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Abstract

Channel estimation is required in virtually all communication systems: wireless, optical,

and electrical systems. Modern mobile wireless devices undertake channel estimation

repeatedly and audio communication systems of all varieties repeatedly estimate the

echo-path channel so that echos can be cancelled. The channel estimation must be

carried out repeatedly because the channel will vary while communication is taking

place. This dissertation examines channel estimation in both acoustic and wireless

cases.

Echo cancellation has become ubiquitous because it is superior to other echo man-

agement techniques whenever the echo channel can successfully be estimated. Echo

cancellation relies on the correct estimation and modelling of the echo channel. De-

spite much research into advanced echo cancellation techniques, there remains acoustic

applications where the channel is too dynamic for existing echo channel estimation

techniques to succeed. An echo cancellation simulation environment has been devel-

oped to facilitate the simulation of dynamic echo environments and the monitoring of

the results and the internal state of echo cancellation algorithms. This environment en-

ables the monitoring of the overall result and the internal state of the echo cancellation

algorithms. Object oriented programming techniques are used to achieve the flexibility

needed to do this for different algorithms, different stimulus or test signals, different

background noise and different channels.

While most acoustic echo channels are essentially linear, speakers can introduce non

linearity to an echo channel, depending on their quality. A simplified non linear echo

channel model of this situation is used, and a non linear algorithm for echo cancellation



ii

developed that estimates the parameters of this model.

Second order statistics are used in techniques for channel estimation in wireless systems.

Their use is necessary, given the dynamic nature of wireless channels. To date, however,

there have been few attempts to fully utilise second order statistics as part of channel

estimation for acoustic systems. The optimal linear estimator of the channel is identified

that fully takes the second-order statistics of the channel variation into account.

Test signals are often used in the estimation of wireless channels. They are also used in

the estimation of acoustic channels. Equations characterising the optimal (in the sense

of least-squares estimation error for fixed power) test signal based on the second order

statistics of the channel and of the noise are developed. The power advantage of an

optimal test signal over white noise as a signal is unbounded as the channel statistics

vary.

Channel autocovariances may be represented by covariance matrices. The model offered

by a covariance matrix is often too complicated for use in practice, however. A model

of intermediate complexity has been developed that remains sufficiently flexible to

encapsulate desirable features of a channel autocovariance while being significantly

simpler to use. The simplified model of a channel autocovariance has been used to

randomly generate autocovariance matrices that are suitable for use in the testing the

method for finding optimal test signals.
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Chapter 1

Introduction

This dissertation is primarily about acoustic channel estimation. Acoustic echo can

cause reverberation and distortion of otherwise pristine sound. It may create an irritat-

ing delayed image of the original sound or it may cause squealing feedback. Techniques

for the management of acoustic echo include echo suppression, comb filters, frequency

shifting, and echo cancellation. Echo cancellation is the most difficult technically of

these techniques, because it relies on channel estimation. Despite this, it has been very

successful because when it works properly, it does not introduce distortion and does

not inconvenience the users.

Channel estimation is also very important in wireless communications. The medium of

wireless echo is that of electromagnetic energy transmitted through air. Like acoustic

echo, the channel is complicated because the electromagnetic energy arrives at a receiver

by many different paths. Like acoustic echo channels, wireless channels can be very

dynamic. This is especially true in the case of mobile radio devices. One mitigating

factor in wireless channel estimation is that fact that the spectrum of interest normally

does not extend across the entire radio spectrum, but is normally limited to a relatively

narrow frequency band.

Modern wireless applications such as mobile phones, digital TV and ASDL employ

Orthogonal Frequency Division Multiplexing (OFDM) which has embedded test sig-

nals which have, as one of their functions, wireless channel estimation. Some of the
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most successful wireless channel estimation techniques in OFDM utilise the secondary

statistics of the channel. This dissertation utilises ideas from wireless channel estima-

tion techniques and applies them to acoustic channel estimation.

1.1 Notation

This dissertation explores many aspects of channel estimation, and as such has a wide

scope. It has not been possible to exclusively reserve modern and Greek alphabetic

characters for every value which must be represented. Instead, this dissertation reserves

symbols for only the key values and operations used throughout the dissertation. Since

the key variables require the core concepts in order to have any real meaning, we will

introduce the core concepts of echo cancellation, the key variables, and the notations

for the dissertation together in this section.

Echo cancellation works by estimating the echo channel. The echo canceller uses the

echo channel estimate in combination with the input to predict what the echo will be.

In telephonic and acoustic echo cancellation, the predicted echo is removed from the

output, by subtracting it as shown in Figure 1.1.

+

+

z  t

x  t

y t  z  t

y t 
h t 

h t 

+ +

-

+

w  t 

Figure 1.1: Block diagram for basic echo cancellation.

In Figure 1.1, x(t) represents the original signal deliberately introduced into the echo

channel. In telephonic echo cancellation, it is often referred to as the far end signal. In

acoustic echo cancellation, it is the speaker signal. In wireless channel estimation it is

referred to as the transmitted signal. In telephonic and acoustic echo cancellation, x(t)
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is a real signal. In wireless channel estimation it is common to use a complex frequency

shifted version of x(t).

Most echo cancellation is linear, and in the case of telephonic and acoustic echo cancel-

lation, the channel is most often represented in the form of an impulse response. Also

in Figure 1.1, h(t) represents the channel and ĥ(t) is our estimation of it. Although

impulse responses are infinite in theory, the amplitude eventually becomes small, and

they can be truncated to a finite length in our model without sacrificing too much

accuracy. The length of the impulse response will usually be denoted by n.

The impulse response is also commonly represented in the Fourier domain as h̃(f)

instead of h(t) and in this case is referred to as the transfer function. The impulse

response is generally real in telephonic and acoustic echo cancellation, but generally

complex in wireless channel estimation. We use the term convergence, in echo can-

cellation, to describe the situation where the echo cancellation is successful, and ĥ(t)

approaches h(t).

Also in Figure 1.1, y(t) is the signal that emerges from the channel directly as a result

of the signal x(t) entering the channel, and ŷ(t) is the estimate of y(t). We will use use

hat symbol above a value symbol, e.g. ĥ(t), consistently throughout this dissertation

to mean the estimate of. Similarly, we will use the bar symbol, e.g. x̄, to mean the

mean of. Sometimes we will use v̂k|j to mean the estimate of vk (the estimate of the kth

temporal instance of the scalar or vector v) based on information up to and including

the jth temporal instance.

Also depicted in the illustration is z(t). In echo cancellation this is generally referred

to as the noise. In wireless channel estimation it really is noise, i.e. something that

would be eliminated, were it easily possible, as the goal is to find x(t). In telephonic

echo cancellation and in acoustic echo cancellation, however, z(t) is often referred to as

the near end signal and it is the desired output from the echo cancellation subsystem.

Also appearing in the diagram is w(t), which is the combination of the near end signal

combined with the echoes of the far end signal, that is:

w(t) = y(t) + z(t).
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Unlike y(t) and z(t), w(t) can be measured. In the case of telephonic and acoustic echo

cancellation, ŷ(t) is subtracted from w(t) giving the result ẑ(t) which hopefully is a

faithful reproduction of z(t).

Echo cancellation normally works digitally by representing quantities as discrete digital

samples held in arrays, and hence this dissertation generally refers to the discrete

vectors, e.g. x, y, h, w and ĥ instead of x(t), y(t), h(t), w(t), and ĥ(t). Note that

we use bold lowercase letters to indicate vectors throughout the dissertation. Matrix

versions of these values such as X are used occasionally throughout the dissertation.

Note that that matrices are denoted by bold capital letters. Vectors and matrices are

indexed from zero in this dissertation. The matrix I is the identity matrix. The square

root of −1 is represented by i.

In the linear case, the effect of the channel upon the signal x can be modelled by

y = x⊗ h, (1.1)

where the ⊗ symbol indicates convolution. The ⊗ symbol will be used to indicate

convolution throughout the dissertation. It is often convenient to express the samples

of x(t) in reverse time order so that x0 is the most recent sample of x(t) and x1 is the

previous sample of x(t), and so on. If we use this convention, we may express the most

recent discrete value of y(t), y as an inner product

y = xTh. (1.2)

The Discrete Fourier Transform (DFT) Matrix F is a matrix representation of the DFT,

such that if x̃ is the DFT of x, then

x̃ = Fx,

where the tilde character is interpreted to mean ”in the Fourier domain”. In order to

simplify our algebra we use the unitary version of the DFT and the DFT matrix so

that

F∗ F = I,

which is a very useful property. Specifically,

Fj,k =
1√
n
e(
−2πi jk

n
). (1.3)
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The equation (1.1) may be represented in the Fourier domain, and in this case con-

volution in the time domain is equivalent to element by element multiplication in the

Fourier domain, i.e.

ỹ = x̃ � h̃, (1.4)

Throughout this dissertation, the � character indicates element by element multiplica-

tion between vectors or matrices having the same dimensions.

The channel impulse response of a communication systems under consideration gen-

erally varies with time, and hence we regard it as random, having a mean and an

autocovariance. We use the overline or the expectation operator E[·] to denote the

time or the ensemble average (which are equal, because we assume the whole system is

ergodic):

h = E[h]. (1.5)

We denote the autocovariance matrix by Ch, and the subscript h here indicates that

this particular matrix is the covariance of the impulse response h.

Ch = E[h hT ]− h̄ h̄T . (1.6)

If we assume that the mean values of the impulse response are zero, we may write:

Ch = E[h hT ]. (1.7)

The subscript h indicates that this is the covariance of the impulse response. The

superscript (·)T is used to indicate the transpose. In the equation

Ch̃ = E[h̃ h̃∗], (1.8)

Ch̃ is the covariance matrix of the transfer function. h̃ is the transfer function, and

since it is complex, the Hermitian transpose is used, indicated by the superscript (·)∗.

We use the superscript (·)+ to indicate the Moore Penrose inverse of a matrix (Moore

1920, Penrose 1955).

We use σ to denote the standard deviation. As w(t), x(t), y(t) and z(t) are zero mean

signals, in general, the power in a signal is the square of the standard deviation, e.g.

the power in the noise is normally denoted by σ2x.



1.1 Notation 6

The % symbol is used throughout this dissertation to indicate the remainder of integer

division (Boute 1992) where, for example, (−2)%3 = 1. This symbol is used instead

of the more standard mod() function because it is used frequently in matrix subscripts,

and it was found that under these conditions the use of the mod() function here makes

the equations in question unnecessarily difficult to read.

The following functions are each used throughout this dissertation:

diag(·) Returns a vector that has the diagonal elements of its matrix argument as its

elements.

Diag(·) Returns a diagonal matrix that has the elements of its vector arguments as its

diagonal elements. Clearly:

diag(Diag(v)) = v.

Circ(·) Returns a circulant matrix that has the elements of its vector argument as its

left hand column.

tr(·) Returns the trace of a matrix, i.e. the sum of the elements along the main

diagonal.

traces(·) Returns a vector that has the sum of each diagonal of its matrix argument

as its elements. Specifically:

traces(X)i =

n−1∑
j=0

X(j−i)%n,j =

n−1∑
j=0

Xj,(j+i)%n. (1.9)

Finally, this dissertation uses differential calculus on vector functions of vectors and on

scalar functions of matrices. I have chosen from several plausible notations. One work

that this dissertation refers to (Petersen & Pederson 2008) uses the partial differentia-

tion notation as commonly found in multivariate calculus. For example, rule 57 from

(Petersen & Pederson 2008) states:

∂tr(AX−1B)

∂X
= −(X−1BAX−1)T , (1.10)

where A, B, and X are all matrices. However, various publications in the field of

echo cancellation use ∇x to mean differentiation with respect to x as it does in vector

calculus. (Cabell 1998, Widrow, McCool, Larimore & Johnson 1976, Widrow & Stearns
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1985) use this notation, as does this dissertation. The following example, in which the

expression (Ax) is being differentiated with respect to the vector x, demonstrates its

use

∇xAx = A. (1.11)

In addition, the example above demonstrates the convention used in this dissertation

for the differentiation of vector functions of vectors. It implies that if we have a vector

u of dimension n that is some function of a vector v of dimension m, then ∇v(u) is a

matrix that has n rows and m columns. If u is scalar, then n = 1 and the derivative

is a row vector. If v is scalar, then m = 1 and the derivative is a column vector. This

convention is used because when adhered to, the chain rule may be expressed simply

in terms of a matrix multiplication. That is, if we have a vector p that is a function of

u, then

∇v p = (∇up) (∇vu) (1.12)

1.2 Echo Cancellation

Echo cancellation is required in a wide range of situations and the nature of the problem

varies significantly. Two most important types of echo cancellation are:

telephonic echo cancellation is required to cancel an echo which occurs due to the

presence of a hybrid in the circuit between a telephone and the network in most

residential access networks. Telephonic echo cancellation has been successful

enough that we may regard it as a solved problem.

acoustic echo cancellation is required to cancel an echo which occurs when a micro-

phone and speaker are used in the same space for the purpose of communication

with a remote party. The medium of acoustic echo is that of sound transmitted

through air. Echo cancellation is employed in mobile phones and in videoconfer-

encing, greatly enhancing the sound quality without most users even being aware

of its use.

Acoustic echo is caused by the reflection of sound from walls, ceilings, floors, fur-

niture and people. Acoustic echo channels are usually complicated because they
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are produced by the echoes of echoes, and the sound that reaches its destination

will have come via many different paths. Acoustic channels may be very dynamic,

and the echo cancellation technology needs to adapt rapidly. Acoustic echo can-

cellation is still an ongoing topic of research because there are still situations

(described in Section 1.2.1) where the current technology is not adequate. The

range of frequencies of interest in echo cancellation is the entire audio spectrum

ranging from approximately 100 Hz to approximately 20 KHz.

However, the history of echo cancellation begins with telephonic echo cancellation,

and most of the techniques for acoustic echo cancellation were originally developed for

telephonic echo cancellation and refined for acoustic echo cancellation. Therefore, this

dissertation cannot ignore telephonic echo cancellation.

There are also a wealth of channel estimation techniques used in wireless technologies.

Part of this dissertation aims to adopt concepts used in the wireless world for application

in acoustic situations. Therefore it is necessary for this dissertation to examine some

examples of dynamic channel estimation in the wireless world.

1.2.1 Acoustic Echo Challenges

As mentioned above, there are some applications where echo cancellation is highly

desirable, but the echo cancellation is inadequate. Here we shall explore some examples.

Speaker Phones

Acoustic echo cancellation works best when the echo channel is relatively static and

when the echo has a short time duration. The echo cancellation associated with a

mobile phone, for example, enjoys a short echo channel that is fairly static, and as such

works well. In stark contrast to the mobile phone, the speaker phone has a longer echo

duration and one that can change dramatically whenever the user changes position. It

should therefore come as no surprise that hands free telephony is one application where

the current echo cancellation technology is inadequate.
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This is very clearly demonstrated by a string of patent applications enabling better echo

suppression for speaker phones (Arbel 1989, Staudacher & Harbhajan 1997, Faraci &

Skene 1999, Freed 2004). There would be no need to resort to echo suppression if the

echo cancellation was adequate. Similarly, research into spectral power subtraction

where sub bands are suppressed to improve human perception of sound quality (Faller

2003) would not be needed if the echo cancellation was adequate.

Music Concerts

The echo from a music venue back into the microphone of a singer reduces the quality of

the music. Low level echoes manifest themselves in the form of unwanted reverberation,

and in the worst case can introduce a loud squeal if the feedback into the microphone

becomes too strong. The problem of echo cancellation in this environment is made

difficult because the singer moves, and each different position that the singer takes

causes a different echo channel.

In the case of the spoken word, frequency shifting using the sound equipment is com-

monly used to prevent microphone squeal. Frequency shifting works by multiplying

the signal by a constant frequency. Frequency shifting effectively adds or subtracts the

multiplied frequency to all frequencies of the sound signal. Since sound cannot feed

back at the same frequency, microphone squeal is stopped.

While frequency shifting may be acceptable in the case of the spoken word, such fre-

quency shifts change the frequency ratios between notes causing any melody to be off

key. Frequency shifting has a disastrous effect on music, and can not be used at a

concert. In these circumstances microphone squeal may be muted by notching out or

suppressing the frequency that the squeal would have occurred in. This is also not ideal

since it distorts the signal received by the concert audience.

An echo cancellation technology that can adapt rapidly enough may have the potential

to eliminate the need for such techniques as frequency shifting and the suppression of

problem frequency sub bands.
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VOIP

Voice over Internet Protocol (VOIP) communication refers to the use of the Internet

to transmit interactive voice communication. VOIP provides a telephony service at a

fraction of the cost of existing telephone networks although the quality of communi-

cation is significantly worse. It is widely expected that VOIP will gradually replace

the traditional telephone network. In addition, facilities for VOIP communication in

common use frequently make use of computers with attached or built-in audio and

possibly video input/output devices.

When a headset is in use with VOIP echo cancellation is not necessary. However, the

use of a headset for such telephony is regarded as an inconvenience and as such limits

the spread of VOIP. Echo cancellation would remove the need for headphones.

Difficulties arise because the person speaking moves, thus altering the echo channel.

Personal experience with VOIP gives testament to the fact that the echo cancellation

used struggles to cope with the echoes when headsets are not used.

Recently, SkypeTM has resorted to echo suppression as its one of its echo control mech-

anisms, which clearly demonstrates the inadequacy of the current echo cancellation

technology.

Hearing Aids

Without the use of echo cancellation there is a limit to how much amplification can

be used in a hearing aid. Although hearing aids that fit snugly inside the ear can

reduce the acoustic feedback, a reduction in sound quality and howling will occur well

before a satisfactory volume is reached for some patients. Echo cancellation technology

can remove the feedback completely depending on the accuracy of the estimate of

the channel. The channel is difficult to estimate, however, and the subject of echo

cancellation in hearing aids is an ongoing topic of research (van Waterschoot & Moonen

2009, Spriet, Moonen & Wouters 2009).

One common method reducing feedback in hearing aids is to use a test signal when-
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ever misalignment in the channel model is detected (Kates 1991, Goodings, Seneb-

sieb, Gideon, Wilson & Hanson 1993, Engebretson & French-St.George 1993, Spriet,

Proudler, Moonen & Wouters 2005). The efficiency of these test signals can be im-

proved by optimising the test signals using the techniques developed in Chapter 6,

Optimisation of Test Signals.

Remote Auscultation

Queensland has remote areas which are difficult to service in an economical way.

Queensland Health uses telehealth as an important means of addressing the logisti-

cal problems encountered in providing quality services to remote areas (The Uneven

Diffusion of Telemedicine Services In Australia 1998, Nooriafshar & Maraseni 2007).

Queensland has over 200 Telehealth clinics. Queensland Health boasts that it is recog-

nised internationally as having the largest and most utilised videoconferencing network

of any single health organisation in the world (Excellence in Queensland Health 2008).

Many of the remote health clinics operate with a nurse at the remote end, that performs

tests, collects documents and other details and faxes the results to the relevant specialist

clinic. The videoconferencing systems are then used to facilitate an interview between

the specialists and the patients (Braithwaite 2006).

This arrangement is unsatisfactory, however, for auscultation. Doctors have expressed

the need to listen to the patients heart and the patient’s lungs directly. It is not

satisfactory for the nurse to do the listening for the specialist (Braithwaite 2006).

The obvious solution is to use the stethoscope directly using the videoconferencing

system. Sadly the direct use of the stethoscope remotely has not so far been a success.

Using the stethoscope directly in over the videoconferencing results in poor quality

auscultation. We believe that the problem exists because the echo cancellation normally

associated with videoconferencing is unsuitable for remote auscultation.

Acoustic echo cancellation is already more challenging than hybrid echo normally as-

sociated with telephony. One thing that makes it more challenging is the echo path

impulse response is much longer than that associated with a hybrid echo. This longer
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impulse response requires the use of more computing power.

Patient
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Stethoscope 
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from patient
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contact with 
patient

Room 
echo

Room 
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Figure 1.2: Illustration demonstrating why the impulse response of a remote auscultation

is subject to rapid change.

Echo cancellation associated with a remote digital stethoscope faces further challenges.

As illustrated in Figure 1.2 the stethoscope may be held away from the patient, or it

may be held against the patient. The echo channel will have undergone dramatic change

when the stethoscope was placed onto the patient or moved to a different location on

the patient. Also, the patient changes the geometry of his body, and therefore also the

echo channel whenever he or she breaths in or out. Hence, the echo cancellation needs

to converge quickly. It is quite a challenge for the echo cancellation to converge quickly,

however, because the auscultation sound will be present at the same time as the echo.

This is a condition known as double talk, which is known to cause slow convergence of

an echo cancellation algorithm.

One potential solution would be for the nurse to initiate a test signal whenever the

stethoscope is in place and movement has ceased. Such a technique can be made

substantially more efficient if the test signal is optimised. We develop a technique for

the optimisation of test signals in Chapter 6, Optimisation of Test Signals.
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1.2.2 Echo Cancellation Technology

Echo cancellation algorithms examine the input and the output of an echo channel and

perform the calculations which update the model of an echo channel. Then the model

is used to predict what the output from the channel will be based on the input to the

channel.

Most algorithms constantly use the input and output samples to update the estimate

of the echo channel at each time instant, and the cancellation performed uses the latest

updated model, but block based echo cancellation work differently. Samples of input

data are grouped into blocks. When enough data has arrived to fill the blocks, the

blocks are processed and the working model is then updated. Most echo cancellation

systems operate purely in the time domain, but echo cancellation performed in an

orthogonal basis and frequency domain echo cancellation are also possibilities.

Although the echo cancellation algorithm is the core technology of echo cancellation,

there are also key enabling technologies that tend to be used in practice. For example,

subband echo cancellation (described in Section 2.8) provides a way of breaking down

the computationally complex task of echo cancellation so that the echo cancellation

algorithm has much less work to do. Double talk detection (described in Section 2.9)

is another enabling technology. LMS and AP based algorithms are quite sensitive to

noise, and benefit strongly from the use of a double talk detector, which detects noise

(double talk), and turns off or slows down the adaptation of the echo canceller untill

the noise (double talk condition) has passed.

We shall outline the main echo cancellation algorithms and enabling technologies here,

and explore each more fully in Chapter 2, Echo Cancellation.

1.2.3 The LMS Algorithm

Echo cancellation began with the Least Mean Square (LMS) technique, which was

patented in the early 1960s. It is so named because in the absence of noise, it converges

to the point of least mean error in w(t). Because of its inherent simplicity, its low
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computational complexity On and its low memory requirements, it remains the most

widely used echo cancellation technique (Vaseghi 1996). LMS algorithms are explored

in more depth in Section 2.3, LMS echo cancellation.

1.2.4 The RLS Algorithm

The RLS algorithm uses data from the past to achieve rapid convergence. It is assumed

that the system does not change dramatically in the short term, and data from recent

samples are worth more than samples from the more distant past. Thus, the RLS

algorithm uses an explicit weighting factor so that recent samples have more influence

on the results than past ones. RLS algorithms are explored in more depth in Section

2.4, The Recursive Least Squares Algorithm.

In Chapter 6, Optimisation of Test Signals, we introduce a different approach to using

the past which uses second order statistics of the channel from the past record to

improve current estimates.

1.2.5 The AP Algorithm

The Affine Projection (AP) algorithm can be seen as a hybrid between the LMS algo-

rithm and the RLS algorithm, in that it uses a limited amount of information from the

past, depending on the order of the algorithm. An order one AP algorithm is identical

to the NLMS algorithm. An order two AP algorithm is less efficient than the NLMS

algorithm, but achieves a much faster convergence than the NLMS algorithm. An order

3 AP algorithm is less efficient than an order 2 AP algorithm, but has a faster con-

vergence, and so on. An order ∞ AP algorithm essentially is the RLS algorithm. AP

algorithms are explored in more depth in Section 2.5, The Affine Projection Algorithm.

1.2.6 Frequency Domain Echo Cancellation

Frequency domain echo cancellation is described in Section 2.6, Fourier Domain Echo

Cancellation. Frequency domain echo cancellation is a somewhat natural choice for
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echo cancellation because a sinusoidal wave at a given frequency entering an echo chan-

nel results in a sinusoidal wave at that same frequency, differing only in amplitude and

phase. Thus we may perform echo cancellation in each frequency band individually.

In the frequency domain amplitude and phase are encompassed within a single com-

plex number, and we may determine the channel for a given frequency by means of a

single division, making frequency domain echo cancellation computationally very effi-

cient. This clearly does not utilise statistical correlations between different frequencies,

however, as we do in Chapter 6, Optimisation of Test Signals.

1.2.7 Transform Techniques

Although the echo cancellation problem presents itself in the time domain, there may be

significant advantages in converting the problem so that it is expressed in an orthogonal

basis and solving in that domain. There are several approaches. These are described

in Section 2.7, Using Orthogonal Transforms.

1.2.8 Frequency Shifting Techniques

The normal acoustic range occupies a bandwidth from as little as 10 Hz to as much

as 20 kHz. Its frequency bandwidth is approximately that of its highest frequency,

i.e. 20khz. Occupied wireless bandwidths, on the other hand, are very narrow when

compared to the absolute transmitted frequencies.

Wireless channel estimation would be very difficult if we attempted to sample at radio

frequency rates. Not only would we have a very long effective impulse response to work

with at each sample, but we would have a very short time between samples, and have

to process very fast in order to ready for the next sample. It is still possible to perform

channel estimation on a wireless signal by frequency shifting it downwards. Frequency

shifting is examined in more detail in Subsection 2.2.3, Feedback Suppression.

Let us imagine, for example, that we were to perform channel estimation on an FM

broadcast band operating at 100.1 MHz. The lowest frequency within its effective

bandwidth would be the central frequency minus 75 kHz, i.e. 100.025 MHz, and our
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transmit and receive signals may be frequency shifted down by that amount. We could

then perform channel estimation in the frequency range 0 to 150 kHz, remove the echo,

and frequency shift our echo free result back up to the transmitted frequency range.

We can do this with acoustic echo cancellation too, by splitting the frequency range

into subbands. High quality matched filters are used to divide the full bandwidth into

approximately four to eight subbands. The subbands are then shifted down into the

frequency range of the lowest subband. Echo cancellation is performed with short im-

pulse responses and low sample rates, dramatically reducing the overall computational

complexity of the echo cancellation task. The resulting output with the echo removed

is then frequency shifted back to the original subbands and recombined into a full band.

This is known as subband echo cancellation and it is covered in Section 2.8, Subband

Echo Cancellation.

1.2.9 Double talk Detection

The term double talk was originally used to describe the condition where both parties

are talking at once during a telephone conversation (Emling & Mitchel 1963), but from

the point of view of echo cancellation, would also apply to any case where the signal

z(t) is non zero. Channel estimation accuracy is likely to be impaired during conditions

of double talk, as explained in Subsection 2.3.4 Analysis of the LMS Algorithm, and

because of this, a double talk detector is normally used to detect the condition so that

the channel estimation may be halted or slowed. Double Talk Detectors are discussed

in Section 2.9, Double-talk Detection.

1.3 Ideas from the Wireless World

The work described in Chapter 6, Optimisation of Test Signals, is primarily about the

optimisation of periodic test signals using the autocovariance of the noise and the au-

tocovariance of the channel history. Although the application of this work is universal,

it is targeted at acoustic channels. There appears to be no existing publications on the

optimisation of test signals based on the secondary statistics of the channel or the noise.
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There are publications on the optimisation of the crest factor of periodic test signals

for wireless channels and publications on the use of secondary statistics for channel

estimation, also for wireless channels. We have reviewed wireless literature relevant to

our work on test signals in Chapter 5, Lessons From the Wireless World.

