Chick Sexing and Novice Programmers:
Explicit Instruction of Problem Solving Strategies

Michael de Raadt, Richard Watson

Department of Mathematics and Computing
University of Southern Queensland
Toowoomba, Queensland, 4350

{deraadt, rwatson}@usqg.edu.au

Mark Toleman

Department of Information Systems
University of Southern Queensland
Toowoomba, Queensland, 4350

markt@usqg.edu.au

Abstract

This study examines the problem solving strategies used
by expert programmers. Past studies of the cognitive
processes of expert programmers suggest the existence of
plans that describe the problem solving strategies held by
these programmers. To date such strategies, which are
relevant to novice programmers, have not been explicitly
incorporated into the curricula of introductory
programming courses. In revisiting these earlier studies
and confirming the existence of the strategies held by
experts, this study argues for inclusion of explicit strategy
instruction.

Keywords: novice, expert, programming, problem

solving strategies, explicit instruction

1 Introduction

Novice programmers have traditionally acquired problem
solving skills through implicit, rather than explicit,
instruction. Such skills are developed by the student
while attempting to solve practice problems, in the
absence of a systematic framework or methodology that
can be used as a guide to choosing an appropriate
problem solution.

In a number of independent studies, unrelated to
programming instruction, implicit instruction in solving a
problem has been shown to be result in poor learning
outcomes. (These are reported in Section 3 of this paper.)
It is reasonable to expect that implicit-only instruction of
programming problem solving strategies may also be less
effective than instruction that includes explicit instruction
of these strategies.

Copyright © 2006, Australian Computer Society, Inc.
This paper appeared at the FEighth Australasian
Computing Education Conference (ACE2006), Hobart,
Tasmania, Australia, January 2006. Conferences in
Research in Practice in Information Technology, Vol. 52.
Denise Tolhurst and Samuel Mann Eds. Reproduction for
academic, not-for profit purposes permitted provided this
text is included.

Whatever form of instruction is devised, students need to
learn the kind of skills that expert programmers possess.
The work of Soloway (1986) provides a concrete and
rigourous framework for classifying these strategies, and
S0 is an attractive base for an explicit strategy instruction
curriculum. Before proceeding to do so, it is necessary to
test the Soloway model to ensure that the expert
knowledge he describes is indeed exhibited by proficient
professional programmers. This is the primary aim and
of this paper.

The paper is organised as follows. Section 2 offers
background justification for this study. Section 3
explores past studies of explicit instruction, and
introduces the goal/plan framework described by
Soloway. Section 4 describes the experimental
methodology followed by this study. Section 5 presents
the results of the study. Finally, conclusions are drawn in
Section 6.

2 Background — Knowledge and Strategies

Traditional instruction of programming has focused on
providing a novice with programming knowledge. This
includes the constructs and facilities available in a
language and the rules that describe how to combine
these constructs and facilities. Most programming texts
devote the majority of their content to programming
knowledge. = A distinction can be made between
programming knowledge and strategies (Davies 1993,
Robins, Rountree & Rountree 2003). Programming
strategies can be described as understanding how to apply
programming knowledge appropriately to solve problems.
An instructor may present a problem to illustrate some
programming knowledge, say a looping construct. The
instructor may then display and describe a coded solution
to the problem. A novice may say "I understand how the
for loop works and I can see your program solves the
problem, but I don't think I could have dreamed up that
solution myself." This novice has distinguished between
their programming knowledge and their programming
strategies (or lack thereof).

Programming problem solving strategies relate
specifically to a programmer designing and implementing

a solution to a stated problem. These strategies are
developed in a novice's early study of programming.
These strategies might be contrasted with other
programming strategies applied by programmers, such as
systems analysis, code maintenance, teamwork, version
control and so on.

In a census of eighty-five introductory programming
courses from Australian and New Zealand universities,
participants were asked to estimate what proportion of
time was spent in face-to-face classes teaching problem
solving strategies (de Raadt, Watson & Toleman 2004).
Estimates varied greatly with some participants indicating
problem solving strategies were not part of their course
while others claimed their entire lecture time focussed on
teaching of problem solving strategies. Such variation
suggests many instructors were not distinguishing
teaching of problem solving strategies from teaching of
programming knowledge. Several participants felt
problems used in their teaching were not of a large
enough scale to apply teaching of problem solving
strategies explicitly.

