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Abstract: This study is concerned with the development of integratatiai-
basis-function (IRBF) method for the simulation of two-dnsional steady-state
incompressible viscous flows governed by the pressuresisgléormulation on
Cartesian grids. Instead of using low-order polynomiatipblants, a high-order
compact local IRBF scheme is employed to represent the ctiameand diffu-
sion terms. Furthermore, an effective boundary treatnarthe pressure variable,
where Neumann boundary conditions are transformed intiwtidét ones, is pro-
posed. This transformation is based on global 1D-IRBF apprators using values
of the pressure at interior nodes along a grid line and firdé&ioderivative values
of the pressure at the two extreme nodes of that grid line.pEnarmance of the
proposed scheme is investigated numerically through théiso of several lin-
ear (analytic tests including Stokes flows) and non-lineecifculating cavity flow
driven by combined shear & body forces and lid-driven caflaw) problems. Un-
like the global 1D-IRBF scheme, the proposed method leadsparse system ma-
trix. Numerical results indicate that (i) the present solg are more accurate and
converge faster with grid refinement in comparison with déad finite-difference
results; and (ii) the proposed boundary treatment for teegure is more effective
than conventional direct application of the Neumann boandandition.

Keywords: viscous flow, primitive variables, Cartesian grid, integchradial ba-
sis function, high-order approximation, compact locahstie

1 Introduction

It is known that the equations of motion of a Newtonian fluid & obtained via
several formulations, including those based on the vslqmiéssure §{— p), the
stream function-vorticity  — w) and the stream functionf) variables. The last
two involve less dependent variables than the first one. Mewyéhey require some
special treatments for the handling of the vorticity bougdeondition (they —
w formulation) and the calculation of high-order derivasiviecluding the cross-
ones (thep formulation). Furthermore, the pressure field needs bdwedowhich
is generally recognised as a complicated process. Fanthe formulation, the
pressure and velocity fields are obtained directly from tiserdtised equations
and it is straightforward to extend the formulation to 3Dlgemns.
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It was reported (e.g. [Roache (1998); Cheng (1968); Cyruskarton (1967)])
that the use of a conservative form of the governing equétasthe ability to give
more accurate results than the use of a non-conservatine faffTorrance, Davis,
Eike, Gill, Gutman, Hsui, Lyons, and Zien (1972)], througdte tsimulation of a
flow in a cavity, it was shown that results by using the coresive equations with
first-order accurate interpolants are better than thosesimg ihe non-conservative
equations with second-order accurate interpolants.

To facilitate a numerical calculation, the spatial domageds be discretised. Gen-
erating a Cartesian grid, which is associated with finifeeténce methods (FDMs),
can be seen to be much more straightforward than generatingeaelement (FE)
mesh, which is associated with FE and finite-volume (FV) oesh

Radial basis function networks (RBFNs) have emerged as &ifolhapproxima-

tion tool. They have been applied for the solution of ordin@DES) and partial

(PDEs) differential equations. The RBF approximationsesenting the field vari-
able can be constructed through differentiation (DRBFM&)nsa (1990), Kansa,
Power, Fasshauer, and Ling (2004)] and integration (IRBfMai-Duy and Tran-

Cong (2001)]. The latter has extra power in the implemeoradf multiple bound-

ary values.

A fractional-step/projection approach, which is origlpasuggested by [Chorin
(1968)], is widely applied for the simulation of incompritds viscous flows mod-
elled with thet — p formulation. Variations of this approach have been publish
in, for example, [Kim and Moin (1985), Van Kan (1986), Bellpl€lla, and Glaz
(1989), Perot (1993) and Almgren (1996)]. In this study, witprvopose a numeri-
cal projection method, based on Cartesian grids and a cdrgeat IRBF scheme,
for the discretisation of th@ — p formulation in two dimensions. Boundary con-
ditions for the pressure are taken in the form of Dirichlgietyand to do so, we
propose a treatment based on global 1D IRBF approximatisimg walues of the
pressure at interior nodes along a grid line and first-oréeivative values of the
pressure at the two extreme nodes of that grid line. The paeoce of the present
method is investigated numerically through the solutiorireéar and non-linear
problems.

The remainder of the paper is organised as follows. Secfi@am 3 briefly outline

the mathematical model of incompressible viscous flows badjtobal 1D-IRBF

approximation scheme, respectively. The proposed conipeat IRBF scheme

and the proposed boundary treatment for the pressure ametmbin Section 4. In

Section 5, numerical results are presented and comparkdarite benchmark so-
lutions, where appropriate. Finally, some concluding nd®mare given in Section
6.
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2 Mathematical model

The transient Navier-Stokes equations for an incomprkesbkibwtonian fluid in the
primitive variables can be written in the non-dimensior@hservative form as

0.0=0 1)
a—t+D.(uu)——Dp+R—eD u+b 2

whereG = (u,v)T, p andb = (bx,by)T are the velocity vector, the static pressure,
and the body-force vector, respectively, defined in the €@hx andy system;
andRe=UL/v the Reynolds number, in whichis the kinematic viscosityL. the
characteristic length and the characteristic speed of the flow.