1.3.1 Orthogonal Frequency Division Multiplexing

Orthogonal Frequency Division Multiplexing (OFDM) is a very successful technology,

and a field of ongoing research. In OFDM, the secondary statistics of the channel are

used to assist the channel estimation and we explore the techniques that are use to

achieve this in Section 5.1, Statistical Estimation of OFDM Wireless Channels. Rather

than assume that the reader already understands OFDM, we have provided sufficient

background on fading wireless channels and OFDM so that the reader may understand

why these techniques are used and how they work. Having provided some background,

we proceed to explore Least Squares (LS) channel estimation and Linear Minimum

Mean Squared Error (LMMSE) Estimation used in OFDM communications technology.

1.3.2 Peak Factor Optimisation

The test signal optimisation described in Chapter 6 finds a test signal with the most

efficient use of test signal power, given knowledge of the secondary statistics, for a linear

channel. So long as the channel is perfectly linear then the optimal test signal may

be defined only by the signal strengths of each frequency in the Fourier domain. The

optimality of the test signal does not depend on the phases of the test signal.

The channel without the transducers is generally linear with no effective limits, however,

the transducers and the electrical equipment associated with the transducer generally

have limits on the peak instantaneous power transmitted. It may be that a transducer

is only linear within a certain prescribed range, for example. It therefore becomes

desirable to choose the phases of a test signal in the Fourier domain with given frequency

strengths so that it has the smallest peak instantaneous power in the time domain.

The process of choosing the optimal phases in each frequency to give the smallest peak
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instantaneous power of the test signal is called crest factor optimisation.

There is currently no formula that gives the optimal phases. (Schroeder 1970) devel-

oped a formula that gives significantly better results than one would expect from using

randomly chosen phases. Crest factor optimisation techniques generally use Schroeder’s

formula as the starting point for their optimisation. We explore crest factor optimisa-

tion in more detail in Section 5.2, Optimisation of Test Signal Crest Factors.

1.4 Contributions to Channel Estimation

This section will outline contributions of this dissertation to channel estimation.

1.4.1 ECOOSE

Chapter 3, Echo Cancellation Simulation, describes the Echo Cancellation Object Ori-

ented Simulation Environment (ECOOSE). ECOOSE is an object oriented framework

for the development and testing of echo cancellation algorithms. The most important

attribute of ECOOSE is flexibility:

• ECOOSE can work with static or dynamic channels.

• These channels may be linear or non-linear.

• ECOOSE permits testing using any recorded channel input, x(t), and any recorded

noise, z(t).

• It can be used to drive adaptive online algorithms as well as block based algo-

rithms.

• The object oriented structure of ECOOSE permits the specification of any ad-

hoc parameters required by a new algorithm or added to an old algorithm in a

painless way, with defaults, so that one does not have to pay attention to each

parameter while one is testing.
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ECOOSE is the product of three development cycles. Procedural method using a proce-

dural language were employed in the first attempt at creating this flexible environment.

It turned out to be difficult to implement the desired flexibility in a procedural way.

The desired flexibility needed for the development and testing of a wide variety of

algorithms was later achieved by re-implementing the test environment using object

oriented technology.

1.4.2 Applying the Method of Innovations

A Hammerstein channel (Belforte & Gay 1999) consists of a linear channel preceded

by a memoryless non-linear channel, as depicted in Figure 1.3. Such a channel might

result from a loudspeaker that clips during periods when it is pushed beyond its linear

range.

Hammerstein Channel

G()

Memoryless 
Non-linearity

Linear System

h(t)
x(t) y(t)

Figure 1.3: Diagram depicting a Hammerstein non linear system.

In Chapter 4, Framework for Echo Cancellation with Non Linearities, we describe how

we modelled the memoryless non-linear part of the channel using Legendre polynomials,

which have the property of being orthogonal on the interval [−1 : 1] with a constant

weighting function. We describe the method of innovations (Kailath 1981) and then use

it to derive an algorithm to perform echo cancellation using this model of a Hammerstein

channel.

The derived algorithm was implemented in ECOOSE and we perform simulations that

show that the resulting algorithm converges for Hammerstein channels, whereas echo

cancellation algorithms that assume a linear channel fail to converge.
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1.4.3 Finding the Optimal Test Signal

Chapter 6, Optimisation of Test Signals, describes the development of methods for

finding the optimal test signal for a fixed signal power when knowledge of the secondary

statistics of the channel and of the noise are available.

Note that our test signal optimisation is different from the crest factor optimisation

described in Section 5.2. Our optimisation finds the optimal frequency strengths for

a given overall test signal power, and is complementary to crest factor optimisation,

which finds the optimal phases given the frequency strengths of the test signal in order

to minimise the peak instantaneous power.

Our test signal optimisation assumes a linear channel with no limits on the instanta-

neous peak power, and under that assumption the optimal signal may be described in

terms of the signal strengths of each frequency in the Fourier domain, i.e. the phases of

the test signal have no bearing on its effectiveness. Crest factor optimisation optimises

the phases and is orthogonal and complementary to this type of optimisation.

We find the optimal estimator for a fixed test signal when we know the secondary

characteristics of the channel and the noise. We define a measurable quantity which we

call coloredness and note the performance of the optimal estimator for different noise

coloredness and for different coloredness of the channel history. Covariances are called

white if all frequencies have the same power, and called colored if they do not.

Two different methods of finding the optimal test signal are devised. One method of

test signal optimisation is devised in the time domain. We derive a formula for the

optimal test signal for a fixed estimator, subject to a constraint on the available power.

Our optimisation method employs both the formula for the optimal estimator and the

formula for the optimal test signal.

A key observation from the results using this method is that the optimal test signal is

not unique in the time domain, but the frequency strengths associated with an optimal

signal are unique. We prove that phases in the frequency domain have no bearing on

the performance of a test signal. Based on this result we derive a second equation
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characterising the optimal test signal with the information about the phases removed

from the signal being optimised, in the frequency domain. Since the information about

the phases has been removed, there are only half the number of variables to optimise.

We test our optimisation methods using a randomly generated ensemble of channel

scenarios, comparing the performance of the optimal test signal with white ones. We

show that if the secondary statistics of the noise or of the channel are known, then a

white test signal is, in general, not the optimal test signal. We show that the advantage

in accuracy obtained by using an optimal test signal may be arbitrarily large, depending

on the particular situation.

1.4.4 Statistical Model of Channel Variation

The covariance matrices that we used for testing our optimisation of test signals were

not generated experimentally, but were randomly created from a statistical model of

possible channels. If we take into account the fact that covariance matrices are sym-

metric, there are effectively n(n−1)
2 elements to specify in a covariance matrix, which is

too many to specify without a model of how to do so.

In order to validate the test signal optimisation methods developed in Chapter 6, it was

neccesary to show that these methods work well for a randomly chosen combination of

channel and noise covariances drawn from a reasonable distribution of possible channel

and of noise covariances, rather than only for a specific channel.

Channel covariance matrices have properties that need to be observed in both the

time domain and in the frequency domain. These properties are positive definiteness

and symmetry. We need to be able to specify the diagonal in the time domain to be

consistent with a dispersive impulse response as shown in Figure 2.5. We also need

to be able to specify the diagonal in the frequency domain, which corresponds to the

power spectral densities.

In Chapter 7, Simplified Models for Impulse Response and Noise Covariances, we de-

velop models of the covariance matrices of the channel and of the noise, and devise a

method of creating them with the required features in both the time domain and the
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frequency domain. Our method requires the specification of the main diagonal in the

time domain as well as a specification of the diagonal in the frequency domain.

1.4.5 Mathematical Identities

Appendix A, Mathematical Results, contains mathematical results used in the main

body of the dissertation. The derivation of equations associated with the optimisation of

test signals (Chapter 6) required some unfamiliar matrix identities. Some of these were

found in the literature, and these are stated and referenced in Section A.2, Identities

Adopted for Optimisation of Test Signals. Other matrix identities were developed as

part of this work, and are believed to be original. They are stated and proved in Section

A.1, Identities Developed for Optimisation of Test Signals.

1.4.6 Computer Program Source Code

There are over 6000 lines (200 pages) of Matlab 2008 source code that were developed

as part of this work. is a guide to the source code. The source code has been made

available, and is described in Appendix B, Guide to Software Source Code, but has not

been included in the body or in the appendices of this dissertation.

A guide to the Matlab code associated with ECOOSE (Chapter 3) is given in Section

B.1, ECOOSE Source Code. It includes a guide to the class hierarchy of ECOOSE and

an explanation of the directory layout of the code. In addition, ready made experiments

or demonstrations have been made available and there are instruction on how to execute

these.

A guide to the Matlab code associated the optimisation of test signals is given in Section

B.2, Optimal Test Signal Source Code. There is a guide to the directory layout, as well as

sections that explain the core optimisation routines, the routines that manufacture test

data, and routines that orchestrate experiments and produce plots. As with ECOOSE,

demonstrations have been made available and there are instruction on how to execute

these.



Chapter 2

Echo Cancellation

In this chapter we will provide an overview of echo cancellation, its background and its

technology. We will examine the historical background of this technology, the need for

echo cancellation as well as the alternatives to echo cancellation. We will also explain

the basic concepts, examine the key echo cancellation technologies and the mathematics

that underpins them, and explore the directions and possible impact of current research.

2.1 Telephonic and Acoustic Echo Channels

2.1.1 Echo Associated with Telephony

Figure 2.1: Illustration of telephone loop using 2 wire and 4 wire paths. Adapted

from (Jones 2010).

Investigation into echo cancellation was initially motivated by the desire to rid long
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distance telephone calls from annoying echoes. Prior to the 1930s, telephony was essen-

tially local, and the communication delay was less than approximately 10 milliseconds.

If the time duration for an echo is less than 40 ms, then the human ear will not notice

the echo (Cutler 1965). The echo signal cannot readily be discerned because it is almost

coincident with the listener’s side-tone level(Berkley, Mitchell & Pierce 1972, Painter

& Spanias 1997). The echo only became a problem when international telephony in-

troduced one way delays of up to 80 milliseconds, for example a call between London

and Hawaii (Emling & Mitchel 1963). When end to end delay is as long as this, the

echo becomes annoying (Blackwell 1932).

Figure 2.2: Schematic diagram of a hybrid used in telephony between two wire circuits and

4 wire circuits. Adapted from (Emling & Mitchel 1963).

There are two types of echoes associated with early telephony. One is the echo created

by sound from the speaker of the handset entering the microphone. Telephones in those

days had good acoustic separation between the microphone and the speaker so this

sort of echo was minimal. The other type of echo is created by impedance mismatches

in the electrical circuits. One major impedance mismatch that could not easily be

eliminated was the conversions between the core four wire circuits and end user two

wire circuits. Transmission over distances of length requires amplification, and is only

practical in systems which use four wires, i.e. two in each direction. In order to save

copper, telephone companies used a two wire system between the most local telephone

exchanges and individual houses or offices. So at some point near the residence, usually

the local exchange, a conversion between 2 wire and 4-wire communication must take

place (Kelly & Logan 1966, Sondhi 1966, Gritton & D.W.Lin 1984). A high level
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diagram dipicting the use of hybrids is shown in Figure 2.1, and a schematic diagram

of a hybrid is shown in Figure 2.2.

The device which implements this conversion is known as a hybrid. The hybrid is an

imperfect device, which inevitably has an impedance mismatch which creates echoes.

Efforts at creating an automatic balancing system for the hybrid were reduced after it

was proved that this was theoretically impossible with any linear network (Lewellyn

1950). Because the dominant echo is created at a single point, telephonic echo is

generally sparse, i.e. most of the values of the impulse response are very small or zero,

as illustrated in Figure 2.3.

Figure 2.3: Illustration of a sparse echo channel associated with telephony. Adapted from

(Jones 2010).

2.1.2 Acoustic Echo

If we have a space with loudspeakers to deliver the far end signal to our listeners

and a microphone to pick up their speech as depicted in Figure 2.4, then some of the

sound from the loudspeakers will be picked up by the microphone. The sound from the

loudspeakers picked up by the microphone is termed acoustic echo.

Depending on the situation and on the delay, acoustic echo can seriously degrade the
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sound delivered or simply cause an annoying echo. In the case of a music concert, where

the delay is short, sound originating from the speakers that enters the microphone can

cause reverberation and degradation of the overall sound quality, and in the extreme

case cause microphone squeal. In the case of videoconferencing, where the delay is long,

the echo can act as noise which prevents a clean sound and easy comprehension of the

far end speech.

Object

Microphone
Direct Route

Speaker

Figure 2.4: Diagram of Sound Propagation in a Loudspeaker Enclosure Microphone (LEM)

Channel.

The sound from the speaker may take many different routes before it enters the mi-

crophone, as depicted in Figure 2.4. The sound impulse may take a direct route, and

it may also arrive by reflecting from walls and objects and eventually reaching the

microphone.

The envelope of an acoustic echo typically begins with a period of all zeroes because it

takes little while for an impulse to reach the microphone by the first sound path. The

impulse response then has a period of high amplitude activity as the impulse arrives at

the microphone by the shortest paths. After that, the impulse reaches the microphone

via paths that include several reflections, and then reflections of reflections and so on.

As sound reflection absorbs a fraction of the energy, the strength of the sound reflections
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die away with time, and the envelope of the impulse response dies away exponentially.

In theory, the impulse response has infinite length, but in a practical sense it dies away

to zero. Such an impulse response is depicted in Figure 2.5 and is termed a dispersive

impulse. There are echo cancellation algorithms that are very efficient in identifying

sparse impulse responses but do not work well with dispersive impulse responses.

Figure 2.5: Dispersive channel. Simulated impulse response of a room. Adapted from

(Lehmann 2009).

Energy at a frequency of zero is not transmitted acoustically, as explained in Subsection

7.1.3, and therefore acoustic impulse responses always have a mean of zero. As people

or objects are moved within a room, then many paths from the microphone to the

speaker will be altered. Such movement will cause the impulse response to be altered.

If either the speaker or the microphone is moved, then all paths between the microphone

and the speaker are altered. Moving the microphone or the speakers causes dramatic

changes in the impulse response.

The impulse response of an acoustic echo channel may typically be in the range 50 to 300

ms and good quality cancellation can require thousands of taps (Allen & Berkley 1978).

The length of the impulse response necessitates the use of a large amount of computing

power and can make it impractical to use one of the more complex echo cancellation

algorithms.

This is exacerbated by the fact that the echo channel may change rapidly at any time.

If a door opened, or a person passed through the echo channel, the impulse response

of the channel can change.

On the one hand, a faster converging algorithms is needed. Unfortunately the faster
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converging algorithms tend to be the ones that require more processing power, and we

cannot use those because of the long dense impulse response. Acoustic echo cancellation

is is a far more challenging task because of the much longer impulse response and

because the impulse response is typically more dynamic (Benesty, Gansler, Morgan,

Sondhi & Gay 2001)(chapter 1). While the challenges of telephonic echo cancellation

have effectively been solved, there remain important challenges for echo cancellation of

audio communication systems.

2.2 Alternative Echo Management Techniques

Echo cancellation is one of the means of effectively dealing with echoes. Echo suppres-

sion, comb filters and frequency shifting are alternate technologies which may be used

in order to mitigate the problem of echoes. These methods have been used historically

and are still used today. We will briefly explore these alternative technologies, their

advantages and their disadvantages in this section.

Echo cancellation is far more complicated and requires much greater resources than the

alternative echo management techniques. Echo cancellation relies on the availability of

fast cheap digital technology, requires substantial memory resources, and depending on

the situation, challenges the speed of even today’s digital technology. Echo cancellation

was first developed in the 1960s and has been a topic of active research over the past

fifty years. The most sophisticated alternative technique is frequency shifting, and we

shall see in Section 2.8 that frequency shifting is one of the tools often employed as a

part of practical echo cancellation.

Low tech solutions often prove to be the best, but in the case of echo management, each

of the low tech solutions has major disadvantages or limitations and echo cancellation

has become the dominant solution. When the channel can be adequately estimated,

echo cancellation provides an almost perfect solution because the echo of the trans-

mitted sound is removed from the desired sound without distorting it and it does so

while continuing to receive the near end sound. Nevertheless, there are situations, as

discussed in Section 1.2.1, where echo cancellation technology is still not adequate, and
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it is in these situations where alternative technologies are still used today.

2.2.1 Echo Suppression

The hybrid echo associated with telephony inspired several schemes for echo manage-

ment. Initially, the most successful was echo suppression, which had originally been

developed for radio communications in the 1940s (Barney 1941). Echo suppression was

adapted for telephone in the 1950s(Brady 1967).

Echo suppression determines who is speaking and disconnects the line returning to

the speaker. When no party is speaking, the line is connected as normal. Under this

condition, there is no sound, and therefore no echo. When only one party is speaking,

the sound in the return direction is disconnected. This way, the echo does not return

to the speaker. When both parties speak, the line is connected as normal. Fortunately

under this condition, neither party is listening particularly well and the echo may go

unnoticed (Gritton & D.W.Lin 1984).

The presence of echo suppression can cause discomfort and inconvenience to the users.

One problem was that there is no sound returning to the speaker while he or she is

speaking, often leading the speaker to mistakenly believe that the line is dead. Another

problem with echo suppression is that interruptions are impaired. If one party is speak-

ing and the other party interrupts, then the reconnection of the new speaker’s line may

not happen quickly enough and the interruption may go unnoticed (Cutler 1965).

The problems associated with echo suppression were temporarily mitigated by evolu-

tionary improvements. These improvements included more intelligent switching strate-

gies and having a controlled potentiometer rather than a switch (Brady 1967)(Gritton

& D.W.Lin 1984). Later however, the introduction of satellite links caused long delays

of up to half a second (Emling & Mitchel 1963) and the imperfections of echo suppres-

sion then became exacerbated. This encouraged research into echo management and

Bell Laboratories was the first company to patent a practical echo cancelling design

(Kelly & Logan 1966), known as the Least Mean Square (LMS) algorithm.

Nevertheless, echo suppression continues to be commonly used in places where echo
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cancellation is inadequate. Skype, for example, uses echo suppression as one of its echo

management techniques.

2.2.2 Comb Filters

Another echo management technique is that of the comb filter. The use of comb filters

for echo management is still common for speakerphones and for military communica-

tions equipment.

Comb filters divide the frequency range into several subbands, with consecutive sub-

bands being allocated alternatively to the receiving line and to the sending line (Cutler

1965). No sound gets through both filters, therefore all echoes are blocked. Frequencies

that are passed by one filter are blocked by the other filter, and vice versa, as shown

in Figure 2.6.

Human beings are capable of hearing the primary frequency of a tone even if that

frequency is removed (Reid 2002). The human voice is rich in harmonics, and it is

sufficient if some of the harmonics of the tone are passed.

When the passband frequencies are correctly selected, a lower impact on the perceived

naturalness of the perceived speech results (Berkley & Courtney-Pratt 1971). When

the divisions between the frequency bands are chosen at 1
3 octaves, and the fundamental

frequency is blocked, then the second, third, fifth and eighth harmonic will be passed,

providing they lie within the telephone line frequency limits. Thus, at least some

harmonics of any tone will be passed by any filter.

Comb filters provide a very effective echo management solution. Both people can

talk at the same time, yet the echo is completely removed and the resulting speech is

intelligible.

On the other hand, human speech passed through a comb filter, though intelligible,

sounds tinny and unnatural. Also, our ability to identify someone by means of their

voice is reduced.
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Figure 2.6: Diagram which depicts the complementary filter responses of the comb filters

for the receive and the send signals. Adapted from (Cutler 1965).
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As such, comb filters are typically used in applications where a channel is too dynamic

for echo cancellation such as speakerphones (Phillips, Williams & Herbert 1985) and

in various military radio applications.

2.2.3 Feedback Suppression

Echo at a short delay, also known as reverberation, is normally not as annoying to

humans as echo with a long delay. However, if the sound from a loud speaker can

re-enter a microphone and be amplified, reverberation can become intolerable. As the

amplified echo of a sound becomes nearly as loud as the original sound being echoed,

the reverberation becomes overwhelming. When the amplified echo of a sound becomes

louder than the original sound being echoed, acoustic feedback howling otherwise known

as microphone squeal, at frequencies determined by the loop delay may result.

This is common in an auditorium or concert or when using a megaphone or in hearing

aids. Feedback suppression is an ongoing topic of research (Spriet, Moonen & Wouters

2010, van Waterschoot & Moonen 2011).

The open loop response is the transfer function of the channel when the feedback loop

is disabled, e.g. by not feeding the microphone input back into the system. The closed

loop response is the transfer function of the channel when the feedback loop is enabled.

The closed loop response is a function of the open loop response, especially the feedback

delay. Whenever the closed loop gain exceeds 1 for any frequency, howling feedback

will occur.

Figure 2.7 helps to give an intuitive understanding of acoustic howling by showing the

closed loop response when the open feedback response has a flat transfer function of

unity at a delay of 2 milliseconds. It shows that the closed loop transfer function has

peaks and troughs at regular intervals. As we increase the loop delay, this picture would

change in a way that can be described as compression, i.e. the peaks and troughs would

be much closer together.
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Figure 2.7: Diagram showing open (flat) and closed (peaked) loop responses at a delay of

2ms and a Gain of 1. Adapted from (Troxel 2005).

Frequency Shifting

Frequency shifting is common technique for defeating feedback in used in auditoriums,

megaphones, and hearing devices (Freed & Soli 2009). Frequency shifting moves every

frequency by the same amount. Frequency shifting is not used for music because it

destroys the harmonic relationship of notes to each other, but is acceptable for human

speech so long as the frequency is not shifted more than about 12 Hertz. Even speech,

frequency shifted by more than 12 Hz, will sound distorted (Troxel 2005). If there is

energy at a frequency where the gain is more than 1 then instability would normally

result. But with frequency shifting, each time the energy goes through the loop it is

shifted in frequency until it is eventually moved to a frequency where the loop gain is

low, and the energy will be dissipated. Frequency shifting is very effective at stopping

acoustic feedback howling. A frequency shift of 5 Hz will increase the amplification

possible before feedback howling occurs by about 10 times (Schroeder 1964).

Frequency shifting is also an important component of subband echo cancellation, which

is covered in in Subsection 2.8. It is also used in digital wireless techniques such as
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OFDM, which is covered in Section 5.1.

There are many techniques of frequency shifting. The Filter Method of frequency

shifting, though not the most popular method for acoustic applications, is the simplest

method of frequency shifting. Other methods include the Bode method (Bode & Moog

1972), Weaver methods (Weaver 1956), Hilbert Tranform methods (Wardle 1998), and

Discrete Fourier Transform (DFT) methods (Scheuing & Yang 2006), but this list is by

no means exhaustive. I will describe the most basic technique, the Filter Method.

The Filter Method The frequency of a band is shifted up or down into another

band by ”modulating” it with the difference between actual and the desired frequency.

Frequency shifting changes the frequency of a sound up or down by a fixed amount. We

can represent our original signal x(t)by the integration of the signals at each frequency

within a subband by:

x(t) =

∫ b

ω=a
x̃(ω) cos(ωt+ φ(ω)) dω,

where a and b are the upper and lower bounds of the subband, x̃(ω) is the strength of

the signal at frequency ω, and φ(ω) is the phase of the signal at the frequency of ω. If

we have sound in a given subband, and we wish to shift the frequency up or down by

ωs where ωs is greater than or equal to the width of the subband, we may frequency

shift a sound by first multiplying the signal by a cosine signal at the frequency of ωs:

x(t)cos(ωst) =

∫ b

ω=a
x̃(ω) cos(ωt+ φ(ω)) cos(ωst) dω

=

∫ b

ω=a
x̃(ω) cos((ω + ωs)t+ φ(ω)) dω

+

∫ b

ω=a
x̃(ω) cos((ω − ωs)t+ φ(ω)) dω

= xu(t) + xl(t),

where xu(t) is a copy of x(t) shifted up by ωs and xl(t) is a copy of x(t) shifted down

by ωs. All that remains to be done is to remove the unwanted frequency by means of

filtering.

In order to shift by a frequency ωp where ωp is less than the width of the subband, one

needs to first shift up by ωa and then down by ωb, where ωa − ωb = ωp, and both ωa

and ωb are greater than the width of the subband.
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2.3 LMS echo cancellation

The LMS algorithm is the first echo cancellation algorithm that was developed. It is

easily the simplest of all the echo cancellation algorithms as well as being the most

implemented. Most echo cancellation software today are essentially implementations

of algorithms that are enhancements of the LMS algorithm. For this reason, the LMS

algorithm is important. In this section we consider its development, explain how it

works, and analyse its performance.

2.3.1 Introduction to the LMS Algorithm

Echo cancellation was developed in the early 1960s by Bell Labs, AT&T and by the

Nippon Electric Company. In Bell Telephone Laboratories, AT&T, an unpublished

internal memorandum by Flanagan and de Barbeyrac documents experiments that

demonstrated the feasibility of sending a test impulse through a system and using the

result to synthesize a transversal filter approximating the impulse response (Sondhi

1967).

The actual impulse response of the system is rarely constant, however, and John Kelly

of Bell Labs proposed the idea of using the speech signal itself in place of a test impulse

in order to determine the impulse response dynamically (Sondhi 1967). A patent appli-

cation for a design using these ideas was made in October 1966 (Kelly & Logan 1966).

Although the patent was called ”Self-Adaptive Echo Canceller”, the method is now

known as the Least Mean Square (LMS) echo cancellation. The patent application

claims that the method achieves echo attenuation of up to 30 dB.

One month after that patent application the (Miura, Kobayashi, Sato & Nagata 1966)

presented a design similar to the Flanagan and de Barbeyrac design in that it used

a test pulse to discover the impulse response of the echo channel which they called a

Blockless Echo Supressor (Miura et al. 1966, Miura, Sato & Nagata 1969).

As mentioned in the previous subsection, we work with discretized version of the signals

shown in Figure 1.1. For the sake of describing the LMS algorithm simply, we use x to
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hold the discrete samples of the input signal in reverse chronological order beginning

from the present. That is

xj = x(t− jT ) : j = 0...n− 1 ,

where t represents the current discrete sample time, T represents the sampling time

constant and n is some arbitrary vector length greater than the effective length of the

impulse response.

Then LMS algorithm may now be very simply described. We initialise our estimate

of the channel, ĥ to zero. Then at each time step, we add some negative or positive

value times x to ĥ. The amount of x that we add will be proportional to ẑ(t). More

precisely, the update to our estimate of the channel ĥ is given by

∆ĥ = k ẑ x,

where k is an arbitrary constant between 0 and 1. At each time step the discretised

estimate ŷ(t) of y(t), is given by means of the scalar product of the vectors x and h:

ŷ = xTh.

Figure 2.8 shows a hardware implementation of the LMS algorithm in diagram form.

The local connection is on the right hand side and the remote connection is on the left

hand side.

The following examples may assist the reader to gain an intuitive grasp of why this

works:

Example 1: We start up our algorithm in the absence of far end speech, and we

receive an input x that is just an impulse. The channel is static. In this example ĥ

will become the value of kh. We can demonstrate this by considering the first few time

steps:

• At time 0, y(t) = h(0), and ŷ(t) = 0. At the same time, all values of x are zero,

except x0 which has the value of 1. So ĥ0 gets kh0 added to its current value.

• At time 1, y(t) = h(1), and ŷ(t) = 0. At the same time, all values of x are zero,

except x1 which has the value of 1. So ĥ1 gets kh1 added to its current value.
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Figure 2.8: Diagram depicting a Hardware Implementation of the LMS algorithm.

• And so on, for each time discrete time step up to n, so that ĥ = kh.

