soils. 
This enabled us to determine the likely ranges of the labile P values at 
surface and subsurface layers in APSIM that correspond to Colwell P 
measurements at 0–10 cm for these soils. Soil-specific non-linear re
lationships between the Colwell P and surface and subsurface labile P 
values were then empirically derived for the major cereal cropping soils 
in Australia. Previous studies, such as Wang et al. (2014) and Raymond 
et al. (2021), have demonstrated non-linear, site-specific relationships 
between Colwell P and APSIM-modelled labile P for a Ferrosol and two 
Vertosols (The Gums and Emerald) in Queensland, Australia. Wang et al. 
(2014) manually calibrated initial labile P values so that simulated crop 
biomass and yield matched the first observed values in the no-P 

treatment (P0), whereas Raymond et al. (2021) initialised the labile P 
pool based on the measured starting Colwell P concentrations for each 
soil layer. However, at the Emerald site, the initial labile P values 
derived directly from the measured Colwell P were insufficient to sup
port crop growth, and a trial-and-error increase of labile P values in the 
surface and subsurface layers was then implemented. These studies 
underscored the inadequacy of directly using measured Colwell P for 
labile P initialisation in APSIM, given the highly non-linear relationship 
between these two parameters.

Our study addresses this challenge by enabling the quantitative ini
tialisation of soil labile P based on measured soil P values for two soil 
series in Indiana, US, as well as for a wide range of cereal-cropping soils 
in Australia. We adopted P sorption levels based on the median PBCs of 
the surface soils in the investigated soil types, thus providing a central 
estimate. The derived relationships have been incorporated into an 
RShiny application (LinkP: https://clai317.shinyapps.io/LinkP/) to 
facilitate easy, quantitative initialisation of labile P in APSIM using 
common P test values. Users can further adjust the starting labile P 
values if empirical evidence suggests that their soils lie at the upper or 
lower ends of the reported PBC ranges. While we acknowledge that some 
soil types, such as Vertosols (PBC range: 5–31 mg kg− 1 P) and Kandosols 
(PBC range: 4–35 mg kg− 1 P), exhibit high variability, using the median 
value provides a reasonable representation for simulation purposes 
while minimising bias toward extreme values. We also tested simula
tions using the lower and upper bounds of reported PBC values (results 
not shown) to capture the range of variability. However, the lower- 
bound values for Chromosols (PBC range: 0.1–18 mg kg− 1 P), Sodosols 
(0.08–8 mg kg− 1 P), and Tenosols (1–4 mg kg− 1 P) generally resulted in 

Table 5 
Critical Colwell-extractable phosphorus (Colwell P) concentrations and its corresponding labile P concentrations for the surface and subsurface layers in APSIM at 80 
%, 90 % and 95 % of maximum yield for wheat grown on soils of various Australian Soil Classification Orders and Sub-orders.

Soil Order or Suborder Colwell P (mg kg− 1) Surface labile P (mg kg− 1) Subsurface labile P (mg kg− 1)
Relative Yield 80 % 90 % 95 % 80 % 90 % 95 % 80 % 90 % 95 %

(a) Red Chromosols 19 25 31 26 33 38 17 22 28
(b) Yellow, Brown and Grey 

Chromosols
16 20 22 33 40 44 21 27 30

(c) Kandosols 19 25 31 85 101 114 32 40 47
(d) Grey, Yellow and Brown Sodosols 17 21 25 27 33 40 17 22 26
(e) Yellow, Brown and Red Tenosols 17 21 25 39 48 58 22 28 33
(f) Grey Tenosols 16 20 23 30 38 44 19 24 28
(g) Black and Brown Vertosols 12 19 26 19 29 37 10 17 23
(h) Grey Vertosols 12 16 19 32 39 43 16 21 25

Table 6 
Simulating winter dormancy for alfalfa in Indiana, United States, using manager 
script that controls crop responses via calibrated photoperiods and mean daily 
temperatures in APSIM.

