
Formal Authorization Allocation Approaches for Permission-role assignments
Using Relational Algebra Operations

Hua Wang Yanchun Zhang Jinli Cao
Department of Maths & Computing
University of Southern Queensland
Toowoomba, QLD 4350, Australia

(wang, zhang, cao)@usq.edu.au

Abstract

In this paper, we develop formal authorization allocation
algorithms for permission-role assignments. The formal ap-
proaches are based on relational structure, and relational
algebra and operations. The process of permission-role as-
signments is an important issue in role-based access con-
trol (RBAC) as it may modify the authorization level or im-
ply high-level confidential information to be derived when
roles are changed and request different permissions. There
are two types of problems that may arise in permission-role
assignments. One is related to authorization granting pro-
cess. Conflicting permissions may be granted to a role, and
as a result, users with the role may have or derive a high
level of authority. Another is related to authorization revo-
cation. When a permission is revoked from a role, the role
may still have the permission from other roles.

To solve the problems, this paper presents an authoriza-
tion granting algorithm, and weak revocation and strong
revocation algorithms that are based on relational algebra
operations. The algorithms can be used to check conflicts
and therefore to help allocate permissions without com-
promising the security in RBAC. We describe how to use
the new algorithms with an anonymity scalable payment
scheme. Finally, comparisons with other related work are
discussed.

Keywords: RBAC, Permission-role assignment, Autho-
rization, Can-assignp, Can-revokep.

1 Introduction

With people’s increased consciousness of the need for
electronic commerce to protect their private information
and to provide security of applications, system adminis-
trators are continuing to implement access control mecha-
nisms as well as to retain a critical and complex aspect of se-

curity administration. Traditional administrations of access
control are mandatory, discretionary and role-based access
control. Mandatory access controls (MAC) restrict access to
data based on varying degrees of security requirements for
information contained in the objects. Information is associ-
ated with multi-level security requirements with labels such
as TOP SECRET, SECRET, and CONFIDENTIAL [2]. An
assigned right cannot be changed and modifications are per-
mitted only to administrators. Users may need to register on
a number of different servers of different operating system
types, various databases and multiple business applications.
Furthermore, an object classification reflects the sensitivity
of the information contained in the object, that is, the poten-
tial damage that may come from unauthorized disclosure of
information. Registration of each user with each facility is
needed to control and prevent unauthorized use. How to
manage a system with MAC is a challenging task, espe-
cially when dealing with the changes on user positions and
other access rights. Discretionary access controls (DAC) al-
low users to grant or revoke access to any authority under
their control without the intercession of a system adminis-
trator [8]. Access rights to resources are based on the iden-
tity of persons and/or groups to which they belong. When
the number of users increases, the management is costly.
DAC grants authorization or privileges to users directly, au-
thorized statically when they set up an account. Though it
is convenient for users to pass on the authorization directly
to other users, it brings a serious problem on security. For
example, when a user passes on some access controls to an-
other user, it may change the level of access privilege of the
second user who may then able to access or derive high level
information based on the level of access control gained.

Role-based access control (RBAC) is an alternative sys-
tem that involves individual users being associated with
roles as well as roles being associated with permissions
(Each permission is a pair of objects and operations). As
such, a role is used to associate users and permissions. A

user in this model is a human being. A role is a job function
or job title within the organization associated with authority
and responsibility.

Permission is an approval of a particular operation to be
performed on one or more objects. As shown in Figure 1,
the relationships between users and roles, and between roles
and permissions are many-to-many. (i.e. a permission can
be associated with one or more roles, and a role can be as-
sociated with one or more permissions). The security policy
of the organization determines role membership and the al-
location of each roles capabilities.

Role_Name

User_Name

 Indicates

m n

Senior−
Junior

m n

OPERATION

PE
R

M
IS

SI
O

N
S

m n

m

n

many−to−many relationships

Permission−role assignment (PA)User−role assignment (UA)

OBJECT

USERS ROLES

Figure 1. RBAC relationship

There are three advantages of RBAC management.
Firstly, it is much easier to manage a system using of RBAC.
In RBAC, a security administrator adds transactions to roles
or deletes transactions from roles, where transactions can
be a program object associated with data [8]. Security is-
sues are addressed by associating programming code and
data into a transaction. Access control does not require
any checks on the user’s or the program’s right to access
a data item, since the accesses are built into the transac-
tion. Secondly, RBAC can reduce administration cost and
complexity [16]. Usually, there is a relationship between
the cost of administration and the number of associations
which must be managed in order to administer an access
control policy. The larger the number of associations, the
costlier and more error prone the access control adminis-
tration is likely to be, but the use of RBAC reduces the
number of associations to be managed. Thirdly, RBAC is
better than a typical access control list (ACL) model [11].
RBAC can authorize and audit capabilities so that people
are simply assigned new roles while they change respon-
sibilities. This allows for the authorities of a person to be
easily documented. By contrast, in ACL, the entire set of
authorities must be searched to develop a clear picture of a
person’s rights because ACLs only support the specification
of user/permission and group/permission relationships.