Example 2: Our input consists of a series of such impulses n samples apart with a

static channel in the absence of far end speech. Since each can each be taken separately,

this would cause ĥ converge to h directly so that |x− ĥ| would decrease as a negative

exponential of time.

Example 3: Our input x consists of white noise, with a static channel in the absence

of far end speech. Since all of the elements of x are uncorrelated with each other then

the net interference between successive values of x over time would be zero, and so the

system would still converge directly.

Example 4: Let our input x consist of white noise, and let the far end speech be

uncorrelated with the input. The far end speech constantly introduces perturbations

from the target solution, and this will prevent the complete convergence of ĥ to h. Since

the far end speech is uncorrelated with the input ĥ will still be an unbiased estimate

of h. If k is small then ĥ will closely approach h, but will take a long time to do so. If

k is large then ĥ will rapidly approach h initially, but will not closely approach it.
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2.3.2 Derivation of the LMS Algorithm from the Method of Steepest

Descent

The following derivation of the LMS algorithm in the absence of far end speech is based

on one given in (Widrow & Stearns 1985). In it we use subscripts of h, ẑ, and x to

indicate the time instance, e.g. xi is the value of the input vector x at time instance i.

If f(h) is a real valued function, then moving in the direction −∇h(f) will reduce the

value of f the fastest (Stewart 2006). So the method of steepest descent is

ĥi+1 = ĥi − µ∇ĥi(f), (2.1)

where µ is a constant that regulates the step size.

The function that we wish to minimise is the mean of the square of the error:

f(ĥ) = E(ẑ2) = E((y − ŷ)2).

If we take ẑ to be representative of E(ẑ), then we may contemplate minimising just

f(ĥ) = ẑ2 = (y − ŷ)2.

Differentiating the above gives us:

∇ĥ(f) = ∇ĥ(ẑ2) =



∂ẑ2

∂ĥ1
∂ẑ2

∂ĥ2

...

∂ẑ2

∂ĥn

 = −2ẑ



∂ẑ
∂ĥ1
∂ẑ
∂ĥ2

...

∂ẑ
∂ĥn

 . (2.2)

Now, since

ẑ = y − xT ĥ = y −
n−1∑
j=0

xj ĥj ,

then
∂ẑ

∂ĥj
= xj ,

and we may substitute this into (2.2), giving:

∇ĥ(f) =



∂ẑ2

∂ĥ1
∂ẑ2

∂ĥ2

...

∂ẑ2

∂ĥn

 = −2ẑ



∂ẑ
∂ĥ1
∂ẑ
∂ĥ2

...

∂ẑ
∂ĥn

 = −2 ẑ


x1

x2

...

xn

 = −2 ẑ x. (2.3)
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So the method of steepest descent becomes:-

ĥi+1 = ĥi + 2µ ẑi xi, (2.4)

which is our LMS algorithm where k is given by 2µ.

2.3.3 Proof that the LMS Algorithm Converges, or Remains Constant

This proof of the convergence of the LMS algorithm is based on (Kelly & Logan 1966).

With No Local Sound Let us assume initially that no one is speaking on the local

telephone, i.e. that z is zero :-

ẑ = y − ŷ

= h · x− ĥ · x

= (h− ĥ) · x.

Thus, we may express the LMS algorithm as:

∆ĥ = −k((h− ĥ) · x)x.

Let us introduce the error e = h− ĥ. We will assume h is stationary, so ∆e = ∆ĥ:

∆e = −k(x · e)x.

For simplicity, let us assume that we have very small times steps and very small changes

to ĥ:

∇t(e) = −k(x · e)x.

If we dot product both sides by e, then:

e · ∇t(e) = −k(x · e)(x · e).

By applying the product rule (backwards), we get:

1

2
∇t(e · e) = −k(x · e)2.

Therefore

∇t|e · e|2 = −2k(x · e)2.
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This shows that the change in the square of the error when z = 0 is always negative

or zero. If it is negative, then the error is reduced, thus cancelling y. If it remains

constant, then error stays the same.

With Local Sound When there is a voice at the local end, this desirable behavior

will be disturbed. However, z is essentially random and uncorrelated to x and so

according to (Kelly & Logan 1966), the addition of a voice at the near end will have

only a relatively small effect.

2.3.4 Analysis of the LMS Algorithm

In this section we will analyse the stability and convergence of the LMS algorithm,

and this will also allow us to draw some conclusions about the optimal step size. This

analysis is based on analysis presented by (Douglas & Rupp 1998, Manolakis, Ingle &

Kogon 2000, Deeba & Wood 1990).

In order to gain insight into the choice of a step size, we shall begin with a derivation of

the Wiener-Hopf equation. Let us examine the mean of the square of the error, which

is given by:

ε = E(ẑ2)

= E((y − ĥTx)2)

= E(y2 − 2ĥyx + ĥTxxT ĥ).

The vector ĥ is constant here, and expansion gives us:

ε = E(y2)− 2ĥE(yx) + ĥTE(xxT )ĥ. (2.5)

Let us now introduce the vector p and the covariance matrix Cx:

p = E(yx) =


E(yx0)

E(yx1)

...

E(yxn)

 (2.6)
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Cx = E(xxT ) =


E(x0x0) E(x0x1) ... E(x0xn)

E(x1x0) E(x1x1) ... E(x1xn)

... ... ... ...

E(xnx0) E(xnx1) ... E(xnxn)

 . (2.7)

Substituting these into (2.5) we get:

ε = E(y2)− 2pT ĥ.+ ĥTCxĥ. (2.8)

This is a quadratic function in ĥ. From the definition ε = E(ẑ2), we know that Cx is

positive definite, and ε has a minimum when ĥ = h, and is positive for other values of

ĥ. The minimum of this quadratic occurs when the derivatives are zero.

We may differentiate (2.8) w.r.t. ĥ by application of Identity (A.14), giving:

∇ĥ(ε) = −2pT + 2ĥTCx. (2.9)

Therefore, if we know Cx and p, the following equation, kown as the Weiner-Hopf

equation (Wiener 1949), gives us the ĥ at which ε is a minimum:

h = ĥmin = C−1x p. (2.10)

Substituting (2.10) into (2.8) gives us:

εmin = E(y2)− 2pT ĥmin + ĥTminCxĥmin

= E(y2)− 2pTC−1x p + (C−1x p)TCxC
−1
x p

= E(y2)− pTC−1x p

= E(y2)− pTh. (2.11)

The scalar quadratic equation

y = ax2 + bx+ x

may be expressed in the form

y − y0 = a(x− x0)2.

In a similar way, our quadratic (2.8) in ĥ

ε = E(y2)− 2pT ĥ + ĥTCxĥ
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may be expressed in the form

ε = εmin + (ĥ− h)TCx(ĥ− h).

proof:

RHS = εmin + (ĥ− h)TCx(ĥ− h),

Substituting (2.11) for εmin

= E(y2)− pTh + (ĥ− h)TCx(ĥ− h)

= E(y2)− pTh + hTCxh + ĥTCxĥ− ĥTCxh− hTCxĥ.

Substituting (2.10) for h

= E(y2)− pTC−1px + (C−1x p)TCxC
−1p
x + ĥTCxĥ− ĥTCxC

−1p
x − (C−1x p)TCxĥ

= E(y2)− pTC−1px + (C−1x p)TCxC
−1p
x + ĥTCxĥ− 2ĥTp

= E(y2) + ĥTCxĥ− 2ĥTp,

which by equation (2.8),

= ε

= LHS

QED .

Let us now introduce the the vector v

v = ĥ− h, (2.12)

which permits our quadratic to be expressed as

ε = εmin + vTCxv. (2.13)

Let us also introduce the matrix Q and the vector Λ. From (2.7), we can see that the

matrix Cx is symmetric. It can therefore be diagonalized, i.e Cx can be expressed in

the following way

Cx = QΛQT . (2.14)
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Where Λ is a diagonal matrix of the eigenvalues of Cx, and Q is a matrix of the

eigenvectors of Cx and forms an orthonormal basis and QTQ = I.

Let us take the algorithm for a step in the method of steepest descent, as embodied in

(2.4):

ĥk+1 = ĥk − µ∇k(ε),

which, using (2.9) to substitute for ∇k(ε), we get:

= ĥk − µ(2Cxĥk − 2P ).

Using (2.12) to substitute for the LHS, we get:

vk+1 + h = vk + h− µ(2Cx(vk + h)− 2P )

vk+1 = vk − 2µCxvk + (2Cxh)− 2P ),

which, using (2.6) and (2.7) to substitute for Cx and P , we get:

= vk − 2µCxvk + 2(E(xx)h− E(xy))

= vk − 2µCxvk

= (I − 2µCx)vk. (2.15)

Let us introduce u:

u = QTv. (2.16)

Hence u is v expressed in the basis Q. Substituting (2.16) into (2.15), we get:

uk+1 = (I − 2µCx)Quk

= QT (I − 2µCx)Quk

= (QT IQ− 2µQTRQ)uk

= (I − 2µΛ)uk.

It follows that

uk+m = (I − 2µΛ)muk. (2.17)

If ĥ is to converge to h then

lim
m→∞

(I − 2µΛ)m = 0.
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That is
limm→∞(1− 2µλ0)

m

limm→∞(1− 2µλ1)
m

...

limm→∞(1− 2µλN−1)
m

 = 0.

Hence for convergence, the following applies for each λj

0 < µλj < 1

0 < µ <
1

λj
.

In order for the steepest descent algorithm to converge, the step size must be greater

than zero, but less than the inverse of the largest eigenvalue of Cx.

When x(t) is wide sense stationary then there is a close relationship between the eigen-

values of Cx and the frequency strengths within x(t) (Deeba & Wood 1990). If the

frequency spectrum of x(t) is white, then the eigenvalues will be equal. In this case

convergence will be uniform, and potentially rapid in the absence of double talk. If

the frequency spectrum of x(t) is colored, however, then the eigenvalues will be spread

out and rapid convergence will occur in frequencies corresponding to the largest eigen-

values, but slow convergence will occur in frequencies corresponding to the smallest

eigenvalues. Where a frequency is absent in the input signal x(t), u may not converge

at all. This is not ideal, but we must keep in mind that the real goal is not to minimise

v but to minimise the mean of the square of the errors in ẑ, and where a frequency is

absent in the input signal, it has no echo to cancel.

2.3.5 LMS in the Presence of Noise

(Gay & Mammone 1990) provide an example that demonstrates the effect of noise on

the LMS algorithm in a very intuitive way. They use the case of the Normalised LMS

algorithm with a step size µ = 1, and assume that the channel is static.

Figure 2.9 depicts the operation of the NLMS algorithm with µ = 1 operating with and

without far end speech or noise. At any sample interval the equation

xT ĥ = w (2.18)
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Figure 2.9: Graphical interpretations of the convergence of the NLMS algorithm with

µ = 1. The left hand image shows what happens when noise is absent and the right hand

image shows what happens when the system is perturbed by noise. Adapted from (Gay &

Mammone 1990).

defines a hyperplane. The NLMS update equation effectively projects ĥ onto the hy-

perplane. The diagram shows the estimate improving as a result of this projection.

In the absence of noise (2.18) becomes

xT ĥ = y

and these hyperplanes intersect at the solution ĥ = h. At each step, the error, |ĥ−h|,

becomes exponentially reduced, until in the limit ĥ = h.

In the presense of noise z 6= y at each timestep, and as a result the hyperplanes from

each timestep do not intersect at ĥ = h, and the LMS algorithm will not reach ĥ = h

in the limit.

In practice, the LMS step size will be less than the effective steps size of NLMS with

µ = 1, and the LMS algorithm will project ĥ only part of the way, and not actually

onto the hyperplanes. Nevertheless, noise perturbs the hyperplanes, and the same thing

happens, simply with shorter steps. It is often desirable to effectively remove all traces

of the echo, and in order to do that the estimate ĥ needs to be a good estimate. Many

of the subsequent incremental refinements of the LMS algorithm are part of an attempt

to mitigate the effects of the far end noise.
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2.3.6 Normalised Least Mean Squares Method

The Normalised Least Mean Squares (NMLS) method, originally published by (Nagumo

& Noda 1967), is a simple but very effective enhancement of the LMS method. It differs

slightly from the original LMS algorithm in that it uses a normalisation factor.

Let us take our method for updating ĥ embodied by (2.1):

ĥj+1 = ĥj + 2µ ẑj xj .

Now y and ŷ are both proportional to x, therefore in the absence of far end speech, ẑ

is proportional to x. So our update is proportional to |x|2. Our updating is dependent

on the square of the volume. At low volumes, (i.e. for a quiet talker), our algorithm

could only converge very slowly, because if we made µ large in order to compensate,

then at high volume (loud talker) our Λ becomes very large and our convergence could

become unstable.

NLMS normalises the step size by dividing by the square of x:

ĥj+1 = ĥj +
2µ ẑj xj

xTx
. (2.19)

The expression xTx is a near enough approximation to E(xTx) that we may use it to

evaluate convergence. For NLMS, equation (2.17) can be rewritten as:

u′k+m = (I − 2µ
Λ

E(xTx)
)mu′k

= (I − 2µ
Λ

tr(Cx)
)mu′k

= (I − 2µ
Λ

tr(Λ)
)mu′k.

If ĥ is to converge to h then

limm→∞(1− 2µ λ0∑N−1
j=0 λj

)m

limm→∞(1− 2µ λ1∑N−1
j=0 λj

)m

...

limm→∞(1− 2µ
λN−1∑N−1
j=0 λj

)m


= 0.
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As already mentioned, the matrix Cx is positive semi definite, and all the eigenvalues

are either zero, or positive. Therefore, for convergence

0 ≤ µ λj∑N−1
j=0 λj

≤ 1

for each j. So when the normalisation factor is used, our step size µ needs to be in the

range 0 < µ ≤ 1 regardless of the values in x.

In practice, the algorithm is modified slightly to use a regularization term so that the

algorithm remains stable during times when x is silent. A small value is added to the

denominator so that the standard NMLS update algorithm becomes:

ĥj+1 = ĥj +
2µ ẑj xj

xTj xj + ∆
.

The normalisation term itself can be updated rather than recomputed, so very little

extra computing overhead is associated with this enhancement of the LMS algorithm.

2.3.7 Proportionate Normalised Least Mean Squares Algorithm

Then NLMS algorithm is known to be slow for long sparse echo channels, and these

are normally associated with telephonic echo and VOIP circuits (das Chagas de Souza,

Tobias, Seara & Morgan 2010). The Proportionate Normalised Least Mean Squares

(PNLMS) algorithm, originally published by (Duttweiler 2000), is effective wherever

the impulse response is sparse, as is generally the case with the hybrid delay associated

with telephonic echo. PNLMS has a different step size for each element of h. The step

size for each element of h is essentially proportional to the absolute of the value of that

element of ĥ (within limits).

At any iteration j of the algorithm, we can define the infinity norm of the impulse

response h of length n to be

l∞ = max(h1, h2, ..., hn).

And also let us define

l
′
∞ = max(l∞ , δ),
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where δ is a constant preventing l
′
∞ from going to zero. Then let us define

gk = max(ρ, l
′
∞, ĥk),

where ρ is a lower limit on the step size for any element. Without ρ, all zero elements

in ĥ would not converge at all:

ḡ =
1

n

n∑
k=1

gk.

Then the formula for updating each element k of ĥ for any iteration j is given by:-

hk|j = hk|j−1 + µ
gk|j

ḡj

ẑjxj

xTj xj + ∆
.

Performance of PNMLS

Figure 2.10: Graphs showing echo cancellation convergence obtained by simulations. The

graphs in the left hand column show convergence for a sparse echo channel. The graphs

in the right hand column show convergence for a dispersive channel. The graphs in the

top row show convergence for NLMS. The graphs in the bottom row show convergence for

PNLMS. Adopted from (Benesty & Gay 2002).

For sparse channels, PNLMS has a much faster initial convergence than does NLMS,

however, after the initial convergence, PNLMS converges more slowly than NLMS. The

initial faster convergence and the slower subsequent convergence is apparent in the left

hand graphs of Figure 2.10. PNLMS exhibits poor performance for echo channels that

are not sparse, as shown in the right hand graphs of Figure 2.10.
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Enhancements of PNMLS

There have been many enhancements of PNLMS. Since acoustic channel estimation

is the main focus of this dissertation, and since acoustic echo channels are normally

dispersive rather than sparse, I will not attempt to document every enhancement.

(Gay 1998) proposed PNLMS++ which uses alternate NLMS and PNLMS iterations,

and obtains a result where the convergence is still rapid after the initial convergence

period and has a better convergence for dispersant channels. (Benesty & Gay 2002)

proposed Improved PNLMS (IPNLMS) which effectively uses a weighting parameter,

α, to select the proportion of update which would be given by the PNLMS method

and the proportion of update given by the NLMS method. An α of -1 effectively turns

the IPNLMS algorithm into the NLMS algorithm. An α of 1 effectively turns IPNLMS

algorithm into the PNLMS algorithm.

The µ-law PNLMS (MPNLMS) and Sparseness Controlled PNLMS (SPNMLS) algo-

rithms were developed by (Deng & Doroslovacki 2006), using careful analysis. The

MPNLMS has the optimal convergence coefficients, but computing these in real time

requires substantial computational resources. The SPNMLS algorithms is a close ap-

proximation of the MPNLMS algorithm but having a much reduced computational

complexity.

The Partial Update PNLMS (PPNLMS) algorithm developed by (Dyba & Deng 2009)

achieves a lower computational complexity than the NMLS algorithm by breaking the

impulse response into blocks and only updating the most active blocks at each iteration,

and other blocks less often than each iteration.

The Individual Activation Factor PNLMS (IAF-PNLMS) algorithm developed by (das

Chagas de Souza et al. 2010) maintains an individual activation factor for each element

of the discrete impulse model, rather than just using the magnitude of the impulse

response element. The algorithm is new, and subject to third party verification, but

according to the author’s simulations it easily outperforms all of the above enhance-

ments to the PNLMS algorithm for sparse echo channels.
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2.4 The Recursive Least Squares Algorithm

The Recursive Least Squares (RLS) algorithm has an impressive performance, as shown

in Figure 2.11. The main drawback with the RLS algorithm is its complexity. There

are, however, Fast RLS (FRLS) algorithms (fast as in low computational complexity)

that narrow the complexity gap between the RLS algorithm and the LMS method.

The RLS algorithm was developed by (Godard 1974) by applying the Kalman filter

(Kalman 1960) to the problem of echo channel estimation.

2.4.1 Derivation of the RLS algorithm

In this subsection we will outline a derivation of the RLS algorithm based on (Hansler

& Schmidt 2004). It is much simpler than the original derivation of the RLS algorithm

by (Godard 1974).

Block Based Least Mean Squares Algorithm

In this subsection we will examine the application of the standard method of least

squares (Tunbull & Aitken 1932, Aldrich 1998) to the problem of determining echo

channels still using the notation as illustrated in Figure 1.1. This results in a block

based algorithm that is interesting because if we run the RLS algorithm on a block of

data, beginning anew with each block, the RLS algorithm is essentially equivalent to

the method of least squares. We will then proceed to use our resulting method of least

squares to derive the RLS algorithm.

The basic echo channel model that incorporates the effect of the impulse response h(t)

on the input x(t) and the far end noise z(t) is expressed using a convolution:

w(t) = x(t)⊗ h(t) + z(t).

If we express this in discrete form, it becomes

w = x⊗ h + z.



2.4 The Recursive Least Squares Algorithm 51

If we express our input vector x in the form of a Toeplitz matrix, the convolution is

replaced by a matrix multiplication. (This explained in more detail in Subsection 6.1.)

Thus we may write:

w = Xh + z.

The value of h that minimises w− y is given by the method of least squares. The key

observation here is that (w− y) is perpendicular to C, i.e. orthogonal to each column

of X:

XT (y −w) = 0. (2.20)

One possible solution for h would be:

XT (Xh− y) = 0

XTXh = XTy

h = (XTX)−1XTy,

assuming that (XTX) is invertible.

Weighted Least Mean Squares Algorithm

If we assume that the real impulse response of our channel can vary, then recent results

are more valid than results further in the past. An iterative method that gave equal

weight to recent results and to results from the distant path could not adequately track

a changing impulse response as the impulse response changed. Therefore, there needs

to be a system that weights the present more than the past. The foundation for the

recursive least squares algorithm is a weighted version of the method of least squares.

The early formulations of the method of least squares already included a weighted

version of the method of least squares.

Let us introduce a diagonal matrix W into (2.20), whose non zero elements contain a

weighting of each sample:

XTW(y −w) = 0.

The contribution each sample makes toward the solution is governed by the square of

the corresponding element of W . We can show this by noting that the method of least
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squares finds the point at which E, the sum of the squares of the errors of our estimate

ŷ, is a minimum:

E =
M∑
j=1

(Wjjxjĥ−Wjjyj)
2,

where M is the number of samples, and xj is the transpose of the jth row of X.

Expanding gives us:

E = (

M∑
j=1

W2
jjĥ

Txjx
T
j ĥ)− (

M∑
j=1

2W2
jjĥ

Txjyj) + (

M∑
j=1

W2
jjy

2
j )

= ĥT (
M∑
j=1

W2
jjxjx

T
j )ĥ− 2ĥT (

M∑
j=1

W2
jjxjyj) + (

M∑
j=1

W2
jjy

2
j ). (2.21)

Let us introduce R, which is a positive definite, invertible matrix, and also the vector

p:

R =

M∑
j=1

W2
jj(xjx

T
j ) (2.22)

p =
M∑
j=1

W2
jj(xjyj). (2.23)

Substituting (2.22) and (2.23) into (2.21) gives us:

E = ĥTRĥ− 2ĥTp + (

M∑
j=1

W2
jjy

2
j ).

The solution for ĥ is where E is minimum. Since this is a positive definite quadratic

in ĥ, it has a minimum at ∇h(E) = 0. Thus:

∇h(E) = 2Rĥ− 2p,

and therefore:

ĥ = R−1p. (2.24)

From (2.22) and (2.23), we can see that the contribution to R and the contribution to

p from sample j are both proportional to the square of Wjj .

These weightings bring about an exponential decay of information from the past. Let

us introduce a forget factor :

0 << λ < 1
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and W becomes:

W =


λM−1 0 ... 0

0 λM−2 ... 0

... ... ... ...

0 0 ... 1

 . (2.25)

Updating the Matrix

The time delay involved while forming a matrix, and the numerical complexity of

solving (2.24) prevents the direct application of the method of least squares from being a

practical method for echo cancellation. The RLS algorithm uses continuous incremental

updates to R−1, and does so in a way that the computational complexity for each

sample is dominated by two matrix vector multiplies of order N .

From (2.22) and (2.25) we can see that the matrix R can be updated by

Rj+1 = λ2Rj + xxT .

But if we want to use (2.24) to find ĥ, then we need to update the matrix R−1. This

can be done by means of the Woodbury Matrix Identity (Hager 1989):

(A−1 + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

We can apply this formula directly in order to update R

((λ2R−1) + xxT )−1 = (λ2R)−1 − (λ2R)−1xxT (λ2R)−1

1 + xT (λ2R)−1x

R−1j+1 = (λ2Rj)
−1 −

(λ2Rj)
−1xjx

T
j (λ2Rj)

−1

1 + xTj (λ2Rj)−1xj
.

From (2.23) and (2.25) we can see that the vector p may be updated using

pj+1 = λ2pj + ẑxj .

A summary of the algorithm follows. The following variables are used
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S: R−1

ν: λ2

u: A column vector.

v: A row vector.

• Initialise S to kI where 0 < k << 1.

• Initialise p to 0.

• For each sample

– S ←− νS

– u←− S x

– v←− uT

– S ←− S − (uv)/(1 + vx)

– p←− νp + (ẑ + ŷ)x

– ĥ←− S p

2.4.2 Performance of the RLS algorithm

As can been seen in Figure 2.11, the RLS algorithm features rapid convergence. In

addition, it can track the channel accurately even in the presense of far end speech or

noise, whereas the NLMS algorithm performs poorly in the presense of noise. These

two advantages alone make it clear that the RLS algorithm is important. On the

other hand, the RLS algorithm may be unsuitable for tracking dynamic channels, as it

struggles to unlearn its previous knowledge of a channel.

The main problem with the RLS algorithm as described, however, is that using it to

track a channel impulse response has a computational complexity of O(n2) per sample,

as opposed to the NLMS algorithm which has a complexity of O(n), where n is the

effective length of the impulse response (Hansler & Schmidt 2004).



2.4 The Recursive Least Squares Algorithm 55

Figure 2.11: Diagram showing the convergence of the system distance for the RLS algorithm

and the AP algorithm of different orders. The impulse response is changed at t=5 seconds.

Adapted from (Hansler & Schmidt 2004).
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It is also worth noticing that the RLS algorithm is not a Bayesian algorithm, and does

not take the secondary statistics of the noise or of the channel into account. The work

in Chapter 6, Optimisation of Test Signals shows that improvements can be made when

the statistics of the noise and the channel are taken into account.

2.4.3 Fast RLS Algorithms

The Fast Kalman algorithm was applied to the problem of adaptive filtering by (Ljung,

Morf & Falconer 1978). The resulting algorithm has the convergence behavior of the

original RLS algorithm but a computational complexity of O(n) or 11n. Other fast RLS

algorithms have been developed by (Carayannis, Manolakis & Kalouptsidis 1983, Cioffi

& Kailath 1984), and these can perform adaptive equalisation with a complexity of 7n.

These three algorithms have very attractive convergence and computational properties,

but various implementers (Ljung 1983, Lin 1984, Mueller 1981) noticed unexplained

and catastrophic failures in the algorithms of (Carayannis et al. 1983) and (Cioffi &

Kailath 1984). By experimentation, (Lin 1984) discovered that the failures always

occurred immediately after a given expression had a negative value. The algorithm

of (Ljung et al. 1978) also produced meaningless values from time to time. In fact all

three algorithms in their original form were rendered unusable because of their inherent

numerical instability (Papaodysseus, Alexiou, Roussopoulos & Panagopoulos 2001).

The numerical problems inherent in these algorithms were analysed by (Ljung & Ljung

1985, Fabre & Gueguen i1986, Botto & Moustakides 1989), and a second generation of

fast RLS algorithms, this time numerically stable, were developed. There were many

different fast RLS algorithms developed, including those by (Botto & Moustakides 1989,

Slock & Kailath 1988, Benallal & Gilloire 1988, Vega, Rey, Benesty & Tressens 2009).

A new technique using reduced size predictors of order m, where m << n, was de-

veloped by (G.V.Moustakides & S.Theodoridis 1991, P.P.Mavridis & G.V.Moustakides

1996). Fast RLS algorithms that use this technique are often called Fast Newton

Transversal Filter (FNTF) Algorithms. Several fast RLS algorithms including (Benallal

& Benkrid 2007, M.Arezki & D.Berkani 2009) use the technique, and they are able to
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produce fast stable RLS algorithms that have a complexity of 2n + 4m ' 2n. The

computational complexity of these algorithms approach that of NLMS, and ought to

be be a very attractive choice for implementation.

2.5 The Affine Projection Algorithm

The Affine Projection (AP) Algorithm was first published by (Ozeki & Umeda 1984).

It features fast convergence and has a fast response to a dynamically changing channel.

The AP algorithm is actually a family of algorithms, each algorithm having a different

order. Low order AP algorithms have lower computational complexity. At the limit,

an order 1 AP algorithm is the NLMS algorithm. High order AP algorithms have

faster convergence. As the order goes to infinity, the AP algorithm becomes the RLS

algorithm with a forget factor of 1 (i.e. no forgetting the past).

The AP algorithm generalises the NLMS algorthm. As mentioned above, the order 1

AP algorithm is the NLMS algorithm. The order 2 AP algorithm is similar, but uses

the current value of ẑ and x as well the values of ẑ and x from the previous iteration.