An analysis of the forty-nine texts found by the census to
be in use showed varying degrees of problem solving
content. Only a small number of texts introduced
problem solving and attempted to integrate this teaching
throughout the text using case studies of problems being
solved. Some texts offer a brief mention of problem
solving in an early chapter, but this teaching is not
obviously integrated in the remainder of the text. Some
texts avoid problem solving, as a specific topic,
altogether.

When a novice has completed a study of programming
they are expected to have developed some expertise in
problem solving strategies. The most common form of
problem solving instruction begins with a worked
example. Students are shown a simple problem
specification and its corresponding solution, together with
some explanation from an instructor (or a textbook
author) of why this particular solution was adopted.
Following exposure to a range of simple problems and
their solutions, a student is given a problem definition,
usually not too different from those already encountered,
and expected to devise a solution. A novice is expected
to build strategies by undertaking the problem solving
process, applying reasoning about the examples
presented. Typically no framework to assist in building
understanding is presented to the student. This is an
implicit approach to acquisition of problem solving
strategies. By contrast, explicit problem solving strategy
instruction presents concrete techniques that a student can
use to transform a problem definition to its solution.

3 Explicit Instruction

A quantitative difference between teaching through
explicit and implicit approaches is shown by Biederman
and Shiffrar (1987). Sexing of day-old chicks is
performed by experts employed by commercial egg
producers. The distinction between male and female
chicks remains hard to determine until one month of age.
Being able to determine the gender of chicks early avoids

feed wastage on unwanted males. Professional sexers
classify over 1000 chicks per day and can identify gender
in less than a second with 98% accuracy. Traditionally
training of sexers takes place over six to twelve weeks of
implicit instruction (observation, trial-and-error) in
special schools. Sexers can then take years to master the
task and achieve the required accuracy. A group of
volunteers with no sexing experience were asked to
identify the gender of 18 chicks from genitalia
photographs. Performance of these subjects was 60.5%,
slightly greater than chance. The same photographs were
shown to five expert sexers who achieved an average
performance of 72%. A sexer with vast experience (50
years and 55 million chicks) was recruited to identify the
gender of a number of chicks from a series of photos.
Afterwards the expert was asked to identify the visual
aspects that prompted his decisions. From this interview
an information sheet was created describing key visual
aspects. The volunteers were split into a control and
experimental group. The information sheet was given to
the experimental group to study for one minute. After
instruction volunteers were retested using a second set of
randomly ordered photographs. Control subjects showed
no improvement in their accuracy. Those volunteers in
the experimental group who had read the sheet averaged
performance of 84%, which was higher than experts.
According to Baddeley (1997) this demonstrates explicit
learning can be more effective than months of implicit
learning.

Studies have shown that implicit-only learning can
improve a student's performance but does not create an
understanding of the underlying systems used. Another
study, closer to programming, that examines implicit
learning is derived from the study of language
acquisition. Children learn the majority of their native
language through implicit means. Second language
instruction is usually achieved through explicit study of
the grammar of a new language. Reber (1993) used a
small, finite state artificial grammar to test the
effectiveness of implicit learning of a second language.
In this experiment an experimental group was shown
sequences generated from the grammar without being
shown the rules of the grammar. A control group was
shown randomly generated sequences. Both groups were
then shown 44 sequences; half were grammatically
correct and half not. Subjects were asked to determine
which were correct. Experimental subjects achieved 79%
accuracy while members of the control group showed no
capacity to accurately distinguish sequences. This
showed that the experimental group were able to
recognise sequences from the grammar, however when
asked to describe the grammar they had been exposed to,
experimental subjects were unable to show any
understanding of the rules used to generate sequences. A
similar study (Berry and Dienes 1993) asked subjects to
learn the workings of a simulated transport system
through implicit instruction only. After a series of tests,
subjects showed an improvement in performance
operating the system, but no increase in their
understanding of the underlying rules of the system.

The previously described experiments clearly indicate the
weaknesses of implicit learning. Novice programmers do

learn problem solving strategies over time though implicit
instruction. But can instruction of problem solving
strategies be improved by incorporating explicit
instruction? Could this improve not only the speed of
learning, but also create a more structured understanding
of how problem solving strategies are applied?

If explicit instruction of programming problem solving
strategies is to be included in introductory programming
courses, such explicit strategies must first be captured.
As in the chick sexing experiment such strategies could
be captured from the tacit knowledge of expert
programmers. Two considerations are: (1) what expert
strategies are relevant to novice programmers and (2)
how can these be captured?