Recently, role based access control (RBAC) has been
widely used in database system management and operating
system products. In 1993, the National Institute of Stan-

dards and Technology (NIST) developed prototype imple-
mentations, sponsored external research [6], and published
formal RBAC models [8, 10]. Many organizations prefer
to centrally control and maintain access rights, not so much
at the system administrator’s personal discretion but more
in accordance with the organization’s protection guidelines
[5]. RBAC is being considered as part of the emerging
SQL3 standard for database management systems, based on
their implementation in Oracle 7 [15]. Many RBAC practi-
cal applications have been implemented [3, 9, 16].

However, there is a consistency problem when using
RBAC management. For instance, if there are hundreds of
permissions and thousands of roles in a system, it is very
difficult to maintain consistency because it may change the
authorization level, or imply high-level confidential infor-
mation to be derived when more than one permission is re-
quested and granted.

We develop formal approaches to check the conflicts and
therefore help allocate the permissions without compromis-
ing the security. The formal approaches are based on rela-
tional structure and relational algebra operations. As far as
we know, this is the first kind of work in this area to ad-
dress the formal approaches for permission allocation and
conflict detection.

The paper is organized as follows. In the next section, we
identify the problems related to permission assignment and
revocation. Relational algebra-based authorization grant-
ing algorithm and revocation algorithms are developed in
section 3. In section 4, we review an anonymity scalable
electronic commerce payment scheme. We then apply the
formal authorization approaches to this scheme in section
5. Comparisons with related work are discussed in section
6 and the conclusions are in section 7.

2 Problem Definitions

With RBAC, users cannot associate with permissions di-
rectly but roles. Permissions must be authorized for roles,
and roles must be authorized for users. The RBAC security
model has two components: ��� and ��� [16]. Model
component ���, called the RBAC authorization database
model, defines the RBAC security properties for authoriza-
tion of static roles. Static properties of an RBAC authoriza-
tion database include role hierarchy, inheritance, cardinal-
ity, and static separation of duty. ��� called the RBAC
activation model, defines the RBAC security properties for
dynamic activation of roles. Dynamic properties include
role activation, permission execution, dynamic separation
of duties, and object access. In particular, the RBAC model
supports the specification of several aspects.

a. User-role assignmentss – the constraints specifying
user authorizations to perform roles;

2

b. Permission-role assignments – the constraints speci-
fying role authorizations to have permissions;

c. Role hierarchies – the constraints specifying which
role may inherit all of the permissions of another role;

d. Duty separation constraints – these are role/role asso-
ciations indicating conflict of interest:

d1. Static separated duty (SSD) – a constraint specify-
ing that a user cannot be authorized for two different roles;

d2. Dynamic separated duty (DSD) – a constraint spec-
ifying that a user can be authorized for two different roles
but cannot act simultaneously in both;

e. Cardinality – the maximum number of users allowed,
i.e. how many users can be authorized for any particular
role (role cardinality), e.g., only one manager.

A comprehensive administrative model for RBAC must
account for all issues mentioned above, among others.
However, permission-role assignment is a particularly criti-
cal administrative activity. This is because conflict defined
in terms of roles may allow conflicting permissions to be
assigned to the same role but conflicts defined in terms of
permissions eliminates this possibility. Therefore, this pa-
per will also focus on permission-role assignments.

Let � be a database with a set of relations ���, a set
of attributes �. ��� includes ROLES, PERM, ROLE-
PERM, SEN-JUN, Can-assignp and Can-revokep etc. �
includes attributes such as RoleName, PermName, Senior
and Junior etc from the relations. Roles are in two cate-
gories, one is administrative roles (admin.role), the other is
regular roles (role) that permissions are assigned to or re-
voked by administrative roles. The permissions assigned
to a role by administrators may be in conflicts. For exam-
ple, the permission for approving loan in a bank and that of
funding loan are conflicting. These two permissions cannot
be assigned to a role; on the other hand, because of role hi-
erarchies, a role may still have the permissions even if they
have been revoked from the role. In the latter case, a user
with this role is able to access objects in the permission and
has operations on the objects. The problems arising in pro-
cesses of assigning and revocation are evident.
Authorization granting problem – How to check whether
a permission is in conflict with the permissions of a role?

Authorization revocation problem – How to find whether
permissions of a role have been revoked from the role or
not?

For example, Figure 2 shows a system administrative
role (BankSO) in a bank to manage regular roles such as
AUDITOR, TELLER, ACCOUNT REP and MANAGER.
Role MANAGER inherits AUDITOR, TELLER and AC-
COUNT REP. ACCOUNT REP has a SSD relationship
with AUDITOR as well as DSD relationship with TELLER.

The administrative role BankSO can assign audit permis-
sion or cash operation permission to a role but not both, oth-
erwise it compromises the security of a bank system. It is

easy to find conflicts between permissions when assigning
permissions to a role in a small database system but it is
hard to find them when there are thousands of permissions
in a system. Our aim is to provide relational algebra algo-
rithms to solve the problems and then automatically check
conflicts when assigning and revoking.

MANAGER

AUDITOR

BANK

BANK SECURITY OFFICER (BankSO)

DSD
SSD

TELLERACCOUNT_REP

Figure 2. Administrative role and role Rela-
tionships in a bank

Some relations in set ��� are detailed below.
ROLES - This relation has ��� �� attributes when there

are � roles.
The first attribute, RoleName is the primary key for the

relation, and represents the name of a role. From the sec-
ond attribute to �����	
 attribute refer to other roles, their
corresponding values describe the state of conflicts with the
RoleName in the relation and its domain is �-1, 0�, where
‘-1’ means conflicting with the RoleName and ‘0’ means
not.