An order m algorithm uses the values of ẑ and x from the most recent m iterations.

The update for ĥ using the NLMS algorithm is given by (2.19):

∆ĥ = 2µ x (xTx)−1ẑ.

The update for ĥ using the AP algorithm looks very similar :-

∆ĥ = 2µ X (XTX)−1ẑ, (2.26)

where ẑ is an array of the m most recent discrete values of ẑ(t), and the columns of X

are the m most recent versions of x, where m is the order of the AP algorithm. Each

vector in X is shifted, i.e. X is a non-square Toeplitz matrix.

Also, in a similar manner to the NLMS algorithm, a regularization term is used in

practice to avoid instability during silent periods when X goes to zero, so that the

update algorithm becomes:

∆ĥ = 2µ X (XTX + ∆I)−1ẑ. (2.27)
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2.5.1 Proof of Convergence of the AP algorithm

Hansler and Schmidt (Hansler & Schmidt 2004) give a proof of convergence when z is

zero that compares the square of the instantaneous error with the square of the error

at the same moment, but using the new value of ĥ. If using the new value of ĥ instead

of the old one reduces the absolute value of the error at each step, then the algorithm

is said to converge. Since the NLMS algorithm is a special case of the AP algorithm,

this is also a proof of the NLMS algorithim. The proof follows:-

Let ẑ be the actual error of the cancelled echo signal obtained by using ĥ. Let ẑ∗ be the

error of the cancelled echo signal at the same moment, but using the updated estimate

of the impulse response ĥ + ∆ĥ instead. Let ∆ĥ be the change in ĥ. Then:

ẑ = y − ŷ

= y −XT ĥ

ẑ∗ = y −XT (ĥ + ∆ĥ)

= y −XT ĥ−XT∆ĥ

= ẑ−XT∆ĥ

||ẑ∗||2 = ẑT∗ ẑ∗

= [ẑT −∆ĥTX][ẑ−XT∆ĥ]

= ||ẑ||2 −∆ĥTX.ẑ− ẑTXT∆h + ĥTXXT ĥ.

So the change in the square of the error vector when we use the new value of ĥ is

||ẑ∗||2 − ||ẑ||2 = −∆ĥTXẑ − ẑTXT∆ĥ + ∆ĥTXXT∆ĥ.

Substituting for ∆ĥ using (2.26),

= −2µ(X(XTX)−1ẑ)TXẑ − 2µẑTXTX(XTX)−1ẑ

+ 4µ2(X(XTX)−1ẑ)TX XT (X(XTX)−1ẑ)

= −2µ(ẑTXTX(XTX)−1ẑ)T − 2µẑTXTX(XTX)−1ẑ

+ 4µ2(XTX(XTX)−1ẑ)T XTX(XTX)−1ẑ

= −2µ(ẑT ẑT − 2µẑT ẑ + 4µ2ẑ)T ẑ

= 4(µ2 − µ)ẑT ẑ

= 4(µ2 − µ)||ẑ||2.
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This is a quadratic in µ. The algorithm converges only when this is negative, which

occurs in the range 0 < µ < 1. The algorithm converges most rapidly when this

quadratic is at a minimum, i.e. when µ = 1
2 .

2.5.2 Performance of the AP algorithm

As can been seen in Figure 2.11, an order 2 AP algorithm converges much more rapidly

then an order 1 AP algorithm. It also achieves much better tracking and cancella-

tion, and recovers much faster than the RLS algorithm after a dislocation. The AP

algorithms of moderate order work much better than the NLMS when the x(t) is fre-

quency deficient (coloured). This has been confirmed theoretically and by simulation

(Sankaran & Beex 2000).

However, an order 10 AP algorithm offers only minor improvements over an order 5 AP

algorithm. Given the significantly increased complexity of higher order AP algorithms,

we can recommend the AP algorithm of orders in the range 2 to 5.

2.6 Fourier Domain Echo Cancellation

An impulse response expressed in the frequency domain is known as the transfer func-

tion. Echo cancellation may be performed in the frequency domain with a lower com-

putational complexity even than NLMS. One disadvantage of Fourier Domain echo

cancellation is that in its original form it is a block processing algorithm, and its use

imposes a blocking delay.

When the input to a linear channel is a sine (or cosine) signal, then the output from the

channel is also a (delayed and attenuated) sine or cosine wave of the same frequency.

Any signal and any impulse response can be represented as a linear combination of sine

and cosine signals. For an input at given frequency the attenuation and phase delay

completely characterises the response. Therefore, we may determine each frequency

component of the channel response independently (separately from each of the other

frequencies). We shall show in Chapter 6, Optimisation of Test Signals, that taking into
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account the statistical correlation between near terms of the transfer function leads to

a more efficient estimate of the channel. However, ignoring this for the moment, we will

see that treating each frequency independently permits a very efficient computation of

and application of the transfer function.

2.6.1 Frequency Domain Convolution

Not only can we calculate the impulse response efficiently in the frequency domain, but

we need not convert our impulse response back to the time domain. Indeed, it is much

more efficient to apply our transfer function directly in the frequency domain and to

convert only our result y to the time domain. The application of an impulse response

is a convolution in the time domain. In the frequency domain, each frequency can be

treated separately, and application of the transfer function in the frequency domain

involves only element by element multiplication.

2.6.2 Adaptive Processing in the Frequency Domain

Although the processing in the Fourier domain is trivial, we need to convert our input

signal and our output signal from the time domain to the frequency domain and back

again to the time domain. The technology that makes the Discrete Fourier Transform

(DFT) a practical proposition for frequency domain echo cancellation is the Fast Fourier

Transform (FFT) which was originally invented in 1805 by C.F. Gauss (Heideman,

Johnson & Burrus 1985) and reinvented in 1965 by (Cooley & Tukey 1965).

There is also a temporal incompatibility with using the FFT. The time domain data

arrives and is required continuously, while conversion back and forth to the frequency

domain can only be performed in blocks. The frequency domain version of the LMS

algorithm buffers x(t) into blocks of size n, say. Clearly this buffering creates a delay

of n time samples.

Figure 2.12 illustrates the frequency domain LMS algorithm. As each block of x be-

comes available, the DFT is applied producing a complex x̃. We apply our estimated

frequency domain impulse response estimate h̃ to x̃ giving ỹ by using element by ele-
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Figure 2.12: Schematic Diagram of the Frequency Domain LMS algorithm. Adapted from

(Dentino et al. 1978).

ment multiplication:

ỹ = h̃ � x̃.

Similary and simultaneously, the estimate of the transfer function is updated in an

element by element fashion as follows:

∆h̃ = k w̃ � ỹ.

Then the inverse DFT is applied to ỹ giving ŷ as a block.

2.6.3 The Overlap-Save Method

One detail omitted from the description of frequency domain echo cancellation so far

is that the DFT only gives the correct answer for a cyclic or repeating signal x(t) and

w(t) whose period matches the block size. In general, x(t) will not be a repeating test

signal, and we must therefore prepare the input and keep only results which would be

correct whether or not the input signal was indeed by cyclic with the correct period.

The process which pads out the input and discards unwanted results is called the

overlap-save method.
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Let us say that we are to process x(t), in blocks of size nx, and the array h has

size nh. Then the blocks which we convert to the frequency domain must have size

nf = nh + nx. For efficiency reasons, the nf is normally chosen to be an integer power

of 2. This process is illustrated in Figure 2.13.

Figure 2.13: Diagram showing convolution of an impulse response with the channel input

performed by conversion to and from the frequency domain.

The impulse response h has to be extended to size nf by padding on the right with

nx zeroes as shown in Figure 2.13. Similarly, the blocks of x(t) have to be extended

to size nf by overlapping on the left with the previous block of data (or zeroes, if this

happens to be the first block).

The transform, element by element multiplication and inverse transform treats the data

as a circular array. So the first nh elements from the inverse transform are are actually

the convolution of h with some of the previous block of x and some of the end of the

current block of x, and so must be discarded. The remaining nx elements are our result

y.

When we process a block size of nx then we need to convert blocks of size nx + nh.

Clearly the block size needs to be large in order to perform efficient echo cancellation.

However, performing the calculations in a block imposes a delay in the sound. If the

block size is large, then so is the delay. So a judicious choice of nx is necessary.
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2.6.4 Performance of Adaptive Processing in the Frequency Domain

We can compare the number of floating point multiply operations used to perform the

time domain version of the LMS algorithm with the number of complex multiplies used

to perform the frequency domain version of the LMS algorithm. Given an impulse

response of n taps, if we wish to perform n adjustments using the time domain LMS

algorithm, then we need to perform n2 multiplies and another n2 multiplies to per-

form the cancellation. To do the same calculation in the frequency domain requires

3
2n log2(n) complex multiplies. For acoustic echo cancellation, which may have a long

effective impulse response, this difference is becomes very significant. For an impulse

response of 1000 taps, the frequency domain algorithm can be 100 times faster (Dentino

et al. 1978).

The method we have described here could be improved. Frequency domain methods

essentially amount to a computationally efficient version of the LMS algorithm. They

do not take into account the correlation between different frequencies of the channel,

the total noise power, or the different frequency strengths of the noise, as we do in

Chapter 6, Optimisation of Test Signals.

2.7 Using Orthogonal Transforms

The LMS, AP and RLS families of echo cancellation algorithms all work by directly

estimating the time domain impulse response. Fourier domain echo cancellation, on

the other hand is an example of a way in which we can represent an echo channel as

a linear combination of orthogonal basis vectors and perform the echo cancellation in

that basis. The orthogonality property of our chosen basis functions is an important

property, leading to significant gains.

There are many other orthogonal bases that one might use, and each has its own set

of advantages. Indeed there are too many different types of basis functions or vectors

that have been used or proposed for channel estimation for us to explore them all.

Fourier domain echo cancellation, for example, effectively uses the DFT matrix F as an



2.7 Using Orthogonal Transforms 64

orthogonal basis. The DFT matrix is a somewhat ”natural” choice of of an orthogonal

basis because a sinusoidal input to a linear channel gives a sinusoidal input and this

property leads to substantial gains. We shall examine some more interesting uses of

orthogonal basis functions in this section.

2.7.1 Using Principle Component Basis Functions

(Wang, Yen & Principe 1996) and (Grant & Gay 2004b) proposed the use of the orthog-

onal vectors resulting from the Principle Component Analysis (PCA) of the historical

record of a given acoustic echo channel (i.e. room or environment). The use of only the

principle components as a basis would give the theoretically shortest possible represen-

tation of the impulse response. Since advanced methods such as the RLS algorithm are

of complexity On2 per data sample, where n is the length of the impulse response, the

use of PCA would dramatically reduce the complexity, and permit the use of advanced

echo cancellation techniques.

(Grant & Gay 2004b), however, did not proposes the use of only the principle vectors.

They proposed the use of the full rank principle component matrix. They pointed out

that a non sparse impulse response as is normally found in acoustic echo cancellation

becomes sparse when expressed in principle components, and therefore is suitable for use

with PNLMS. The rapid convergence normally associated with PNLMS when applied

to telephonic echo cancellation can thus be achieved for non sparse echo channels, by

using a principle components orthogonal basis.

(Grant & Gay 2004b) demonstrated the use of PCA by performing simulations of a

room where the speaker and microphone positions are fixed, but a certain ideal piece of

furniture is moved to random positions in the room. The simulations show a superior

convergence of the echo cancellation, at the expense of greatly increased computational

complexity.

However, it turns out that PCA echo cancellation has a major flaw. An acoustic envi-

ronment with a variable temperature cannot be adequately represented by a relatively

small number of principle components in because the speed of sound varies with tem-
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perature. Therefore echo paths lengthen or compress as the temperature varies and the

PCA matrix for a given acoustic environment becomes very different at different tem-

peratures. This did not become apparent from the simulations of (Grant & Gay 2004b)

because temperature variation was not modelled as part of the simulations. (Grant &

Gay 2004a) proposed the use of a different PCA basis for each room temperature, but

the overhead of keeping many large PCA matrices greatly reduces the attractiveness of

PCA echo cancellation.

PCA bases may still be useful in certain circumstances. One example would be where

air conditioning keeps room temperatures constant. (Cabell 1998) provided another

example by using PCA based active noise management to neutralise vibrations trans-

mitted through the hull of an aircraft.

2.7.2 Using Laguerre Basis functions

In frequency domain echo cancellation, the impulse response is modelled by representing

the impulse response as a combination of orthonormal impulse responses. The echo

canceller designed by (Davidson & Falconer 1991) provides another example where the

impulse response is represented by a combination of orthonormal impulse responses.

The LMS algorithm and its derivatives are implemented either physically or conceptu-

ally using a tapped delay line, which produces our input vector x. The next element of

the input vector x is obtained by passing the current one through an elementary delay

filter shown as a unit time delay, or “T” block in Figure 2.8. The transfer function of

these “T” blocks in the notation of Z transforms, is 1
z .

The echo canceller of (Davidson & Falconer 1991) uses a similar tapped line, as shown

in Figure 2.14, in order to produce a set of filters whose impulse responses are the

discrete weighted Laguerre functions. These impulse responses have infinite length,

and are orthonormal, i.e.

∞∑
k=0

Ln(k)Lm(k) = 0, m 6= n

∞∑
k=0

Ln(k)Lm(k) = 1, m = n,
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Figure 2.14: Depiction of tapped line that generates impulse responses which are the or-

thogonal discrete weighted Laguerre functions. Adapted from (Davidson & Falconer 1991).

where Ln(k) is the Laguerre function of order n. The elementary filters of the tapped

line here are not the unit delay filter 1
z , but infinite impulse responses given by the

transfer function

U(z) =
z−1 − r
1− rz−1

,

where r is a parameter chosen to limit the effective length of the impulse response.

The echo cancellation proceeds much like ordinary LMS echo cancellation. The tapped

line generates a vector of outputs φ, each of which is the input x convolved with

the Laguerre impulse responses. The estimated channel response ŷ is generated by

combining these outputs φ(t) according to the weights ω, which take the place of the

impulse response vector h, as used in the LMS algorithm.

The advantage of this scheme over LMS is that the number of outputs from the tapped

line can be substantially less than the length of the impulse response. In practice,

this scheme is combined with more conventional echo cancellation, and only used to

cancel the tail of a very long impulse response. This design has a very simple hardware

implementation.

2.7.3 Using Arbitrary Orthogonal Basis Functions

A general scheme for performing echo cancellation (specifically NLMS and PNLMS)

in an arbitrary orthonormal basis set was proposed by (Grant & Gay 2004b). The

proposal may be summarised as follows:
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Let us express the impulse response h as a linear combination b of an arbitrary or-

thonormal basis U :

h = Ub.

Similarly, the input vector x is expressed as a linear combination s of the same or-

thonormal basis :-

x = Us.

The computation of the ŷ is given by:-

ŷ = xTh

= (Us)T (Ub)

= sTb.

The update of h using NLMS is given by

∆h =
µẑx

xTx + δ

∆(Ub) =
µẑ(Us)

(Us)T (Us) + δ
.

The update of b using NLMS is therefore

∆b =
µẑs

sT s + δ
.

We can apply PNLMS, by introducing the diagonal matrix for M in the usual way:

M = f(ρ, δ,b),

and our update formula for b becomes

∆b =
µẑMs

sTMs + δ
.

2.8 Subband Echo Cancellation

Subband echo cancellation is not an echo cancellation algorithm, but a mthod of divid-

ing the echo cancellation problem in order to allow reduced complexity echo cancellation

using an echo cancellation algorithm.
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Subband echo cancellation works by splitting the incoming signal x(t) and the near

end signal w(t), which we will call fullband signals, into separated frequency subbands.

Each separated frequency subband is then frequency shifted into the frequency range

of the lowest subband, where a reduced sampling frequency may be used. Echo is

then cancelled out in each subband, using standard echo cancellation techniques. The

subband results are then combined into a fullband result.

Although it is possibly to perform the echo cancellation to construct a fullband ŷ, and

then perform ẑ(t) = w(t)− ŷ(t), subband echo cancellation is not normally performed

that way. Instead, the subtraction is normally performed in the subband. Hence, the

high level block diagram no longer looks like the one in Figure 1.1, but instead looks

like the one in Figure 2.15. The reason for this is that we have already calculated

the subband error signal ẑ(t) in order to estimate the channel as part of the error

cancellation algorithm.

Figure 2.15: Basic block diagram of subband echo cancellation. Adapted from (Gay &

Mammone 1990).

An analysis filter bank acts upon x(t) in order to break the signal into m separate

subbands, which are normally have equal width. An identical analysis filter bank is

applied to the fullband w(t) giving m separate subbands. A matching synthesis filter

is used to combine the error cancelled signals ẑ(t) from each subband and creates the
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fullband ẑ(t) (Gilloire 1987).

2.8.1 Critical Subsampling

If our sampling frequency was fs then our resulting fullband has a frequency range of 0

to ff , where ff = fs
2 . If we split our fullband signal into m subbands, then our lowest

subband has a frequency range of 0 to
ff
2m . The analysis filter extracts each subband

from the fullband signal, and shifts each frequency band down into the frequency of

the lowest frequency band. In practice, the value of m tends to be in the range 4 to 8.

The downshifted subband is then subsampled at a rate of fs
r where r is the sampling

reduction ratio. r is normally a number in the range 3
4m to m. The case where r = m

is known as critical subsampling.

According to some texts, critical subsampling is not recommended (Benesty et al. 2001)

(Hansler & Schmidt 2004). These texts point out that the aliasing with adjacent

subbands becomes a problem as r approaches m. With r significantly less then m the

aliasing is much less of a problem, and it is possible to apply a standard fullband echo

cancellation algorithms within each subband. Several papers focus on the use of critical

subsampling, however. Some augment the analysis filter with cross terms from adjacent

bands (Gilloire 1988) and some use modified versions of the fullband algorithms which

expect and compensate for the resulting aliasing (Gordy & Goubran 2006).

2.8.2 The Analysis and Synthesis Filters

The quality of the analysis and synthesis filters used are critical to the quality of

subband cancellation. In order to work perfectly, perfect subband filtering would be

needed, i.e. infinite stopband attenuation and a zero length transition region between

the pass bands and the stop bands. This would require infinite length FIR filters,

requiring infinite resources and an infinite delay (Benesty et al. 2001). In practice

a compromise must be found between echo cancellation quality and delay. Hence,

subband filtering must necessarily impose both distortion and delay.

The technology involved in these filter banks is a topic for study on its own. Not only
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must the filters have narrow transition bands, low ripple, good stop band filtering,

and a relatively short length, but the analysis filter and the synthesis filters must be

matched pairs. Filter banks suitable for subband cancellation have the property that

a signal x(t) split into subbands and immediately reconstructed by the synthesis filter

gives x(t − τ) precisely, where τ is the combined time delay of the analysis and the

synthesis filters. Such filters are called perfect reconstruction filters.

Quadrature Mirror Filters are a popular class of perfect reconstruction filters. These

are designed for the breaking of a fullband into two subbands. Such filters may be

applied repeatedly in order to break a fullband into subbands whose number is an

integer power of two. Many papers have been written on this topic, and they are often

designed using optimisation techniques (Nguyen & P.P.Vaidyanathan 1990, Kumar,

Singh & Anand 2008, Johnstone 1980).

2.8.3 Computational Complexity

The reduced computational complexity results from the sampling reduction. The im-

pulse response now has its length reduced by r, so the complexity of convolution and

the complexity of adaption for each iteration is reduced by a factor of r. Also because

of the subsampling, the rate of performing iterations is also reduced by a factor of r.

But of course, there are now m subbands to process. Hence the overall computational

complexity is reduced by a factor of approximately r2

m (Gilloire 1987).

In addition to the above mentioned reduction in computational complexity, there are

other benefits associated with subband echo cancellation:

• Depending on how the distribution of the power spectral densities, coloured full-

band excitation may well be white within each subband. As discussed in Section

2.3.4, the step size constant is generally a compromise. Where the strength of

frequencies of the excitation signal are lacking, a larger step size is best. Where

the strength of frequencies are strong, a smaller step size is best. So in the case

of colored excitation signals, we need to choose a step size that is a compromise.

If the excitation signal in each subband is white, however, the appropriate step
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size will be the same for all frequencies of the subband. Hence convergence can

be faster.

• Because wall coverings tend to absorb high frequencies more then they absorb low

frequencies, impulse responses of high frequency subbands are generally shorter.

Engineers may may well choose to model shorter impulse responses (Hansler &

Schmidt 2004), thus further reducing the computational complexity.

• It is not necessary to perform echo cancellation in every subband (Benesty et al.

2001).

• Parallel processors may be used to cancel the echo in each subband so that the

recuction in complexity of r2

m will lead to a speedup of r2.

One downside to subband echo cancellation is that the filter banks must impose both

delay and signal distortion.

2.8.4 Recent Advances in Subband Processing

• Pradham and Reddy have designed and simulated a subband echo canceller which

takes advantage of the subband structure and manage to produce an algorithm

which converges faster as the number of subbands m is increased (Pradham &

Reddy 1999).

• Schuldt et al have proposed a modified subband structure that does not impose

a processing delay (Schuldt, Lindstrom & Claesson 2008).

2.9 Double-talk Detection and Mis-adaptation Detection

The term double-talk originates from telephony, and refers to the condition where both

parties are speaking concurrently. It is difficult to achieve high quality echo cancella-

tion during periods of double-talk for reasons that have been explained in Subsection

2.3.5. If the current estimate of the channel is close to the actual channel, then fur-

ther adaption during periods of double-talk will most likely cause misalignment, rather
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than convergence. Most practical echo cancellation implementations use double-talk

detection.

For successful echo cancellation, the echo channel has to be slowly changing, but in

general, echo channels are not static. It is useful to be able to detect when the model

of the echo channel is no longer accurate and further adaptation is needed.

Modern algorithms for detecting that the current estimate of the channel is out of

date can also detect double-talk. These two topics are closely related and are treated

together in this section.

2.9.1 General Procedure for Double-talk Detectors

In acoustic and telephonic echo cancellation, a double-talk detector is used to detect

the double-talk condition. They generally adhere to the following procedure:-

1. A detection statistic θ is created by processing some of the available inputs x(t),

ŷ(t), w(t) and ẑ(t) over time. The evaluation of θ may be achieved either in the

time domain or the frequency domain.

2. The detection statistic is compared to a preset threshold T , and doubletalk is

declared whenever θ < T .

3. Once doubletalk is detected, adaption of the echo cancellation is paused or re-

tarded, for at least a fixed period of say, th. Normal echo cancellation adaptation

is only resumed if θ ≥ T continuously over th seconds.

2.9.2 The Geigel Algorithm

Double-talk detectors were developed for use with echo suppression in the 1950s and

studied in detail in the 1960s (Gould 1964). The Geigel algorithm was patented by

Geigel in 1975 (Geigel & LaMarche 1975).

The Geigel algorithm examines the ratio between the maximum value of the far end
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signal, x(t) over a given time window and the instantaneous value of the near end

signal w(t). If this ratio is it is greater than a certain threshold T , then double-talk is

detected. Specifically, θ =
max(|xn|,...,|xn−L+1|)

|yn| . where L is the number of time constants

for determining the envelope of x(t). Double-talk is detected if θ < T , where T is the

inverse of the expected hybrid attenuation (typically in the range 1.4 - 2). For the

purpose explaining the operation of the Geigel algorithm, I will refer to instances when

θ < T as a double-talk trigger.

The double-talk detector will indicate a double-talk condition as soon as as a double-

talk trigger occurs. The double-talk detector will continue to indicate double-talk for

a period of time according to a mechanism that will be described in the next few

paragraphs. There may be transient spikes on the line, which will cause a double-talk

trigger, but are not considered as true double-talk conditions. The mechanism exist so

that these transient spikes are treated differently to double-talk, and double-talk will

be indicated for a much shorter period of time.

Figure 2.16: State diagram showing the operation of the Geigel algorithm. Adapted from

(Geigel & LaMarche 1975).

The different states of the algorithm are shown in Figure 2.16. Here, the IDLE state

is the only state that does not indicate double-talk. Double-talk is indicated during all

of the other states of the double-talk detector. When we are in our IDLE state, any

double-talk trigger will cause the double-talk detector to enter a WAIT state, where it

will remain until a timer associated with the WAIT state expires. The timer typically
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has a duration of 8 ms.

Then, it will enter a WIND (window) state, which is also associated with a timer

(typically 16 ms). Any double talk trigger encountered while the detector is in the

WIND state will cause the detector to enter the FULL state. Otherwise if the timer

expires with no double-talk trigger then the detector will return to the IDLE state.

The FULL state also has a timer (typically 50ms), which will be restarted whenever

double-talk is triggered. The double-talk detector will return to the IDLE state only

when the timer expires.

2.9.3 Algorithms based on Correlation

The Geigel algorithm is both conceptually and computationally simple. It has become

the industry standard for most telephonic echo cancellation implementations (Huang

& Benesty 2004). For acoustic applications, however, its performance is somewhat

unreliable (Cho, Morgan & Benesty 1999).

Acoustic echo cancellation requires a different class of doubletalk detection. These are

normally based on estimation of the correlation between the far end signal, x(t) and

the signal with the echo fully or partially removed ẑ(t). We can expect the near end

signal z(t) to be completely uncorrelated with the far end signal x(t), while any residual

uncancelled echo y − ŷ will be correlated with x.

2.9.4 The Cross Correlation Method

The Cross Correlation (CC) method, developed by (Ye & Wu 1991), is a system that

uses the correlation between x(t) and w(t) as a means of estimating the estimation

error |ŷ(t)− y(t)|. That is, it can tell when ĥ is not accurate and the error cancellation

needs more adaptation.

This method uses the average of correlations between ẑ and the discrete values of the
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input x going into the past:

θ =
1

n

n−1∑
j=0

E[x(k − j)ẑ(k)]√
E[x2(k − j)]E[ẑ2(k)]

.

It performs this estimation using time based exponential decay as a means of tracking

the recent past. This is achieved using an exponential weighting factor using λ in the

range 0.9 < λ < 1. The recent power in ẑ is estimated by:

P 2
ẑ (n) = λPẑ(n− 1) + (1− λ)ẑ(n)2,

where n is the current discrete sample time. The recent power in each element of the

vector x are given by:

P 2
xj (n) = λPxj (n− 1) + (1− λ)x2(n− j).

The cross covariances between ẑ and the elements of x are given by:

Pẑxj (n) = λPẑxj (n− 1) + (1− λ)ẑ(n)x(n− j).

The cross correlations are given by:

Cj(n) =
Pẑxj (n)

Pẑ(n) Pxj (n)
.

The decision variable is given by:-

θ =
1

n

N−1∑
j=0

|Cj(n)|.

If θ ≤ T , then the echo canceller is said to have converged, where T is our chosen

decision threshold. Otherwise the echo canceller should continue to adapt.

This scheme provides a system to tell if the echo cancellation has converged. Used

alone this scheme will not detect doubletalk. One disadvantage of this scheme is that

it requires a substantial amount of computational resources.

Normalised Cross Correlation Method

A disadvantage with the Cross Correlation method in its original form is that the

optimum value for the chosen decision threshold T depends on the statistics of the
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signals and of the echo path. It is therefore not possible to choose a good value of T in

advance. (Benesty, Morgan & Cho 2000) proposed the Normalised Cross Correlation

(NCC) method. This is further refined in (Benesty et al. 2001)(chapter 6).

The term hTCxxh is the power in y(t):-

hTCxxh = hTE[xxT ]h

= E[hTxxTh]

= E[y2]

= σ2y .

The covariance vector between x(t) and y(t) is given by

rxy = E[xy]

= E[xxTh]

= Cxxh.

