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Abstract: This study is concerned with the development of integrated radial-
basis-function (IRBF) method for the simulation of two-dimensional steady-state
incompressible viscous flows governed by the pressure-velocity formulation on
Cartesian grids. Instead of using low-order polynomial interpolants, a high-order
compact local IRBF scheme is employed to represent the convection and diffu-
sion terms. Furthermore, an effective boundary treatment for the pressure variable,
where Neumann boundary conditions are transformed into Dirichlet ones, is pro-
posed. This transformation is based on global 1D-IRBF approximators using values
of the pressure at interior nodes along a grid line and first-order derivative values
of the pressure at the two extreme nodes of that grid line. Theperformance of the
proposed scheme is investigated numerically through the solution of several lin-
ear (analytic tests including Stokes flows) and non-linear (recirculating cavity flow
driven by combined shear & body forces and lid-driven cavityflow) problems. Un-
like the global 1D-IRBF scheme, the proposed method leads toa sparse system ma-
trix. Numerical results indicate that (i) the present solutions are more accurate and
converge faster with grid refinement in comparison with standard finite-difference
results; and (ii) the proposed boundary treatment for the pressure is more effective
than conventional direct application of the Neumann boundary condition.

Keywords: viscous flow, primitive variables, Cartesian grid, integrated radial ba-
sis function, high-order approximation, compact local stencil.

1 Introduction

It is known that the equations of motion of a Newtonian fluid can be obtained via
several formulations, including those based on the velocity-pressure (̂u− p), the
stream function-vorticity (ψ −ω) and the stream function (ψ) variables. The last
two involve less dependent variables than the first one. However, they require some
special treatments for the handling of the vorticity boundary condition (theψ −
ω formulation) and the calculation of high-order derivatives including the cross-
ones (theψ formulation). Furthermore, the pressure field needs be resolved, which
is generally recognised as a complicated process. For theû− p formulation, the
pressure and velocity fields are obtained directly from the discretised equations
and it is straightforward to extend the formulation to 3D problems.
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It was reported (e.g. [Roache (1998); Cheng (1968); Cyrus and Fulton (1967)])
that the use of a conservative form of the governing equationhas the ability to give
more accurate results than the use of a non-conservative form. In [Torrance, Davis,
Eike, Gill, Gutman, Hsui, Lyons, and Zien (1972)], through the simulation of a
flow in a cavity, it was shown that results by using the conservative equations with
first-order accurate interpolants are better than those by using the non-conservative
equations with second-order accurate interpolants.

To facilitate a numerical calculation, the spatial domain needs be discretised. Gen-
erating a Cartesian grid, which is associated with finite-difference methods (FDMs),
can be seen to be much more straightforward than generating afinite-element (FE)
mesh, which is associated with FE and finite-volume (FV) methods.

Radial basis function networks (RBFNs) have emerged as a powerful approxima-
tion tool. They have been applied for the solution of ordinary (ODEs) and partial
(PDEs) differential equations. The RBF approximations representing the field vari-
able can be constructed through differentiation (DRBFNs) [Kansa (1990), Kansa,
Power, Fasshauer, and Ling (2004)] and integration (IRBFNs) [Mai-Duy and Tran-
Cong (2001)]. The latter has extra power in the implementation of multiple bound-
ary values.

A fractional-step/projection approach, which is originally suggested by [Chorin
(1968)], is widely applied for the simulation of incompressible viscous flows mod-
elled with theû− p formulation. Variations of this approach have been published
in, for example, [Kim and Moin (1985), Van Kan (1986), Bell, Colella, and Glaz
(1989), Perot (1993) and Almgren (1996)]. In this study, we will propose a numeri-
cal projection method, based on Cartesian grids and a compact local IRBF scheme,
for the discretisation of thêu− p formulation in two dimensions. Boundary con-
ditions for the pressure are taken in the form of Dirichlet type, and to do so, we
propose a treatment based on global 1D IRBF approximations using values of the
pressure at interior nodes along a grid line and first-order derivative values of the
pressure at the two extreme nodes of that grid line. The performance of the present
method is investigated numerically through the solution oflinear and non-linear
problems.

The remainder of the paper is organised as follows. Sections2 and 3 briefly outline
the mathematical model of incompressible viscous flows and the global 1D-IRBF
approximation scheme, respectively. The proposed compactlocal IRBF scheme
and the proposed boundary treatment for the pressure are described in Section 4. In
Section 5, numerical results are presented and compared with some benchmark so-
lutions, where appropriate. Finally, some concluding remarks are given in Section
6.
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2 Mathematical model

The transient Navier-Stokes equations for an incompressible Newtonian fluid in the
primitive variables can be written in the non-dimensional conservative form as

∇.û= 0 (1)

∂ û
∂ t

+∇.(û û) =−∇p+
1
Re

∇2û+ b̂ (2)

whereû= (u,v)T , p and b̂= (bx,by)
T are the velocity vector, the static pressure,

and the body-force vector, respectively, defined in the Cartesianx andy system;
andRe=UL/ν the Reynolds number, in whichν is the kinematic viscosity,L the
characteristic length andU the characteristic speed of the flow.