The ROLES relation in Figure 2 is in Table 1. The at-
tribute TELLERC shows whether the role TELLER is con-
flicting with the RoleName in the relation or not. For in-
stance, in the third tuple, a user with role TELLER has con-
flicts with the role AUDITOR.

RoleName MANAC AUDC AUD REPC TELLERC
MANAGER 0 0 0 0
AUDITOR -1 0 -1 -1

AUDITOR REP -1 -1 0 -1
TELLER -1 -1 -1 0

Table 1. The relation ROLES in Figure 1

PERM - It is a relation of �PermName, Oper, Object, Conf-
Per �:

PermName is the primary key for the table, and is the
name of the permission in the system.

Oper is the name of the operation granted. It has infor-
mation about the object that the operation is granted on.

3

Object is the database item that can be accessed by the
operation. It can be a database, a table, a view, an index or
a database package.

ConfPer is a set of permissions that is in conflict with the
PermName in the relation.

For example, a staff in a bank cannot have both permis-
sions of approval and funding as well as both permissions
of audit and teller. The relation of PERM can be expressed
as Table 2.

PermName Oper Object ConfPerm
Approval approve cash or check Funding
Funding invest cash Approval

Audit audit record Teller
Teller transfer cash Audit

Table 2. An example of the relation PERM

Roles are managed by administrative roles. Senior roles
are shown at the top of the hierarchies. Senior roles inherit
permissions from junior roles. Let � �
 denote � is senior
to
 with obvious extension to � �
.

SEN-JUN - This is a relation of roles in a system. Senior
is the senior of the two roles. Table 3 expresses the SEN-
JUN relationship in Figure 2.

Senior Junior
MANAGER AUDITOR
MANAGER TELLER
MANAGER AUDITOR REP

TELLER BANK
AUDITOR BANK

Table 3. SEN-JUN table in Figure 1

ROLE-PERM - is a relationship between the ROLES and
the PERM, listing what permissions are granted to what
roles. It has two attributes:

RoleName is a foreign key RoleName from the table
ROLES.

PermName is a foreign key PermName from the table
PERM which is assigned to the role.

Suppose the permission Approval is assigned to role
TELLER and the permission Funding to role MANAGER,
Table 4 expresses the permission-role relationship.

RoleName PermName
MANAGER Funding

TELLER Approval

Table 4. Permission-Role table

Based on these relations, we will describe how to solve
the Authorization granting problem and revocation problem
in the next section.

3 Authorization granting and revocation al-
gorithms based on relational algebra

We develop granting and revocation algorithms based on
relational algebra in this section. The notion of a prerequi-
site condition, Can-assignp and Can-revokep is a key part
in the processes of permission role assignment.

Prerequisite condition is an expression using Boolean
operators � and � on terms of the form � and �� where �
is a role and � means “and”, � means “or”. A prerequisite
condition is evaluated for a permission � by interpreting �
to be true if ���� � ��� ��� ��� � �� and �� to be true if
���� � ��� ��� ��� 	� ��, where �� is a set of permission-
role assignments.

For a given set of roles � let �� denote all possible pre-
requisite conditions that can be formed using the roles in �.
Not every administrator can assign a permission to a role.
The relation of Can-assignp � �� � �� � �� provides
what permissions can be assigned by administrators with
prerequisite conditions, where �� is a set of administrative
roles.

For example, the meaning of Can-assignp ���
� �� is
that a member of the administrative role � can assign a per-
mission whose current membership satisfies the prerequisite
condition
 to be a member of roles in range �.

Permission-role assignment (PA) is authorized by Can-
assignp relation. Table 5 shows the Can-assignp relations
with the prerequisite conditions in the example.

The meaning of Can-assignp (BankSO, BANK
������� � �������, [AUDITOR REP, AU-
DITOR REP]) is that a member of the administrative
role BankSO can assign a permission whose current
membership satisfies the prerequisite condition BANK
������� � ������� to be a member of role
AUDITOR REP. To identify a role range within the role
hierarchy, the following closed and open interval notation
is used.

���
� 	 �� � �
� � � � � �
�

���
� 	 �� � �
� � � � � �
�

���
� 	 �� � �
� � � � � �
�

���
� 	 �� � �
� � � � � �
�

Supposing an administrator role ADrole wants
to assign a permission �� to a role � with a set
of permissions � . � � is an extension of � ,
� � 	 ��
� � �� � ��
��� � �� �� � �� ��� ��� � ���.