Photoperiod (range Julian days) Tmean (∘C) Crop class Crop response

>199 or <85 ⩽29.17 regrowth delay
​ ⩽21.85 delayed reduce
​ ⩽15.71 reduced dormancy
>85 and <199 >9.6 dormant reduce
​ >10 reduced delay
​ >16 delayed spring
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failed crop simulations in APSIM at lower respective Colwell P con
centrations, failing to generate labile P-yield response curves. One 
alternative approach might be to randomly initialise a surface sorption 
value within the range reported by Burkitt et al. (2002). As our study 
aims to facilitate the quantitative initialisation of APSIM under a wider 
range of conditions, this option would introduce more uncertainty in the 
subsequent derivation of empirical relationships. Such uncertainty could 
also impede the usability of derived labile P values as APSIM is unable to 
propagate the uncertainty of the input parameters through its modelling 
processes. Consequently, we opted to use median values, which provide 
a stable and representative baseline for our simulations while mini
mising variability in modelled labile P values.

Our findings demonstrate the complex relationships between 
measured P values and APSIM-modelled labile P values in diverse soil 
types and provide a quantitative approach to adjust the labile P values in 
APSIM to more accurately model the P dynamics across diverse agri
cultural soils. Different forms of sigmoidal curves, specifically Weibull 
functions of two different parameterisations, appeared to best represent 
the non-linear relationship between measured P values and APSIM- 
modelled labile P values. Log-logistic functions were fitted to Grey 
Tenosols which exhibit a symmetric sigmoidal curve with a smoother 
transition between the lower asymptote c to the upper asymptote 
d compared to the asymmetrical Weibull functions. The upper asymp
tote d represents the labile P initialisation value that is likely to result in 

maximum yield response in APSIM-Lucerne or APSIM-Wheat as Bray-2 P 
or Colwell P increases and might be influenced by soil buffering ca
pacity, total phosphorus content and mineralogy. The parameter b 
controls the steepness of the curve, determining how quickly labile P 
approaches d from c so it may be related to soil sorption characteristics 
particularly how strongly P is fixed in the soil, while the parameter e 
reflects the inflection point of the curve, determining at what Bray-2 P or 
Colwell P x the function transitions most rapidly. Since b acts as a scaling 
factor on log(x)− log(e), a larger e makes the function less sensitive to b. 
The two Weibull functions can potentially be calibrated for other soils, 
provided that measured P data are available.

The availability of P in soils depends on multiple factors, including 
soil texture, mineralogy, pH, organic matter content, and the presence of 
specific reactive components such as Fe and Al oxides or calcium car
bonate. Clayey soils generally have higher P sorption capacity and 
stronger P retention compared to sandy soils due to higher surface area 
and cation exchange capacity (CEC) (Singh and Gilkes, 1991; Jalali and 
Jalali, 2016). The types of clay minerals present in a soil also heavily 
influence its P sorption capacity and how strongly P is retained. Smectite 
clays common in shrink-swell clays such as Vertisols have much higher 
phosphorus sorption capacities compared to non-expanding 1:1 clays 
such as kaolinite (Gérard, 2016). This is due to their higher CEC and 
greater surface area allowing more reactive sites for outer-sphere 
complexation and cation bridging that relatively loosely held P, 
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Fig. 10. Time courses of modelled (lines) and observed (dots) aboveground dry matter yields (left panel) and plant biomass phosphorus (P) contents for each of the 
four alfalfa harvests per year in the long-term US experiment for (a) the Drummer soil, and (b) the Lauramie soil at four different P fertiliser rates ((0, 25, 50, and 
75 kg ha− 1). Capped vertical bars represent the standard deviation of the observed values.
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making them available for plant uptake. Vermiculite generally has 
stronger P retention compared to montmorillonite due to higher layer 
charge and CEC but P retained is less available to plant due to strong 
adsorption at interlayer sites. However, soils high in kaolinite are 
generally highly weathered and hence often contain high levels of Fe 