When considering strategies relevant to novices it is
possible to see programming problem solving strategies
existing at several levels. The highest level is the system
level. Here well established strategies have been
formulated for designing and implementing systems,
usually following a waterfall software development
process (analyse, design, implement, test, maintain); new
processes such as extreme programming also fall into this
level. This level of programming problem solving
strategy is beyond the novice in their initial study of
programming because they are limited by the
programming knowledge they possess. At a lower level
are algorithmic problem solving strategies. This level
would include established strategies such as sorting,
searching and the application of data structures; patterns
as applied to object-oriented programming may also fall
into this level. A novice may be able to start using such
strategies at the end of a semester-long study. A lower
sub-algorithmic level is conceivable that relates to the
strategies applied to the most basic processes such as
applying a condition to guard a division or applying a
loop appropriately to capture input until a sentinel is
found. This level of programming problem solving
strategies is particularly relevant to novices as they are
developing an initial programming knowledge of basic
constructs and features.

3.1 Goals and Plans

When investigating how to capture expert strategies the
literature reveals a number of cognitive studies of
programming problem solving strategies performed on
expert programmers during the 1980s (a number are
covered in Hoc et al 1990, and also in Koenemann 1991,
Soloway 1982). Similar studies of novice programmers
have been performed (Soloway 1980, Spohrer 1986) and
the distinction between novices and experts has also been
studied (Fix & Wiedenbeck 1993, Gugerty & Olson
1986). Of note was the emerging idea of plans or schema
which can be seen as sub-algorithmic problem solving
strategies.

Soloway (1986) described how expert programmers
possess a tacit body of programming strategies developed
through solving problems. When presented with a novel
problem an expert is able to adapt a canned solution from
this tacit body of strategies. Soloway proposed a theory
that experts recognise goals present in a problem

statement and apply plans that will achieve each goal. A
catalogue of goals and plans used for PROUST (an
Intelligent Tutoring System) is found in Johnson (1986).
An expert programmer must also know how to integrate
these plans to form a whole solution. Take, for example,
the following problem.

Read in any number of integers until the value
99999 is encountered. Assume the user will enter
valid integers only. Output the average.

This problem is likely to have many potential solutions.
However, there are a number of critical goals that can be
identified:

= Input the numbers

= Compute the sum of the numbers

= Compute the count of the numbers

= Calculated the average from the sum and the
count (keeping in mind that the count of values
could be zero)

= Qutput the average

Figure 1 shows a possible list of plans and how they
could be integrated. The input of numbers is achieved in
a Sentinel Controlled Input Sequence (3) in which are
nested an input to prime the loop test (4) and another (7)
for possible subsequent inputs (these inputs could be
combined depending on implementation). To capture the
count of values a variable is used that must be initialised
(1). The count accumulates in a Sentinel Controlled
Count Loop (5). So that input is only to be captured
once, this loop needs to be merged with the input
sequence. A similar initialisation (2) and integrated loop
(6) is required to capture the sum of values. When input
is complete the average is calculated. As this involves a
division, the count should be tested to see it is not zero
before performing the division (8). The result, or some
message explaining the lack of a result, will then be
output (9). The ordering of plans is critical, so abutment
is used to integrate the plans into a single sequence.

1. Initialisation
2. Initialisation
3. Sentinel Controlled| | 5. Sentinel 6. Sentinel
Input Sequence Controlled Controlled
Count Sum Loop
4. Input Loop
7. Input

8. Guarded Division

9. Output

Figure 1: Plans and how they are integrated

Spohrer and Soloway (1985) used the goal/plan
framework to evaluate solutions created by novice
programmers in Pascal to discover which "bugs" were

being commonly created. The application of goal/plan
analysis seems to be applicable to all languages with an
imperative component with most plans relating to
structured programming constructs. Although Soloway
and his colleagues intended to develop a goal/plan based
introductory programming curriculum, this was never
completed (Soloway 2003).

de Raadt, Watson and Toleman (2004) applied goal/plan
analysis to test if students' solutions to the above
problem. Participating students had completed one
semester's instruction where problem solving strategies
were taught implicitly only. The results showed
significant weaknesses in initialisation, creating a sentinel
controlled loop, merging plans and guarding division.
This demonstrated that novices were not learning several
important problem solving strategies through implicit
only instruction.