It is also worth noticing that

rxw = E[x(y + z)]

= E[xy] + E[xz],

and since z(t) is uncorrelated with x(t),

= E[xy]

= rxy.

Because Cxx is symmetrical, we may express the power in y in terms of the covariance

vector:-

σ2y = hTCxxh

= hTCT
xxC

−1
xxCxxh

= rxwC−1xx rxw.
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The statistic proposed by (Benesty et al. 2000) is

θ =
σy
σw

=

√
σ2y
σ2w

=

√
rxw(σ2wC−1xx )rxw.

Clearly 0 ≤ θ ≤ 1. Furthermore, θ is not subject to changes in the echo path (Benesty

et al. 2000), and we may use a given value of T for all echo cancellation situations.

(Benesty et al. 2001)(chapter 6) suggests evaluation terms required for the calculation

of this statistic by means of weighted exponential decay:

rxw(n) = λrxw(n− 1) + (λ− 1)x(n)w(n)

Cxx(n) = λCxx(n− 1) + (λ− 1)x(n)xT (n)

σw(n) = λσw(n− 1) + (λ− 1)w2(n).

We may observe that it is unnecessary to take the square root. We may simply use

θ2 as our statistic, and T 2 as our threshold. We may also observe that the Cxx will

not change dramatically at each iteration, and that it is possible to use an updating

method for C−1xx (Salmen, Schlipsing & Igel 2010).

2.10 Chapter Summary

This chapter contains a wide ranging summary of the field of echo cancellation. We have

examined the core technology of echo cancellation, the LMS, RLS, AP and Frequency

domain algorithms, reviewed the state of the art and analysed the most popular LMS

algorithm in depth.

The material in this chapter provides the foundation for the chapters to come. Chap-

ter 3, Echo Cancellation Simulation, provides an environment for the exploration of

algorithms described here and for new algorithms. Chapter 4, Framework for Echo

Cancellation with Non Linearities builds on this foundation and creates a paradigm
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for the creation of echo cancellation algorithms that cope with non-linearities. Chan-

nel estimation lies at the core of echo cancellation technology, and concepts from this

chapter underpin the work of Chapter 6, Optimisation of Test Signals.



Chapter 3

Echo Cancellation Simulation

In order to facilitate the easy exploration and development of echo cancellation algo-

rithms, an echo cancellation simulation environment has been developed. It has been

named the Echo Cancellation Object Oriented Simulation Environment (ECOOSE).

The design criteria for ECOOSE collectively state that the end product shall be able to

model any echo cancellation scenario using any echo cancellation algorithms, and may

be summed up as flexibility. The required flexibility for ECOOSE was not achieved in

the first, or even the second attempt, and it is important to learn from these mistakes

and to understand why these attempts were unsatisfactory. This chapter provides the

requirements of the project, explains why the first and the second attempts failed, and

presents some sample results.

An object-oriented framework is the reusable design and implementation of a system

or subsystem (Beck & Johnson 1994). It is typically implemented as a set of abstract

classes which define the core functionality of the framework along with concrete classes

for specific applications included for completeness (Froehlich, Hoover, Liu & Sorenson

1997). ECOOSE is an object oriented framework for experimenting with theoretical

algorithms. This chapter documents the development a practical software project, and

is presented in the past tense.
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3.1 Requirements

ECOOSE must be a suitable environment for the development and evaluation of echo

cancellation algorithms.

ECOOSE needs to be able to work with the following types of channels:-

• Static Linear Channels

• Channels with a timewise discontinuity.

• Slowly changing linear channels.

• Non linear channels.

ECOOSE needs to be able to handle the following types of algorithms:-

• Algorithms that are enhancements of the LMS algorithm.

• Algorithms that are enhancements of the RLS algorithm.

• Algorithms that are enhancements of the AP algorithm.

• Block based time domain algorithms.

• Block based frequency domain algorithms.

• Non linear algorithms.

ECOOSE should be able to generate the following types of output.

• Graphical depiction of algorithm convergence including the euclidean difference

between the model and the known solution.

• Numerical indicators of obtained convergence.

• File output of obtained channel.

ECOOSE should be able to take any local or remote sound in the form a waveform

audio input.
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3.2 Structured Design implemented in Matlab 2007

Matlab is an attractive platform for the implementation of the algorithms because it is

a high level language and makes a wide range of medium level mathematical function-

ality immediately available. Matlab 2007 was available at the commencement of the

project. Matlab 2007 has only very limited object oriented capabilities. No references

to Matlab 2007 objects are possible, and Matlab 2007 objects are not mutable. Matlab

2007 permits only objects that need to be recreated each time a value in the object

is modified. These limitations presented a major impediment to object oriented pro-

gramming. Thus, a design for implementation in Matlab 2007 had to be a structured

one.

Interfaces for the various elements of a simulation were defined, so that they could be

interchanged as needed. This earlier toolbox had the following elements as well as code

that allowed the elements to be selected and run:-

• A directory of sound files in waveform audio format.

• A directory of linear channels in waveform audio format

• A directory of echo cancellation algorithms in the form of Matlab functions,

• A directory of experiment specifications or run files in the form of small Matlab

functions. Each file performed one experiment or run.

This first implementation was unsatisfactory because it was not flexible enough to

meet the primary goal of the project. Any experiment could be carried out, but it was

necessary to meddle with the code for algorithms and other elements in order to do so.

Examples of the way the first implementation lacked flexibility are as follows:

• It was difficult to separate the algorithm from the channel. Ideally, the algorithm

should not already know the channel, but should have to discover the channel

for itself. But progress, typically in the form of euclidean distances, needed

to be monitored at each iteration, and that required knowledge of the channel.

If the algorithm state variables were not to be passed out of the algorithm in
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order to save the values between calls, it was necessary for the algorithm to be

provided with the information about the channel and do those calculations with

each iteration.

Because the algorithm and the channel were not separated, it was difficult to

try out random combinations of channel and algorithm, e.g. trying a non linear

channel with a linear algorithm, or a linear channel with a non linear algorithm.

• Each new algorithm seemed to impose new demands on the algorithm interface.

The algorithm interface had to be expanded at each turn. In order to allow

interchangeability, the changes in the interface had to be propagated back to the

existing algorithms. The only alternative to this would be to have a huge, all

encompassing interface with every need anticipated.

• Different algorithms required different parameters, and in order to cater for this,

it was necessary to format arguments into a string and implement parsing. In

practice, it was easier to change the parameters in the code itself.

• Algorithms had to be modified in a major way to model a change in the parameters

of a channel during a run.

3.3 Object Oriented Programming implemented in Mat-

lab 2008

Implementation in a 3rd generation object oriented language such as C++ was con-

sidered. Using C++ would allow us to solve all of the above problems, but we would

lose the easy access to the well developed well tested mathematical primitives offered

by Matlab. Finding or developing the required primitives would take time, and testing

them would also take time.

Another possibility was the newly released Matlab 2008. The object oriented capabili-

ties available in Matlab 2008 are adequate for object-oriented development (McGarrity

2008).

In Matlab 2008 it is possible to have objects that can be referenced from elsewhere in a
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program and to have methods that alter only some of the properties of an object(Mathworks

2008b). Properties and methods can be private, protected or public, as one might ex-

pect in an object oriented language. Constructors, destructors, abstract classes, static

methods and even multiple inheritance are all part of the language(Mathworks 2008b).

Objects that are no longer referenced are automatically destroyed, which seems appro-

priate to a high level application-oriented language such as Matlab (although currently,

memory space associated with destroyed objects is not re-used, unless one manually

destroys all variables (Foti 2008)).

We opted to upgrade to Matlab 2008 and recreate the echo simulation environment

again from scratch.

3.4 The First Object Oriented design of ECOOSE

3.4.1 Design

Figure 3.1 is a class diagram from the first object oriented design of ECOOSE, which

shows the relationships between the various classes.

3.4.2 The Algorithm Classes

The algorithm classes are derived from the base algorithm class, algBase, and the

subclasses specialize the algorithm. Thus the algorithm is represented by an hierarchy

of classes. Note that an algorithm class gets to know the same information that a real

echo cancellation algorithm would. The algorithm classes do not know the channel. It is

the job of the algorithm to discover the channel. An important abstract method of the

base class is called next(), which is called for each iteration and has as its arguments, the

current value of x and the current value of w. The algorithm classes make their results

available by means of methods. One of the abstract methods of the base algorithm

class is getY(), which returns the current estimated result from the echo channel y.
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Figure 3.1: Class Diagram from the first object oriented design of ECOOSE. Created using

the freeware UML toolbox BOUML (Pages 2010)
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3.4.3 The Linear Algorithm Class

The linear algorithm class is a specialization of the base algorithm class. Most can-

cellation algorithms are linear, and are derived from this class. Since linear channels

are characterised by their impulse response, the class has a method getH() which re-

turns the impulse response, and a method setH() which allows the current value of the

impulse response to be set artificially.

3.4.4 The Channel Classes

The channel class knows the characteristics of the channel, and knows how to calculate

the real value of y from the values of x. The channel class calculates w = y + z and

provides the algorithm with x and w. The channel class uses a method provided by

the algorithm to obtain the estimated value of y, and in turn has a method for report

the error to output classes such as the graphing class.

3.4.5 Algorithm Delay

Block based echo cancellation algorithms, such as Frequency domain algorithms require

information to be calculated as a block, and consequently impose a blocking delay. The

algorithm knows how long this delay will be and has a method which returns the delay

measured in discrete time periods to the caller. At each iteration, a request to the

algorithm for the y value will return the estimated value of for y at that many time

periods ago. The channel, having obtained the delay from the algorithm performs its

comparisons with the real value of y that many time periods ago.

3.4.6 Flaws in the First Object Oriented Design

Ideally the channel class should be responsible only for the representing the channel.

In the first design, however, the channel class was not only responsible for calculating

the real channel response to x, it was also used to calculate and plot the differences
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between the real channel characteristics and the estimated characteristics over time.

This was done because the channel class is well placed to know what can be graphed,

and well placed to calculate the difference between the real channel characteristics and

the estimated channel characteristics, so it was convenient to have the channel class

perform both tasks.

Unfortunately it became apparent that the advantages of this approach are only of

small benefit, and the cost of including functions which are not really part of a channel

in the channel class was too serious to be tolerated. For example, temporary code

modifications would have been required in the algorithm class itself in order to create the

graphs shown in Figure 4.1 for the purpose of exploring a non linear echo cancellation

algorithm.

The manner in which linear and non-linear channels interface with linear and non-linear

algorithms poses a challenge in object oriented design. Naturally, linear channels can

interface with linear algorithms and non linear channels can interface with the non

linear algorithms. The linear channel can interface with the non linear algorithm class

without difficulty. The methods which are exclusive to the nonlinear algorithm class

simply won’t be called and that is not a problem. However, the non-linear channel

cannot interface with the linear algorithm, without a workaround, because it calls

methods of the non-linear algorithm that the linear algorithm does not implement.

3.5 The Second Object Oriented design of ECOOSE

In order to address the flaws described above it was necessary to take the functionality

that the channel class hierarchy had in the first object oriented design, and split it into

two class hierarchies as shown in Figure 3.2. One of them is a hierarchy of channel

calculator classes whose purpose is to calculate y, given x. The other is a hierarchy

of algorithm observer classes which are responsible for obtaining the estimated echo

characteristics from the algorithm class at each time step, comparing them with known

echo characteristics, and prepare, at a high level, final results such as graphs.

This algorithm observer class needs to have the same channel model that the algorithm
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Figure 3.2: Class Diagram for the improved object oriented design for ECOOSE. Created

using the freeware UML toolbox BOUML (Pages 2010)
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class has and needs to know the values in that model from both the channel calculator

class and the algorithm class, so that it may perform comparisons. The base observer

class is able to observe all algorithm classes because it only observes the estimated ŷ,

and compares it to the real y as calculated by the channel calculator class.

The linear algorithm observer class observes the estimated impulse response, ĥ as well

as estimated result, ŷ. It is able to observe all algorithms where the characterisations

include the impulse response h. Note that the channel itself may be linear or non linear,

now that the channel calculator class has been separated from the algorithm observer

class.

As mentioned, the role of the channel calculator class is to apply the channel to x giving

y. Another class is needed to track changes in the dynamic channels and to inform both

the observer class and the channel of the current state of the channel whenever the

channel changes. From the requirements, ECOOSE must be able to handle a channel

that changes slowly, or is subject to sudden change during the course of the simulation.

It is therefore highly desirable to have the true source of the channel characteristics

in a single class. Failure to do this could easily result in wrong results, because the

algorithm observer’s understanding of the channel characteristics could easily diverge

from those of the channel class. This class is called the channel source class.

Having the channel source class call methods in the algorithm observer class and the

channel calculator class would not not be a flexible arrangement, because then the

channel source class would have to make exactly the right calls, i.e. it would have

to be matched to both the algorithm observer class and the channel calculator class,

and it would end up being a channel source hierarchy of classes rather than just a

standalone class. The solution given by the observer design pattern (Gamma, Helm,

Johnson & Vlissides 1994) was the one implemented. The algorithm observer class and

the channel calculator class subscribe to events generated by the channel source class.

When the channel changes, the channel source class issues an event to all subscribers,

and whenever the subscribers receive the event they call a method of the channel source

class to receive the updated channel data.
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3.6 Chapter Summary

The development, analysis, and comparison of echo cancellation algorithms has reached

a stage where it is essential that independent and objective tests of algorithms need to

be carried out in an agreed manner.

The creation of an environment for the simulation of echo cancellation proved difficult

to achieve using procedural technology. It proved impractical to separate the algorithm

from the channel. Accommodating the extra parameters that each algorithm may have

was hard work. A dynamically changing channel would have been a programming

challenge. The adoption of object oriented technology solved these problems, and also

give us flexibility without the penalty of having to re-implement all the features of

an audio channel or of an algorithm if most of its features are similar to one already

implemented.

In developing an OO framework, as discussed in (Johnson & Foote 1988), we need to

think carefully about its design so that a wide range of applications can readily be

accommodated. We have explained some of the difficulties, described our designs, for

our object oriented framework which we feel can adapt to the present and future needs

of designers of echo cancellation algorithms.



Chapter 4

Framework for Echo Cancellation

with Non Linearities

This chapter explains how to exploit the Method of Innovations (Kailath 1981) to

perform channel identification for a channel with a non linearity using a Bayesian

approach. We refer to the algorithm developed here as the Hammerstein LMS (HLMS)

algorithm.

4.1 Our Problem

The non-linearity that we model is one that might be introduced by a speaker driven to

its maximum amplitude, i.e. clipping, to an otherwise linear channel. This is modelled

as a Hammerstein system (Belforte & Gay 1999), i.e. the combination of a memoryless

non-linear function of the input and a linear system as shown in Figure 1.3. The

method developed in this chapter can be applied to different nonlinear channels with

form similar to this.

The non-linear function will be expressed as a polynomial so that the task of identifying

the non linear function essentially became the task of determining the co-efficients of

that polynomial. If we use a polynomial in its simplest form, however, the co-efficients
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would not be independent. In order to improve convergence, we express the non-

linearity in terms of orthogonal polynomials. We choose to use a flat orthogonality

weighting function (i.e. no weighting function) and orthogonality over the segment −1

to 1, which implies the use of the Legendre polynomials (Hilbert & Courant 1924).

Let the non-linear function be denoted by Φ(x), where

Φ(x) =
m∑
j=0

αjφj(x)

where each φj denotes the Legendre polynomial of order j, and αj denotes the cor-

responding coefficient that needs to be determined. The Legendre polynomials are

orthogonal, and as part of our Bayesian approach, we assume that α = (α0, ..., αm) are

a collection of independent identically distributed (IID) variables.

Let the filter tap coefficients of the linear system be denoted by hj , in the usual manner.

We also adopt, as another aspect of the Bayesian approach to model estimation, the

assumption that the coefficients of the impulse response are IID. Although it is essential

to adopt a priori assumptions regarding the distribution of all estimated parameters in

the Bayesian approach, these assumptions are not expected to strongly influence the

resulting estimations. Thus the coefficients that will be estimated from the observed

data are (α0, ..., αm;h0, ..., hn−1).

4.2 The Method of Innovations

In this section we describe the Method of Innovations and provide a proof for it.

Description In this section we wish to show how to update an estimate as additional

information arrives. The arriving information will come from a sequence of random

scalar or vector variables, v1, v2, ... .

The vector or scalar u is the quantity we wish to estimate, based on the set v1, ..., vk.

The estimates of u, based on the set v1, ..., vk. will be denoted by û|k. The estimate of

vk from v1, ..., vk−1 will be denoted by v̂k|k−1.
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We may make a linear estimate v̂k of vk from (v1, ..., vk−1) in the sense that v̂k is some

linear combination of (v1, ..., vk−1). That is, in the case where v is scalar:

v̂k|k−1 = (v1, ..., vk−1)a,

or in the case where v is a vector

v̂k|k−1 = a(v1, ..., vk−1)
∗,

where a is a constant vector or matrix and v̂ is a linear estimate in the least squares

sense. That is, a is characterized in the following way

E[(v̂k|k−1 − vk)∗vj ] = 0 j = 0, ..., k − 1.

Our objective here is to be able to predict a fixed variable u from our observations of

v. We assume that u is a linear combination of past values of v. We already have a

prediction û|k−1 of u, which is based on (v1, ..., vk−1). Now that we have new data in

the form of vk, we wish to make a new prediction û|k.

Let us define the innovation εk by:

εk = vk − v̂k|k−1. (4.1)

Now we come to the key equation of the innovations method, which we first prove then

later we apply it to the case of a nonlinear channel. The kth estimate of u is given by:

û|k = û|k−1 + E[uε∗k] (E[εkε
∗
k])
−1 εk. (4.2)

If one notices that the term on the right hand side is in fact the Linear Minimum

Mean Square Estimator (LMMSE) formula (A.13) for estimation of a variable from an

observed variable, then the above formula may be intuitively perceived as the previous

estimation of u plus the contribution from the latest innovation.

Proof: The following proof is based on that presented in (Kailath 1981) and relies on

the orthogonality principle (Luenberger 1969)(chapter 3). The orthogonality used in

this proof is one between stochastic variables. If we let the space of stochastic variables

be a Hilbert space by defining the inner product of u and v to be

u · v = E[uv],
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then we can say that u and v are orthogonal if and only if E[uv] = 0.

Let the kth error of estimation of u be represented by ü|k:

ü|k = u− û|k. (4.3)

Then by the orthogonality principle, the minimum least squares estimate of u lies where

ü|k is orthogonal to our observed instances.

ü|k ⊥ (v1, ..., vk). (4.4)

Hence, we need to show that ü|k is orthogonal to (v1, ..., vk), and we will do this by

induction.

Clearly when k = 0, û|k = 0, then by definition the error is orthogonal to the empty

set and orthogonality holds for k = 0.

Next, we need to show that if our orthogonality holds for k − 1 then it must also hold

for k. Our inductive hypothesis is:

ü|k−1 ⊥ (v1, ..., vk−1). (4.5)

By expansion using (4.1):

E[ü|k−1v
∗
k] = E[ü|k−1(εk + v̂k|k−1)

∗]

= E[ü|k−1ε
∗
k] + E[ü|k−1v̂

∗
k|k−1]. (4.6)

Since v̂k|k−1 is a linear combination of (v1, ..., vk−1), by our inductive hypothesis,

= E[ü|k−1ε
∗
k],

and by expansion using (4.3),

= E[uε∗k]− E[û|k−1ε
∗
k],

and by the orthogonality principle,

= E[uε∗k]. (4.7)
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Now by expansion using (4.1), we get:

E[εkv
∗
k] = E[εkε

∗
k] + E[εkv̂k|k−1],

and since our innovation is defined to be orthogonal to the previous estimate,

= E[εkε
∗
k]. (4.8)

Taking our definition of ü,

ü|k = u− û|k,

and substituting (4.2) into the above,

= u− û|k−1 − E[uε∗k] (E[εkε
∗
k])
−1 εk

= ü|k−1 − E[uε∗k] (E[εkε
∗
k])
−1 εk. (4.9)

The first term of (4.9) is orthogonal to (v1, ..., vk−1) by our inductive hypothesis. The

second term, a multiple of εk is orthogonal to (v1, ..., vk−1). Therefore ü|k is orthogonal

to (v1, ..., vk−1).

By applying the expectation E[· × v∗k] of both sides of (4.9) and expanding, we get

E[ü|kv
∗
k] = E[ü|k−1v

∗
k] − E[uε∗k] (E[εkε

∗
k])
−1 E[εkv

∗
k],

and substitution of (4.7) and (4.8) into the above gives us,

= E[uε∗k]− E[uε∗k] (E[εkε
∗
k])
−1 (E[εkε

∗
k])

= E[uε∗k]− E[uε∗k]

= 0.

Hence, ü|k is orthogonal to vk. Since ü|k is orthogonal to (v1, ..., vk−1) and also to

vk, then ü|k is orthogonal to (v1, ..., vk), and thus we have shown that if our inductive

hypothesis holds for k − 1 then it must also hold for k.
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4.3 Applying the Method of Innovations to Echo Cancel-

lation

We now need to apply the method to the problem described in Section 4.1. We will

use the variable names documented in Section 1.1 and depicted in Figure 1.1.

The stochastic variable that we may observe is w. The least squares best estimate of

y based on (w1, ...wk−1) is denoted by ŷ. In place of εk, we use ẑk. Under conditions

of no doubletalk, z(t) = 0 and ẑ = y − ŷk|k−1, so ẑ is a perfect fit. Under conditions of

doubletalk, we assume that z(t) is uncorrelated with h(t) and with x(t), so it will still be

valid to use ẑk, even though we expect doubletalk to perturb the solution as described

in Subsection 2.3.5. The variables that we wish to estimate, (α0, ..., αm;h0, ..., hn−1)

will be used in place of u. Application of (4.2) into this context gives us:

ĥj|k = ĥj|k−1 + E[hj , wk] E[ẑ2k]−1ẑk, (4.10)

α̂j|k = α̂j|k−1 + E[αj , wk] E[ẑ2k]−1 ẑk. (4.11)

Taking sub-expressions of (4.10) and (4.11) one at a time,

E[hj , wk] = E[hj , yk]

= E[hj

n∑
i=1

hiΦ(xk−i)],

recalling that we are assuming the elements of h to be IID,

= E[hjhjΦ(xk−j)]

= σ2hj |k−1Φ(xk−j). (4.12)

Also

E[αj , wk] = E[αj , yk]

= E[αj

n∑
i=1

hiΦ(xk−i)],

= E[αj

n∑
i=1

hi

m∑
s=1

αsφs(xk−i)],

recalling that we are assuming the elements of α to be IID,
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= E[αj

n∑
i=1

hiαjφj(xk−i)]

= σ2αj |k−1

n∑
i=1

hiφj(xk−i). (4.13)

As the algorithms converges, ẑ will become an accurate expression for z. Hence σ2z

would soon become an adequate expression for E[ẑ2k] as the echo cancellation begins to

converge. Substituting (4.12) into (4.10) gives:

ĥj|k = ĥj|k−1 +
Φ̂|k−1(xk−j)σ

2
hj|k−1

σ2z
ẑk, (4.14)

and substituting (4.13) into (4.11) gives:

α̂j|k = α̂j|k−1 +

(∑n
i=0 ĥi|k−1φj(xk−i)

)
σ2α̂(j|k−1)

σ2z
ẑk. (4.15)

Note that the derived algorithm is more like PNLMS than like NLMS, because each

coefficient is given its own rate of convergence, σ2hj|k−1
and σ2α̂(j|k−1).

4.4 Implementation

We have applied the method of innovations and it has produced two equations for the

updating of our model coefficients. In this section we describe the simplified algorithm

that was implemented and tested. For simplicity, we used single constants in place of

separate values of σ2hj|k−1
and σ2α̂(j|k−1), so that the actual implemented algorithm was

more like NLMS than like PNLMS.

In the expression for determining the filter tap coefficients, (4.14), we replaced
σ2
hj|k−1

σ2
z

with the constant µ1, giving

ĥj|k = ĥj|k−1 + µ1Φ̂|k−1(xk−j) ẑk. (4.16)

An appropriate value for µ1 was determined experimentally. Notice that if Φ was

replaced by a linear function, then this is the usual expression for the LMS algorithm.

In the expression for determining the coefficients of the non-linear function (4.15), we
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replaced
σ2
α̂(j|k−1)

σ2
z

with the constant µ2, giving

α̂j|k = α̂j|k−1 + µ2

(
n∑
i=0

ĥi|k−1φj(xk−i)

)
ẑk. (4.17)

An appropriate value for µ2 was also determined experimentally.

At each iteration, (4.16) is used to update each of the n filter tap coefficients, and

(4.17) is used to update each of the Legendre polynomial coefficients.

4.5 Results

Figure 4.1: Graphs showing the Euclidean norm of the errors of the estimated coefficient

in echo cancellation algorithms as the algorithms adjust over time. Created in ECOOSE.

HLMS was implemented in ECOOSE, and the results are summarised in the 4 graphs

of Figure 4.1. The left hand graphs all featured linear channels. The right hand graphs

all feature non-linear channels. The graphs in the top row were created using NLMS

echo cancellation. The graphs in the bottom row were created the HLMS algorithm.

The noisy light blue curve shows the absolute of the error in y. The dark green curve
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shows the Euclidean norm of the errors in the linear tap coefficients. The red curve

shows the euclidean norm of the errors in the non-linear coefficients.

For the sake of comparisons, the NLMS algorithm was applied to a linear channel. The

top left graph in Figure 4.1 shows convergence of the NLMS algorithm applied to a

linear channel. In it, you can see that the absolute error in ĥ and the absolute error in

ŷ, and hence the echoes, converge rapidly to zero.

The top right hand graph of Figure 4.1 shows what happens if the response of channel

is non linear. The response used in this experiment models “clipping” of the sort that

might be exhibited by a speaker driven to its limit. Initially the NLMS makes progress,

but ultimately it is unable to converge. Clearly linear echo cancellation is far from

useless, but it would still be unsatisfactory in most cases.

The bottom left hand graph of Figure 4.1 shows the performance of a system when the

echoes in a linear channel are being cancelled by the HLMS algorithm. Convergence to

a satisfactory estimate of the channel is similar to that for the NLMS algorithm.

The bottom right hand graph of Figure 4.1 shows the performance when the echoes

pass through a nonlinear channel and the echo canceller is the HLMS algorithm. The

errors in both ĥ and ŷ converge to zero, and the echoes are effectively suppressed.

The code used to simulate the HLMS algorithm is available as part of the ECOOSE

code. Details on how to run the code and to generate the graphs shown in Figure 4.1

are given in Subsection B.1.3.

4.6 Chapter Summary

The method of innovations has been explained, and used to provide an adaptive NLMS-

like algorithm for the estimation of a non linear Hammerstein channel. The algorithm

has been implemented in ECOOSE and the results confirm the viability of the derived

algorithm and the viability of applying the method of innovations to the problem of

echo cancellation.



Chapter 5

Lessons From the Wireless World

In echo cancellation and in certain wireless technologies, we need to estimate linear

channels. In echo cancellation, we estimate the channel in order to predict what comes

out of the channel and cancel it from received input. In ODFM, GSM and other

personal communication networks, we estimate the channel in order to be able to use a

more efficient modulation technique. Because of the commonality, some of the ideas and

concepts are from one technology are are applicable in the other technology. Despite

the commonality, the differences are many in practice, and the ideas and concepts end

up being applied in different ways.