4

Admin.role Prereq.Condition Role Range
BankSO BANK ������� � �����	� [AUDITOR REP, AUDITOR REP]
BankSO BANK ������� � �����	� ��
 [AUDITOR, AUDITOR]
BankSO BANK ������	� � �����	� ��
 [TELLER, TELLER]

Table 5. Can-assignp relation in Figure 1

Authorization granting algorithm Grantp(ADrole, �� ��)
Input: ADrole, role � and a permission �� .
Output: true if ADrole can assign the permission �� to �
with no conflicts; false otherwise.
Begin:
Step 1. /* Whether the ADrole can assign the permission
�� to � or not */

Let

� � �����������	
�
�����	

������������������ �		
�����

/* S is a set of Prerequisite condition associated with
ADrole */
and

� � �������
������
��
���� ��
�� � ������

/* R is a set of role associate with the permission �� */

if �� 	 � � � 		 �,
then there exists role �� � ��, such that
��� � ��� � �� and

�� � �����������	
�
�����	

������������������ �		
����

go to step 2 /* �� is satisfied the Prerequisite
condition to be assigned by ADrole in Can-assign */

else, return false and stop. /*the admini.role has no
right to assign the permission �� to role � */

Step 2. /*whether the permission �� is conflicting with per-
missions of � or not, in other words, whether �� is conflict-
ing with permission set � � or not*/

Let
��������� � ��������
�����
��
���� �������

/* It is the conflicting permission set of the permission �� */

if ��������� � � � 		 �,
then
�� is a conflicting permission with role �, return
false;
else
return true.
/* �� is not a conflicting permission with � */

Theorem 1 The authorization granting algorithm can pre-
vent conflicts when assigning a permission to a role.

Proof Assuming an administrator role ADrole wants to as-
sign a permission �� to a role which associates with a per-
missions set � . While step 1 in the algorithm has checked
whether the ADrole can assign the permission �� to a role
or not, the second step has decided whether the permission
�� is conflicting with permissions in � � or not. Indeed, ��
can be assigned to the role if for all �
 � � �, �
 is not in the
conflicting permission set of �� . Otherwise �� is a conflict-
ing permission with � �.

The authorization granting problem is solved by
the authorization granting algorithm. Computing �
in the first step takes time proportional to �� if �
is presented as the number of roles. This is be-
cause computing ����
������������������� !"��� and
#�����������
�
�������
����������������� � � !"����
needs time ����. It spends time ���� to compute � and
����� for ��. Thus, the step 1 takes time �����. In the
second step, the computations of ������������ ������
and #��������������������� ������� spend time
���� and ���� respectively when there are � permissions
in the system. It needs time ����� to decide whether there
is a permission in ��������� � � � or not . Therefore
the total time spent in the authorization granting algorithm
is proportional to ��� ����.

Corollary 1 The authorization granting algorithm has time
complexity ���� ���� for the case of � roles and � per-
missions in a system.

There are related subtleties that arise in RBAC con-
cerning the interaction between granting and revocation of
permission-role membership. A relation Can-revokep�
�� � �� shows which permissions in what role range can
be revoked by administrative, where �� is a set of admin-
istrative roles. The meaning of Can-revokep ��� $ � is that
a member of the administrative role � (or a member of an
administrative role that is senior to �) can revoke the mem-
bership of a permission from any role
 � $, where $
defines the range of revocation. Table 6 gives an example
of the Can-revokep relation.

Admin.role Role Range
BankSO [Bank, MANAGER)

Table 6. An example of Can-revokep

The meaning of Can-revokep

5

�%��&��� �%��&���'�(���� in Table 6 is that
a member of the administrative role BankSO can revoke
the membership of a permission from any role in [Bank,
MANAGER).

Due to role hierarchy, a role � � has all permissions of a
role � when �� � �. A permission � is an explicit member
of a role � if ��� �� � ��, and � is an implicit member of
role � if for some role �� � �� ��� ��� � ��. Weak revoca-
tion has an impact only on explicit membership. For weak
revocation, the membership of a permission is revoked only
if the permisiion is an explicit member of the role. There-
fore, weak revocation from a role � has no effect when a
permission is not an explicit member of the role �. To solve
the authorization revocation problem, we need to revoke the
explicit member of a role first if a permission is an explicit
member, then revoke the implicit member.

Following are two algorithms for revocation of a permis-
sion �� from a role � by an administrative role ADrole. The
first one is weak revocation algorithm and another one is
strong revocation algorithm. The weak revocation only re-
vokes explicit membership from a role and does not revoke
implicit membership but the strong revocation revokes both
explicit and implicit members.

Weak revocation Algorithm Weak revoke(ADrole, �, � �)
Input: ADrole, a roles � and a permission �� .
Output: true if ADrole can weakly revoke role � � from �;
false otherwise.
Begin:

if ��)� ��
��� �� � ���,
return false; /* there is no effect with the operation of the
weak revocation since the permission �� is not an
explicit member of the role r*/

else /* �� is an explicit member of � */
Let

RevokeRange

= �������������	

������������������ ���� ����

/* The role range can be revoked by ADrole*/
and
������
���� � �������
������
��
����

�����������

/*Roles with permission ��*/
If ��*�&����"� � ��+� ,!	
�� 		 �
return true; /*the ��can be revoked */
else, return, false. /* ADrole has no right torevoke
the permission �� from the role */

We have the following result with the weak revocation
algorithm.

Theorem 2 A permission �� is revoked by the weak revo-
cation algorithm -��& ��*�&������+�� �� ��� if the per-
mission is an explicit member of the role � and the ADrole
has the right to revoke �� from the Can-revokep relation.

It takes time ���� to check if ��)� ��
��� �� �
��� when there are � permissions in a system. The
computations of ����
������������������ ��*�&��� and
#��������������
����������������� � ��*�&���� take
time ���� when there are � roles in the system. The process
#��������������������� ����������� needs time
����. To check whether ��*�&����"����+� ,!	
�� 		
� or not needs time �����. Thus, the time complexity of
the Weak revocation algorithm is ���� ���.