For the projection method [Chorin (1968)], the velocity andthe pressure variables
in the above set of PDEs are solved separately in each iteration. The temporal
discretisation of (2) with an explicit Euler scheme gives

ûn− ûn−1

∆t
=−∇pn+

1
Re

∇2ûn−1−∇.(ûn−1ûn−1)+ b̂n−1 (3)

where the superscriptn is used to denote the time level.

An intermediate velocity vector, denoted byû∗,n, is defined as

û∗,n− ûn−1

∆t
=

1
Re

∇2ûn−1−∇.(ûn−1ûn−1)+ b̂n−1 (4)

This equation, which does not involve the pressure gradientterm, can be rewritten
as

û∗,n = ûn−1+∆t

[
1
Re

∇2ûn−1−∇.(ûn−1ûn−1)+ b̂n−1
]

(5)

It is seen that̂u∗,n does not satisfy the continuity equation (1). From (3) and (4),
one can derive the following equation

ûn− û∗,n

∆t
=−∇pn (6)

The Poisson equation for the pressure is then obtained by applying the gradient
operator to both sides of (6) and forcinĝun to satisfy (1)

∇2pn =
1
∆t

∇ · û∗,n (7)

After solving (7), the velocity field at the next time level iscalculated through (6)
as

ûn = û∗,n−∆t∇pn (8)



Manuscript submitted to CMES

4

3 A brief review of the global 1D-IRBF scheme

Consider the approximation of a univariate functionf (η) and its derivatives up to
second order. The second-order derivative off is decomposed into RBFs

d2 f (η)

dη2 =
m

∑
i=1

wiGi(η) (9)

wherem is the number of RBFs;{Gi(η)}m
i=1 the set of RBFs; and{wi}m

i=1 the set
of weights/coefficients to be found. Approximate representations for the first-order
derivative and the function itself are then obtained through integration

d f(η)

dη
=

m

∑
i=1

wiHi(η)+c1 (10)

f (η) =
m

∑
i=1

wiH i(η)+c1η +c2 (11)

whereHi(η) =
∫

Gi(η)dη ; H i(η) =
∫

Hi(η)dη ; andc1 andc2 are the constants of
integration.

Let {ηi}q
i=1 (q= m−2) and{ηb1,ηb2} be a set of interior nodal points and a set

of boundary nodal points, respectively, as shown in Figure 1. We choose the set of
RBF centres as the set of nodes. Evaluation of (11) at the interior and boundary
nodes results in

(
f̂
f̂b

)
= H




ŵ
c1

c2


 (12)

where

f̂ = ( f1, f2, · · · , fq)
T

f̂b = ( fb1, fb2)
T

ŵ= (w1,w2, · · · ,wm)
T

H =




H1(η1) · · · Hm(η1) η1 1
H1(η2) · · · Hm(η2) η2 1

...
.. .

...
...

...
H1(ηq) · · · Hm(ηq) ηq 1
H1(ηb1) · · · Hm(ηb1) ηb1 1
H1(ηb2) · · · Hm(ηb2) ηb2 1




(13)
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The system (12), which represents the relation between the RBF space and the
physical space and hereafter is called a conversion system,can be solved for the
unknown vector of weights(ŵ,c1,c2)

T by means of the singular value decomposi-
tion (SVD) technique



ŵ
c1

c2


= H

−1

(
f̂
f̂b

)
(14)

whereH
−1

is the pseudo-inverse ofH .

Making use of (14), (10) and (9), values of the first and secondderivatives off at
the interior and boundary nodes are, respectively, computed as



d f1
dη
d f2
dη
...

d fq
dη

d fb1
dη

d fb2
dη




=




H1(η1) · · · Hm(η1) 1 0
H1(η2) · · · Hm(η2) 1 0

...
.. .

...
...

...
H1(ηq) · · · Hm(ηq) 1 0
H1(ηb1) · · · Hm(ηb1) 1 0
H1(ηb2) · · · Hm(ηb2) 1 0




H
−1

(
f̂
f̂b

)
(15)




d2 f1
dη2

d2 f2
dη2

...
d2 fq
dη2

d2 fb1
dη2

d2 fb2
dη2




=




G1(η1) · · · Gm(η1) 0 0
G1(η2) · · · Gm(η2) 0 0

...
.. .

...
...

...
G1(ηq) · · · Gm(ηq) 0 0
G1(ηb1) · · · Gm(ηb1) 0 0
G1(ηb2) · · · Gm(ηb2) 0 0




H
−1

(
f̂
f̂b

)
(16)

These expressions can be rewritten in the following compactform

d̂ f
dη

= D̂1η f̂ + k̂1η , (17)

and

d̂2 f
dη2 = D̂2η f̂ + k̂2η , (18)

where the matriceŝD1η and D̂2η consist of all but the last two columns of the
product of two matrices on the right-hand side of (15) and (16), respectively; and
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k̂1η andk̂2η are obtained by multiplying the vector̂fb with the last two columns of
(15) and (16) respectively. It is noted that entries ofk̂1η and k̂2η are functions of
the two boundary values.

It can be seen that derivatives of the functionf at nodes are expressed in terms of
nodal values off .

4 Proposed method

Consider an interior grid point(x0,y0) and its associated local 3-point stencil [η1,η2,η3]
(η1 < η2 < η3, η0 ≡ η2) as shown in Figure 2, in whichη representsx andy.