For the projection method [Chorin (1968)], the velocity @he pressure variables
in the above set of PDEs are solved separately in each derafThe temporal
discretisation of (2) with an explicit Euler scheme gives

a"—at
At

where the superscriptis used to denote the time level.

An intermediate velocity vector, denoted 6%", is defined as

1 ~
O PO B ®3)

W’n — Gnil 1 2 =~
— & =R at-o@ta ) 4t 4)

This equation, which does not involve the pressure gradént, can be rewritten
as

1 -~
0" =0t A S 0RO B (5)

It is seen thati*" does not satisfy the continuity equation (1). From (3) and (4

one can derive the following equation

an—aen
At

The Poisson equation for the pressure is then obtained byiagghe gradient
operator to both sides of (6) and forciafto satisfy (1)

=—0p" (6)

1
DZ n_ —[.gn 7
p'=0-0 (7)

After solving (7), the velocity field at the next time leveldalculated through (6)
as

" =" — AtOp" (8)
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3 A brief review of the global 1D-IRBF scheme

Consider the approximation of a univariate functibm) and its derivatives up to
second order. The second-order derivativé ¢f decomposed into RBFs

d2f(
dn

Q) = iiWiGi(ﬂ) 9)

wheremis the number of RBFs{G;(n)}"; the set of RBFs; andw; }|" ; the set
of weights/coefficients to be found. Approximate repreatois for the first-order
derivative and the function itself are then obtained thioumegration

%:) = _iWiHi(n) +c1 (10)
f(n)= _iwiﬁi(n)ﬂm +C2 (11)

whereH;(n) = [Gi(n)dn; Hi(n) = [Hi(n)dn; andc; andc; are the constants of
integration.

Let {n; iq:l (g=m-—2) and{np1, N2} be a set of interior nodal points and a set
of boundary nodal points, respectively, as shown in Figuré/é choose the set of
RBF centres as the set of nodes. Evaluation of (11) at theéantend boundary
nodes results in

(&)= (z)
=77 | o (12)
f, o

where
f\: (f17 f27' ) fq)T
fo = (fo, fo2) "
W: (W].)WZ) e an)T
[ Hi(m) Hm(n) nm 1]
H1(n2) Hn(nz) n2 1
= | o P 13)
Hi(ng) -+ Hm(ng) ng 1
Hi(no1) -+ Hm(Mo1) nNex 1
| Hi(Mo2) -+ Hm(np2) Moz 1 ]
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The system (12), which represents the relation between Bie $pace and the
physical space and hereafter is called a conversion sysi@mbe solved for the
unknown vector of weightéi, c1,c,)" by means of the singular value decomposi-
tion (SVD) technique

w f
<cl ) :%—1< - ) (14)
Co b

whereZ ' is the pseudo-inverse o7.

Making use of (14), (10) and (9), values of the first and seaterilatives off at
the interior and boundary nodes are, respectively, cordpage

& H1(n1) Hm(n) 1 0]

an H1(n2) Hm(nz) 1 0

i | = ; - ; S 1( f > (15)
an Hi(ng) -+ Hm(ng) 1 0 fo
%er;l Hi(nb) -+ Hm(np) 1 O
an | Hi(Nw2) -+ Hm(Ne2) 1 0 |
ile

& [ Ga(m) Gm(N1) 0 0]
dn? G1(n2) Gm(nz) 0 O

: : . : ol ——1f f

, _ : . : Lo H 5 16
o Gi(Ng) -+ Gm(ng) 0 O ( fo ) o
dd2 fiy Gi(Mo1) - Gm(npr) 0 O
P L G1(Mb2) -+ Gm(M2) 0 O |

dn2

These expressions can be rewritten in the following comfmaut

e @ln fA—i—Elm (17)

= Don T +kan, (18)

where the matrice@ln and _@2,7 consist of all but the last two columns of the
product of two matrices on the right-hand side of (15) and,(féspectively; and
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ki, andk,, are obtained by multiplying the vectdg with the last two columns of

(15) and (16) respectively. It is noted that entriesi?p,f andEz,, are functions of
the two boundary values.

It can be seen that derivatives of the functibat nodes are expressed in terms of
nodal values of.

4 Proposed method

Consider an interior grid poirfko, yo) and its associated local 3-point stengj [2, N3]
(N1 < N2 < n3, No = n2) as shown in Figure 2, in which representx andy.