Corollary 2 Weak revocation algorithm has time complex-
ity ������� when there are � roles and � permissions in
a system.

A role still owns a permission of a system which has
been weakly revoked if the role is senior to another role
associated with the permission. To solve the authorization
revocation problem, we need strong revocation which re-
quires revocation of both explicit and implicit membership.
Strong revocation of a permission’s membership in role �
requires that the permission be removed not only from ex-
plicit membership in �, but also from explicit and implicit
membership in all roles junior to �. Strong revocation there-
fore has a cascading effect up-wards in the role hierarchy.

Strong revocation algorithm Strong revoke(ADrole, �,
��)
Input: ADrole, a role � and a permission �� .
Output: true, if it can strong revoke the permission � � from
�; false otherwise.
Begin:

if ��)� � �,
return false; /* there is no effect of the strong revocation
since the permission is not an explicit and implicit
member of the role � */
else,

1. if �� � � , do Weak revoke(ADrole, �, ��);
/*�� is weakly revoked from �*/;
2. Suppose
./� 	 #!"�
�������
�������' � .�'��,
for all
 � ./�, do Weak revoke(ADrole,
, ��);
/*the permission �� is weakly revoked from all such

 � ./�*/.
If all the weak revocations are successful,
return true;
otherwise,
return false. /* if one weak revocation cannot
finish*/

It should be noted that Strong revocation algorithm does
not work if ADrole has no right to revoke � � from any role
in ./�. We have the following consequence.

Theorem 3 The explicit and implicit member of permission
�� are revoked from the role � by the Strong revocation al-

6

gorithm �	���" ��*�&�������+�� �� ��� if the ADrole has
the right to revoke �� from the Can-revokep relation.

Corollary 3 The authorization revocation problem is solved
by the Weak revocation algorithm and Strong revocation al-
gorithm.

It needs ���� to check whether ��)� � � if there are �
roles in a system. The computations of ����
�������' �
.�'� and #!"�
�������
�������' � .�'�� take time
proportional to + (+ � �) where + is the number of tuples
in the relation SEN-JUN and � is the number of roles in
the system. It takes time proportional to ��� � �� to do a
weak revocation. A role may be junior ��� �� roles, hence
all weak revocations need time ��� � ��� � ���. Other
operations �� � � and
 � ./� takes time ���� and ����
respectively. Therefore the total time spent with the Strong
revocation algorithm is ��� � ��� ����.

Corollary 4 The Strong revocation algorithm has time com-
plexity ��� � ��� ���� when there are � roles and � per-
missions in a system.

In the remaining parts of this paper, the new relational
algebra approaches will be used with a payment scheme.
We review the payment scheme first.

4 Review of the anonymity scalable elec-
tronic payment scheme

We have developed an anonymity self-scalable payment
scheme [20]. The payment scheme provides different de-
grees of anonymity for consumers. Consumers can decide
the levels of anonymity. They can have a low level of
anonymity if they want to spend coins directly after with-
drawing them from the bank. Consumers can achieve a high
level of anonymity through an anonymity provider (AP)
agent without revealing their private information and are se-
cure in relation to the bank because the new certificate of a
coin comes from the AP agent who is not involved in the
payment process. The scheme is briefly reviewed below.

Electronic cash has sparked wide interest among cryp-
tographers ([14, 23, 12, 19], etc.). In its simplest form, an
e-cash system consists of three parts (a bank, a consumer
and a shop) and three main procedures as shown in Figure
3 (Withdrawal, Payment and Deposit). In a coin’s life-cycle,
the consumer first performs an account establishment pro-
tocol to open an account with the bank.

The consumers and the shops maintain an account with
the bank, while:

1. A consumer withdraws electronic coins from his/her
account, by performing a withdrawal protocol with the
bank over an authenticated channel.

2. The consumer spends a coin by participating in a pay-
ment protocol with a shop over an anonymous channel.

BANK

SHOP

Withdrawal

Payment

Deposit

CONSUMER

Figure 3. Basic processes of an electronic
cash system

3. The shop performs a deposit protocol with the bank, to
deposit the consumer’s coin into its account.

There are also three additional processes: the bank setup,
the shop setup, and the consumer setup (account opening).
They describe the system initialization, namely the creation
and posting of public keys and opening of bank accounts.
Although they are certainly parts of a complete system,
these are often omitted as their functionalities can be easily
inferred from the description of the three main procedures.

Besides the basic participants, a third party named
anonymity provider (AP) agent is involved in the scheme.
The AP agent will help the consumer to get the required
anonymity but will not be involved in the purchase process.
The model is shown in Figure 4. The AP agent gives a
certificate to the consumer when s/he needs a high level of
anonymity.

withdrawal

depositpayment
anonymity
scalability

AP AGENT

CONSUMER

SHOP

BANK

Figure 4. Electronic cash model

The scheme in [20] includes two basic processes in sys-
tem initialization (bank setup and consumer setup) and three
main protocols: a withdrawal protocol with which a con-
sumer withdraws electronic coins from a bank while his ac-
count is debited; a payment protocol with which the con-
sumer pays the coin to a shop; and a deposit protocol with
which the shop deposits the coin in the bank and has its ac-
count credited. If a consumer wants to get a high level of
anonymity after getting a coin from the bank (withdrawal),
s/he can contact the AP agent.