If expert programming problem solving strategies can be
extracted it may then be possible to integrate explicit
instruction of these strategies into an introductory
programming curriculum. Soloway's goal/plan theory is
a reasonable model of how experts apply programming
problem solving strategies, but is it actually how experts
think? This study attempts to verify that experts do
exhibit plans in their solutions to problems of the scale
relevant to novice programmers.

4 Methodology

An experiment was conducted with experts. As Winslow
(1986) suggests there are several levels between a novice
and an expert. In this study participants were considered
qualified if they were generating code on a regular or
daily basis.

As with the chick sexing experiment, participants were
asked to solve problems on paper, away from a computer.
The focus of analysis was not on the syntactical
correctness of solutions, but on how experts solved the
problems. Using paper was a means of enforcing this
focus.

Participants were timed to see how long they took to
solve each problem. Participants were asked not to rush
or, where more than one programmer was participating
simultaneously, not to compete.

The aim of this experiment was to discover sub-
algorithmic strategies possessed by experts which are
relevant to novice programmers as they begin their study
of programming. The strategies being elicited would be
used by experts on a regular basis within solutions to
greater problems. Three problems were chosen that a
novice would be expected to solve at the end of an initial
semester of programming. For each, the problem
statement, identifiable goals and expected plans are
shown below. The problems increase slightly in
complexity from Problem 1 to Problem 3. The problems
are sufficiently generic to permit solutions from a broad
range of languages.

4.1 Problem1

Read in 10 positive integers from a user. Assume
the user will enter valid positive integers only.
Determine the maximum.

4.1.1 Goals

= Input 10 numbers
= Determine maximum
= QOutput maximum

4.1.2 Plans

1. Initialisation

2. Counter Controlled Loop

3. Input

4. Maximum

5. Output

4.2 Problem 2

Read in any number of integers until the value
99999 is encountered. Assume the user will enter
valid integers only. Output the average.

Goals and plans as shown above in section 3.1.

4.3 Problem 3

Input any number of integers between 0 and 9.
Assume the user will enter valid integers only.
Stop when a value outside this range is
encountered. After input is concluded, output the
occurrence of each of the values 0 to 9.

4.3.1 Goals

= Input numbers
= Count set
= Qutput set

4.3.2 Plans

1. Counter Controlled Loop

2. Initialisation

3. Sentinel Controlled Input Sequence

4. Input

5. Count Set

6. Input

1.

Counter Controlled Loop

8. Output

4.4 Goal/Plan Analysis

Results were analysed by checking for the presence of
each of the plans above, as well as nesting and merging in
appropriate locations and an overall correctness measure
of abutment. In most cases the presence of a plan is
easily determined. For instance when searching for a
maximum plan, look for a test comparing the current
maximum with a new candidate and then an assignment if
appropriate. With counter controlled loops, only loops
including a test of an incrementing counter variable were

accepted.

g ()

€

A wox =~ yals

Jﬁ//ﬁwﬁ-o;éé '0-"|H3
<
bl

= The maximum is output at the end of the
program.

= The input and maximum elements are nested
inside the counter controlled loop.

Sentinel controlled loops were only considered present if
the looping construct tested that the first input could have
been the sentinel and did not include the sentinel as an
input.

P)N Svpm % /\'{e oy 1np /4’ ’.f"‘efef (.41/5’55(-(/

Do Som= O O
R S S . —
inp = Sht (lrpet Box (“Cnter g number)\
While inp <> 92992

Sem = Sum t lnp

=+ 1 !

irnp = Clat (/np‘,i ?ax/\ Enter a an.;-k'))
éoop’

7 T 7
st (B ([Aore LA

I'F = O 7‘[@«

/”,\'s Dox " /Vo /lu/mz&)‘ €1~/.¢/ep(”
Else

Mso Box 4-/&::56 . K Cr‘///fu/’n (T
Eng I

Figure 3: An acceptable solution to Problem 2

Figure 3 shows a participant's sol solution to Problem 2.
From this solution the following features can be
identified.
= The sum and count are initialised.
= The loop is a sentinel controlled loop as the test
is primed by an initial input and the sentinel will
not be included in the sum or count.
= [fthe count of inputs is zero, the calculation of
the average (including a division by the count)
will not be performed.