4.1 A high-order compact local IRBF scheme

Over a local 3-point stencil, we can represent the conversion system as a matrix-
vector multiplication



f1
f2
f3

d2 f1
dη2

d2 f3
dη2




=

(
H

G

)

︸ ︷︷ ︸
C




w1

w2

w3

c1

c2




(19)

where fi = f (ηi) (i = {1,2,3}); d2 fi
dη2 = d2 f

dη2 (ηi) (i = {1,3}); C is the conversion

matrix andH , G are submatrices defined as

H =




H1(η1) H2(η1) H3(η1) η1 1
H1(η2) H2(η2) H3(η2) η2 1
H1(η3) H2(η3) H3(η3) η3 1


 (20)

G =

[
G1(η1) G2(η1) G3(η1) 0 0
G1(η3) G2(η3) G3(η3) 0 0

]
(21)

Solving (19) yields




w1

w2

w3

c1

c2




= C
−1




f1
f2
f3

d2 f1
dη2

d2 f3
dη2




(22)

which maps the vector of nodal values of the function and of its second derivative
to the vector of RBF coefficients including two integration constants. Approximate
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expressions forf and its derivatives in the physical space are obtained by substitut-
ing (22) into (11), (10) and (9), respectively.

f (η) =
[

H1(η) H2(η) H3(η) η 1
]
C

−1

(
f̂

d̂2 f
dη2

)
(23)

d f(η)

dη
=
[

H1(η) H2(η) H3(η) 1 0
]
C

−1

(
f̂

d̂2 f
dη2

)
(24)

d2 f (η)

dη2 =
[

G1(η) G2(η) G3(η) 0 0
]
C

−1

(
f̂

d̂2 f
dη2

)
(25)

whereη1 ≤ η ≤η3; f̂ = ( f1, f2, f3)T and d̂2 f
dη2 = (d2 f1

dη2 ,
d2 f3
dη2 )

T . They can be rewritten
in the form

f (η) =
3

∑
i=1

ϕi(η) fi +ϕ4(η)
d2 f1
dη2 +ϕ5(η)

d2 f3
dη2 (26)

d f(η)

dη
=

3

∑
i=1

dϕi(η)

dη
fi +

dϕ4(η)

dη
d2 f1
dη2 +

dϕ5(η)

dη
d2 f3
dη2 (27)

d2 f (η)

dη2 =
3

∑
i=1

d2ϕi(η)

dη2 fi +
d2ϕ4(η)

dη2

d2 f1
dη2 +

d2ϕ5(η)

dη2

d2 f3
dη2 (28)

where{ϕi(η)}5
i=1 is the set of IRBFs in the physical space. It can be seen from

(26)-(28) that the present IRBF approximations are expressed in terms of not only
nodal function values but also nodal second-derivative values.

The present compact local 3-point IRBF scheme is utilised torepresent the vari-
ations of the velocity components, the intermediate velocity components and the
pressure in (3)-(8).

4.2 Two boundary treatments for the pressure

In order to solve the pressure Poisson equation (7), a boundary condition for the
pressure is required. On the non-slip boundaries, from the momentum equation
(2), one can derive the Neumann boundary condition for the pressure as

∂ pn
b

∂x
=

1
Re

(
∂ 2un−1

b

∂x2 +
∂ 2un−1

b

∂y2

)
−
(

∂ (un−1
b un−1

b )

∂x
+

∂ (vn−1
b un−1

b )

∂y

)
+bn−1

x =
u∗,nb −un

b

∆t

(29)
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∂ pn
b

∂y
=

1
Re

(
∂ 2vn−1

b

∂x2 +
∂ 2vn−1

b

∂y2

)
−
(

∂ (un−1
b vn−1

b )

∂x
+

∂ (vn−1
b vn−1

b )

∂y

)
+bn−1

y =
v∗,nb −vn

b

∆t

(30)

In what follows, we will describe an implementation of the Neumann boundary
condition in the context of IRBFs (Treatment 1), and presenta new treatment,
which transforms the Neumann boundary condition into the Dirichlet one, and its
detailed implementation (Treatment 2).

4.2.1 Treatment 1

The boundary condition for the pressure is imposed in the Neumann form. Assume
thatη1 is a boundary node (i.e.ηb1 ≡ η1). At the current time leveln, one can cal-
culate the value of∂ p/∂η at ηb1 through (29) and (30). We modify the conversion
system (19) as




pn
1

pn
2

pn
3

∂ pn
b1

∂η
∂ 2pn−1

3
∂η2




=




H

H

G







wn
1

wn
2

wn
3

cn
1

cn
2




(31)

where the superscriptn is used to denote the time level;∂ pn
b1/∂η and∂ 2pn−1

3 /∂η2

are known values;H is defined as in (20); and

H =
[

H1(ηb1) H2(ηb1) H3(ηb1) 1 0
]

(32)

G =
[

G1(η3) G2(η3) G3(η3) 0 0
]

(33)

Equation (31) leads to




wn
1

wn
2

wn
3

cn
1

cn
2




=




H

H

G




−1




pn
1

pn
2

pn
3

∂ pn
b1

∂η
∂ 2pn−1

3
∂η2




(34)

It can be seen that there are two unknowns over the stencil associated withη0 ≡ η2,
namelypn

b1 and pn
2. As a result, apart from collocating (7) atη2 for the unknown



Manuscript submitted to CMES

9

pn
2, one also needs to collocate (7) atηb1 for the unknownpn

b1. Values of the second
derivative ofp at ηb1 andη2 at the current time level are thus computed as