7

From the viewpoint of banks, consumers can improve
anonymity if they are worried about disclosure of their iden-
tities. This is a practical payment scheme for Internet pur-
chases because it has provided a solution with different
anonymity requirements for consumers. The security of the
scheme has been discussed in [20]. We will analyze its man-
agement with the relational algebra algorithms.

5 Applications of the relational algebra algo-
rithms

The new relational algebra algorithms will be applied to
the payment scheme in this section. We add a manager role
(M1) etc in an AP agent, a manager role (M2) etc in a bank,
a manager role (M3) etc in a shop and some administrative
roles Senior Officer(SSO) etc in the system as shown in Fig-
ure 5 and Figure 6. A hierarchy of roles and a hierarchy
of administrative roles are also shown in these two Figures.
Senior roles are shown towards the top of the hierarchies
and junior are to the bottom. Senior roles inherit permis-
sions from junior roles. Permissions can be granted to or
revoked from the roles in Figure 5 by the administrative
roles in Figure 6.

5.1 An application of the authorization granting
algorithm

Figure 5 shows that role E is the most junior to all other
employees in the new system and role Director (DIR) is the
most senior to all other employees. Figure 6 shows the ad-
ministrative role hierarchy which co-exist with the roles in
Figure 5. The senior-most role is the Senior Security Offi-
cer (SSO). Our interest is in the administrative roles junior
to SSO. These consist of three security officer roles (APSO,
BankSO and ShopSO) with the relationships illustrated in
the Figure 6. Table 2 and Table 7 show part of the relations
between permissions and between permissions and roles in
the scheme.

RoleName PermName
Director (DIR) Funding
Director (DIR) Approval
Director (DIR) Teller

TELLER Approval
FPS Approval
Bank Teller

Table 7. ROLE-PERM table in the scheme

Based on the role hierarchy in Figure 5 and administra-
tive role hierarchy in Figure 6, we define the Can-assignp
relation shown in Table 8.

Admin.role Prereq.Condition Role Range
NSSO DIR [M1, M1]
NSSO DIR [M2, M2]
NSSO DIR [M3, M3]
APSO FPS �	
 [QC, QC]
APSO FPS ��� [OP, OP]

BankSO FPS ��� ��� [AC, AC]
BankSO FPS ��� ��� [AU, AU]
BankSO FPS ��� � �� [TE, TE]
ShopSO FPS �
���� [AUDITOR, AUDITOR]
ShopSO FPS ������	� [SALER, SALER]

Table 8. Can-assignp

Let us consider the NSSO tuples in Table 8 (the analy-
sis for APSO, BankSO and ShopSO are similar). The first
tuple authorizes NSSO to assign permissions with the pre-
requisite condition role DIR into members of M1 in the AP
agent (AP). The second and the third one authorize NSSO
to assign permissions with the prerequisite condition DIR
to be a member of M2 and M3 respectively. Similarly, the
fourth tuple authorizes APSO to assign permissions with the
prerequisite condition 0�� � �� to be members of oper-
ators (QC). The fourth and fifth tuple show that the APSO
can grant a permission who is a member of the AP agent
into one but not both of QC and OP. This illustrates how
mutually exclusive roles can be forced by permission-role
assignment.

Assume the role FPS with permission set
� 	 ������*�+� and � � 	 � 	 ������*�+�.
The administrative role NSSO wants to assign the permis-
sion Teller to the role FPS. Using the granting algorithm
Grantp(NSSO, FPS, Teller), the first step,

� � �����������	
�
�����	

�������� ������ �		
�����
� ��#��

and

� � �������
������
��
��!�������
�� � ������
� ��#�$ %������

Since � � � 	 ����� 		 �1 This means NSSO can
assign permission Teller to role FPS.

The second step, based on Table 2,

���� � ���� � ��������
�����
��
�������"���������
� �&"��
���

and

���� � ���� � � � 	 �1

It means no conflicts when assigning the permission
Teller to role FPS.

8

5.2 Application of the authorization revocation al-
gorithm

Table 9 and Table 3 give the Can-revokep and a part of
senior-junior relationship of the payment scheme.

Admin.role Role Range
NSSO [FPS, DIR)
APSO [AP, M1)

BankSO [Bank, M2)
ShopSO [Shop, M3)

Table 9. Can-revokep

AP Security Officer
(APSO) (BankSO)

Bank Security Officer
(ShopSO)

Shop Security Officer

New System Security Officer (NSSO)

Senior Security Officer (SSO)

Figure 6. Administrative role assignment in
the scheme

Based on the Table 7, The permission Approval is an ex-
plicit member of role DIR, TELLER and FPS in the scheme.
If Alice, with the activated administrative role BankSO,
weakly revoke Approval’s membership from TELLER, the
revocation is successful by the weak revocation algorithm
Weak revoke(BankSO, TELLER, Approval). This is be-
cause

���� ������ �����	'
�(��������
� �%������
��)

where

���� � ������
� �������������	

��������� ������ ���� ����
� �*�� $���

and

����	'
�(��������
� �������
������
��
�������"����
��������
� ��#�$ %�����$&���

Approval continues to be an implicit member of
TELLER since FPS is junior to TELLER and Approval is
an explicit member of FPS. It is necessary to note that Alice
should have enough power in the session to weakly revoke
Approval from explicitly assigned roles. For instance, if Al-
ice has activated BankSO and then tries to weakly revoke
Approval from FPS, she is not allowed to proceed because
BankSO does not have the authority of weak revocation

from FPS according to the Can-revokep relation in Table
9. Therefore, if Alice wants to revoke Approval’s explicit
membership as well as implicit membership from TELLER
by weak revocation, she needs to activate NSSO and weakly
revoke Approval from TELLER and FPS.