TN, I, TN (\

- K ok e O oA -0« dAl - 0:
uhle / val 7- 92999

'pr»—'H/"'E-N@-er_ A nunter:).
Scod 7t)T Bypd N -

va—-*'{\(’ﬂ'_/'/f!*-c\l A~ -"-/“'f"?/‘u 0)

ot A Lupd)

G < yally T

(LAY, .4 5\10\1'

&
‘P\r,v‘jf/“'ﬁ"m (AN 2/04 “) may)

£

Figure 2: A participant's solution to Problem 1

In Figure 2 a solution to Problem 1 created by a
participant is presented. When performing goal/plan
analysis the following features were identified.

The maximum is initialised; the first input will
become the new maximum.

There is a counter controlled loop; the for loop
will repeat 10 times regardless of user input.
The user is able to enter input.

Each input is compared with the current
maximum and kept if greater.

ded ol T 4Rl « yol
cw-i 4
4 (floed)

predt Aiemare v 78T qdd g).
¥ T 7% 7

Figure 4: A poor solution to Problem 2

Figure 4 shows another participant's solution to Problem
2. This solution fails to demonstrate a number of
elements that were being identified.

= The loop is not a sentinel controlled loop. The
input value used in testing is initialised but it is
not primed with user input (which could be the
sentinel). The sum and count will include the
sentinel.

= The division operation used to calculate the
average is not guarded.

For a set counting plan only methods of classifying and
counting inputs, as opposed to capturing and keeping the

user's input, were acceptable. In some languages
initialisation of variables and arrays is done
automatically; where this was the case participants were
seen as having fulfilled the initialisation components of
the plans.

it e L1
e W NIAR S
v [- 0 <o i) Wf_kﬂ:»y
Fom 2z Kk
winle (om BE <z £X F>=27) ¢
hﬁmmgkuh—k‘

Lon = K

£ -
o T 0 k<io J=r7) f

eprr B Fré-,?wh?%u # <<k <<

. ™,
el 1 U.. << %M«w 2_) |
<< pndl

It}

Figure S: A participant's solution to Problem 3

In Figure 5 a participant's solution to Problem 3 is shown.
From this solution the following features can be
identified.

= A count of numbers 0 to 9 is being kept in an
array. The array elements are initialised to zero
using a counter controlled loop at the start of the
program.

= The loop is a sentinel controlled loop as the test
is primed by an initial input and the sentinel (any
value outside the range 0 to 9 will not be
counted.

= Each input is counted using the input as an index
into the array.

= The counts are output using a counter controlled
loop at the end.

5 Results and Discussion

Solutions from 25 experts were gathered for each
problem. This included 11 academics involved in the
teaching of programming and 14 professional
programmers.

In one instance a participant used an event driven
paradigm to solve the problems. With this case goal/plan
analysis could not be applied as many of the underlying
constructs, such as loops, were not used. This
demonstrates that experts do think in different ways and
that goal/plan analysis is not completely universal. The
solutions of this participant were not used in analysis. In
three instances participants created a solution to some
different problem. In these cases it was clear they had
misread the instructions rather than being unable to solve
the set problem. These solutions were disqualified from
analysis, but the remaining solutions from these
participants were used.

Prob.1 Prob.2 Prob.3 Overall
Academics | 4:50 4:52 6:17 15:58
Professionals 5:33 5:17 6:16 17:06
All 5:13 5:05 6:16 16:34

Table 1: Average times for problems by expert type in
minutes and seconds

Table 1 shows times taken by participants to solve the
problems. The average time to complete all three
problems was 16min 34sec. To give a comparison, the
aforementioned previous study (de Raadt, Watson and
Toleman, 2004) showed novices at the end of a semester's
instruction taking at least 20min to solve Problem 2
alone. There was a difference in times between
participants who were academics and those who were
professional programmers, although it was not proven to
be significant in this sample. The six fastest times were
contributed by academics. This may have been due to the
simplified nature of the problems which would be
familiar to academics but less so to professionals. Also,
taking professionals away from their normal coding
environment may have had an impact here. There was no
real difference in average times for problem three, so it
may be assumes that, by this stage, professional
programmers had adapted to solving simple problems on
paper. There was not a significant difference in the
presence of plans between academics and professionals
(3% difference in overall plan used).

All experts achieved correct abutment (the correct
ordering of plans). In other words, no expert, for
instance, placed the output of a maximum before the
calculation of the maximum.