4.1 A high-order compact local IRBF scheme

Over a local 3-point stencil, we can represent the conversystem as a matrix-
vector multiplication

f1 "
f5 - Ws
f3 | _
@n | ( g ) Ws (19)
dn? —_ | &
d*fs 4 Co
dn?
wherefi = f(n;) (i ={1,2,3}); % = g%‘;(ni) (i ={1,3}); ¢ is the conversion
matrix andsZ, ¢4 are submatrices defined as
_ [ Ha(n) Hz(nm) Hs(n) n 1
A = | Hi(nz) Ha(nz) Ha(nz) n2 1 (20)
Hi(ns) Hz(ns) Hs(ns) ns 1
Gi(n1) Gz2(n1) Gz(ni) 0 O }
¢ = 21
[ Gi(ns) Gz(ns) Gs(ns) 0 O (1)
Solving (19) yields
W1 fl
W2 f2
we [ =et| [ (22)
C1 Wzl
Co %

which maps the vector of nodal values of the function andsoéécond derivative
to the vector of RBF coefficients including two integrati@mnstants. Approximate
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expressions fof and its derivatives in the physical space are obtained bstisuts
ing (22) into (11), (10) and (9), respectively.

_ . _ f
f(n)=[Hu(n) Hz(n) Ha(n) n 1]%1<gj> (23)
dn2
f
A1) _ 1 vyn) Han) Ha(n) 1 0] o (24)
dn a
d2f f
=[Gl Gx(n) Galn) O 0]‘5‘1<§5> (25)
nZ
wheren; < n < ns; = (f1, fa, f3)7 andg%?z: (%, %)T. They can be rewritten
in the form
3 2f Zf
F() = 3 i)t ) o+ 05() .2 (26)
df(n) _ < d¢i(n)  da(n)d*fi  dés(n) d*fs 27
dn &4 dn ' dn dnz ' dn dn?
d?f(n) _ & d*di(n) . Pa(n) d*f | d?Ps(n) d*f 28)

d’72 _i: d’72 I dr72 dr72 d’72 dr72

where{¢i(n)}?_, is the set of IRBFs in the physical space. It can be seen from
(26)-(28) that the present IRBF approximations are expoekgsterms of not only
nodal function values but also nodal second-derivativeegl

The present compact local 3-point IRBF scheme is utilisetepresent the vari-
ations of the velocity components, the intermediate velooomponents and the
pressure in (3)-(8).

4.2 Two boundary treatments for the pressure

In order to solve the pressure Poisson equation (7), a boymdadition for the
pressure is required. On the non-slip boundaries, from tamemtum equation
(2), one can derive the Neumann boundary condition for teequre as

2t N o2upt - a(u-tudt N (v tupty Ll u" —up
ox2 ay? X ay X At

(29)

9p, _ L

dx Re
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0w 1 (M (AN O e %

dy Rel\ ox2 dy? ox ay At
(30)

In what follows, we will describe an implementation of theudsann boundary
condition in the context of IRBFs (Treatment 1), and presemew treatment,
which transforms the Neumann boundary condition into thécbliet one, and its
detailed implementation (Treatment 2).

4.2.1 Treatment 1

The boundary condition for the pressure is imposed in thenNgun form. Assume
thatn is a boundary node (i.@)p1 = n1). At the current time leveh, one can cal-
culate the value o p/dn atnp; through (29) and (30). We modify the conversion
system (19) as

n
P1 Wl
n
P2 A Wl
o= 7 Wi (31)
pbi n
0 n g Cl
9%z )
onz 2

where the superscriptis used to denote the time levelpy, /dn anddzp?fl/dn2
are known valuesyZ is defined as in (20); and

A = [ Hi(Mw1) Ha(Me) Ha(Mp) 1 O] (32)

¢ =[ Gu(ns) Ga(ns) Ga(nz) 0 O] (33)
Equation (31) leads to

W Pl
R -1 n
W A b2
_ p
¢)1\7) | = 0
Cé 52 pg—l
on?

It can be seen that there are two unknowns over the stenoitiagsd withrg = no,
namely py; andp5. As a result, apart from collocating (7) g% for the unknown
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p3, one also needs to collocate (7)gi for the unknownpy;. Values of the second
derivative ofp at np; andn; at the current time level are thus computed as

Pl
aZn jf p2
ar?gl :[Gl(nbl) - Gm(No1) Mot 1] v pl
azng Gi(nz) -+ Gm(n2) n2 1 @ anly
an aZarrz—l

P3

an?

4.2.2 Treatment 2

The boundary condition for the pressure is imposed in thécllet form. The
process of deriving Dirichlet boundary conditions for thregsure is based on the
global 1D-IRBF approximation scheme, i.e. (9)-(11), uding previous values of
the pressure at interior nodes along a grid line and the ufirst-order derivative
values of the pressure at the two extreme nodes of that gedTihai-Quang, Le-
Cao, Mai-Duy, and Tran-Cong (2011)].