Currently in the echo cancellation literature, there is very little on the optimality of

test signals or the use of secondary statistics to improve channel estimation. We may

find such publications on such topics in the literature relating to successful wireless

technology. Hence, this chapter of the dissertation will focus on those topics in the

wireless literature in order to gain ideas, understanding, and inspiration from research

which was developed for wireless channel sounding and for OFDM communications.

5.1 Statistical Estimation of OFDM Wireless Channels

Orthogonal Frequency Division Multiplexing (OFDM) is a technology that is rapidly

being adopted for communications. Its uses are many, but they include our mobile
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phone communications, our military communications, ASDL, and more. The channel

estimation techniques being developed for OFDM are of particular interest. In this

section we shall examine some statistical techniques used for channel estimation in

OFDM. It is necessary, however, to understand the basics of OFDM and of wireless

communication in general in order to be able to understand the statistical techniques for

estimating the channel, and we shall therefore focus on the background before moving

to more specific details.

5.1.1 Background

In this section we will endeavour to understand the context in which ODFM operates. In

order to properly appreciate the solutions offered by ODFM technology, it is necessary

to understand the problems.

Although we refer to OFDM as if it was a single technology, we might also view it as

a collection of modern technologies that work together to produce a superior result.

These technologies include:

• The use of multiple tightly packed frequency bands, permitting the use of long

symbols which better cope with multipath propagation.

• The use of orthogonal overlapping occupied bandwidths which allow the frequency

bands to be packed much tighter.

• The simultaneous use of phase and amplitude modulation, which allow more data

to be transmitted with each symbol.

• The use of the Fast Fourier Transform which allows efficient, cheap and minia-

turised transmitters and receivers.

• Advanced statistical methods of improving the channel estimation.
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Occupied Bandwidth

One way of ensuring good communication with a very high data bandwidth between

two points would be use a very high frequency bandwidth. However, in general it is not

possible to use an arbitrarily wide frequency bandwidth, because that would interfere

with the communications of other people. The radio frequency spectrum, which extends

from approximately 30Hz to 300Ghz is a very valuable resource, and there are enormous

demands for allocations of the spectrum. The radio frequency spectrum is managed by

the International Telecommunications Union (ITU) (Radiocommunication Sector 2010),

which is an agency of the United Nations (UN). Economic and equitable usage requires

efficient use of allocated radio spectrum.

An allocated bandwidth may be specified by a centre frequency as well as an occupied

bandwidth. Typically the occupied bandwidth used in practice is one where 98% of the

power lies within the allocated boundaries.

Figure 5.1: Illustration depicting spectrum which results when a signal having 6 dB/octave

modulates an FM transmitter. Adapted from (RCC IRIG 106-99: Telemetry Standards

(Appendix A) 2003).

While a carrier frequency with no modulation might theoretically occupy an infinites-

imal frequency bandwidth, when data is transmitted on a carrier, the carrier must

necessarily occupy a non zero bandwidth. The occupied bandwidth is a function of the

frequency of the data being encoded onto the carrier frequency. Figure 5.1 shows the

frequency spread of a FM carrier when modulated with a sound. The energy is greatest
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near the carrier frequency, and becomes less, but never zero, as we move away from the

carrier frequency.

Carson’s rule is an approximation that predicts the occupied bandwidth for sinusoidal

modulation. Carson’s rule for frequency modulation is:

B = 2(fm + fd),

where B is the occupied bandwidth, fm is the maximum modulation frequency, and

fd is the maximum frequency deviation used in the frequency modulation (Anuff &

Liou 1971). Carson’s rule for phase modulation is:

B = 2fm(∆θ + 1),

where ∆θ is the peak phase deviation (Proakis & Salehi 1994). In general, for phase

modulation, the occupied bandwidth is proportional to the symbol rate. Hence, for a

given carrier frequency allocation, we could have n carrier bands, each carrying 2fm

symbols per second, or we could have 2n carrier bands, but they could each only carry

fn symbols per second. Either way, the total number of symbols per second and the

total occupied bandwidth would remain relatively unchanged.

Multipath Propagation

Sometimes there is line of site (LOS) propagation between the transmitter and the

receiver. A good example of this would be microwave links between cell phone stations

using parabolic dishes. But in most practical wireless situations, the radio propagation

travels to the receiver indirectly by many routes as depicted in Figure 5.2. This is

termed ”multipath propagation” (Parsons & Bajwa 1982).

Loss of signal under these circumstances due to signal cancellation caused by paths

arriving out of phase can be classified as Rician fading, if there is a line of sight or

dominant signal path, or Rayleigh fading, when there is no line of sight or dominant

path.

Impulse Response Because it takes a while for signal to reach its destination, im-

pulse responses measured from the time of transmission would have a period of all zeros.
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Figure 5.2: Illustration depicting multipath propagation. Adapted from (Wireless Tech-

nologies - Cisco Documentation 2002)

However, since it would often be difficult to know the exact time of transmission and

since it would also be pointless to do so as that would entail consideration of a very long

impulse response, impulse responses in the wiresless world are normally measured from

the first arrival time. Then impulse responses associated with multipath propagation

have an active period which has oscillations, which eventually go to zero in a way so

that the envelope has an exponential decay.

Baseband Channel Impulse Response In wireless, we are generally interested in

only a narrow band centred around some frequency fc, and it is common to characterise

a channel by a complex baseband channel impulse response (Rappaport 2001).

The relationship between the the baseband input c(t) and the transmitted signal x(t)

is as follows:

x(t) = R[c(t)ej2πfct].

Similarly, The relationship between the the baseband output r(t) and the recieved

signal y(t) is as follows:

y(t) = R[r(t)ej2πfct].

We can see that c(t) corresponds to the envelope of the transmitted signal x(t) and

r(t) corresponds to the envelope of the received signal y(t).

If we ignore the factor of 1
2 , the baseband impulse response hb(t) is defined much like
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an actual impulse response:

r(t) =
1

2
c(t)⊗ hb(t).

Power Delay Profile The power delay profile is the squared values of the impulse

response time shifted so that the line of sight time, or the first arrival of a signal is the

first element (der Perre, Ness, Thoen, Bandenameele & Engels 2002).

p(t) = h2(t)

RMS Delay Spread The RMS Delay Spread is a measure of of the spread of the

impulse response. First, we define a centroid in time for the power delay profile τ̄ in

the following way

τ̄ =

∫∞
−∞ t p(t)dt∫∞
−∞ p(t)dt

,

then the RMS delay spread is given by (Rappaport 2001) :

τrms =

√∫∞
−∞(t− τ̄)2p(t)dt∫∞

−∞ p(t)dt
.

Effective Length of the Impulse Response Multipath propagation causes time

dispersion of the received signal. If the effective length of the impulse response is

greater than the symbol length, then the symbols will interfere with each other giving

a high error rate. Hence, the symbols need to be longer than the expected length of

the impulse response. Engineers use the following rule of thumb (der Perre et al. 2002)

to estimate the effective length of the impulse response:

∆τ ≈ 4τrms.

Time Varying Channels

It has to be added that there are other factors that limit how long a symbol should be

in practice. In most applications the channel is generally not static, and symbols need

to be short enough so that the channel can be regarded as static for the duration of

the symbol. This consideration is especially important in mobile communications. In
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the case of OFDM, it is desirable that the channel does not change substantially over

a period of a single symbol. The time variability of a channel imposes a lower limit on

the symbol transmission rate of a given carrier frequency.

Relative motion in the transmitter, receiver or reflectors in a multipath propagation

channel causes rapid phase changes in a channel. If we limit the power loss to 3db, then

we can tolerate at most a phase change of π
4 . If we assume the very simplest model,

which is that of line of site transmission with the transmitter moving directly towards

or away from the reciever then our maximum symbol time is given by

vc
8vvfc

,

where vc is the speed of the carrier signal which is 3 × 108, vv is the speed of the

transmitter or receiver, and fc is the frequency of the carrier signal. For example, the

maximum symbol length for a carrier of 2.5 GHz and relative movement of 100km/h

would be 0.54 milliseconds.

Relative motion in the transmitter, receiver or reflectors in a multipath propagation

channel also causes a frequency change known as the doppler effect. Since OFDM fea-

tures tightly packed frequency bands, frequency drifting can easily cause inter-channel

interference (ICI).

Coherence Time If we observe a channel over a small enough period of time, then

we may observe that the channel remained relatively constant over that period of

time. Coherence Time Tc is a measure of how small that period of time is. The auto-

correlation function of the channel frequency response (der Perre et al. 2002) is given

by

rt(∆t) =

∫∞
−∞ h(t)h∗(t+ ∆t) dt∫∞

−∞ |h(t)|2 dt

Clearly rt(0) = 1. Tc is defined to be the value of ∆t where rt(∆t) is reduced to 1
2 .

Coherence Bandwidth The transfer function of a given path between a transmitter

and a receiver over the entire radio frequency spectrum will no doubt vary greatly. But

if we take a small enough subband, then at any moment the transfer function across
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that subband will be relatively flat. The frequency coherence bandwidth Bcoh is a

measure of how narrow that subband is. It effectively gives the spectral spread of

signal that would see the same channel.

The correlation coefficient of the channel frequency response (Vaughan & Anderson

2003) is given by

ρf (∆f) =
E[h̃(f)h̃(f + ∆f)∗]

E[ |h̃(f)2| ]
.

Clearly ρf (0) = 1. Bcoh is defined to be the value of ∆f where ρf (∆f) is reduced to

1
2 .

Modulation Techniques

Amplitude Modulation Amplitude Modulation was patented in 1901 (Marconi

1901, Tesla 1900). It is depicted in Figure 5.3 and works by varying the amplitude

of the carrier signal according to the amplitude of the data signal. Its use in its original

form is limited now, but still ongoing.

Figure 5.3: Illustration depicting the different types of wireless modulation. Adaptedfrom

(Agilent Technologies 2001)
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Frequency Modulation Frequency Modulation (Armstrong 1930) is depicted in

Figure 5.3. It works by slightly increasing and decreasing the frequency of the carrier

signal according to the amplitude of the data signal. If binary data is being transmitted,

most of the energy will be centred in two frequencies, being the carrier frequency plus

the frequency offset and the carrier frequency minus the frequency offset.

Phase Modulation Phase Modulation (Delaney 1958, Doelz 1949) is depicted in

Figure 5.3. It is normally only used for digital communications. It works by altering

the phase of the carrier signal.

Minimum Shift Keying (MSK) is a transmission system that uses phase modulation

(Doelz & Heald 1958). For each bit transmitted, the phase is shifted from its current

orientation either +90 degrees or -90 degrees, depending on whether the bit is a one or

a zero. For each bit transmitted, there is always a change of phase and so there is no

need for any other synchronisation.

Differential and Coherent Modulation Coherent Modulation encodes the data

in terms of absolute phase, or absolute amplitudes. It must be remembered here,

that if what we transmit is absolute, then what we receive is dependant not only on

what is transmitted, but also on the channel. Hence Coherent modulation requires

some reference point. There may or may not be an explicit channel estimate, but the

reference point effectively constitutes an estimate of the channel.

Differential modulation, on the other hand, encodes data in the difference between the

previous symbol and the current one. The previous symbol is effectively a reference for

the current symbol. Hence there is no need for estimation of the channel.

A major advantage of differential modulation is that the receiver need not make an

estimate of the channel, and it therefore simpler. It also removes the need for test

transmissions or pilot signals. A major advantage for coherent modulation is that it

requires 3dB less transmission power. It also enables the use of multi amplitude and

phase Quadrature Amplitude Modulation, as described in the next paragraph (Edfors,

Sandell, deBeek, Landstrom & Sjoberg 1998).
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Quadrature Amplitude Modulation Quadrature Amplitude Modulation (QAM)

uses phase modulation and amplitude modulation at the same time. Phase modula-

tion and amplitude modulation are orthogonal and may used at the same time. For

example, with two amplitude levels, and two phase levels, we have 4 states that can

be transmitted. This is known as 4-QAM and also known as Quadrature Phase Shift

Keying (QPSK). We say that 4-QAM has two bits per symbol, meaning that it allows

us to send two bits of information at the same time.

We need not only have two levels of amplitude and two levels of phase. For example, if

the phase shifts are 90 degrees we can use 4 different phases. Similarly, we may have 4

levels of amplitude, giving a total of 16 states. This is called 16-QAM and it transmits

4 bits per symbol.

5.1.2 OFDM

Multicarrier Modulation

As explained in Subsection 5.1.1 the use of longer symbols will give us a smaller occupied

bandwidth. Hence, instead of having a single carrier frequency transporting a high data

rate, we can have many carriers frequencies each transporting low data rates and can

transmit approximately the same combined data rate in the same combined occupied

bandwidth. The important advantage of doing this is that using longer symbols allows

us to accommodate a longer effective impulse response lengths with the same amount

of inter symbol interference (ISI), which is precisely what is needed under conditions

of multipath propagation.

There are some practical limits to how far we can go with this, however. As explained

in Subsection 5.1.1 the coherence time imposes a practical limit on how long we can

make the signals. Reception would become impossible if the coherence time was shorter

than the symbol time. Computational complexity imposes another practical limit on

how long we can make the symbols. Another disadvantage is that effective channel

latency is increased.
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Orthogonal Multicarrier Modulation

Traditionally, adjacent frequencies have had to be sufficiently separated in frequency

so that their occupied bandwidths do not interfere with each other. However, it is

possible to move adjacent frequencies much closer together so that their frequency

spreads are heavily overlapped, and still not have the channels interfere with each

other. (Chang 1966) published just such a method so that frequency spreads overlap,

but are orthogonal to each other in the real and imaginary parts so that they do not

interfere with each other. The method can work with amplitude, frequency or phase

modulation.

Figure 5.4: Illustration depicting the orthogonal nature of the frequency spreads of adjacent

carriers in OFDM. Adaptedfrom (OFDM in Multipath 2007).

The frequency spread due to amplitude modulation by a square pulse, for example, is

a sync function centred about the carrier frequency and with a spread proportional to

the symbol rate. If the carrier frequencies are spaced at the correct distance apart,

then they are orthogonal. This is illustrated in Figure 5.4 where we can see that the

real parts of the green and red frequency spreads have strong positive overlap close to

each other, but this is cancelled out by weak negative overlap at all other places.

Multi carrier modulation using orthogonal overlapping occupied bandwidths, is referred

to as Orthogonal Frequency Division Multiplexing (OFDM). It permits the transmission

of a binary order of magnitude more data to be transmitted in the same frequency range

than would otherwise be possible, and successfully does this even where there is a large

time dispersion due to multipath propagation.

Since radio bandwidth is a valuable resource, and since ODFM makes economical use of

an allocated bandwidth, most new communication systems rely on OFDM technology.
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ODFM is currently used in most modern communication systems, including broadband

modems, cable TV, satellite TV, mobile phones and free to air digital audio and video

broadcasting. New wireless technologies such as Long Term Evolution 3GPP (Furht

& Ahson 2009), WIMAX 802.16 (Prasad & Velez 2010) and Flash-OFDM (Lee, Park,

Cho, Lee & Ryu 2006) will use enhancements of OFDM technology.

The Cyclic Prefix Each symbol transmitted is prefixed by an interval that contains

a cyclic extension of the time domain signal. This interval is called the guard interval

or the cyclic prefix. The length of the cyclic prefix is the anticipated maximum effective

length of the impulse response. Without the cyclic prefix, the multipath propagation

would spread the information so that the received transmission of a given block would

include information from the previous block, which would constitute inter-symbol in-

terference, or unnecessary noise. With the cyclic prefix, the information being spread

into a received block is effectively that of the same block. What gets received is ef-

fectively a cyclic convolution of the transmitted block and the impulse response. The

DFT that will be applied to the received block has the property of transforming cyclic

convolutions into a element by element multiplication. What we receive, therefore, is

an element by element multiplication of the transfer function of the channel with the

fourier representation of the transmitted signal, plus some additive noise.

Implementation of OFDM Prior to the development of efficient, fast and tiny Dig-

ital Signal Processors, spread spectrum systems had to be implemented using expensive

and bulky banks of subcarrier oscillators and demodulators. There were several early

spread spectrum military systems. The Kineplex data transmission system for acous-

tic modems (Mosier & Clabaugh 1958) was a spread spectrum system that achieved

multicarrier modulation using high quality kinematic analog filters. Orthogonal Mul-

ticarrier wireless modulation was achieved in the KATHRYN system (Zimmerman &

Kirsch 1967), using a Fourier Transformer implemented with ultrasonic delay line

memory devices. KATHRYN was the first true OFDM system.

In 1971 Weinstein and Ebert proposed the use of the Fast Fourier Transform (FFT) as

an alternative to the use of banks of analogue oscillators and demodulators (Weinstein
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& Ebert 1971). The FFT had been reinvented just six years earlier in 1965 (Cooley

& Tukey 1965), having been originally invented in 1805 by J.F.H. Gauss (Heideman

et al. 1985).

Figure 5.5: Block diagram showing the components of OFDM transmitters and receivers.

Adapted from (Prasad 2004).

The transmission process is shown in Figure 5.5. A serial data stream is buffered into

a block and presented as parallel data. Modulation then occurs. At this point, we are

working in the frequency domain, so the ”modulation” for each subcarrier essentially

boils down to a complex scalar variable being assigned a complex value that encom-

passes both amplitude and phase. The pilot signals are inserted here too. The complex

values of each frequency are then converted using an inverse FFT into time domain

values, still in parallel. Then these parallel time domain values are sequenced, together

with the cyclic extension, into serial form, ready for conversion from digital into an

analog signal. The signal now converted into analog does not have the frequency of

the carrier, but is a baseband signal as described in Subsection 5.1.1. The baseband

signal is converted up to the required frequency range by frequency shifting (described

in Subsection 2.2.3) and is then amplified and transmitted.

The receiver process, also shown in Figure 5.5, is similar to the transmission process

but has inverse processes corresponding to those in the transmission processes in the

reverse order to those in the transmission processes.

The ubiquitous use of this technology has been enabled by DFT and IDFT transforms,

implemented using the fast and tiny Digital Signal Processors (DSP) that have become
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available since the turn of the century.

5.1.3 Channel Estimation

Channel estimation plays an important role in ODFM. With channel estimation it is

possible to use coherent phase shift keying (PSK) instead of differential PSK which

would allow a 3 dB gain (Li & Stuber 2006, Shen & Martinez 2006). Techniques which

utilize second order channel statistics dominate literature for channel estimation in

OFDM. The utilisation of second order channel statistics is of particular interest in

this dissertation.

Figure 5.6: Illustration of the arrangement of pilot signals in OFDM. Adapted from (Shen

& Martinez 2006).

OFDM systems generally include the use of a pilot signal, one of the roles of the pilot

signal is that of a test signal.

Figure 5.6 shows data symbols arranged by subcarrier and by time for block type pilot

estimation and for comb type pilot estimation. In block type pilot symbol arrange-

ments, entire time slots or DFT blocks have been dedicated to pilot symbols (indicated

in black). In this case the channel for each data block needs to be estimated by inter-

polation in time. In comb type pilot symbol arrangements, the pilot symbols have been

allocated their own dedicated subcarriers. In this case the channel for each data block

need to be estimated by interpolation in frequency. (Negi & Cioffi 1998) modelled the

channel as first order Markov channel and demonstrated that comb type pilot pilot

channel estimation is superior to block type pilot channel estimation.
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Estimators

As explained in Subsection 5.1.2, the data is modulated in the frequency domain,

converted to the time domain, transmitted, received and converted back in to the

frequency domain. For the purpose of channel estimation, we can treat the process

beginning with the inverse DFT and ending with the DFT as a black box. That is, we

may treat the channel in a high level way as a channel in the frequency domain. We

can demonstrate this by using a slightly simplified model (Shen & Martinez 2006):

w̃ = F((F−1x̃)⊗ h + z)

= x̃ � Fh + Fz

= x̃ � h̃ + z̃.

Least Squares Estimator Least squares estimation (LS) of the channel of an OFDM

system in the frequency domain is conceptually much simpler than LS in the time do-

main, because the data has already been orgainised into blocks and LS can be performed

with only element by element multiplication:

ξ̃ = x̃ � h̃.

We may express this in the form of matrix multiplication by introducing the diagonal

matrix X̃ = Diag(x̃). Then we have

ξ̃ = X̃h̃ + z̃,

and it follows that ignoring the noise, the channel estimate is given by

h̃L = X̃−1ξ̃.

There is no actual matrix inversion involved, however, because X is diagonal. The noise

does have an impact on this estimate of h, however, and the LS estimator suffers from

a high mean-squared error whenever there is noise present (Shen & Martinez 2006).

Linear Minimum Mean Squared Error Estimator One way of reducing the

errors is to use the Linear Minimum Mean Squared Error (LMMSE) estimator. The
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(LMMSE) estimator was introduced by (Edfors et al. 1995) and takes advantage of

the fact that the elements of h̃ are statistically correlated in time (Li & Stuber 2006).

The correlations are normally expressed in the form of a correlation matrix Ch̃, which

is defined by Ch̃ = E[h̃h̃∗]. I will now derive the formula for the MMSE estimator,

based on the derivation in (Li & Stuber 2006), beginning by explaining some of the

underlying assumptions:

Relative to the entire spectrum stretching down to a frequency of zero, the frequency

band of interest in OFDM is narrow, and because of this we are able to make the

assumption of stationarity in the frequency domain. The assumption of stationarity

implies that the matrix Ch̃ is circulant. This assumption also implies that the channel

for each band, h̃i, has the same variance, and for simplicity we choose the magnitude

of the variance of each band is equal to be 1, i.e.

(Ch̃)i,i = E[h̃i h̃
∗
i ] = 1. (5.1)

The fact that the band of interest is narrow also permits an assumption regarding the

noise. We assume here that the noise is independent and identically distributed (IID),

otherwise known as white noise, and this implies that the autocorrelation matrix for

the noise is diagonal and constant:

Cz̃ = ρI, (5.2)

where ρ is the variance of the estimation error. It follows that

Ch̃L = E[h̃L h̃
∗
L]

= E[(h̃+ z̃)(h̃+ z̃)∗]

= E[(h̃ h̃∗ + 2h̃ z̃∗ + z̃ z̃∗]

= Ch̃ + ρI. (5.3)

Similarly,

E[h̃ h̃∗L] = E[h̃(h̃+ z̃)∗]

= E[(h̃ h̃∗ + 2h̃ z̃∗]

= Ch̃. (5.4)
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The LMMSE estimate, h̃M , is a linear function of the LS estimate, h̃L. We may express

this fact in the following way:

h̃M = Ã h̃L, (5.5)

where Ã is the estimator coefficient matrix.

Our problem is to minimise the error of the estimate, or equivalently minimise expec-

tation of the square of the error of the estimate, i.e. minimise E||h̃M − h̃||2.

h̃, h̃L and h̃M can be viewed as vectors of zero mean random variables. The space of

zero mean random variables forms a Hilbert space, if we define the inner product of two

zero mean random variables, x and y, to be E[xy], i.e. the correlation between them.

By the orthogonality principle, the solution h̃M must occur at the point where there

is no correlation between the error of the estimate h̃M − h̃ and the initial estimate h̃L.

That is:

E[(h̃M − h̃)h̃∗L] = 0. (5.6)

Substituting (5.5) into (5.6) gives us

ÃE[h̃Lh̃
∗
L]− E[h̃h̃∗L] = 0. (5.7)

Substituting (5.3) and (5.4) into (5.7) we get

Ã(Ch̃ + ρI)− Ch̃ = 0. (5.8)

Making Ã the subject of the equation,

Ã = Ch̃(Ch̃ + ρI)−1. (5.9)

Equation (5.9) features shrinkage. When there is no noise, the result becomes simply

A = I, and when there is much noise, the answer becomes like A = 1
ρCh̃.

Using Singular Value Decomposition As stated in the previous subsection, the

elements of h̃ are statistically correlated in time, and as a result A tends to have low

rank. In fact, it has been shown in (Edfors, Sandell, deBeek, Wilson & Borjesson 1998)

that the rank of A is L, one more than the length of the cyclic prefix.

Therefore, an alternative way to reduce the complexity would be to express the matrix

A as a low rank Singular Value Decomposition (SVD) approximation A = V ΛV ∗
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where V contains only the vectors corresponding to the significant eigenvalues (Edfors,

Sandell, deBeek, Wilson & Borjesson 1998). The LMMSE estimate may be calculated

as suggested by the bracketing in the following equation:

h̃M = V (Λ (V ∗ h̃L)). (5.10)

This effectively reduces the complexity of the calculation of hLMMSE to approximately

4L2 operations.

The SVD decomposition of A may be expressed in terms of the SVD composition of

Ch̃ (Li, Cimini & Sollenberger 1998).

A = Ch̃(Ch̃ + ρI)−1

= (I + ρC−1
h̃

)−1

= (I + ρUD−1U∗)−1

= U(I + ρD−1)−1U∗,

whereD is a diagonal matrix containing the eigenvalues of Ch̃ and U are the eigenvectors

of Ch̃. Therefore A and Ch̃ have the same eigenvectors (i.e. U = V ) and each of the

eigenvalues of A are given by

φi =
di

di + ρ
, (5.11)

where φi is the ith eigenvalue of A, and di is the ith eigenvalue of Ch̃.

Efficient Computation and Improvement in the Time Domain As explained

in Subsection 5.1.3, the matrix Ch̃ is circulant and has the property that it is diag-

onalised by the inverse Fourier transform. That is, V = F , and we may effectively

perform our SVD by means of the fast Fourier transform and its inverse, further re-

ducing the computational complexity to approximately M log(M) operations. We can

express (5.5) in the time domain:

h̃M = A h̃L

= F ( (F ∗AF ) (F ∗h̃L) ).

Figure 5.7 illustrates this process, which consists of transformation into the time

domain, truncating the impulse response to what we know to be the effective length
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Figure 5.7: Illustration of efficient implementation of LMMSE in the time domain. Repro-

duced in Open Office from the original diagram in (Edfors et al. 1995).

of the impulse, multiplication by (F ∗AF ), and transformation back into the frequency

domain. We know that values in the elements of the impulse response, hL, after the

effective length of the impulse response are due to noise. Therefore, by forcing these

elements to zero, we are further improving our estimate of h̃M (Edfors et al. 1995).

5.2 Optimisation of Test Signal Crest Factors

Wideband channel sounding is often performed by measuring the response to a periodic

test signal (Schroeder 1970). The channel is normally assumed to be linear. We can

describe our test signal in the frequency domain:

xj =
√
n
n−1∑
k=0

ake
i( 2πkj

n
+φk).

Given circumstances may require the signal strengths in each frequency, ak, to be fixed.

A white test signal, where all frequency strengths ak are equal would be a common

case. The phases at each frequency φk, however, remain to be chosen. The choice of

the phases of each frequency is important. If we use a zero or a constant phase, we will

typically end up with a signal that has a single huge spike. If we use random phases,

the envelope of the signal may have many spikes.

In either of the above choices of the phases, the ratio of the maximum absolute value

of the signal to the mean power of the signal would be high. This ratio, Kr, is known
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as the crest factor (Felhauer, Baier, Konig & Mohr 1993), and is given by

Kr =
|x|peak

xrms
(5.12)

= n
|x|peak√∑n−1

j=0 a
2
i

.

The transmission equipment and the receiving equipment effectively limit the maximum

absolute values of the signal that may be transmitted. If these limits are exceeded, the

transmission equipment may simply clip or it may become non linear. Either way,

the signal becomes distorted and harmonics are generated. In this case what would

ultimately get transmitted or received would be something other than the intended

spectrum.

It is desirable to have a large signal to noise ratio, so we wish the average power envelope

of the signal to be as high as possible. A test signal with a constant envelope will give

us the highest average power envelope for a given absolute maximum instantaneous

value. It is therefore desirable to keep the envelope of the test signal as constant as

possible, i.e. to minimise Kr, the crest factor of the test signal, by choosing suitable

values for each of the φk.