Plan Presence
Max Initialised 100%
Counter Controlled Loop 100%
Input Plan 100%
Maximum Plan 100%
Output Plan 87%
Input Nested in Counter Controlled Loop 100%
Max Plan Nested in Counter Controlled 100%
Loop

Table 2: Presence of plans for Problem 1

Problem 1 showed almost universal conformity to the set
plans. Three participants included no output and this may
be due to the wording of the problem that asked for the
maximum to be determined but did not specifically ask
for an output.

Plan Presence
Sum Initialised 92%
Count Initialised 100%
Sentinel Controlled Input 92%
Sentinel Controlled Count 92%
Sentinel Controlled Sum 92%
Guarded Division 33%
Output Plan 92%
Loop Plans Merged 100%
Inputs Nested in Sentinel Controlled Loop 92%
Output Nested in Guarded Division 33%

Table 3: Presence of plans for Problem 2

Problem 2 showed most participants conforming to the
expected plans. In some cases individual participants
failed to show one plan. Where a person failed to show a
sentinel controlled loop, the looping plans merged with
this loop were considered as not being present, even
though they may have attempted to capture a count or
sum. One obvious deficiency is shown by the absence of
a guarded division. Only one third of participants'
solutions contained a guarded division plan.

Plan Presence
Counter Controlled Loop (for Initialisation) 91%
Array Initialisation 100%
Sentinel Controlled Input 86%
Count Set Plan 95%
Counter Controlled Loop (for Output) 86%
Output Plan 100%
Initialisation nested in Counter Controlled 91%
Loop

Inputs nested in Sentinel Controlled Loop 91%
Count Set nested in Sentinel Controlled 86%
Loop

Output Nested in Counter Controlled Loop 95%

Table 4: Presence of plans for Problem 3

Problem 3 showed most participants conforming to the
expected plans. This problem encouraged the greatest
variation in solutions; this difference was found in how
the data was stored (an array was expected, but some
participants used variables), initialisation of the data store
(where an array was used, a counter controlled loop
containing element initialisations was expected, but some
participants used set notation to initialise the array) and
set counting (the user's input could have been used as
index to the array, but some participants used a 'switch'-
like construct to increase counts).

The problem statements were simplistically worded and
this may have affected the results. For instance, in
Problem 1, participants are asked to "determine" but not
output the maximum, which was part of an anticipated
solution. Some participants did not output the maximum
and it is difficult to determine if this was because of the

wording of the problem or that they simply forgot to do
SO.

The poor showing of guarded division may also have
been a product of simplistic problem statements.
Participants may also have been affected by being out of
their normal programming environment and without the
tools they would use for testing such boundary
conditions. After participants completed the three
problems they were told what plans were expected. At
this stage the participants' solutions had not been
analysed, however in some cases participants admitted
neglecting to include a guarded division and saw that it
was required. This might be contrasted to a novice who
might not apply a guarded division because they are
unable to or unaware that they need to.

6 Conclusions
Two main conclusions are drawn from this experiment.

Experts exhibit the plans catalogued by Soloway in their
solutions to problems.

The results show that in most instances experts produce
solutions that exhibit plans that can be anticipated from
the catalogue of plans created by Soloway and his
colleagues. These findings are constrained to the
problems shown here, but may be transferable to other
problems of the scale relevant to novices in their first
study of programming.

The teaching of Goal/Plan based strategy instruction or
similar is of benefit for novice programmers.

The authors believe that these results are a good
indication that programming problem solving strategies
applied by experts can be explicated. It is likely that
similar plan/schema ideas other than those presented by
Soloway et al could also be explicated through a similar
study. With an understanding of the strategies applied by
experts, it should be possible to create a curriculum of
study that explicitly involves programming problem
solving strategies. When compared to the chick sexing
experiment discussed earlier, this study has extracted the
equivalent of 55 million chicks worth of expert
programmer strategies in preparation to trial such explicit
instruction on novices.

At this stage it would be unjustified to claim that this
would definitively improve instruction and outcomes in
student learning, but it would be remiss not to attempt to
incorporate such teaching. When compared to implicit
instruction of problem solving strategies, the potential
benefits of explicit strategy instruction could be:

= faster learning of problem solving strategies,

= Dbetter performance by novices in solving
problems,

= a better understanding of the underlying
processes involved in solving a problem at the
sub-algorithmic level, and

= providing novices with an informal vocabulary
for discussing and learning problem solving
strategies.

The next stage of this study will be to incorporate
programming problem solving strategies explicitly into an
introductory programming curriculum. Such instruction
would include the correct and incorrect application of the
following strategies.