Consider a grid ling and letmbe the number of nodes on the grid line. From (29)-
(30), one can obtain derivative values of the pressure awbextreme nodes, i.e.
opy,/9n anddpg,/dn. We modify the conversion system (12) as

prt - @
w-(%) = (36)
dp%z H n
e ©

where the left-hand side is a known vector

= (e L) (a=m-2)
\7\\/"]:(\/\[]1_’\1\/27 "7\1\,2'])1—
El(nl) Em(nl) m 1
e 1(:02) ; m(:nz) r7:2 : -
H1(nq) Hm(ng) nNq 1
_ | Hi(no) Hn(Mpz) 1 O
= Hi(No2) -+ Hm(np2) 1 0 (38)
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Values of the pressure at the two extreme nodes at the cuimesievel are then
estimated by collocating (11) gt1 andn,, and making use of (36)

-1

( Ph1 > _ [ Hi(o) - Hm(o1) Mo 1 ] ( H >1 Py (39)
Ph2 Hi(nez) -+ Hm(NMe2) Moz 1|\ 23

an

2

S

We use these known values as Dirichlet boundary conditioesliving the pressure
Poisson equation (7).

4.3 Solution procedure

The proposed solution procedure is outlined as follows

e Step 1: Guess initial values for the pressure and velooiigldi For the
Re= 0 case, we use the rest state as the initial guess. Rer-a0 case, we
use the solution corresponding to a smaRexas the initial guess.

e Step 2: Compute the intermediate velocity field

1

0" = 0 A2 DR - 0@+ (40)
using the proposed compact local IRBF scheme, i.e (27)-{@8yhich, for
n > 2, nodal values of the field variable and its second derigatare taken
from the time level(n— 1) and (n— 2), respectively. It is noted that, on
the boundary, some nodal second-derivative values areasti through the
governing equations, e.g.
02 n+1 azvn+1 02 n+1 azvn+1

au)?z ’ a)?z ’ au;z and a;z
and some through the global 1D-IRBF scheme, e.g.

dz(uu)g“ az(uv)g“ azug<n+1> dng“ az(vu)g“ dz(w)g“ azvg<n+1>
5X2 1 axz ] axz 1 axz 1 ayz ] ayz 1 ayZ

02 pg+1
ay?

and

e Step 3: Computél.0*" according to the formula (27), in which, for> 1,
nodal values of the function and its second derivatives akert from the
time leveln and(n— 1), respectively.

» Step 4: Compute the pressure gradients on the boundantfi@momentum

equations
n 1 oen o An—-1
Op :E(u’ - (42)
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« Step 5: Derive a Dirichlet boundary condition for the pressi.e.pj, in the
case of using Treatment 2. Otherwise, skip this step.

» Step 6: Solve the pressure Poisson equation

1
24N kN
O P = —tD.u (42)

subject to the corresponding boundary conditions.

« Step 7: Computélp” using (27) and estimate the velocity field at the current
time level

0" = 0" — AtOp" (43)

» Step 8: Check to see whether the flow reaches a steady dtatat, tepeat
from Step 2. Otherwise, stop and output the results.

5 Numerical examples

It has generally been accepted that, among RBFs, the madhiqu(MQ) scheme
tends to result in the most accurate approximation [Frah®82%)]. We choose MQ
as the basis function in the present calculations

Gi(%) = \/(R—6)T(%—&) + (44)

wherex = (x,y)" is the position vector of the point of interest;= (X, )" and

g the position vector of the centre and the width of tteMQ, respectively. For
each stencil, the set of nodal points is taken to be the set@tkhtres. We simply
choose the MQ width ag; = h; in which 8 is a given positive number arg

the distance between tlith node and its nearest neighbouring node. We assess the
performance of the proposed method through two measures:

() the root mean square (RMS) error defined as

N (U — )2
Ne(u) Yica (Ui — Ui
VN

whereN is the number of nodes over the whole domain aiglthe exact solution,
and
(i) the convergence rate with respective to grid refinement defined throldb~
O(h?) as

_ log(N€e") /Ne¥)

~ log(h(") /h(s))

(45)

(46)
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whereh is the grid size; the superscripts and(s) indicate the data obtained from
therth andsth calculationsi( < s), respectively.

The proposed method is verified through the solution of alisecond-order ODE
and the simulation of viscous flows to obtain their strucdlatthe steady state. For
the latter, the steady state is considered to have beenegtadien

VN )2
VN
5.1 Ordinary differential equation (ODE)

<107° (47)

As a first test, we consider the following boundary-valueogseeorder problem

d?u

dx@

The exact solution to this problem can be verified taipg = sin(2rx). We add a

pseudo time-derivative term to equation (48) to facilitateterative calculation
du

du_ —(2m)?sin(2mX) 4+ — (49)
dxe dt

When the difference afi between two successive time levels is small, %té: 0
(the iterative process is said to converge), the obtainkdign is also a solution to
(48).

In the present calculation, a time step of 0.5 is used. It {edthat the higher the
value of a permissible time step, the faster the convergeht® solution will be.
One can reduce the grid sikeand/or vary the MQ widtli to enhance the solution
accuracy.

