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Abstract 
The hybrid binomial Langevin-MMC (Multiple Mapping Conditioning) method combines the advantages of the binomial Langevin 

and MMC models in a consistent manner to overcome difficulties in each.  The binomial Langevin method provides joint velocity-

scalar statistics, but the treatment of scalars is complex since specification of the bounds is not trivial.  The MMC method is capable 

of dealing with the mixing of any number of scalars, but it can be difficult to specify coefficients involving averages of the scalars and 

the introduced reference space.  The difficulties are overcome by using the velocity statistics from the binomial Langevin model to 

obtain the reference variable for MMC and, subsequently, the mixing of MMC scalars is performed in a manner that minimises the 

difference between the mixture fractions for each submodel. The current work expands past studies of NO conversion in a mixing 

layer to include a study of the Sandia D Flame in preparation for the application to more complex combustion phenomena.  Results 

compare favourably with experimental data and other models. 

 

Keywords: binomial Langevin model, Multiple Mapping Conditioning model, Sandia flame 
 

 

1. Introduction 

 

With the pressure to reduce emissions becoming a 

key factor in the design process of modern combustion 

systems, engineers are moving closer to the combustion 

limits.  This results in finite-rate chemistry effects (such 

as extinction/reignition) becoming important and such 

phenomena are increasingly examined through 

computational methods [1,2].  Because simple models 

generally cannot completely describe these effects, 

transport probability density function (PDF) models are 

often required [3].  Extinction and reignition processes 

amplify the sensitivity of the results to different closure 

elements, including molecular mixing [4], so 

developments continue to be made in this area.  A hybrid 

model [5] was recently proposed that used the Multiple 

Mapping Conditioning (MMC) [6] and binomial 

Langevin [7] models as its basis.  The proposal was to 

use the binomial Langevin model to solve joint velocity-

scalar statistics with one scalar (a mixture fraction), 

while the MMC model was used to solve for all scalars 

(including the mixture fraction).  The goal was to 

overcome the implementation difficulties inherent in 

solving bounded scalars in the binomial Langevin model, 

while simultaneously overcoming difficulties with 

specifying certain coefficients in the MMC model.  This 

was achieved by forcing the mixture fraction in the 

MMC component of the model to approach the binomial 

Langevin value, while using the dominant velocity 

component from the binomial Langevin solution as a 

basis for the MMC reference variable. The approach is 

consistent with the methodology proposed in that 

another variable can be used to define the reference 

quantity rather than solving explicit transport equations 

for the latter [8].  Following the success achieved with 

the method for a reacting mixing layer [5], the authors 

here apply the method to a reacting jet (Sandia Flame D 

[9]). The Reynolds number is too low to cause 

significant local extinction/reignition events. However, 

by verifying the model for this case, subsequent studies 

of higher Reynolds number flames (Sandia Flames E and 

F) can be attempted in the knowledge that only the 

extinction/reignition phenomena are independent 

quantities in the sensitivity analysis. 

2. Model Formulation 

 

The hybrid binomial Langevin–MMC model [5] is 

described in this section. First the binomial Langevin 

model is outlined, then the MMC model and, finally, the 

link used in the hybrid model is described. 

2.1 Binomial Langevin model 
  

A generalized form of the binomial Langevin model 

for the joint-PDF (Probability Density Function) of 

velocity and multiple scalars was developed by Hůlek 

and Lindstedt [10].  The stochastic differential equation 

for velocity component ui is: 
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where p denotes the pth particle, τu = 〈k〉/〈ε〉  is the 

turbulent timescale, k the turbulent kinetic energy, ε the 

turbulent dissipation rate, 〈ε〉 its average, dwi a Wiener 

process, and βij the Reynolds stress anisotropy tensor: 
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 The remaining coefficients are C0 = 2.1, α2 = 3.7 

and α1 = -(½ + ¾C0) – α2(βll)
2
.  The corresponding 

stochastic differential equation for any scalar η is: 
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The mean scalar dissipation rate is 〈εη〉 = 〈η’
2〉/τη , the 

scalar timescale was modelled as τη = τu/Cφ (Cφ = 2.3 

was chosen [3]) and dwbin is a binomial Wiener process 

[7]. The drift coefficient Gη is 

 

 













+






















′
′

−−= 11

2

*η
η

ηη

p

KG  (4) 

 

while the diffusion coefficient Bη is 
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where 
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with K0 = 2.1 and CK = 0.76.  The other quantities are: 
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where c is a basis scalar; usually the mixture fraction. 