Average plan

Divisibility plan

Swap plan

Guarded exception plans (including guarded

division plan)

= Sentinel controlled loops and counter controlled
loops and the distinction between

* Min/Max plans

* Sm and count plans

= Stream input/output plans (including user input
and file input)

= Validation plan

= Recursion plans (single- and multi-branching)

Such strategies would build upon the associated
knowledge components throughout the period of
instruction. This explicit instruction would then be

reinforced with paper and computer exercises. Potential
to comprehend and construct programs that rely on these
strategies would be assessed.

Once such incorporation has taken place, this study will
then attempt to judge the impact of explicit strategy
instruction on the understanding of novices and their
potential.

7 References

Baddeley, A. (1997) Human Memory: Theory and
Practice (Revised Edition). Psychology Press, Erlbaum,
UK.

Berry, D.C. & Dienes, Z. (1993) Implicit Learning:
Theoretical and Empirical Issues. Lawrence Erlbaum
Associates Ltd., East Sussex, UK.

Biederman, 1. & Shiffrar, M.M. (1987) Sexing Day-Old
Chicks: A Case Study and Expert Systems Analysis of
a Difficult Perceptual-Learning Task. Journal of
Experimental Psychology: Learning, Memory and
Cognition, 13(4), 640 — 645.

Davies, S.P. (1993) Models and theories of programming
strategy. International Journal of Man-Machine
Studies, 39,237 — 267.

de Raadt, M., Toleman, M. & Watson, R. (2004) Training
Strategic Problem Solvers, SIGSCE Inroads Bulletin,
36(2),48 —51.

de Raadt, M., Watson, R. & Toleman, M. (2004)
Introductory Programming: What's happening today
and will there be any students to teach tomorrow?
Proceedings of the Sixth Australasian Computing
Education Conference (ACE2004), Dunedin, New
Zealand, Australian Computer Society.

Fix, V., Wiedenbeck, S. & Scholtz, J. (1993). Mental
representations of programs by novices and experts.
Proceedings of the conference on Human factors in
computing systems., Amsterdam, The Netherlands,

Addison-Wesley Longman Publishing Co.,
Boston, MA, USA.

Gugerty, L. & Olson, G.M. (1986). Debugging by skilled
and novice programmers. Conference proceedings on
Human factors in computing systems, Boston, MA
USA, ACM Press, New York, NY, USA.

Hoc, J.-M., Green, T.R.G., Samurcay, R. & Gilmore, D.J.
(1990) Psychology of Programming. Academic Press
Ltd., London, UK.

Koenemann, J. & Robertson, S.P. (1991) Expert Problem
Solving Strategies for Program Comprehension,
Proceedings of the SIGCHI conference on Human
factors in computing systems: Reaching through
technology. ACM Press, New York, USA.

Reber, A.S. (1993) Implicit Learning and Tacit
Knowledge. Oxford University Press, New York, USA.

Robins, A., Rountree, J. & Rountree, N. (2003) Learning
and teaching programming: A review and discussion.
Computer Science Education, 13(2), 137 —172.

Inc.,

Soloway, E. (1986) Learning to program = learning to
construct mechanisms and explanations.
Communications of the ACM, 29(9), 850 — 858.

Johnson, W.L (1986) Intention-Based Diagnosis of
Novice Programming Errors. Pittman Publishing
Limited, London, UK.

Soloway, E., Ehrlich, K. & Bonar, J. (1982). Tapping into
tacit programming knowledge. Proceedings of the first
major conference on Human factors in computers
systems, Gaithersburg, Maryland, United States, ACM
Press, New York, NY, USA.

Soloway, E. & Woolf, B. (1980). Problems, Plans and
Programs. Proceedings of the Eleventh ACM
Technical Symposium on Computer Science
Education, Kansas City, Missouri, United States, ACM
Press, New York, NY, USA.

Soloway, E. (2003) Personal communication, email,
27/05/2003.

Spohrer, J.C., Soloway, E. & Pope, E. (1985). A
goal/plan analysis of buggy Pascal programs. Human
Computer Interaction 1: 163 - 207.

Spohrer, J.C. & Soloway, E. (1986). Novice mistakes, are
the folk wisdoms correct. Communications of the ACM
29(7): 624-632.

Winslow, L.E. (1996) Programming Pedagogy -- A
Psychological Overview. SIGSCE Bulletin, 28(3), 17-
22.