For B—adaptivity study, the value @ is chosen in a wide range of 2-100. Results
obtained at a grid of 51 are shown in Figure 3. Asncreases, the errade(u)
reduces significantly. However, at very large valueg pthe behaviour oNe be-
comes unstable. It appears that the optimal valug if 8 and the corresponding
condition number of the system matrix is38 x 1. It is noted that, from a theo-
retical point of view, it is still not clear how to choose thgtial value of the MQ
width. Unlike global IRBF versions (whei@=1 is a preferred value), the present
compact IRBF scheme can work well with a wide rang@¢20 < 8 < 60).

For h—adaptivity study, the present IRBF and standard seconerdfd calcula-
tions are conducted on various sets of uniformly distridyteints, from 5 to 51
with an increment of 2. Results obtained by the two methodgaen in Figure 4.
It can be seen that the present scheme outperforms the FQdvhiis of the solution
accuracy and convergence rate, whereas the two schemesiindee values of the
matrix condition number.

—(2m?sin(2mx), 0<x<1, u(0)=u(1)=0 (48)
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5.2 Analytic Stokes flow
Consider a Stokes flow [Fadel and Agouzoul (2011)]. Equat{@j(2) reduce to

0G = 0 (50)
‘;—‘t’ — —Op+D%+b (51)

The exact solution is chosen as

(xy) = 2m¢(1-x)?sin(my)cos(my) (52)
v(xy) = —2x(x—1)(2x—1)sin’(my) (53)
p(xy) = sin(x)cogy) (54)

from which, one can derive the corresponding body force

by = 2m(—1+46x+ 2(1? —3)x% — 413 + 21°x*) sin(2my) + cogx) cog(y) (55)
by = 41mx(1—3x+2x%)cog2my) — 12(1— 2x)sin*(my) —sin(x)sin(y)  (56)

Let Q = [0,1] x [0,1] be the flow domain. Values af andv are prescribed on
the boundaries according to (52) and (53), respectivelygreds the hydrostatic
pressure mode is eliminated by fixing the pressure value migéesnode. In the
present study, we take the centre of the cavity as a refeiaoing

The simulations are performed for a set of grifis] x 11,21x 21, --- ,51x 51}. In
Table 1, we present an accuracy analysis with respect taefitement for results
obtained by the proposed scheme and the standard secarzendral FD scheme.

It can be seen that the former outperforms the latter reggrdoth the solution
accuracy and the rate of convergence. The overall conveegattes are 3.01 far,

3.11 forv and 2.88 forp by the proposed scheme, while the corresponding values
are 2.09, 2.18 and 2.78 by the FDM.

5.3 Recirculating cavity flow driven by combined shear anddydorces

This problem is taken from [Shih and Tan (1989)]. The redating flow of a
Newtonian fluid in a square cavity (Figure 5) is induced bydbmbined shear and
body forces. The governing equations are of the form (1)4(23 assumed that the
velocity profile along the top boundary ¥s= 0 andu(x,1) = 16x*(x — 1)2 while
the other walls are non-slip and stationary. The body fontech is present in the
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y-direction only, is given by

b= 0 (57)

tw:_égzwoo+2wum%w+WWWMWH—645WKhww—mngWﬂw]
(58)

where

f(x) =x*— 2 + x2

gy) =y -y

F(x) = [ f(x)dx= 0.2 - 0.5x* +x3/3

Fr(x) = F(X)F"(x) — [f'(X))2 = —4x® + 12x° — 14x* + 83 — 2x2
F2(x) = [ f(x)f'(x)dx = 0.5 f (x)]2

Gu(y) =9(y)g" (y) — g (¥)g"(y) = —24y° +8y> — 4y

The exact solution to this problem is known to be

u(x,y) = 8f (x)g'(y) = 8(x" — 2 +x°) (4y° ~ 2y), (59)
v(xy) = —8f'(x)g(y) = —8(4C — 6"+ 2)(y" —y°), (60)
MKmmﬁ:égFMMWWH4%©dWH+64%©www%W—kﬂwﬂ- (61)

We employ several gridg,21x 21,31x 31,--- ,71x 71}, and the two previously
discussed boundary treatments for the pressure to sintbhkaftow. Table 2 com-
pares the present results with those obtained by FD appatikiimschemes. In the
case of IRBFs, the imposition of the pressure boundary tiondin the Dirichlet
form (Treatment 2) yields more accurate results than thoskd Neumann form
(Treatment 1). In the case of FDs, the two treatments havidasiperformances.
The IRBF solutions are seen to be more accurate and to canfastgr than the FD
ones. To achieve a similar level of accuracy, the FDM regurelenser grid than
the proposed scheme. For example, with Treatment 1, RM&easfthep solution
are 29 x 10~ using a grid of 61 61 for the former and .8 x 10~ using a grid of
21x 21 for the latter. Figure 6 shows profiles of the velocity oa torizontal and
vertical centrelines of the cavity, which are in very goodesgnent with the exact
solution.