If Alice, with the activated administrative role NSSO,
strongly revokes Approval’s membership from TELLER,
then Approval is removed not only from explicit mem-
bership in TELLER, but also from explicit (and implicit)
membership in all roles junior to TELLER. Actually, us-
ing the strong revocation algorithm Strong revoke(NSSO,
TELLER, Approval), � 	 ������*�+� 	 � �. It does
need to do Weak revoke (NSSO, TELLER, Approval) since
�����*�+ � � . The junior set of role TELLER is �FPS�.
Then the permission Approval has been removed from
FPS as well as TELLER by running Weak revoke (NSSO,
TELLER, Approval) and Weak revoke (NSSO, FPS, Ap-
proval). However, Approval still has a membership of DIR
since it is not junior roles to TELLER based on the role hi-
erarchy of Figure 5. This brings about the same result as
weak revocation from TELLER and FPS by NSSO. Note
that all implied revocations downward in the role hierarchy
should be within the revocation range of the administrative
roles that are active in a session. For instance, if Alice ac-
tivates BankSO and tries to strongly revoke Approval from
TELLER, she is not allowed to proceed because FPS is ju-
nior to TELLER but it is out of the BankSO’s Can-revokep
range in Table 9.

6 Related work

There are several other related works on role-based
access control models [1], an oracle implementation for
permission-role assignment [17] and relational databases
[13].

A role-based separation of duty language (RSL 99) has
been recently proposed [1]. It has given a formal syntax and
semantics for RSL99 and has demonstrated its soundness
and completeness by using functions on conflicting permis-
sion sets. The proposal is different from ours in two aspects.
First, it does not consider the case of the management for
conflicting permissions. Therefore, there is no support to
deal administrative roles with permissions in the proposal.
By contrast, our algorithms provide a rich variety of op-
tions that can deal the document of administrative roles with
permissions. Second, the algorithm RSL99 does not pro-
vide access control models. It only gives separation of duty
(SOD) policies. By contrast, we present a number of spe-
cialized authorization algorithms for access control which
allow administrators to authorize a permission to role or re-
voke a permission from roles.

The interaction between RBAC and relational databases
are presented in [13]. Two experiments are described. One

9

Bank

New system (FPS)

Employee (E)

AUDITOR(AU) TELLER (TE)

MANAGER(M2)

ACCOUNT_REP

(AC)

DSDSSD AUDITOR(AU3)

They are
 employees

The Manager inherits the Operator

AP agent:

and Quality controler. Auditor, they are employees. The Saler
The manager inherits the Saler and the

has DSD relationship with the Auditor.

Shop

QUALITY
DSD CONTROLER(QC)

OPERATOR(OP)
DSD

Shop
AP agent(AP)

MANAGER(M1) MANAGER(M3)

SELLER

Director (DIR)

:

they are employees. The Account_rep has DSD relatonships
The Manager inherits the Teller, Auditor and Account_rep,

Bank:

with the Teller, SSD relationship with the Auditor.

Figure 5. User-role assignment in the payment scheme

is a role-based front end to a relational database with discre-
tionary access control. Another one is a role graph to show
roles and permissions in a standard relational databases.
Some relational concepts like roles, users and permissions
etc are provided. Our model also support such concepts
even though it has a large variety. However, the main differ-
ence between our algorithms and the scheme in [13] is, we
focus on the solutions of the conflicts of permissions and the
latter focuses on the correlation of RBAC with discretionary
access controls. Their work discusses the relationship be-
tween roles, permissions and discretionary access controls,
they did not address how to allocate permissions to roles
without conflicts. In our work, we developed detailed algo-
rithms for allocating permissions and checking the conflicts.

Finally, an oracle implementation for permission-role as-
signment has been proposed in [17]. In such a model, the
difference between permission-role assignment (PRA97)
and Oracle database management system was analysed.
Furthermore, through prerequisite conditions, the paper has
demonstrate how to use Oracle stored procedures to imple-
ment it. However, our work substantially differs from that
proposal. Differences are due to the consistency problem
which may arise in [17, 18]:

It is very difficult to keep the consistency by reflecting se-
curity requirements between global network objects and lo-
cal network objects if there are hundreds of roles and thou-

sands of permissions in a system.
This problem has been solved in our algorithms be-

cause the algorithms focus on the conflicts between per-
missions. The authorization granting algorithm is used to
find conflicts and prevent some secret information to be de-
rived while the strong revocation algorithm is used to check
whether a role still has permissions of another role.