At present, there is no analytical formula which selects the phases to give a minimum

crest factor. In this section we will review the rules and optimisations developed to

give a low crest factor or an optimal crest factor. A comprehensive computer search of

all possible combinations of each phase becomes impossible whenever there are more

than a handful of frequencies involved. Another method, called the random method,

uses a computer program to try random combinations of phases, and to retain the

combination that gives the lowest crest factor.

5.2.1 Schroeder’s Formula

Schroeder’s may be used to derive a test signal with a good crest factor. Even when it

is not used to give the final values of the phases of the test signal, it is generally used

to give the initial values for an optimisation of the test signal crest factor.
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(Schroeder 1970) derived a formula for the values of φk that gives a good crest factor

for a subset of the general case. He constructed a frequency modulated (FM) signal

that has the desired power spectrum, and derives the formula for that specific case.

(Schroeder 1970) acknowledges that it is not possible in general to fit an exact FM

signal to an arbitrarily prescribed power spectrum. However, it is observed that the

derived rule applied to the general case gives consistently better results than the random

method (der Ouderaa, Schoukens & Renneboog 1988).

Schroeder’s formula for each φk is:

φk = φ1 − 2π
k−1∑
j=1

(k − j)a2j k = 2, · · · .n, (5.13)

and for a white test signal this reduces to

= −πk
2

n
. (5.14)

5.2.2 Domain Swapping Methods

(Van den Bos 1987) uses Schroeder’s formula as the initial starting point for an optimi-

sation which further improves the Crest Factor. His optimisation procedure involves an

application of the DFT and an application of the inverse DFT as part of each iteration.

Each iteration is as follows:

• The signal is converted to the time domain, and then the signal is converted to

full amplitude square waves by replacing the instantaneous value of x(t) with the

sign of x(t).

• Then the signal is converted back to the frequency domain. Here, the phases

are retained, and the frequency strengths are replaced by the original frequency

strengths.

Instead of converting to full magnitude square waves, (der Ouderaa et al. 1988) proposed

a modification where the time domain signal is merely clipped to a level of something

less than the peak. They recommend a level of 20% less than the peak for the first

iteration and then gradually reducing the clipping level with each iteration. If the
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optimisation becomes trapped in a local minima, the clipping level should be raised

again.

5.2.3 L-norm Methods

The definition of the crest factor, (5.12), involves the maximum of the absolute values of

the test signal in the time domain, somtimes known as the l∞-norm of the test signal.

The l∞-norm may be seen as the limit of a family of lp-norms. The lp-norm of the

function x(t) taken over the interval [a, b] is denoted by lp(x) and is defined as:

lp(x) =

(
1

b− a

∫ b

a
|x(t)|p dt

)( 1
p
)

.

Two other commonly known norms are the l1-norm (mean) and the l2-norm (RMS).

The l∞-norm is defined to be:

l∞(x) =
lim

p→∞
lp(x). (5.15)

Taken as a function of the phases, the l∞-norm is highly non-smooth (Manchester 2009).

The l∞-norm may be approximated by (5.15) using a large value of p, however, and

this approximation is smooth. The method of (Guillaume et al. 1991) uses Schroeder’s

formula to give the initial values for the phases, and then used the Gauss-Newton

algorithm to find the local minima of l4(x). It then uses the result as a better starting

point to find the local minima of l8(x), and so on, for binary logarithmic steps of

p. (Manchester 2009) uses this same scheme, but has reformulated the crest factor

optimisation problem in such a way to make it suitable for convex optimisation instead

of using the Gauss-Newton method.

This scheme finds a local minima and in general cannot find the global minimum. Nev-

ertheless, the performance of this scheme exceeds the performance of previous schemes.

The performance of an L-norm method is compared with that of a domain swapping

method in Figure 5.8. Both methods begin with Schroeder’s formula. The domain

swapping method initially achieves good results with little computation effort, but af-

ter some initial gains makes slow progress, whereas the L-norms method continues to

make substantial further reductions as p is increased to 1024. After this point, the
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Figure 5.8: Graph comparing the method of (Guillaume et al. 1991) with the method of

(Van den Bos 1987). Adapted from (Guillaume et al. 1991).

method of L-norms makes only minor improvements with increasing computational

time.

5.2.4 Other Methods

(Felhauer et al. 1993) propose the systematic search of the space of phases using a

computer. They note that since the resulting test signal must be real, we would have

only half the number of phases to consider than we would if we considered complex

test signals.

The authors fail to mention that the method would be very limited in the number of

frequencies that could feasibly be optimised, but the computational complexity of this

brute force approach is quite steep and this clearly could not be used for a fullband audio

spectrum. If the resolution in the phases was set to 2π
m , so that there are m possible

values for each phase, then the computational complexity would be mn−1 where n is

the number of frequencies to consider. If for example, if the resolution in the phases
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was set to 5 degrees, so that there are 72 possible values for each phase, then if we

had only 10 frequencies to consider, there would be approximately 3.7× 1018 different

combinations to evaluate, and if we had 100 frequencies to consider, there would be

approximately 5.4× 10185 different combinations to consider.

(Molina, Fannin & Timoney 1995) used a general minimax optimiser that is part of the

Matlab optimisation toolbox. The actual Matlab routine is not specified. (der Ouderaa

et al. 1988) specifically recommended against the use of a general optimisation routine

because the problem is rich in local minima, and the optimisation process frequently

becomes stuck.

5.3 Chapter Summary

In this chapter we have examined some aspects of wireless technology where the con-

cepts have applications in the echo cancellation and in the optimal test signal part of

this dissertation in particular. The second order statistics of wireless channels and the

noise are used to impove the estimation of the wireless channels. In the next chapter,

we use the second order statistics of the noise of the channel in the optimisation of test

signals.

We have seen in this chapter that test signals for channel estimation are important, and

that the optimal choice of test signals is a topic of interest, in wireless communication

applications. Literature exists in the wireless world regarding the optimisation of the

crest factors of test signals. In the next chapter we perform optimisation of the spectral

densities of test signals.



Chapter 6

Optimisation of Test Signals

A time-varying linear channel may be estimated using the output from a periodic test

signal. In this chapter we show how to do this in a way that takes full account of the

past history of the background noise and the past history of the channel.

The use of a test signal to estimate a channel is common in wireless applications (in

802.11 and 3G, for example). Wideband channel sounding is often performed by mea-

suring the response to a periodic test signal (Schroeder 1970). Acoustic test signals

are also useful for rapid channel estimation under difficult circumstances (Goodings

et al. 1993, Spriet et al. 2005).

No prior work exists in the literature concerned with the optimisation of the power

spectral densities of test signals, given the secondary statistics of the channel and of

the noise. There have been several published enhancements to LMS and AP echo

cancellation algorithms that exploit knowledge of the noise power to adjust the rate

of convergence, for example (Wei, Gelfand & Krogmeier 2001, Costa & Mermudez

2008, Mader, Puder & Schmidt 2000, Benesty, Rey, Vega & Tressens 2006). In Section

5.1 we have documented the use of secondary statistics of the channel in order to

improve the channel estimation in OFDM. In Section 5.2 we have described Crest

Factor Optimisation, which is the optimisation of the phases of a test signal in order

to minimise peak instantaneous power given the power spectral densities of the test

signal. Crest Factor Optimisation is orthogonal and complementary to the type of
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optimisation developed in this chapter. It would be quite feasible to perform Crest

Factor Optimisation on a test signal whose spectral densities have been found by means

of optimisation developed here.

The remainder of this chapter is organised as follows: In Section 6.1 we show how a

periodic test signal can be represented as a circulant matrix.

In Section 6.2 an explicit formula is obtained for the optimal linear estimator when we

know the autocovariance or power spectrum of the interfering noise and the autocovari-

ance of the echo channel variation. This is a potentially useful result on its own, that

may be used for rapid channel estimation for a given periodic test signal. We define

a measurable quantity coloredness for the noise covariance matrix and for the channel

covariance matrix. We compare the optimal estimator with an estimator which does

not use information about the statistics of h or z for different values of coloredness of

the noise and the channel autocovariance matrices.

In Section 6.3 we develop a closed formula in the time domain for the optimal test

signal for a fixed estimator given the secondary statistics of the noise and the channel.

Matrix calculus identities required for the derivation of this expression for the optimal

estimator are stated and proved in the appendix. These two expressions are then

combined in an algorithm that iteratively finds the optimal combination of estimator

and test signal in the time domain. We give details neccesary for the implementation

of the algorithm.

In Section 6.4 we develop an improved implementation in the frequency domain. One

may observe from the results of optimisation experiments in the time domain that the

choice of a different starting point (test signal) will generally yield a different result.

That is, the optimal test signal is not unique in the time domain. However, converted to

the frequency domain, we can see that different optimal test signals in the time domain

share the same power spectral densities but different phases. We show mathematically

that the performance of a test signal is dependent only on the power spectral density

and independent of the phases. We use this result to develop an iterative frequency

domain method for finding the optimal test signal that uses only half the number of

free variables.
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In Section 6.6 we use our definition of coloredness and present results from a large

number of numerical experiments that demonstrate that even with a much lower power

budget the optimal test signal can achieve the same least-squares accuracy as a white

test signal when either the channel covariance matrix or the noise covariance matrix is

colored.

6.1 Periodic Test Signal Expressed as a Circulant Matrix

Using the variable names illustrated in Figure 1.1, the test signal x(t) is the input to the

channel with a finite impulse response (FIR), h(t). Noise z(t) is added to the channel

output, y(t), giving the measurable result, w(t). The relationship between x(t) and

y(t) is given by

y(t) = x(t)⊗ h(t). (6.1)

We use samples in discrete time rather than with continuous functions of time, and

we assume an impulse response with an effective length of n. We use the convention

that xm refers to the discrete value of x at time tm where (tm = m∆t) and ∆t is the

sampling interval. We use a similar convention for zm, ym and wm. Therefore, we may

write a set of n equations

yi =
n−1∑
k=0

xi−k hk i = 0, ..., n− 1.

This may be expressed in terms of matrix multiplication by a Toeplitz matrix X

(Plemmons 1993), as we did in Subsection 2.4.1:

y = Xh, (6.2)

where Xi,k = xi−k and y = (y0, ..., yn−1)
T .

Clearly if we ignore the noise z(t), we may estimate h from a sampling of w by

ĥ = X−1w, (6.3)

where w = (w0, ..., wn−1)
T . This estimate is essentially the solution that would be

obtained by the application of a non-Bayesian algorithm that does not utilise the sta-

tistical knowledge of the noise or the channel, such as the RLS algorithm applied to a

white test signal as a block of data, as discussed in Subsection 2.4.1.
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We now introduce an additional assumption, that x is periodic, which greatly simplifies

the estimation procedure and enables it to be expressed readily by means of the discrete

Fourier transform. We assume that the length of the repeated portion of the test signal

is the same length as the modelled impulse response, n. This is not a restriction on

the range of test signals which can be explored, because a signal with a repeating

period shorter than the impulse response could not provide a satisfactory estimate of

the channel, and if a test signal longer than the impulse response is desired we can

extend the impulse response by padding with zero values until our impulse response

has the desired length. The repeated portion of the test signal may be represented

as a vector x = (x0, ..., xn−1)
T , and it follows that X is the circulant matrix given by

Circ(x).

Because our signal x is cyclic, so is y. We can estimate h from an accumulation of

the corresponding cyclic elements of w from k sampling periods. This would have the

effect of summing the noise power (i.e. increasing the effective noise strength by
√
k)

and a summing of the test signal (i.e. increasing the test signal strength by k), thus

increasing the signal to noise ratio.

6.2 The Optimal Estimator for a Given Test Signal

6.2.1 Finding the Optimal Linear Estimator

The estimate ĥ of h given by (6.3) is only the optimal estimator for the channel if there

is no noise or if we ignore the noise. For example, if we know the noise power, then

(A.23) gives a more accurate estimate because it performs shrinkage as does methods

described in (van Houwelingen 2001, Goldstein & Brown 1978).

If we know the power spectral densities of the noise, and therefore its autocorrelation

matrix Cz = E[zzT ], we may do better than (A.23). Further, if we know the mean of

the channel h̄, and autocorrelation matrix of the channel Ch = E[hhT ], then we may

do better still, as we shall show in Subsection 6.2.5. These statistical properties of h

may be estimated by keeping a record of the channel over time. Statistically efficient
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estimators of Ch are discussed in the next chapter. We also assume that the noise, z,

is uncorrelated with x and uncorrelated with the current value of the slowly varying

channel, h.

6.2.2 The Estimate of h is a linear function of w

If the random quantities in our model are Gaussian and the model is linear then by the

Gauss-Markov Theorem (Stapleton 1995), the optimal unbiased least-squares estimator

is linear. Let us therefore express our estimate of h, ĥ as a linear function of our

measured output signal, w. Then we have

ĥ = h̄ + A(w −Xh̄), (6.4)

where A fully incorporates our linear estimation function. The estimator has been

constructed deliberately to ensure that it is unbiased, i.e. E[ĥ] = h̄.

6.2.3 Estimation as a minimisation problem.

Least-squares estimation of h is achieved by minimising the sum of the squares of the

errors in h :

ε = E[
(
h− h̄− (ĥ− h̄)

)T (
h− h̄− (ĥ− h̄)

)
] (6.5)

which, substituting (6.4) into (6.5),

= E[(h− h̄−AXh + AXh̄−Az)T (h− h̄−AXh + AXh̄−Az)]

= E[M],

where

M = (h− h̄)T (h− h̄) − (h− h̄)T (AX(h− h̄))

− (h− h̄)T (Az) − (AX(h− h̄))T (h− h̄)

+ (AX(h− h̄))T (AX(h− h̄)) + (AX(h− h̄))T (Az)

− (Az)T (h− h̄) + (Az)T (AX(h− h̄))

+ (Az)T (Az).
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So

ε = E[(h− h̄)T (h− h̄)] − E[(h− h̄)TAX(h− h̄)]

− E[(h− h̄)TAz] − E[(h− h̄)TAX(h− h̄)]

+ E[(h− h̄)TXTATAX(h− h̄)] + E[zTATAX(h− h̄)]

− E[(h− h̄)TAz(h− h̄)] + E[zTATAX(h− h̄)]

+ E[zTATAz]

Terms containing both h and z are zero, because h and z are uncorrelated, therefore:-

ε = E[(h− h̄)T (h− h̄)]− 2E[(h− h̄)TAX(h− h̄)]

+E[(h− h̄)TXTATAX(h− h̄)] + E[zTATAz]

Applying (A.9) we get:-

ε = tr(Ch)− 2tr(AXCh) + tr(XTATAXCh) + tr(ATACz) (6.6)

6.2.4 The Optimal Estimator A

Since (6.6) expresses the mean-squared error as a quadratic function in A, the optimal

value for A must be a stationarity of (6.6) considered as a function of A. The stationary

value we seek may be found by differentiating (6.6) with respect to A, which is achieved

by applying (A.10) and (A.11) to (6.6):-

∇A(ε) = −2(XCh)T + 2AXChX
T + 2ACz

Setting ∇A(ε) to zero, we find

A(XChX
T + Cz) = (XCh)T

In practice, acoustic channels do not transmit energy at a frequency of zero (DC). As

an illustration, let us imagine a LEM system where energy at a frequency of zero would
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have the same effect as having the position of the speaker located slightly forward or

slightly backward. Hence, we should not be surprised to find that h, z, Ch and Cz

do not have energy at a frequency of zero. It follows that Ch and Cz will both be

singular in practice, and the optimal test signal should also have a zero DC component.

Therefore, (XChX
T + Cz) may be singular and the obvious solution

A = (XCh)T (XChX
T + Cz)

−1

cannot be used. In practice A can be computed by using

A = (XCh)T (XChX
T + Cz)

+. (6.7)

6.2.5 Comparing the Optimal Estimator with a White One

Since noise with constant (flat) power spectral density is termed white, we say that the

coloredness of the noise, ccz, is
σpz
µpz

, where σpz and µpz are the standard deviation and

the mean of the power spectral density of the noise respectively. Since the diagonal of

Cẑ has the discrete power spectral densities, we prefer to define coloredness directly in

terms of Cẑ:

ccz =
σp
µp
,

where p = diag(Cẑ), and µp is the average of the elements of p and σp is the standard

deviation of the elements of p.

Even though the impulse of the channel is not a stationary process, for the sake of

convenience we will use the term power spectral density of Ch to refer to the total

power associated with each frequency band, i.e. the values along the diagonal of Cĥ in

a manner analagous to that of the noise covariance matrix. Similarly, the coloredness

of the channel, cch, is defined in terms of Cĥ:

cch =
σq
µq
,

where q = diag(Cĥ), and µq is the average of the elements of q and σq is the standard

deviation of the elements of q.

The graphs shown in Figure 6.1 summarise the results of over 500 experiments in which

three methods for channel estimation have each been applied to the same problem.
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Figure 6.1: The means and standard deviations of the expected sum of the square of the

square of the expected errors. Details are explained in Subsection 6.2.5. Created in Matab.
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These plots demonstrate how and when the optimal estimator is better than one that

does not take second order statistics into account:

The solid curves represent the means of the expected channel estimation errors over

eleven different randomly generated channel estimation scenarios and the dashed lines

represent the standard deviations of those same results. The channel covariance matrix

in each experiment was randomly generated according to the required coloredness in

the frequency domain. The noise covariance matrix was also created from a randomly

generated set of power spectral densities whose mean and variance conform to the

specified coloredness in the frequency domain.

The green lines show the errors for the non-Bayesian estimator given by (6.3) (e.g. the

RLS algorithm described in Section 2.4 without weighting) with a white test signal.

The blue lines show the errors using the optimal estimator with a white test signal.

The red lines show the mean and standard deviations of the errors using the optimal

estimator in combination with an optimal test signal.

The left hand graphs present the errors for varying coloredness of Ch with white noise.

It shows that the errors decrease with coloredness of Ch, when the optimal estimator

is used.

The right hand graphs present the errors for varying coloredness of Cz with white noise.

It shows that the errors decrease with noise coloredness, when the optimal estimator is

used.

The top graphs show the errors with an SNR of 1.0. The bottom graphs show the errors

with an SNR of 0.25. Note that the graph shows that the errors are slightly better for

the optimal estimator even when the channel autocovariance is white and the noise

is white noise. This is because even with white channel and noise covariances, the

optimal estimator takes the noise power into account, effectively performing shrinkage

as described in Subsection A.3.5, whereas the non-Bayesian estimator cannot take the

noise power into account. These graphs show that as the SNR becomes smaller, the

benefit from shrinkage becomes more pronounced.
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6.3 A Time Domain Method for Finding the Optimal Test

Signal

Since X is a circulant matrix that has x as its first column, i.e. X = Circ(x) the

optimisation under consideration (finding the best test signal) has only n free variables

and should be expressed in terms of x rather than X.

6.3.1 Imposing the power constraint

As we have noise present in the system, a stronger signal will give a better result.

That is, unconstrained, there is no finite optimal test signal. We therefore impose the

constraint that the total power in the signal x is less than or equal to the maximum

power p of the test signal. Clearly, the optimal test signal must reside on the constraint.

However, for a given value of A the optimal test signal may or may not reside on the

constraint.

The energy constraint on the test signal can be introduced to the optimization by

means of the Kuhn-Tucker theorem (Luenberger 1969)(chapter 9), which states that the

constrained minimum of our objective function occurs at a point where the derivative

of the constraint and the derivative of the objective function have opposite direction,

that is:

c∇x(g) +∇x(ε) = 0, (6.8)

for some positive c.

The power constraint can be expressed as

g(x) = xTx− p ≤ 0, (6.9)

and thus, the left hand term of (6.8) is

c∇x(g) = 2cxT . (6.10)

Focussing now on the right hand term of (6.8), we may apply (A.5) and (A.7) to (6.6),
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giving

∇xε = −2 traces(ChA)T + traces((Ch)T XT (ATA)T )T + traces(Ch XT ATA)T

= −2 traces(ChA)T + 2 traces(Ch XT ATA)T . (6.11)

Substituting the LHS of (6.10), and the LHS of (6.11) into (6.8), we get

2cx− 2 traces(ChA) + 2 traces(Ch XT ATA) = 0.

By applying (A.8), we get

2cx− 2 traces(ChA) + 2Gx = 0,

where each element of the matrix G is given by

Gi,j =
n−1∑
k=0

n−1∑
l=0

(Ch)k,l(A
TA)(l+j)%n,(i+k)%n. (6.12)

Thus

(cI + G)x = traces(ChA),

and so

x = (cI + G)−1traces(ChA). (6.13)

Whenever the unconstrained optimal value of x lies outside the hypersphere, the c that

satisfied the constraint will be positive. Whenever the unconstrained optimal value of

x lies inside the hypersphere, then we need to use unconstrained optimisation, and this

is achieved by setting c to zero.

6.3.2 Optimisation Method

Although any combination of test signal x, and estimator, A, which satisfies (6.7) and

(6.13) must be optimal, and each of these equations provides an explicit formula for

the optimal estimator and the optimal test signal respectively, these equations do not

directly provide a formula for the optimal combination of test signal and estimator.

However, iterative use of these two formulae does provide us with the optimal combi-

nation and this procedure has been implemented in Matlab.
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Table 6.1, which contains the results from an example optimisation, illustrates the al-

gorithm. A major iteration of the optimisation uses the current choice of x, which I will

refer to as the starting point, and derives the optimal estimator for the starting point

using (6.7). The optimisation then finds the optimal test signal for this optimal esti-

mator using (6.13) with the constant c chosen (by using the Newton Raphson method)

to make the constraint (6.9) zero. This second point is termed here the direction point.

In Table 6.1, the horizontal lines separate the results of each major iteration from the

next major iteration. The column of the table labelled Dir shows the square of the

expected error for the direction point of each major iteration, ε, in the rows labelled

eps, and the distance from the starting point to the direction point in the rows labelled

dist.

Iter Start Dir Probe1 Probe2 Probe3 Probe4 Probe5

1 dist: 0 7.0151 14.030

1 eps: 2.3205 1.2407 2.2223

2 dist: 0 1.2851 2.5702 5.1404 10.281

2 eps: 1.2047 0.9213 0.7433 0.5901 0.5481

3 dist: 0 0.4366 0.8733 1.7465 3.4930 6.9860 13.9721

3 eps: 0.5901 0.5157 0.4575 0.3755 0.2939 0.2821 0.2612

4 dist: 0 2.7349 5.4699

4 eps: 0.2821 0.2319 0.2698

5 dist: 0 0.3633 0.7267 1.4534 2.9067

5 eps: 0.2319 0.2237 0.2175 0.2100 0.2137

6 dist: 0 0.3188 0.6375 1.2750 2.5500

6 eps: 0.2100 0.2046 0.2005 0.1964 0.2089

7 dist: 0 0.3892 0.7784 1.5569

7 eps: 0.1964 0.1918 0.1893 0.1893

... ... ... ... ... ... ...

65 dist: 0 0.0017 0.0035 0.0070

65 eps: 0.1623 0.1623 0.1623 0.1623

Table 6.1: Table depicting the probe distance and the expected square of the errors of the

test signal during the test signal optimisation.

Unfortunately, the distance between the starting point and the direction point is typi-

cally small, so we use the starting point and the direction point to give us a direction

which we use to probe further out from the starting point. At each minor iteration,
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we double the distance from the starting point, and project back onto the surface of

the spherical constraint giving us the next probe point. The distance from the starting

point to the probe point of each minor iteration and the expected square of the error at

the probe point is shown in the columns of the table labelled Probe. If we have moved

the maximum distance or if the expected error at the current probe point turns out

to be worse than at the previous probe point or the direction point, then the previous

probe point is used as the starting point for the next major iteration.

We deliberately reduce the strength of the test signal by a factor of four, prior to the

first major iteration. Given that the constraint is a hypersphere that limits power,

the resulting point does not touch the constraint and the initial major iterations are

therefore unconstrained. This permits a short cut through the interior of the con-

straint sphere rather than navigating across the surface of it and results in faster initial

progress. Because of this, the expected error shown in the table appears to get worse

in the first iteration.

Major iterations continue until only marginal improvements are achieved. Although

the number of iterations to achieve a minimisation objective accurate to within 1e-6

varied from 7 to 70, most of the gain is already achieved in the first few iterations.

Optimisation from a different starting test signal x using the same secondary statistics

produces a different test signal with the same resulting expectation of the errors. When

converted to the frequency domain, test signals resulting from different starting points

have the same power spectral densities, but have different phases. Clearly, the resulting

test signal may be subjected to crest factor optimisation.

6.3.3 Implementation Details

Creating the matrix G by directly implementing (6.12), would impose an unacceptable

computational complexity of order n4. However, if we recognise this equation as a 2D

convolution, then we can implement it using a 2D discrete Fourier transform (DFT) and

element by element multiplication in the Fourier domain. This results in a complexity

of n2 log(n).
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Solving (6.9) and (6.13) together was achieved by means of the Newton-Raphson

method. If we substitute (6.13) into (6.9), we obtain the power constraint as a function

of c. The derivative of that function can be found as follows:-

d

dc
(cI + G) = I

By applying (A.12), we get:-

d

dc
(cI + G)−1 = −(cI + G)−1(cI + G)−1

d

dc
x = −(cI + G)−1(cI + G)−1traces(ChA) (6.14)

If we substitute (6.13) into (6.14) we can obtain the derivative of the function that we

need for the Newton-Raphson method:-

d

dc
(xTx− p) = −2xT (cI + G)−1x (6.15)

There are obvious refinements of our implementation, which have the potential to

significantly improve computational speed. For example, the Woodbury matrix identity

(Hager 1989) gives an efficient formula for the inverse of a matrix, if we already know

the inverse of a similar matrix (e.g. the matrix from the last iteration). The use of this

identity has not been used at this stage.

6.3.4 Comparison with the use of a General Purpose Optimiser

A general purpose nonlinear optimiser was used for the purpose of comparisons. The

function to minimise was constructed by using (6.7) to express A as a function of x

and then using (6.6) to express ε as a function of A and x. The resulting function

proved difficult to differentiate, and we leave the differentiating as a future endeavour.

Fortunately, commercial non-linear optimisers are able to deduce their own gradients,

although at a heavy cost in terms of computational complexity, and we permitted the

optimiser to find its own gradient.

The general purpose optimisers NPSOL (Stanford Business Software 2011), CON-

SOLVE (Tomlab Optimization 2011a) and fmincon (MathWorks 2008a) are all regu-
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larly updated. The optimiser fmincon comes with MATLAB and was therefore readily

available for use. The optimiser fmincon is also widely used. Promotional material for

CONSOLVE uses an example where CONSOLVE outperforms fmincon, by a factor of

100 (Tomlab Optimization 2011b). However, the comparisons provided are not relevant

to this work. Second order derivatives were supplied to CONSOLVE in the comparison,

while fmincon was disadvantaged by being unable to use this information. As explained

above, we will not provide even the first order derivatives, therefore CONSOLVE would

not enjoy the advantage of using second order derivatives.

This procedure for identifying the optimal signal converged but proved to be slow, as

indicated in Table 6.5, which shows the processing times of both methods. The table

elements for fmincon for higher orders of n are missing because the optimisation did

not complete within a reasonable period of time. These timings were obtained using

Matlab on Linux running on an Intel Core 2 processor running at 1.86GHz.

General Our General Our

Optimiser Method Optimiser Method

n T Domain T Domain F Domain F Domain

16 1 0 2 0

32 7 1 4 1

64 57 2 13 1

128 1293 19 307 18

256 22427 163 4302 102

512 - 4065 - 4348

1024 - 55169 - 76675

Table 6.2: Table showing the timings in seconds for various problem dimensions n, for the

general purpose optimiser, fmincon and our method, working in the time domain and in

the frequency domain.