5.4 Lid-driven cavity flow

It differs from the previous problem in that the velocity bétlid is now prescribed
asl= (1,0)" and the body force components are set to zeros. There are thus
two values ofu at the two top corners, making the stress solution thereuking
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The singular lid-driven cavity flow is widely used as a tesblppem for the as-
sessment of accuracy of numerical solvers in CFD. From taeature, FD results
using very dense grids by [Ghia, Ghia, and Shin (1982)] aedgs-spectral results
by [Botella and Peyret (1998)] have been often cited for canspn purposes. It
is noted that for the latter, the field variables were decaaganto the regular
part that is approximated with Chebyshev polynomials aedsthgular part that is
treated analytically; and a benchmark spectral solutiofiRf= 100 andRe= 1000
were provided.

We use Treatment 2 only in the imposition of the pressure tancondition. A
wide range oRe {100,400,100Q 3200} and uniform grids{11x 11,31x 31,51x

51 71x71,91x91,111x 111 129x 129} are considered in the simulation. The
time step is chosen in the range afil@o 000025. Smaller time steps are em-
ployed for higheiReand higher grid densities. Tables 3, 4 and 5 show the present
results for the extrema of the velocity profiles along thetiedimes of the cavity
for several Reynolds numbers in comparison with some otl@&ng, Ghia, and
Shin (1982); Deng, Piqueta, Queuteya, and Visonneaua {1B8&lla and Peyret
(1998); Sahin and Owens (2003); Bruneau and Saad (2006)R&e 100 (Table

3) andRe= 1000 (Table 4), the “errors" are calculated relative to anttenark"
solution [Botella and Peyret (1998)], which shows that thespnt results are very
comparable with others. Velocity profiles along the veftaad horizontal cen-
trelines for different grid sizes @&e= 1000 are displayed in Figure 7, where a
grid convergence of the IRBF solution is clearly observegl the present solution
approaches the benchmark solution very fast as the gridtgémancreased). We
virtually achieve the benchmark solution with only:991 grid in comparison with

a grid of 129x 129 used to obtain the benchmark solution in [Ghia, Ghia,Sinid
(1982)]. In addition, those velocity profiles BRe= {100, 400, 1000, 3200with
the grid of 129« 129 are also shown in Figure 8, where the present solutiotshma
the benchmark ones very well.

Figure 9 exhibits the distributions of the pressure for the/fatRe= {100, 400,
1000, 3200 which look feasible in comparison with those reported in Itteza-
ture. We also show streamlines and iso-vorticity lines,ohtare derived from the
velocity field, for the flow atRe= {100, 400, 1000, 3200in Figure 10 and 11,
where secondary vortices are well captured.

6 Concluding remarks

In this paper, we propose a high-order compact local IRBEm&hfor the discreti-
sation of the pressure-velocity formulation in the Cagrsgyrid point-collocation
framework. Two boundary treatments for the pressure, obased on values of
the pressure and the other based on normal derivative vafube pressure, are
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studied. Like FDMs, the present approximations involve 8asoin each direction,
resulting in a sparse system matrix. Numerical exampldsanelthat (i) the present
results are superior to the FD results in terms of the saluicuracy and the con-
vergence rate with grid refinement, and (ii) the impositibdaundary conditions

for the pressure yields better results in the Dirichlet fdiran in the Neumann
form.

Acknowledgement: The first author would like to thank USQ, FOES and CESRC
for a postgraduate research scholarship. This work wasostgapby the Australian
Research Council.
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Table 1: Example 2, Stokes flow: RMS errors, local and ovemil/ergence rates forv andp by the proposed method and

FDM. The overall convergence rateare presented in the form &f(h).

Grid Ne(u) Rate Nev) Rate Ne(p) Rate
Present method
11x11 6.5648E-04 —- 5.3296E-04 —- 1.7813E-02 —-
21x21 8.3206E-05 2.98 6.0128E-05 3.15 2.3210E-03 2.94
31x31 2.4489E-05 3.02 1.6978E-05 3.12 7.2212E-04 2.88
41x41 1.0289E-05 3.01 7.0329E-06 3.06 3.2314E-04 2.80
51x51 5.1893E-06 3.07 3.6338E-06 2.96 1.7496E-04 2.75
O(h3.01) O(hS.ll) O(h2.88)
FDM
11x11 3.9284E-03 —- 1.3077E-03 —- 5.8633E-02 —-
21x21 8.7393E-04 2.17 2.0142E-04 2.70 7.0630E-03 3.05
31x31 3.8109E-04 2.05 9.6704E-05 1.81 2.3485E-03 2.72
41x41 2.1146E-04 2.05 5.8460E-05 1.75 1.1005E-03 2.63
51x51 1.3579E-04 1.98 3.7685E-05 1.97 6.8175E-04 2.15
O(h2.09) O(hZ.lS) O(h2'78)
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Table 2: Example 3, Recirculating cavity floRe= 100: RMS errors and local convergence ratesuferand p