and Al oxides such as goethite, hematite and gibbsite, which strongly 
retain P making it unavailable for plant uptake. The dominant mecha
nism for P retention is through ligand exchange where the hydroxyl 
groups of Fe and Al oxides are replaced by phosphate forming strong 
inner-sphere complexation. This process is exacerbated under acidic 
conditions where kaolinite retains more P due to the protonation of 
surface groups promoting ligand exchange. Additionally, at low pH 
(<4), Al and Fe are present mostly as soluble ions, which react readily 
with phosphate ions to form insoluble aluminium and iron phosphates 
through precipitation and release H ions further acidifying the soil and 
reducing plant-available P. Low pH sites were excluded from the yield 
response curves from the BFDC database which improved their goodness 
of fit as low pH conditions may be associated with Al toxicity that limits 
root growth and hence restricts P uptake. We applied the same sorption 
capacity coefficient “a” for soil types within the same soil order based on 
Burkitt et al. (2002). However, Red Chromosols tend to have higher iron 
(Fe) and aluminium (Al) oxides compared to Yellow, Brown, and Grey 
Chromosols which could contribute to stronger P fixation and reduced P 
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Fig. 11. Comparison of (a) observed versus modelled aboveground dry matter yields and (b) plant biomass phosphorus (P) content of alfalfa in APSIM simulations 
for the Drummer and Lauramie soils across four phosphorus (P) fertiliser application rates (0, 25, 50, and 75 kg ha− 1). The blue line represents the linear regression 
line fitted to the data, highlighting the relationship between observed and modelled values. Deviations of the blue line from the 1:1 line illustrate model bias: a slope 
< 1 indicates underprediction at higher values, a slope > 1 indicates overprediction, and an intercept ∕= 0 reveals systematic bias.

Table 7 
Statistical metrics assessing the agreement of observed and modelled alfalfa dry 
matter yields by year in the US experiment.

Year R2 CCC RMSE (kg ha− 1) Bias (kg ha− 1)

1998 0.77 0.77 678.99 − 232.00
1999 0.95 0.78 818.44 − 721.00
2000 0.99 0.68 1175.23 − 983.75
2001 0.92 0.61 875.09 − 436.12
2002 − 0.12 0.13 1255.50 − 350.38
2003 0.81 0.77 743.20 356.62
2004 0.93 0.65 895.07 − 284.25
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availability. Gilkes and Hughes (1994) found that the primary deter
minant for P sorption in acid to neutral South-Western Australian soils is 
due to the amount of poorly ordered and organically complexed forms of 
Al which was consistent to the findings of (Singh and Gilkes, 1991). 
Bertrand et al. (2003) also found that amorphous Al and Fe oxides were 
the principal determinants of the P sorption behaviour in alkaline 
cropping soils of southern Australia, except in calcareous soils where the 
P sorption behaviour was a direction function of calcium carbonate 
content due to calcium phosphate precipitation making P unavailable 
for plants (Bertrand et al., 2003). This P adsorption decreases as soil pH 
increases above 8 due to decreased calcium availability (Asomaning, 
2020). Soil organic matter (SOM) generally increases P retention, re
duces P fixation and enhances the availability of P to plants in soils 
(Debicka et al., 2016; Negassa et al., 2008; Vermeiren et al., 2021). The 
key mechanisms by which SOM influences P sorption and availability in 
soils include: 1. competitive adsorption of SOM with P for binding sites; 
2. metal complexation and dissolution reactions reducing available 
adsorption sites; 3. increased repulsion of phosphate anions by sorption 
of OM to positive sorption sites; and 4. formation of cation bridging 
particularly between P and humic and fulvic acids leading to increased 
sorption (Guppy et al., 2005; Hunt et al., 2007).

This study focused primarily on the relationship between labile P 
values and the sorption capacity coefficients while maintaining default 
values for other key input parameters in APSIM such as the root C:P 
ratio, the rate of dissolution of rock P, the sorption coefficient b, and the 
rate loss available (r coefficient). This conservative approach helps 
reduce potential noise in model outputs. Since the rock phosphate 
content was initialised to zero in our simulations, the rate of rock P 
dissolution parameter did not affect our reported outcomes here. How
ever, in experiment-based studies where rock phosphate is present, this 
parameter could play a significant role in determining phosphorus 
availability and overall model performance. Therefore, when applying 
the model to soils with substantial rock phosphate reserves, careful 
calibration of the rate of rock P dissolution is recommended to accu
rately capture its impact on soil P dynamics. Raymond et al. (2021)
showed that the optimal r values that produced relative increases in 
APSIM-modelled labile P comparable to measured changes in Colwell P 
appeared to be both site- and P-fertilisation rate-specific, suggesting that 
the r coefficient might be influenced by “as-yet-unidentified” soil char
acteristics. These characteristics might include soil microbial diversity 
and activity such as phosphate solubilising bacteria and mycorrhizal 
fungi that significantly affect P transformations between organic, inor
ganic and residual pools (Zhang et al., 2021) which are not yet captured 
by the model. Users are therefore encouraged to perform sensitivity 
analyses on these additional parameters and to adjust them only when 
modelling specific experimental conditions for which sufficient empir
ical data are available.