∂ 2pn
b1

∂η2

∂ 2pn
2

∂η2


=

[
G1(ηb1) · · · Gm(ηb1) ηb1 1
G1(η2) · · · Gm(η2) η2 1

]


H

H

G




−1




pn
1

pn
2

pn
3

∂ pn
b1

∂η
∂ 2pn−1

3
∂η2




(35)

4.2.2 Treatment 2

The boundary condition for the pressure is imposed in the Dirichlet form. The
process of deriving Dirichlet boundary conditions for the pressure is based on the
global 1D-IRBF approximation scheme, i.e. (9)-(11), usingthe previous values of
the pressure at interior nodes along a grid line and the current first-order derivative
values of the pressure at the two extreme nodes of that grid line [Thai-Quang, Le-
Cao, Mai-Duy, and Tran-Cong (2011)].

Consider a grid lineη and letmbe the number of nodes on the grid line. From (29)-
(30), one can obtain derivative values of the pressure at thetwo extreme nodes, i.e.
∂ pn

b1/∂η and∂ pn
b2/∂η . We modify the conversion system (12) as




p̂n−1

∂ pn
b1

∂η
∂ pn

b2
∂η


=

(
H

H

) 


ŵn

cn
1

cn
2


 (36)

where the left-hand side is a known vector

p̂n−1 =
(
pn−1

1 , pn−1
2 , · · · , pn−1

q

)T
(q= m−2)

ŵn = (wn
1,w

n
2, · · · ,wn

m)
T

H =




H1(η1) · · · Hm(η1) η1 1
H1(η2) · · · Hm(η2) η2 1

...
.. .

...
...

...
H1(ηq) · · · Hm(ηq) ηq 1


 (37)

H =

[
H1(ηb1) · · · Hm(ηb1) 1 0
H1(ηb2) · · · Hm(ηb2) 1 0

]
(38)
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Values of the pressure at the two extreme nodes at the currenttime level are then
estimated by collocating (11) atηb1 andηb2 and making use of (36)

(
pn

b1
pn

b2

)
=

[
H1(ηb1) · · · Hm(ηb1) ηb1 1
H1(ηb2) · · · Hm(ηb2) ηb2 1

](
H

H

)−1




p̂n−1

∂ pn
b1

∂η
∂ pn

b2
∂η


 (39)

We use these known values as Dirichlet boundary conditions in solving the pressure
Poisson equation (7).

4.3 Solution procedure

The proposed solution procedure is outlined as follows

• Step 1: Guess initial values for the pressure and velocity fields. For the
Re= 0 case, we use the rest state as the initial guess. For aRe> 0 case, we
use the solution corresponding to a smallerReas the initial guess.

• Step 2: Compute the intermediate velocity field

û∗,n = ûn−1+∆t[
1
Re

∇2ûn−1−∇.(ûn−1ûn−1)+ f̂ n−1] (40)

using the proposed compact local IRBF scheme, i.e (27)-(28), in which, for
n> 2, nodal values of the field variable and its second derivatives are taken
from the time level(n− 1) and (n− 2), respectively. It is noted that, on
the boundary, some nodal second-derivative values are estimated through the
governing equations, e.g.

∂ 2un+1
b

∂x2 , ∂ 2vn+1
b

∂x2 , ∂ 2un+1
b

∂y2 and ∂ 2vn+1
b

∂y2

and some through the global 1D-IRBF scheme, e.g.

∂ 2(uu)n+1
b

∂x2 ,
∂ 2(uv)n+1

b
∂x2 ,

∂ 2u∗(n+1)
b

∂x2 ,
∂ 2pn+1

b
∂x2 ,

∂ 2(vu)n+1
b

∂y2 ,
∂ 2(vv)n+1

b
∂y2 ,

∂ 2v∗(n+1)
b

∂y2 and
∂ 2pn+1

b
∂y2 .

• Step 3: Compute∇.û∗,n according to the formula (27), in which, forn> 1,
nodal values of the function and its second derivatives are taken from the
time leveln and(n−1), respectively.

• Step 4: Compute the pressure gradients on the boundary fromthe momentum
equations

∇pn =
1
∆t

(û∗,n− ûn−1) (41)
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• Step 5: Derive a Dirichlet boundary condition for the pressure, i.e.pn
b, in the

case of using Treatment 2. Otherwise, skip this step.

• Step 6: Solve the pressure Poisson equation

∇2pn =
1
∆t

∇.û∗,n (42)

subject to the corresponding boundary conditions.

• Step 7: Compute∇pn using (27) and estimate the velocity field at the current
time level

ûn = û∗,n−∆t∇pn (43)

• Step 8: Check to see whether the flow reaches a steady state. If not, repeat
from Step 2. Otherwise, stop and output the results.