This models many physical processes well [10]. 

However, a practical difficulty arises with the definition 

of the max and min values used to define 
*η ′  and 〈η〉p for 

reactive scalars.  The total mass fraction is one and some 

compositions are impossible, so the possible range for a 

particular scalar depends on the values taken by all other 

scalars.  For the hybrid model [5], only the mixture 

fraction is modelled so the problem is avoided. 

2.2 MMC model 
  

The MMC concept is that all the scalars ZI can be 

transported in a mathematical space, called the reference 

space, thereby making the transport simpler because the 

reference space can be defined to take any properties.  

The simplest reference space ξ is one-dimensional and is 

conventionally related to the mixture fraction.  For this 

one-dimensional reference space, the deterministic form 

of the conditional MMC transport equation is [6]: 
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where ZI represents each scalar I, ξII ZZ ≡  is the 

conditional average of ZI given the value of the reference 

variable ξ, A and B are the drift and diffusion 

coefficients respectively and WI is the chemical source 

term for specie I and is a function of all scalars.  Because 

ξ and the velocity U are both taken to have Gaussian 

distributions, they are modelled to be linearly related to 

each other (Z0 is the mixture fraction): 
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In the current implementation, the scalars are 

transported stochastically: 
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where S represents the mixing process, for which the 

Modified Curl’s model [11, 12] was used.  To enforce 

locality in the mixing process, particle pairs p and q were 

chosen so that the following was satisfied: 

 

 ( ) 21
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This process mimics the diffusive term of a stochastic 

differential equation (SDE). Note that (9) is not a 

minimisation: the specification is that particles p and q 

are close to each other, not the closest possible pairing.  

In practice, the inequality may be violated by outliers, 

but this does not pose any numerical difficulty. 

2.3 Hybrid model 
  

It is a necessary condition for the consistency of the 

model that the velocity U described in (7) is identical to 

the velocity ui described in (1).  Assuming that there is a 

velocity component that is most important for the mixing 

process (the radial velocity here), and that (7) satisfies 

the variance of that component [thereby eliminating the 

covariances in (7)], the following model for ξ is 

obtained: 
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Equation (10) obviates the need to solve an SDE for ξ 

directly since an SDE is solved for u2, (1), whose 

coefficients are well-defined. 

The diffusion coefficient used in (9) is modelled by 
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where 〈εη〉 is defined after (3) and the derivative of the 

conditional average mixture fraction is used instead of 

the ill-defined instantaneous derivative.  Since B is 

solely used in (9), which only provides an approximate 

limit, any error has a negligible impact on the results. 

The amount of mixing used to define S in (8) is 

designed to minimise the following: 
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where Z0 is the MMC mixture fraction, transported by 

(8), and η is the binomial Langevin mixture fraction, 

transported by (3).  A relaxation factor b was also used 

in the Modified Curl’s mixing so that if b = 0, no mixing 

occurred and if b = 1, (12) was satisfied.  This parameter 

is designed to control the level of conditional 

fluctuations as the criterion given in (12) can lead to 

excessive mixing.  (The unconditional fluctuations are 

less sensitive to b but more sensitive to B.)  The initial 

estimate of the required amount of mixing was reduced 

by the factor b.  For the current simulations b = 0.12 was 

used.  It is well known that scalar results are sensitive to 

the parameter Cφ =  τu /τη [13, 14].  However, away from 

the selected value of b = 0.12, the current results were 

independent of Cφ, which suggests that sensitivity to Cφ 

could be a test for the correct value of b. 

3. Results 

 

The Sandia Flame D set of experiments [9] was 

chosen for further testing of the hybrid binomial 

Langevin–MMC model.  While Flame D itself does not 

display significant extinction/reignition phenomena, 

successful modelling of this moderate Reynolds number 

case is a good step towards the verification of the 

implementation.  Subsequently, results from the 

modelling of more complex phenomena can be analysed 

with an understanding of any inherent bias in the model. 

The simulation performed here had, on average, 100 

particles per cell, with 70 cells in the radial direction.  