Currently, only limited crops have been parameterised for P use in 
APSIM and only in limited environments. Future research should also 
aim to incorporate current understanding of differences in P use effi
ciencies of different crop types in agricultural systems models to 
improve our ability to use these models for deriving practical solutions. 
The Colwell P-relative yield response curves from the BFDC database 
used provided generalised information on crop yield responses to sur
face P soil test measurements of different soils. The present study helps 
to extend the information from the BFDC database to agricultural 
cropping systems modelling to enable the incorporation of climate and 
management considerations in P fertiliser decision-making. Bell et al. 
(2013) stated that overall crop yields increased over time, likely due to 
advancements in crop varieties and agronomic management. These 
improvements may have introduced variability in yield response curves, 
leading to differences in their goodness of fit (r). The present study 
focused on the more robust wheat yield response curves of P from the 
BFDC database as the wheat experiments were most extensive. This 
could serve as a starting point to better define soil P requirements for 
other crops known to have different P use efficiencies by extending the 

information on such crops from the BFDC database to soil and crop 
parameterisation in APSIM using the present study as a benchmark. Bell 
et al. (2013) noted that they used r ≥ 0.4 as a minimum threshold for 
establishing critical Colwell P values. All soil types included in our study 
have r above 0.45. We also conducted all simulations using the check 
variety Hartog with a consistent management regime across the study 
period. This minimises the confounding effects of agronomic advance
ments. Nonetheless, we acknowledge that this uncertainty was not 
propagated in our modelling. The current implementation of crop P 
responses in APSIM 7.10 is not variety specific. Future studies could 
extend the current model framework by integrating varietal and man
agement dynamics, potentially through a sensitivity analysis or the 
development of variety-specific response functions in APSIM.

Future research might consider incorporating the derived relation
ships in farmer-oriented decision support tools such as ARMOnline 
(Phelan et al., 2018; Quigley et al., 2019) or NrX(https://www.regrow. 
ag/case-studies/agretail) and the application of the inverse modelling 
approach at agricultural locations represented in such tools to improve 
the location specificity of the relationships and enable the development 
of more accurate and practical soil P management recommendations. 
This will depend upon the availability of P measurements correlated 
with yields of different crops. The accuracy of the relationships between 
measured soil test values and labile P conditions in APSIM can be further 
improved when the P sorption capacities of the soils are measured. 
Combining measurement and modelling thus bridges the gap in assess
ing P dynamics in complex soil-plant-climate-management systems and 
will enhance our ability to inform P management to improve P use 
efficiencies.

5. Conclusions

Our results showed that APSIM adequately represents P dynamics in 
alfalfa and wheat crops under different environment (climate × soil) ×
management combinations. We derived empirical relationships between 
soil test P values and the labile P pool in APSIM for a wide range of soils 
using an inverse modelling approach. These relationships differ for 
different soil types, emphasising the significance of accurate charac
terisation of soil P sorption capacities and the availability of P mea
surements correlated with yields of different crops. The derived 
empirical relationships will facilitate the quantitative initialisation of 
conceptual labile P pools and calibration of P parameters using common 
P test values in agricultural systems models such as APSIM. This thus 
addresses a key challenge in the practical application of such models to 
inform P fertilisation management and to improve the use efficiency of 
this macro-nutrient. Future research should aim to extend the infor
mation on P use efficiencies of other crops and to explore more advanced 
optimisation techniques to further improve the accuracy of our 
estimates.
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