5 Numerical examples

It has generally been accepted that, among RBFs, the multiquadric (MQ) scheme
tends to result in the most accurate approximation [Franke (1982)]. We choose MQ
as the basis function in the present calculations

Gi(x̂) =
√

(x̂− ĉi)T(x̂− ĉi)+a2
i (44)

wherex̂= (x,y)T is the position vector of the point of interest;ĉi = (xci ,yci )
T and

ai the position vector of the centre and the width of theith MQ, respectively. For
each stencil, the set of nodal points is taken to be the set of MQ centres. We simply
choose the MQ width asai = βhi in which β is a given positive number andhi

the distance between theith node and its nearest neighbouring node. We assess the
performance of the proposed method through two measures:

(i) the root mean square (RMS) error defined as

Ne(u) =

√
∑N

i=1(ui − ūi)2

√
N

(45)

whereN is the number of nodes over the whole domain and ¯u is the exact solution,
and

(ii) the convergence rateα with respective to grid refinement defined throughNe≈
O(hα) as

α =
log(Ne(r)/Ne(s))

log(h(r)/h(s))
(46)
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whereh is the grid size; the superscripts(r) and(s) indicate the data obtained from
therth andsth calculations (r < s), respectively.

The proposed method is verified through the solution of a linear second-order ODE
and the simulation of viscous flows to obtain their structures at the steady state. For
the latter, the steady state is considered to have been reached when
√

∑N
i=1(u

n+1
i −un

i )
2

√
N

< 10−9 (47)

5.1 Ordinary differential equation (ODE)

As a first test, we consider the following boundary-value second-order problem

d2u
dx2 =−(2π)2 sin(2πx), 0≤ x≤ 1, u(0) = u(1) = 0 (48)

The exact solution to this problem can be verified to be ¯u(x) = sin(2πx). We add a
pseudo time-derivative term to equation (48) to facilitatean iterative calculation

d2u
dx2 =−(2π)2 sin(2πx)+

du
dt

(49)

When the difference ofu between two successive time levels is small, i.e.du
dt ≃ 0

(the iterative process is said to converge), the obtained solution is also a solution to
(48).

In the present calculation, a time step of 0.5 is used. It is noted that the higher the
value of a permissible time step, the faster the convergenceof the solution will be.
One can reduce the grid sizeh and/or vary the MQ widthβ to enhance the solution
accuracy.

For β−adaptivity study, the value ofβ is chosen in a wide range of 2-100. Results
obtained at a grid of 51 are shown in Figure 3. Asβ increases, the errorNe(u)
reduces significantly. However, at very large values ofβ , the behaviour ofNebe-
comes unstable. It appears that the optimal value ofβ is 8 and the corresponding
condition number of the system matrix is 5.84×108. It is noted that, from a theo-
retical point of view, it is still not clear how to choose the optimal value of the MQ
width. Unlike global IRBF versions (whereβ=1 is a preferred value), the present
compact IRBF scheme can work well with a wide range ofβ (20≤ β ≤ 60).

For h−adaptivity study, the present IRBF and standard second-order FD calcula-
tions are conducted on various sets of uniformly distributed points, from 5 to 51
with an increment of 2. Results obtained by the two methods are given in Figure 4.
It can be seen that the present scheme outperforms the FDM in terms of the solution
accuracy and convergence rate, whereas the two schemes havesimilar values of the
matrix condition number.
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5.2 Analytic Stokes flow

Consider a Stokes flow [Fadel and Agouzoul (2011)]. Equations (1)-(2) reduce to

∇.û = 0 (50)
∂ û
∂ t

= −∇p+∇2û+ b̂ (51)

The exact solution is chosen as

u(x,y) = 2πx2(1−x)2 sin(πy)cos(πy) (52)

v(x,y) = −2x(x−1)(2x−1)sin2(πy) (53)

p(x,y) = sin(x)cos(y) (54)

from which, one can derive the corresponding body force

bx = 2π(−1+6x+2(π2−3)x2−4π2x3+2π2x4)sin(2πy)+cos(x)cos(y)(55)

by = 4π2x(1−3x+2x2)cos(2πy)−12(1−2x)sin2(πy)−sin(x)sin(y) (56)

Let Ω = [0,1]× [0,1] be the flow domain. Values ofu and v are prescribed on
the boundaries according to (52) and (53), respectively, whereas the hydrostatic
pressure mode is eliminated by fixing the pressure value at a single node. In the
present study, we take the centre of the cavity as a referencepoint.

The simulations are performed for a set of grids,{11×11,21×21, · · · ,51×51}. In
Table 1, we present an accuracy analysis with respect to gridrefinement for results
obtained by the proposed scheme and the standard second-order central FD scheme.
It can be seen that the former outperforms the latter regarding both the solution
accuracy and the rate of convergence. The overall convergence rates are 3.01 foru,
3.11 forv and 2.88 forp by the proposed scheme, while the corresponding values
are 2.09, 2.18 and 2.78 by the FDM.