7 Conclusions

This paper has provided new authorization allocation al-
gorithms for permission-role assignments that are based on
relational algebra operations. They are the authorization
granting algorithm, weak revocation algorithm and strong
revocation algorithm. The algorithms can automatically
check conflicts when granting more than one permission to
a role in a system. They can prevent users associate with
roles from accessing unauthorized use of facilities when the
permissions of the roles are changed within the organization
and demand the modification of security rights. The permis-
sions can be allocated without compromising the security
in RBAC and provide secure management for systems. The
complexities of the algorithms are also analyzed. Further-
more, we have reviewed the consumer scalable anonymity
payment scheme and discussed how to use the algorithms
for the electronic payment scheme.

10

References

[1] Ahn G.J. and Sandhu R. The RSL99 Language for Role-
Based Separation of Duty Constraints. In 4th ACM Work-
shop on Role-Based Access Control, pages 43–54. Fairfax,
VA, October, 1999.

[2] Barkley J. F. Application engineering in
health care. In Second Annual CHIN.
http://hissa.ncsl.nist.gov/rbac/proj/paper/paper.html,
1995.

[3] Barkley J. F., Beznosov K. and Uppal J. Supporting relation-
ships in access control using role based access control. In
Third ACM Workshop on RoleBased Access Control, pages
55–65, October, 1999.

[4] Bertino E., Castano S., Ferrari E. and Mesiti M. . Speci-
fying and enforcing access control policies for XML docu-
ment sources. World Wide Web, 3, pages 139–151, Baltzer
Science Publishers BV, 2000.

[5] David F.F., Dennis M.G. and Nickilyn L. An examination
of federal and commercial access control policy needs. In
NIST NCSC National Computer Security Conference, pages
107–116. Baltimore, MD, September, 1993.

[6] Feinstein H. L. Final report: Nist small business innovative
research (sbir) grant: role based access control: phase 1.
technical report. In SETA Corp., Jan. 1995.

[7] Ferraiolo D., Cugini J. and Kuhn R. Role-based access con-
trol (rbac): Features and motivations. In The 11th Annual
Computer Security Applications Conference, pages 241–48,
New Orleans, LA, December 11- 15, 1995.

[8] Ferraiolo D. F. and Kuhn D. R. Role based access control.
In 15th National Computer Security Conference, pages 554–
563, 1992.

[9] Ferraiolo D. F., Barkley J. F. and Kuhn D. R. Role-based
access control model and reference implementation within
a corporate intranet. In TISSEC, volume 2, pages 34–64,
1999.

[10] Goldschlag D., Reed M., and Syverson P. Onion routing for
anonymous and private Internet connections. Communica-
tions of the ACM, 24(2):39–41, 1999.

[11] Lupu E., Marriott D., Sloman M. and Yialelis N. A pol-
icy based role framework for access control. In ACM/NIST
Workshop on Role-Based Access Contro. http://www-
dse.doc.ic.ac.uk/ ecl1/papers/rbac95/rbac95.pdf, 1995.

[12] Okamoto T. An efficient divisible electronic cash scheme.
In Advances in Cryptology–Crypto’95, volume 963 of Lec-
tures Notes in Computer Science, pages 438–451. Springer-
Verlag, 1995.

[13] Osborn S.L., Reid L.K. and Wesson G.J. On the Inter-
action Between Role-Based Access Control and Relational
Databases. In IFIP WG11.3 Tenth Annual Working Confer-
ence on Database Security, pages 139–151, July, 1996.

[14] Rivest R. T. The MD5 message digest algorithm. Internet
RFC 1321, April 1992.

[15] Sandhu R. Role-Based Access Control. Advances in Com-
puters, 46, 1998.

[16] Sandhu R. Role activation hierarchies. In Third ACM Work-
shop on RoleBased Access Control, October, 1998.

[17] Sandhu R. and Bhamidipati V. An oracle implementation
of the pra97 model for permission-role assignment. In
ACM Workshop on Role-Based Access Control, pages 13–
21, 1998.

[18] Sandhu R. and Park J.S. Decentralized User-Role As-
signment for Web-based Intranets. In 3th ACM Workshop
on Role-Based Access Control. Fairfax, Virginia, October,
1998.

[19] Wang H. and Zhang Y. Untraceable off-line electronic cash
flow in e-commerce. In Proceedings of the 24th Australian
Computer Science Conference ACSC2001, pages 191–198,
GoldCoast, Australia, 2001. IEEE computer society.

[20] Wang H., Cao J. and Kambayashi Y. Building a consumer
anonymity scalable payment protocol for the internet pur-
chases. In 12th International Workshop on Research Is-
sues on Data Engineering: Engineering E-Commerce/E-
Business Systems, San Jose, USA, Feb. 25-26, 2002.

[21] Wang H., Cao J. and Zhang Y. A consumer anonymity scal-
able payment scheme with role based access control. In 2nd
International Conference on Web Information Systems En-
gineering, pages 384–389, Kyoto, Japan, Dec. 3-6, 2001.

[22] Wang H., Cao J. and Zhang Y. Ticket-based service access
scheme for mobile users. In Twenty-Fifth Australasian Com-
puter Science Conference (ACSC2002), Monash University,
Melbourne, Victoria, Australia, Jan. 28-Feb. 2.

[23] Yiannis T. Fair off-line cash made easy. In Advances in
Cryptology–Asiacrypt’98, volume 1346 of Lectures Notes in
Computer Science, pages 240–252. Springer-Verlag, 1998.

11