Present (Dirichlet) Present (Neumann) FDM (Dirichlet) FDNeumann)
Grid Ne(u) Rate Ne(u) Rate Ne(u) Rate Ne(u) Rate
21x21 3.7323E-04 —- 6.8994E-04 —- 2.7515E-03 —- 2.8806E-03 —-
31x31 8.8758E-05 3.54 3.0028E-04 2.05 1.2587E-03 1.93 1.288E 2.04

41x41 3.3153E-05 3.42 1.8214E-04 1.74 7.2116E-04 1.94 7.1881E 1.95
51x51 1.6052E-05 3.25 1.0607E-04 2.42 4.7417E-04 1.88 4. 7036E 1.89
61x61 8.8940E-06 3.24 6.6161E-05 2.59 3.3465E-04 1.91 3.3P84E 1.92
71x71 5.2855E-06 3.38 3.8683E-05 3.48 2.5021E-04 1.89 2.4875E 1.88

Grid Nev) Rate Nev) Rate Nev) Rate Nev) Rate
21x21 3.0814E-04 —- 1.1666E-03 —- 3.3290E-03 —- 3.0724E-03 —-
31x31 6.9064E-05 3.69 4.3065E-04 2.46 1.5300E-03 1.92 1.5P86E 1.73

41x41 2.7564E-05 3.19 2.3730E-04 2.07 8.7191E-04 1.95 8.9148E 1.86
51x51 1.3899E-05 3.07 1.3227E-04 2.62 5.5126E-04 2.05 5.6429E 2.05
61x61 8.2254E-06 2.88 7.9870E-05 2.77 3.8059E-04 2.03 3.8QHOE 2.04
71x71 5.2222E-06 2.95 4.6700E-05 3.48 2.7666E-04 2.07 2.80H9E 2.11

Grid Ne(p) Rate Ne(p) Rate Ne(p) Rate Ne(p) Rate
21x21 2.8508E-04 —- 7.3830E-04 —- 2.5036E-03 —- 5.8569E-03 —-
31x31 6.2890E-05 3.73 2.9702E-04 2.25 1.1474E-03 1.92 2. 8XFE 1.84

41x41 2.3775E-05 3.38 1.7771E-04 1.79 6.5178E-04 1.97 1.5085E 2.14
51x51 1.2035E-05 3.05 1.0679E-04 2.28 4.1769E-04 1.99 9.5888E 2.01
61x61 7.0999E-06 2.89 6.7371E-05 2.53 2.9038E-04 1.99 6.68M6E 2.03
71x71 4.5087E-06 2.95 4.0092E-05 3.37 2.1349E-04 2.00 4.9PH8E 1.93




Table 3: Example 4, Lid-driven cavity flolRe= 100: Extrema of the vertical and horizontal velocity prafiEong the
horizontal and vertical centrelines, respectively, oftheity. "Errors" are relative to the "Benchmark" solution.

Method Grid Umin Error (%)  Ymin Vimax Error (%) Xmax Vimin Error (%)  Xmin
Present 1k 11 -0.1912173 10.66 0.4807 0.1595908 11.13 0.2307 -0.22360 11.90 0.8136
Present 3k 31 -0.2102259 1.78 0.4578 0.1768808 1.50 0.2370 -0.2501843 1.43 0.8107
Present 5k 51 -0.2121503 0.88 0.4579 0.1781849 0.77 0.2372 -0.2520400 0.69 0.8107
FDM (¢ — w) [Ghia] 129x 129 -0.2109 1.47 0.4531 0.17527 240 0.2344 -0.24533 3.38040.
FDM (G- p) [Bruneau] 129<129 -0.2106 1.61 0.4531 0.1786 0.54 0.2344 -0.2521 0.67 2B6.81
FVM (G- p) [Sahin] 257x 257 -0.213924 0.06 0.4598 0.180888 0.73 0.2354 -0.256603 10 1.0.8127
FVM (G- p),cpi. [Deng] 128<128 -0.21315 042 — 0.17896 034 — -0.25339 0.16 —
Benchmark [Botella] -0.2140424 0.4581 0.1795728 0.2370.25%8030 0.8104

Table 4. Example 4, Lid-driven cavity flolRe= 1000: Extrema of the vertical and horizontal velocity pedikalong the
horizontal and vertical centrelines, respectively, of¢heity. "Errors" are relative to the "Benchmark" solution.