5.3 Recirculating cavity flow driven by combined shear and body forces

This problem is taken from [Shih and Tan (1989)]. The recirculating flow of a
Newtonian fluid in a square cavity (Figure 5) is induced by thecombined shear and
body forces. The governing equations are of the form (1)-(2). It is assumed that the
velocity profile along the top boundary isv = 0 andu(x,1) = 16x2(x− 1)2 while
the other walls are non-slip and stationary. The body force,which is present in the
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y-direction only, is given by

bx = 0 (57)

by =− 8
Re

[24F(x)+2 f ′(x)g′′(y)+ f ′′′(x)g(y)]−64[F2(x)G1(y)−g(y)g′(y)F1(x)]

(58)

where

f (x) = x4−2x3+x2

g(y) = y4−y2

F(x) =
∫

f (x)dx= 0.2x5−0.5x4+x3/3

F1(x) = f (x) f ′′(x)− [ f ′(x)]2 =−4x6+12x5−14x4+8x3−2x2

F2(x) =
∫

f (x) f ′(x)dx= 0.5[ f (x)]2

G1(y) = g(y)g′′′(y)−g′(y)g′′(y) =−24y5+8y3−4y

The exact solution to this problem is known to be

u(x,y) = 8 f (x)g′(y) = 8(x4−2x3+x2)(4y3−2y), (59)

v(x,y) =−8 f ′(x)g(y) =−8(4x3−6x2+2x)(y4−y2), (60)

p(x,y,Re) =
8

Re
[F(x)g′′′(y)+ f ′(x)g′(y)]+64F2(x)[g(y)g

′′(y)− [g′(y)]2]. (61)

We employ several grids,{21×21,31×31, · · · ,71×71}, and the two previously
discussed boundary treatments for the pressure to simulatethe flow. Table 2 com-
pares the present results with those obtained by FD approximation schemes. In the
case of IRBFs, the imposition of the pressure boundary condition in the Dirichlet
form (Treatment 2) yields more accurate results than those in the Neumann form
(Treatment 1). In the case of FDs, the two treatments have similar performances.
The IRBF solutions are seen to be more accurate and to converge faster than the FD
ones. To achieve a similar level of accuracy, the FDM requires a denser grid than
the proposed scheme. For example, with Treatment 1, RMS errors of thep solution
are 2.9×10−4 using a grid of 61×61 for the former and 2.8×10−4 using a grid of
21×21 for the latter. Figure 6 shows profiles of the velocity on the horizontal and
vertical centrelines of the cavity, which are in very good agreement with the exact
solution.

5.4 Lid-driven cavity flow

It differs from the previous problem in that the velocity of the lid is now prescribed
as û = (1,0)T and the body force components are set to zeros. There are thus
two values ofu at the two top corners, making the stress solution there singular.
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The singular lid-driven cavity flow is widely used as a test problem for the as-
sessment of accuracy of numerical solvers in CFD. From the literature, FD results
using very dense grids by [Ghia, Ghia, and Shin (1982)] and pseudo-spectral results
by [Botella and Peyret (1998)] have been often cited for comparison purposes. It
is noted that for the latter, the field variables were decomposed into the regular
part that is approximated with Chebyshev polynomials and the singular part that is
treated analytically; and a benchmark spectral solution for Re= 100 andRe= 1000
were provided.

We use Treatment 2 only in the imposition of the pressure boundary condition. A
wide range ofRe, {100,400,1000,3200} and uniform grids,{11×11,31×31,51×
51,71×71,91×91,111×111,129×129} are considered in the simulation. The
time step is chosen in the range of 0.1 to 0.00025. Smaller time steps are em-
ployed for higherReand higher grid densities. Tables 3, 4 and 5 show the present
results for the extrema of the velocity profiles along the centrelines of the cavity
for several Reynolds numbers in comparison with some others[Ghia, Ghia, and
Shin (1982); Deng, Piqueta, Queuteya, and Visonneaua (1994); Botella and Peyret
(1998); Sahin and Owens (2003); Bruneau and Saad (2006)]. For Re= 100 (Table
3) andRe= 1000 (Table 4), the “errors" are calculated relative to a “benchmark"
solution [Botella and Peyret (1998)], which shows that the present results are very
comparable with others. Velocity profiles along the vertical and horizontal cen-
trelines for different grid sizes atRe= 1000 are displayed in Figure 7, where a
grid convergence of the IRBF solution is clearly observed (i.e. the present solution
approaches the benchmark solution very fast as the grid density is increased). We
virtually achieve the benchmark solution with only 91×91 grid in comparison with
a grid of 129×129 used to obtain the benchmark solution in [Ghia, Ghia, andShin
(1982)]. In addition, those velocity profiles atRe= {100, 400, 1000, 3200} with
the grid of 129×129 are also shown in Figure 8, where the present solutions match
the benchmark ones very well.

Figure 9 exhibits the distributions of the pressure for the flow atRe= {100, 400,
1000, 3200} which look feasible in comparison with those reported in thelitera-
ture. We also show streamlines and iso-vorticity lines, which are derived from the
velocity field, for the flow atRe= {100, 400, 1000, 3200} in Figure 10 and 11,
where secondary vortices are well captured.

6 Concluding remarks

In this paper, we propose a high-order compact local IRBF scheme for the discreti-
sation of the pressure-velocity formulation in the Cartesian-grid point-collocation
framework. Two boundary treatments for the pressure, one isbased on values of
the pressure and the other based on normal derivative valuesof the pressure, are
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studied. Like FDMs, the present approximations involve 3 nodes in each direction,
resulting in a sparse system matrix. Numerical examples indicate that (i) the present
results are superior to the FD results in terms of the solution accuracy and the con-
vergence rate with grid refinement, and (ii) the imposition of boundary conditions
for the pressure yields better results in the Dirichlet formthan in the Neumann
form.

Acknowledgement: The first author would like to thank USQ, FoES and CESRC
for a postgraduate research scholarship. This work was supported by the Australian
Research Council.
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Table 1: Example 2, Stokes flow: RMS errors, local and overallconvergence rates foru,v andp by the proposed method and
FDM. The overall convergence rateα are presented in the form ofO(hα).