The width of the domain increased in line with the 

entrainment of fluid.  The simulation was performed 

with a parabolic code, with approximately 1600 axial 

steps to reach x/D = 80. The results are compared with 

the EMST (Euclidean Minimal Spanning Tree) approach 

[15] implemented into an elliptical code using 61 × 61 

cells and also 100 particles per cell on average [16].  The 

domain extended to larger radial locations, but was 

considered sufficiently resolved [16].  To isolate the 

implementation effect, the EMST subroutines [17] were 

applied  to the same program as the hybrid model. 

Figure 1 shows the Favre-averaged mixture fraction 

〈Z〉 profiles across the jet at various stations downstream 

of the outlet.  There are negligible differences between 

the models from the same program.  Near the centreline, 

the new results predict the experimental results quite 

accurately, while the previous EMST results generally 

over-predict the amount of mixing.  The radial location 

of 〈Z〉 = 0.5 tends to be over-predicted by the new results 

and under-predicted by the previous results, while the 

total spread of the jet tends to be under-predicted by the 

new results and over-predicted by the old results. 

The accurate prediction of 〈Z〉 appears to be critical 

in the prediction of the mean temperature 〈T〉 (Fig. 2).  

Where 〈Z〉 was predicted more accurately, so was 〈T〉, 
with both EMST implementations performing better on 

the lean side of the peak 〈T〉.  The new results tended to 

predict the cold radial location (〈T〉 = 300 K) better. 

The rms mixture fraction is shown in Fig. 3, with the 

hybrid model producing somewhat better results in the 

upstream locations, while the previous EMST results 

performed best at the downstream station.  The new 

EMST results were always larger than the hybrid model 

and increased with decreasing Cφ.  The prediction of the 

peak rms location was similar for all implementations 

and similar to the experimental results. 
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Figure 1: Favre-averaged mixture fraction profiles at various stations.  

Hybrid binomial Langevin–MMC, —; EMST (Cφ = 2.0) (current), – ·; 

EMST (Cφ = 2.0) [16], – –; Experiment [9], ○. 
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Figure 2: Favre-averaged temperature profiles at various stations.  As 

per Fig. 1. 
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Figure 3: Favre-averaged rms mixture fraction profiles at various 
stations.  As per Fig. 1. 

 

1000 1200 1400 1600 1800 2000 2200
0

4

8
x 10

−3

T (K)  ( 0.3 < Z < 0.4 )

P
(T

) x/D = 7.5

1000 1200 1400 1600 1800 2000 2200
0

4

8
x 10

−3

T (K)  ( 0.3 < Z < 0.4 )

P
(T

) x/D = 15

1000 1200 1400 1600 1800 2000 2200
0

4

8
x 10

−3

T (K)  ( 0.3 < Z < 0.4 )

P
(T

) x/D = 30

 
Figure 4: Conditional PDFs of temperature, conditioned on mixture 

fraction.  Hybrid binomial Langevin–MMC, —; EMST (Cφ = 2.0) 

(current), – ·; EMST (Cφ = 1.5) [16], – –; Experiment [9], ···. 

 

Figure 4 shows the PDFs of temperature, with data 

selected based on the mixture fraction being in the range 

(0.3, 0.4).  The previous EMST results burned colder 

than the experiment, while the new results burned hotter 

than the experiment. This explains why the peak mean 

temperature for the previous EMST results was located 

closer to the centreline, while for the new results, it was 

located further from the centreline.  The most significant 

difference between the new EMST results and the hybrid 

model is that the new EMST results predict complete 

burning, while the hybrid model predicts a small amount 

of local extinction, in line with the experimental results. 

It is apparent that many of the differences between 

the models are due to the specific implementation 

(parabolic versus elliptic, chemistry calculations, etc).  

While the three numerical results produce similar mean 

results, the prediction of higher moments (standard 

deviation, PDFs) is variable, with none of the 

implementations able to be categorised as “best”.  

However, the hybrid binomial Langevin–MMC model 

seems to perform better for the higher moments than the 

equivalent EMST results, encouraging further testing.  

4. Conclusions 

 

The hybrid binomial Langevin–MMC model has 

been applied to a reacting round jet, with results 

matching the experimental results with a reasonable level 

of accuracy and, arguably, comparing favourably with  

alternative closure models. The results encourage an 

extension to higher Reynolds number cases and further 

evaluation under conditions that display significant local 

extinction/re-ignition phenomena. 
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