Method Grid Umin Error (%)  Ymin Vmax Error (%)  Xmax Vimin Error (%)  Xmin
Present 5k 51 -0.3629562 6.59 0.1787 0.3515585 6.73 0.1637 -0.4898251 7.07 0.9052
Present Tk 71 -0.3755225 3.36 0.1753 0.3637009 3.51 0.1608 -0.5086961 3.49 0.9078
Present 9k 91 -0.3815923 1.80 0.1735 0.3698053 1.89 0.1594 -0.5174658 1.82 0.9085
Present 11% 111 -0.3840354 1.17 0.1728 0.3722634 1.24 0.1588 -0.540968 1.16 0.9088
Present 129129 -0.3848064 0.97 0.1724 0.3729119 1.07 0.1586 -0.5Zv335 0.90 0.9089
FDM (¢ — w) [Ghia] 129x 129 -0.38289 1.46 0.1719 0.37095 1.59 0.1563 -0.5155 2.2®068.
FDM (U— p) [Bruneau]  256<256 -0.3764 3.13 0.1602 0.3665 2.77 0.1523 -0.5208 1.19 0R.91
FVM(G—- p),cpi. [Deng] 128<128 -0.38511 089 — 0.37369 086 — -0.5228 081 —
Benchmark [Botella] -0.3885698 0.1717 0.3769447 0.1578.520771 0.0908
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Table 5: Example 4, Lid-driven cavity flow: Extrema of the tieal and horizontal velocity profiles along the horizoraad

vertical centrelines, respectively, of the cavity at diffiet Reynolds numbeRe= {400,3200}.

Re Method Grid Umin Ymin Vmax Xmax Vmin Xmin

400 Present 3% 31 -0.316205 0.2833 0.293696 0.2236 -0.435578 0.8583
Present 5k 51 -0.323158 0.2814 0.297493 0.2248 -0.442770 0.8605
Present Tk 71 -0.325168 0.2804 0.300818 0.2252 -0.449146 0.8620
FDM (¢ — w) [Ghia] 129x 129 -0.32726 0.2813 0.30203 0.2266 -0.44993 0.8594
FVM(G— p),cpi. [Deng] 128« 128 -0.32751 — 0.30271 — -0.45274 —
FVM(U— p) [Sahin] 257« 257 -0.328375 0.2816 0.304447 0.2253 -0.456316 0.8621

3200 Present 9% 91 -0.406818 0.0983 0.403852 0.1016 -0.528864 0.9451
Present 11% 111 -0.418545 0.0962 0.415776 0.0995 -0.544789 0.9462
Present 12% 129 -0.423061 0.0963 0.420565 0.0994 -0.551563 0.9466
FDM (¢ — w) [Ghia] 129x 129 -0.41933 0.1016 0.42768 0.0938 -0.54053 0.9453
FVM(U— p) [Sahin] 257x 257 -0.435402 0.0921 0.432448 0.0972 -0.569145 0.9491
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n, n, n, N,

Figure 2: Local 3-point 1D-IRBF stencil.

0 20 40 60 80 100

B
Figure 3: Example 1, ODH\ = 51: the effects of the MQ widt3 on the solution
accuracy.
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—eo— Present scheme
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——FDM
—e—Present scheme
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Figure 4. Example 1, ODH} = 20, N = {5,7,9,...,51}: the effects of the grid
sizeh on the system matrix condition (left) and the solution aacuyr(right) for the
FDM and the present scheme. The matrix condition number gas®(h—2) for
the two methods while the solution convergesOgh?) for FDM and O(h323) for
the IRBF method.
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Figure 5: Example 3, Recirculating cavity flow: A schematiggdam of the phys-
ical domain (non-dimensionalised).
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Figure 6: Example 3, Recirculating cavity flow, TreatmenR2~= 100: Variations
of u along the vertical centreline and wfalong the horizontal centreline by the
present scheme using a grid of 221 and the exact solution.
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Figure 7: Example 4, Lid-driven cavity flodiRe= 1000: Profiles of ther-velocity
along the vertical centreline and tirevelocity along the horizontal centreline using
several grids. Note that curves for the last three grids rdestinguishable and
agree well with the benchmark FD results.
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Figure 8: Example 4, Lid-driven cavity flow, 129129: Profiles of thes-velocity
along the vertical centreline and tkevelocity along the horizontal centreline for
Re= 100 (top-left),Re= 400 (top-right),Re= 1000 (bottom-left) andRe= 3200

(bottom-right).
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Figure 9: Example 4, Lid-driven cavity flow, 120129: Isobaric lines of the flow
for Re= 100 (top-left),Re= 400 (top-right),Re= 1000 (bottom-left) andRe=
3200 (bottom-right). The contour values used here are talkdre the same as
those in [Abdallah (1987)], [Botella and Peyret (1998)] dBduneau and Saad
(2006)]
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Figure 10: Example 4, Lid-driven cavity flow, 1209129: Streamlines of the flow
for Re= 100 (top-left), Re= 400 (top-right),Re= 1000 (bottom-left) andRe=
3200 (bottom-right). The contour values used here are taidre the same as
those in [Ghia, Ghia, and Shin (1982)]
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Figure 11: Example 4, Lid-driven cavity flow, 129129: Iso-vorticity lines of the
flow for Re= 100 (top-left), Re= 400 (top-right),Re= 1000 (bottom-left) and
Re= 3200 (bottom-right). The contour values used here are takée the same
as those in [Ghia, Ghia, and Shin (1982)]