Grid Ne(u) Rate Ne(v) Rate Ne(p) Rate
Present method

11×11 6.5648E-04 —- 5.3296E-04 —- 1.7813E-02 —-
21×21 8.3206E-05 2.98 6.0128E-05 3.15 2.3210E-03 2.94
31×31 2.4489E-05 3.02 1.6978E-05 3.12 7.2212E-04 2.88
41×41 1.0289E-05 3.01 7.0329E-06 3.06 3.2314E-04 2.80
51×51 5.1893E-06 3.07 3.6338E-06 2.96 1.7496E-04 2.75

O(h3.01) O(h3.11) O(h2.88)
FDM

11×11 3.9284E-03 —- 1.3077E-03 —- 5.8633E-02 —-
21×21 8.7393E-04 2.17 2.0142E-04 2.70 7.0630E-03 3.05
31×31 3.8109E-04 2.05 9.6704E-05 1.81 2.3485E-03 2.72
41×41 2.1146E-04 2.05 5.8460E-05 1.75 1.1005E-03 2.63
51×51 1.3579E-04 1.98 3.7685E-05 1.97 6.8175E-04 2.15

O(h2.09) O(h2.18) O(h2.78)



M
a

n
u

sc
ri

p
ts

u
b

m
itt

e
d

to
C

M
E

S

20

Table 2: Example 3, Recirculating cavity flow,Re= 100: RMS errors and local convergence rates foru,v andp

Present (Dirichlet) Present (Neumann) FDM (Dirichlet) FDM(Neumann)
Grid Ne(u) Rate Ne(u) Rate Ne(u) Rate Ne(u) Rate
21×21 3.7323E-04 —- 6.8994E-04 —- 2.7515E-03 —- 2.8806E-03 —-
31×31 8.8758E-05 3.54 3.0028E-04 2.05 1.2587E-03 1.93 1.2598E-03 2.04
41×41 3.3153E-05 3.42 1.8214E-04 1.74 7.2116E-04 1.94 7.1861E-04 1.95
51×51 1.6052E-05 3.25 1.0607E-04 2.42 4.7417E-04 1.88 4.7156E-04 1.89
61×61 8.8940E-06 3.24 6.6161E-05 2.59 3.3465E-04 1.91 3.3254E-04 1.92
71×71 5.2855E-06 3.38 3.8683E-05 3.48 2.5021E-04 1.89 2.4875E-04 1.88

Grid Ne(v) Rate Ne(v) Rate Ne(v) Rate Ne(v) Rate
21×21 3.0814E-04 —- 1.1666E-03 —- 3.3290E-03 —- 3.0724E-03 —-
31×31 6.9064E-05 3.69 4.3065E-04 2.46 1.5300E-03 1.92 1.5246E-03 1.73
41×41 2.7564E-05 3.19 2.3730E-04 2.07 8.7191E-04 1.95 8.9158E-04 1.86
51×51 1.3899E-05 3.07 1.3227E-04 2.62 5.5126E-04 2.05 5.6429E-04 2.05
61×61 8.2254E-06 2.88 7.9870E-05 2.77 3.8059E-04 2.03 3.8919E-04 2.04
71×71 5.2222E-06 2.95 4.6700E-05 3.48 2.7666E-04 2.07 2.8119E-04 2.11

Grid Ne(p) Rate Ne(p) Rate Ne(p) Rate Ne(p) Rate
21×21 2.8508E-04 —- 7.3830E-04 —- 2.5036E-03 —- 5.8569E-03 —-
31×31 6.2890E-05 3.73 2.9702E-04 2.25 1.1474E-03 1.92 2.7822E-03 1.84
41×41 2.3775E-05 3.38 1.7771E-04 1.79 6.5178E-04 1.97 1.5035E-03 2.14
51×51 1.2035E-05 3.05 1.0679E-04 2.28 4.1769E-04 1.99 9.5988E-04 2.01
61×61 7.0999E-06 2.89 6.7371E-05 2.53 2.9038E-04 1.99 6.6316E-04 2.03
71×71 4.5087E-06 2.95 4.0092E-05 3.37 2.1349E-04 2.00 4.9218E-04 1.93
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Table 3: Example 4, Lid-driven cavity flow,Re= 100: Extrema of the vertical and horizontal velocity profiles along the
horizontal and vertical centrelines, respectively, of thecavity. "Errors" are relative to the "Benchmark" solution.

Method Grid umin Error (%) ymin vmax Error (%) xmax vmin Error (%) xmin

Present 11×11 -0.1912173 10.66 0.4807 0.1595908 11.13 0.2307 -0.2236027 11.90 0.8136
Present 31×31 -0.2102259 1.78 0.4578 0.1768808 1.50 0.2370 -0.2501843 1.43 0.8107
Present 51×51 -0.2121503 0.88 0.4579 0.1781849 0.77 0.2372 -0.2520400 0.69 0.8107
FDM (ψ −ω) [Ghia] 129×129 -0.2109 1.47 0.4531 0.17527 2.40 0.2344 -0.24533 3.34 0.8047
FDM (û− p) [Bruneau] 129×129 -0.2106 1.61 0.4531 0.1786 0.54 0.2344 -0.2521 0.67 0.8125
FVM (û− p) [Sahin] 257×257 -0.213924 0.06 0.4598 0.180888 0.73 0.2354 -0.256603 1.10 0.8127
FVM (û− p),cpi. [Deng] 128×128 -0.21315 0.42 — 0.17896 0.34 — -0.25339 0.16 —

Benchmark [Botella] -0.2140424 0.4581 0.1795728 0.2370 -0.2538030 0.8104

Table 4: Example 4, Lid-driven cavity flow,Re= 1000: Extrema of the vertical and horizontal velocity profiles along the
horizontal and vertical centrelines, respectively, of thecavity. "Errors" are relative to the "Benchmark" solution.

Method Grid umin Error (%) ymin vmax Error (%) xmax vmin Error (%) xmin

Present 51×51 -0.3629562 6.59 0.1787 0.3515585 6.73 0.1637 -0.4898251 7.07 0.9052
Present 71×71 -0.3755225 3.36 0.1753 0.3637009 3.51 0.1608 -0.5086961 3.49 0.9078
Present 91×91 -0.3815923 1.80 0.1735 0.3698053 1.89 0.1594 -0.5174658 1.82 0.9085
Present 111×111 -0.3840354 1.17 0.1728 0.3722634 1.24 0.1588 -0.5209683 1.16 0.9088
Present 129×129 -0.3848064 0.97 0.1724 0.3729119 1.07 0.1586 -0.5223350 0.90 0.9089
FDM (ψ −ω) [Ghia] 129×129 -0.38289 1.46 0.1719 0.37095 1.59 0.1563 -0.5155 2.20 0.9063
FDM (û− p) [Bruneau] 256×256 -0.3764 3.13 0.1602 0.3665 2.77 0.1523 -0.5208 1.19 0.9102
FVM(û− p),cpi. [Deng] 128×128 -0.38511 0.89 — 0.37369 0.86 — -0.5228 0.81 —

Benchmark [Botella] -0.3885698 0.1717 0.3769447 0.1578 -0.5270771 0.0908
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Table 5: Example 4, Lid-driven cavity flow: Extrema of the vertical and horizontal velocity profiles along the horizontaland
vertical centrelines, respectively, of the cavity at different Reynolds numbersRe= {400,3200}.

Re Method Grid umin ymin vmax xmax vmin xmin

400 Present 31×31 -0.316205 0.2833 0.293696 0.2236 -0.435578 0.8583
Present 51×51 -0.323158 0.2814 0.297493 0.2248 -0.442770 0.8605
Present 71×71 -0.325168 0.2804 0.300818 0.2252 -0.449146 0.8620
FDM (ψ −ω) [Ghia] 129×129 -0.32726 0.2813 0.30203 0.2266 -0.44993 0.8594
FVM(û− p),cpi. [Deng] 128×128 -0.32751 — 0.30271 — -0.45274 —
FVM(û− p) [Sahin] 257×257 -0.328375 0.2816 0.304447 0.2253 -0.456316 0.8621

3200 Present 91×91 -0.406818 0.0983 0.403852 0.1016 -0.528864 0.9451
Present 111×111 -0.418545 0.0962 0.415776 0.0995 -0.544789 0.9462
Present 129×129 -0.423061 0.0963 0.420565 0.0994 -0.551563 0.9466
FDM (ψ −ω) [Ghia] 129×129 -0.41933 0.1016 0.42768 0.0938 -0.54053 0.9453
FVM(û− p) [Sahin] 257×257 -0.435402 0.0921 0.432448 0.0972 -0.569145 0.9491
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Figure 3: Example 1, ODE,N = 51: the effects of the MQ widthβ on the solution
accuracy.
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Figure 4: Example 1, ODE,β = 20, N = {5,7,9, ...,51}: the effects of the grid
sizeh on the system matrix condition (left) and the solution accuracy (right) for the
FDM and the present scheme. The matrix condition number grows asO(h−2) for
the two methods while the solution converges asO(h2) for FDM andO(h3.23) for
the IRBF method.
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Figure 8: Example 4, Lid-driven cavity flow, 129×129: Profiles of theu-velocity
along the vertical centreline and thev-velocity along the horizontal centreline for
Re= 100 (top-left),Re= 400 (top-right),Re= 1000 (bottom-left) andRe= 3200
(bottom-right).
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Figure 9: Example 4, Lid-driven cavity flow, 129×129: Isobaric lines of the flow
for Re= 100 (top-left),Re= 400 (top-right),Re= 1000 (bottom-left) andRe=
3200 (bottom-right). The contour values used here are takento be the same as
those in [Abdallah (1987)], [Botella and Peyret (1998)] and[Bruneau and Saad
(2006)]
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Figure 10: Example 4, Lid-driven cavity flow, 129×129: Streamlines of the flow
for Re= 100 (top-left),Re= 400 (top-right),Re= 1000 (bottom-left) andRe=
3200 (bottom-right). The contour values used here are takento be the same as
those in [Ghia, Ghia, and Shin (1982)]
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Figure 11: Example 4, Lid-driven cavity flow, 129×129: Iso-vorticity lines of the
flow for Re= 100 (top-left),Re= 400 (top-right),Re= 1000 (bottom-left) and
Re= 3200 (bottom-right). The contour values used here are takento be the same
as those in [Ghia, Ghia, and Shin (1982)]