Using the general purpose optimiser did not in general result in the same test signal as

the method we developed, but did produce a test signal with the same power spectral

densities and the performance. Only the phases of the test signal differed. Hence, there

were strong reasons to suspect that the optimality of a test signal depended only on
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the spectral densities of the signal and not the phases of the signal. This inspired the

creation of a frequency domain method where the optimal test signal is expressed only

in terms of the spectral densities of the test signal. Actual test signals could then be

created by assigning phases to each frequency.

6.4 A Frequency Domain Method for Finding the Optimal

Test Signal

In this section we show that the predicted errors for a test signal are dependent on

the spectral densities of the signal and insensitive to the phases of the test signal. We

then proceed to create a method of discovering the optimal test signal in the frequency

domain. Despite the number of apparently free variables being effectively halved in the

frequency domain method, it did not converge faster than the time domain method in

our experiments.

We adopt a small additional assumption which is normally adopted, namely that z is

wide sense stationary. In addition, observe that if the noise process were to repeat

periodically, outside the period during which our measurements were taken it would

make no difference to the measurements. We can therefore assume that the noise is

periodic in this form, and therefore Cz is circulant in the time domain, and its frequency

domain counterpart, F∗CzF, is diagonal. In effect, we have shown by this argument

that the values in the original covariance of z which cause the Toeplitz matrix Cz to

be different from a circulant matrix do not enter into the calculation of the optimal

estimator or the optimal test signal, and so they may be replaced by the appropriate

entries which ensure that the covariance matrix is circulant.

In the case where the test signal is sent k+1 times and k > 1 measurements are recorded

from the experiment, the covariance, Cz, must be of {Zk + Zk+N + · · · + Zk+KN}k≥0
rather than of the Z process itself. Hence, in this case also, Cz will be a circulant

N ×N matrix.

Since X is a circulant matrix, it is diagonalised by the discrete Fourier transform in
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the following way

X =
√
n F∗DF. (6.16)

Where D = diag(d) and d is the discrete Fourier transform of x (i.e. one of the columns

of X). The test signal has a zero mean.

d0 = 0

Since X is real valued, d must be skew symmetrical. So assuming an even value of n:

di = dn−i, i = 1, . . . ,
n

2
− 1.

This appears to transform X into a parameterization with n/2 free parameters, as

desired, however in general these variables will take complex values so that there are

really n independent variables.

On the other hand, we expect that the phases of the complex coefficients of d will not

affect ε, so let us express the element of d using polar co-ordinates:

dk = µke
jθk , k = 0, . . . , n− 1,

with µk and θk real. Also let us denote

Θ = Diag
(

(0, eiθ1 , . . . , eiθn−1)T
)
,

and

P = Diag
(
(0, µ1, . . . , µn−1)

T
)
.

In the optimization of ε by variation of d, we shall confirm, after a change of variable,

that ε is insensitive to the values of θk and find an equation for the vector µ which

contains n/2 independent variables.

Let us replace (·)T by (·)∗ in (6.6) (since the matrices in that equation are real-valued)

and then use (6.16) to replace references to X by references to D, giving

ε = tr(Ch)− 2
√
n tr(AF∗DFCh)

+ n tr((F∗DF)∗A∗AF∗DFCh) + tr(A∗ACz)

= tr(Ch)− 2
√
n tr(AF∗DFCh)

+ n tr(F∗D∗FA∗AF∗DFCh) + tr(A∗ACz),

which setting B = AF∗θF,
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= tr(Ch) − 2
√
n tr(BF∗PFCh)

+ n tr(F∗P∗FB∗BF∗PFCh) + tr(A∗ACz).

Therefore, since the frequency domain counterpart of Cz is diagonal, tr(A∗ACz) =

tr(ACzA
∗) = tr(BCzB

∗) = tr(B∗BCz), and so

ε = tr(Ch)− 2
√
n tr(BF∗PFCh)

+ n tr(F∗P∗FB∗BF∗PFCh) + tr(B∗BCz). (6.17)

If we envisage ε as a function of B, µ, and θ rather than of A, µ, and θ, by (6.17), ε

becomes insensitive to variation in θ:

∇θε ≡ 0,

as predicted. Since ε is clearly independent of θ, we can set θk to any value. We choose

to set θk ≡ 0, k = 1, . . . , n, because with this choice, dk ≡ µk and A = B. Hence we

may write

ε = tr(Ch)− 2
√
n tr(AF∗DFCh)

+ n tr(F∗D∗FA∗AF∗DFCh) + tr(A∗ACz).

So by (A.3) and (A.4),

∇dε = [ − 2
√
n diag(FChAF∗)

+ n diag((FA∗AF∗)D(FChF
∗))

+ n diag((FChF
∗)D(FA∗AF∗)) ]T .

We may use (A.2) to express the derivative in terms of d instead of D, and at the same

time, bring it to the outside of those terms,

∇dε = [ − 2
√
n diagF(ChAF∗)

+ n ((FA∗AF∗) � (FChF
∗)T )d

+ n ((FChF
∗) � (FA∗AF∗)T )d ]T . (6.18)

Elimination of Redundancy

While differentiation with respect to d would be desirable if d contained all free vari-

ables, this is not the case here. In order for the test signal x to be real, d must have
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skew symmetry, and since we have chosen zero phases, d is real with symmetry. In ad-

dition, we are aware that the DC component of d has to be zero. Therefore, the number

of free variables is not n, but n
2 . All the variables in d are completely dependent on

d1 . . .dn
2
, and we will label this sub vector as δ.

To impose the symmetry constraint on d, let us introduce the matrix Q so that

d = Qδ,

and

∇δ d = Q, (6.19)

where Q = (qij) is the n× (n/2) matrix defined by

qij =


1 i = j + 1,

1 i = (n− 1− j),

0 otherwise,

(6.20)

where j = 0, . . . , n/2− 1.

Combining (6.18) and (6.19) using the chain rule gives us:

∇δε = [ − 2
√
n diag(FChAF∗)

+ n ((FA∗AF∗) � (FChF
∗)T ) Qδ

+ n ((FChF
∗) � (FA∗AF∗)T ) Qδ ]T Q. (6.21)

The power constraint

As already noted for the time domain optimisation, there must be a constraint on the

power of the test signal. As we have noise present in the system, a stronger signal

will give a better result. That is, unconstrained, there is no finite optimal test signal.

We therefore impose the constraint that the total power in the signal d is less than or

equal to the maximum power p of the test signal. Clearly, the optimal test signal must

reside on the constraint. However, for a given A the optimal test signal may or may

not reside on the constraint.
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The energy constraint on the test signal can be introduced to the optimization by

means of the Kuhn-Tucker theorem (Luenberger 1969)(chapter 9), which states that the

constrained minimum of our objective function occurs at a point where the derivative

of the constraint and the derivative of the objective function have opposite direction,

i.e.

c∇δ(s) +∇δ(ε) = 0 (6.22)

for some positive c.

The power constraint s can be expressed as

s = dTd− p ≤ 0, (6.23)

and so,

∇d(s) = 2dT . (6.24)

and combining (6.24) and (6.19) using the chain rule gives:

∇δ(s) = 2dTQ

= 2δTQTQ. (6.25)

Thus, substituting equation (6.21) and equation (6.25) into equation (6.22), we get

cQTQδ = 2
√
n QTdiag(FChAF∗)

− n QT ((FA∗AF∗) � (FChF
∗)T ) Qδ

− n QT ((FChF
∗) � (FA∗AF∗)T ) Qδ.

Since c is an abitrary constant, we have allowed it to absorb the factor of two. Hence,

δ = [ cQTQ + n QT (

(FA∗AF∗) � (FChF
∗)T + (FChF

∗) � (FA∗AF∗)T

) Q ]−1 × 2
√
n QTdiag(FChAF∗), (6.26)

in which c is determined by the condition |d|2 = p.
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6.4.1 Optimisation Method

Although any combination of test signal δ, and estimator, A, which satisfies (6.7) and

(6.26) must be optimal, and each of these equations provides an explicit formula for

the optimal estimator and the optimal test signal, respectively, these equations do not

directly provide a formula for the optimal combination of test signal and estimator, as

in the case of the time domain optimisation.

However, iterative use of these two formulae does provide us with the optimal combi-

nation and this procedure has been implemented in Matlab as follows. Beginning with

an initial choice for δ, (6.7) is used to find the optimal A, and then (6.26) is used to

find the optimal δ for the new value of A. The difference between the initial δ and

the new δ gives us a direction. Rather than repeat this process, which might converge

quite slowly, we move in the direction indicated, taking geometrically increasing steps

until the result is no longer an improvement. Referring to the above procedure as a

single iteration, the first iteration usually results in a significant gain, and subsequent

iterations result in diminishing gains. Iterations are performed until the gains from an

iteration are no longer significant.

Solving (6.23) and (6.26) together was achieved by means of the Newton-Raphson

method, for which we need the equation of the constraint, and also its gradient. If we

substitute (6.26) into (6.23), we obtain the power constraint as a function of c. The

gradient of the constraint s was derived as follows:-

From (6.26), we have

δ = (c QTQ + G)−1v, (6.27)

where

G = n QT ((FA∗AF∗) � (FChF
∗)T + (FChF

∗) � (FA∗AF∗)T ) Q

and

v = 2
√
n QTdiag(FChAF∗).
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Application of (A.12) to (6.27) gives us

∇cδ = −(c QTQ + G)−1 · QTQ · (c QTQ + G)−1 · v

= −(c QTQ + G)−1QTQδ. (6.28)

Combining (6.25) and (6.28) by means of the chain rule yields the gradient for deter-

mining c by the Newton Raphson method:

∇sc = −2 δT QTQ (c QTQ + G)−1QTQδ.

6.4.2 Implementation using a General Purpose Optimiser

Matlab’s general purpose nonlinear optimiser fmincon (MathWorks 2008a) was also

used for the purpose of comparisons, as it was for the time domain optimisations. The

function to minimise was constructed by using (6.7) to express A as a function of x

and then using (6.6) to express ε as a function of A and x. The resulting function

proved difficult to differentiate, and so we were not able to provide the gradient to the

optimizer, but permitted fmincon to find its own gradient.

This procedure for identifying the optimal signal converged in some cases but proved to

be unreasonably slow in some of these cases, as indicated in Table 6.5, which shows the

processing times of both methods. The table elements for fmincon for higher orders of

n are missing because the optimisation did not complete within a reasonable period of

time. These timings were obtained using Matlab on Linux running on an Intel Core 2

processor running at 1.86GHz.

6.5 Comparing the Frequency Domain Method with the

Time Domain Method

The optimisation problem was formulated in the time domain in Section 6.2. The time

domain solution follows directly from that formulation. Observing that the phases of

the test signal have no effect on the test signal optimality allows us to express the test

signal in the frequency domain using effectively half the number of variables used in the
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time domain. One would normally anticipate that using half the number of variables

would lead to a more efficient solution, and this was a major motivation for finding a

frequency domain solution.

The expected improvement has been realised when using the general purpose optimiser,

fmincon. As shown in Table , when the problem dimension n is 256, then fmincon takes

22427 seconds to complete when finding the solution in the time domain, and only 4302

seconds to complete when finding the solution in the frequency domain.

Our developed optimisation method, on the other hand, appears to work approximately

as well in the time domain as it does in the frequency domain. As shown in Table , when

the problem dimension n is 512, then our time domain method takes 4065 seconds to

complete and our frequency domain method takes 4348 seconds to complete. It is not

clear why the time domain method performs as well as the frequency domain method,

and investigating this is a topic for future work.

6.6 Comparing Optimal Test Signals with White Ones

If one has no information about the secondary statistics of the channel history and of

the noise the best strategy would be to use a test signal with a flat power spectral

density, e.g. white noise. On the other hand, if we have this information available,

then a test signal with a flat power spectral density is, in general, not the optimal test

signal.

For each of the randomly generated channel estimation scenarios used to make the

graphs in Figure 6.1, we used our optimiser to find an optimal test signal. The solid

red line shows the expected error using an optimal test signal as evaluated by (6.6). Here

also, each point on the line represents the mean of the results from several experiments,

and the dashed line represents the standard deviation of those same results.

These graphs clearly show that an optimal test signal gives a better estimate than does

a flat spectrum test signal when either the noise or the covariance of the channel is

colored. The optimal channel with a completely flat Ch and a completely flat Cz, is
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white noise, i.e. it has a flat power spectrum density. When either or both of Cz and

Ch have a non flat spectrum, better test signals than white noise are possible.

6.7 Applying the Technology

Test signals are commonly used in wireless applications, and may be used in acoustic

situations where channel estimation is difficult. We have shown that the optimal test

signal is superior to a white one whenever the noise or the channel history is colored.

If we have the secondary statistics, we can find the optimal test signal, and use it to

determine the channel. Of course, it is necessary to have estimates of the secondary

statistics of the channel and the noise in order to determine the optimal test signal.

In some environments, while the echo channel may change, the second order statistics

of the channel may be relatively static. An example where the secondary statistics of

the channel may be static would be that of remote auscultation in telehealth clinics,

described in Subsection 1.2.1. While the patients may come and go, the fixtures would

be constant and the auscultation performed in the same locations.

However, reliance on fixed statistics is not a robust plan because changes in the envi-

ronment could potentially cause changes in the statistics. Therefore, even in situations

where the secondary statistics are static, a system that continually updates the estimate

of the secondary statistics is preferable. Systems for estimating the channel statistics

and the statistics of the noise, therefore, are highly desirable.

Estimation of the secondary statistics of the noise is relatively trivial, as we will show

in Section 7.2. The best method for the estimation of the secondary statistics of the

channel is not so obvious, however. In the next chapter, we develop a simplified model

for the statistics of the echo channel that may used as the basis for an efficient method

of estimating the channel statistics.
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6.8 Chapter Summary

In this chapter we have derived a formula for the optimal channel estimator for a given

test signal, given the secondary statistics of the channel and of the noise. The estimator

performs substantially better than one that that fails to take the above statistics into

account.

We have also derived a time domain formula for the optimal test signal given the

secondary statistics of the channel and of the noise and used this formula, together

with above mentioned estimator, to produce an algorithm for the optimal test signal.

We have noticed that resulting optimal test signals for a given set of parameters are

not unique but each optimal signal shares a unique set of spectral densities. We have

proven that the optimality of a test signal does not depend on the phases of the signal,

and have developed an algorithm for the optimisation of a test signal in the frequency

domain, that uses only the spectral densities of the signal.

We have shown that the optimal test signal for channel estimation is, in general, not

white, if one has knowledge of the secondary statistics of the channel or of the noise.

An optimal signal that takes into account the second order statistics of the noise and

the channel outperforms a white test signal when either the channel history or the noise

is coloured in the frequency domain.



Chapter 7

Statistical Model of Channel

Variation

The experiments in Chapter 6 were carried out on a randomly generated ensemble of

systems in which both the characteristics of statistical variation of the channel and the

noise characteristics were varied. Carrying out the experiments in this way ensures

that the results are not an accident due to the particular choice of channel variation

characteristics or of the noise characteristics, but rather are valid systematically.

In this chapter we present the model used to generate these random combinations of

channel and noise. The statistical model of channel variation is important. As well as

guiding the choice of channels in the experiments, it demonstrates the existence of a

statistical model of channel variation which is both realistic and parsimonious.

If we observe that channel autocovariance matrices are symmetric, then there are n2+n
2

elements to specify, which is too many to specify in practice without the use of a

simplified model. The model for Cz developed here needs n
2 parameters to be specified.

The model for Ch developed here needs 3n
2 parameters to be specified. We also show

that we can also reduce the number of parameters to a set of 5 or so whose number

does not increase with the value of n.

This is important because this model can be used as the basis for an estimation proce-
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dure for the channel autocovariance which is more efficient than the obvious estimator

based on averaging the observed correlations. Since the number of parameters in the

complete channel autocovariance is quite large it is important to identify a better esti-

mation procedure. Once a model with a small number of parameters has been found, an

estimator for these parameters is implicitly defined by the maximum likelihood proce-

dure, i.e. we can select the parameters by maximising the likelihood of the observations

when a particular set of parameters is chosen. The task of developing this estimator

has not been pursued in this work, except to the extent of demonstrating the existence

of a parsimonious and realistic statistical model of channel variation.

Although an impulse response is not a stationary process, we refer to the power spectrum

densities of Ch in this chapter. This usage has been explained in Subsection 6.2.5 and

refers to the power associated with each frequency along the diagonal of Cĥ.

We also use the word coloredness in this chapter. It refers to a measurable quantity,

and it has been defined in Subsection 6.2.5.

7.1 Channel Autocovariance Matrices

We will now develop a simplified model of a channel autocovariance matrix that permits

us to specify the diagonal in the time domain and the diagonal in the frequency domain,

subject to the constraint that the overall power in the time domain is equal to the

overall power in the frequency domain. Importantly, the method that we use in order

to create channel autocovariance matrices allows us to arbitrarily specify the powers in

each frequency (and hence the coloredness) as the diagonal in the frequency domain. It

is also clear that there will normally be significant variation in the mean power of the

impulse response in the time domain (the diagonal terms of Ch), so we seek a method

which allows these terms to be specified arbitrarily.
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7.1.1 The Assumption of the Zero Ensemble Average

Estimation of the mean is necessary, and the mean channel impulse response will not

normally be zero, however estimation of the covariance of channel variation about the

mean is a more fundamental problem. For simplicity, however, we assume that ensemble

average of each element of the impulse response is zero, i.e.:

E[hk] = 0, i = 0, ..., n− 1.

Thus we may write

Ch = E[hhT ].

7.1.2 Requirements in the Time Domain

The diagonal terms of Ch represent the mean power of each element of the impulse

response in the time domain.

We say that the impulse response has an effective length in the time domain. This

is a simplification. Acoustic impulse responses are called dispersive impulse responses

and normally take the form illustrated in Figure 2.5 and described in Subsection 2.1.2.

They have an envelope that decays exponentially after the peak. The effective length

of the impulse response n is chosen so that the envelope approaches zero before the nth

element. It follows that a channel autocovariance matrix element Ch(j, k) must also go

to zero as j or k approach n.

In our simplest statistical model of channel variation, we use the following formula to

approximate the mean power of realistic dispersive channels in the time domain:

Ch(j, j) = aj × e−bj ,

where a and b are constants chosen to give a realistic approximation of the impulse

response of a dispersive channel. This is a model with only two parameters regardless

of the value of n.

The relationship between the autocovariance matrix in the time domain and the fre-
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quency domain is given by:

Cĥ = FChF
∗.

In Subsection A.3.4 it was shown that if Ch is diagonal then Ch̃ will be circulant.

A simplistic model of channel variation can be obtained by assuming Ch is diagonal,

implying statistical independence between the values of h. Since the diagonal element

represent mean power, they cannot be negative. Clearly, this simplistic model is both

symmetric and non-negative definite.

7.1.3 The Zero DC Transmission Assumption

We assume in this thesis that the elements of the impulse responses of acoustic channels

sum to zero, i.e.:
n−1∑
i=0

hi = 0.

This assumption follows if we assume that the channel is linear channel and if we

measure the input to the channel electrically before a speaker converts the electrical

signal to sound and measure the output electrically after the microphone has converted

sound to an electrical signal.

Due to linearity, the resulting output from the input of a sinusoidal waveform is a

sinusoidal waveform of the same frequency. Therefore, taking a frequency domain

view, we may consider the signal at a frequency of zero separately, ignoring the effect

of all other frequencies.

If we transmit a DC signal to a speaker, the speaker position will be displaced slightly

forward or backward from its disconnected position. The result may be considered to

be equivalent to a disconnected one that has been physically located slightly forward

or backward. But we know that a disconnected speaker does not transmit acoustic

energy. Therefore, the response to energy at a frequency of zero is zero, and we may

say that the transfer function of an acoustic channels at a frequency of zero is zero.

Accordingly, our autocovariance matrices in the frequency domain have values of zero

in the positions where one of the indices are zero.
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7.1.4 Reqirements in the Frequency Domain

Our covariance matrix, Ch, is real, symmetric, and non-negative definite in the time

domain. As a covariance matrix, Cĥ is Hermitian in the sense that

Cĥ(j, k) = C∗
ĥ
(k, j).

The power spectral densities (which determine coloredness) appear on the main diag-

onal. Because Ch is real and symmetric, Cĥ is subject to a second axis of symmetry

along the other diagonal if we ignore the elements corresponding to a frequency of zero,

i.e.

Cĥ(n− j + k, j) = Cĥ(n− j, j − k).

We need to be able to specify the power spectral densities (and hence the coloredness)

in the frequency domain, and it has to be done in a way that preserves the symmetries,

and non-negative definiteness.

In Subsection 7.1.2 we used a two parameter model to give the diagonal for the time

domain. In a similar way, it would be possible for us to define the diagonal in the

frequency domain using a 2 or 3 parameter model. Therefore we can represent Ch

using only 5 parameters regardless of the value of n.

7.1.5 A Model which is Realistic and Parsimonious

Channel variation will not, in general, exhibit the property that successive values of h,

or of ĥ are independent. Let us now outline how to construct the channel covariance

matrices, Ch and Cĥ, which are consistent with each other and have specified diagonal

terms.

Range transformations

It is useful to consider modifications of a channel by range transformations. For exam-

ple, if we start with a channel represented using an impulse response vector g, we can

define a new channel h using element by element multiplication with a vector f either
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in the time domain, h = f � g, or in the frequency domain, h̃ = f̃ � g̃. The class of all

range transformation is not exhausted by these cases, but these are sufficient for us.

It is useful to observe that Cg, being the autocovariance matrix of g, must be non-

negative definite. The vector h, which is a function of g, is a statistical process in its

own right. Therefore, Ch is also non-negative definite and the range transformation

preserves non-negative definiteness.

We can define range transformations upon the autocovariance matrix in the time do-

main and infer the effect in the frequency domain and vice versa. For example, if f̃ is

the function defining a range transformation in the frequency domain,

Ch̃ = E[h̃h̃∗]

= E [̃f � g̃(f̃ � g̃)∗]

= Diag(f̃)Cg̃Diag(f̃)∗ (7.1)

and so

Ch = F∗Diag(f̃)FCgF
∗Diag(f̃)∗F. (7.2)

Using the matrix identity (A.16),

1√
n

Circ(f) = F∗Diag(f̃)F,

where f = F∗ f̃ , we may apply it to (7.2), giving

Ch =
1√
n

Circ(f) Cg
1√
n

Circ(f)∗. (7.3)

Method for Creating a Channel AutoCovariance Matrix

When creating a channel autocovariance matrices, we need to be able to specify the

diagonal of the matrix in the time domain (as discussed in Subsection 7.1.2) and we

need to be able to specify the power spectral densities (as discussed in Subsection 7.1.4).

Our method permits us to specify these things in a way that is both interesting and

realistic. Given the n non-negative values of the desired time domain diagonal, q, and

the a set of n
2 power spectral densities, p, we may produce the corresponding matrix

Ch as follows:
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1. Create a vector f̂ of length n (a range transformation) with the correct DFT

symmetry from p:

f̂j =


0 j = 0

√
pj 0 < j ≤ n

2 ,

√
pn−j

n
2 < j < n

2. Create a diagonal non-negative autocovariance matrix Cg. The formula for Cg

will be derived below. Since Cg is diagonal and non negative, it is non-negative

definite.

3. Create the frequency domain autocovariance matrix corresponding to Cg using:

Cĝ = FCgF
∗.

Since Cg is diagonal, Cĝ is circulant, as shown in Subsection A.3.4. Therefore

Cĝ has a constant diagonal, implying that it is a white autocovariance matrix.

Since the frequency domain representation of a non-negative definite matrix in

the time domain is also non-negative definite, Cĝ is non-negative definite.

4. Impose the power spectral densities by applying our range transform (and hence

setting the desired coloredness) using:

Cĥ = diag(f̂)Cĝdiag(f̂)∗.

The matrix Cĥ is non-negative definite because the range transformation pre-

serves non-negative definiteness.

5. Convert the result into the time domain:

Ch = F∗CĥF.

Ch is non-negative definite because the time domain representation of a non-

negative definite matrix in the frequency domain is non-negative definite.

As promised in step 2 above, we shall now find the diagonal matrix Cg. We can

characterise Ch by applying the operator diag(·) to both sides of equation (7.3), giving:

n diag(Ch) = diag(Circ(f) Cg Circ(f)∗). (7.4)
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Applying (A.2) to (7.4) gives:

n diag(Ch) = (Circ(f) � Circ(f)) diag(Cg).

Re-arranging the above to make diag(Cg) the subject of the equation, gives us the

diagonal of our diagonal matrix Cg:

diag(Cg) = n Circ(f � f)−1diag(Ch).

7.2 Noise Autocovariance Matrices

The noise z(t) is assumed to be stationary. Therefore, the autocovariance matrix

is circulant in the time domain and diagonal in the frequency domain, as shown in

Subsection A.3.4. Hence, we need only specify the diagonal of the matrix Cz in the

frequency domain.

Because a matrix in the time domain must be real, a symmetry is imposed in the

frequency domain. Referring to the diagonal elements using the vector p, we have

pj = pn−j , j = 1, ...,
n

2
− 1.

The off diagonal elements of Cẑ are set to zero. For the reasons outlined in Subsection

7.1.3, we set p0 to zero. The diagonal elements of the matrix in the frequency domain

are assigned with the power spectral densities of the noise, subject to the required

symmetry. The result is converted to a circulant matrix in the time domain using the

DFT.

7.3 Chapter Summary

We developed simplified models of channel and noise autocovariance matrices, which

were needed in order to prepare test data for the test signal optimisation algorithms

developed in Chapter 6.

The models in the form of the autocovariance matrices Ch and Cz are fully general,

but they have so many parameters that they are too complex to use in practice. The
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models proposed in this chapter are quite simple in comparison to the full second order

models, and yet they offer the required features in both the time domain and the

frequency domain.

Also, it was observed that since a realistic and parsimonious statistical model of channel

variation has been identified, efficient estimation of such a model from data from real

channels is readily achievable.



Chapter 8

Conclusions and Future Work

Channel estimation is very important in acoustic applications. Echo cancellation, which

is used in mobile phone handsets, hands free telephones, videoconferencing and hearing

aids, relies on estimation of the channel. This dissertation has made a contribution in

the simulation of echo cancellation and has also devised an echo cancellation technique

that works when the channel has an initial non-linearity.

Channel estimation is also very important in wireless communication techniques, in-

cluding OFDM, which is used in most modern communication technologies including

mobile phones, ASDL and digital wireless broadcasting. Channel estimation techniques

in OFDM employ embedded test signals and use the secondary statistics of the channel

to improve the channel estimation.

This dissertation has used ideas from channel estimation in wireless communications

and applied them to the estimation of acoustic channels. It has used the secondary

statistics of the channel and of the noise to improve the performance of acoustic channel

estimation using test signals.
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8.1 Echo Cancellation

Echo cancellation, which was explored in Chapter 2, Echo Cancellation, is one of the

most important applications of acoustic channel estimation. The material explored in

Chapter 2 provides a foundation for the remainder of the dissertation.

Echo Cancellation is the most challenging and technically sophisticated of the echo

management techniques because it requires estimation of the echo channel. Low tech

solutions to problems are often the most successful, but in the case of echo management,

echo cancellation, which is a high tech solution involving mathematical algorithms for

estimation of the channel and requiring cheap and powerful digital technology, has

proved the most successful.

Video conferencing is one of several applications where echo cancellation is required in

order to achieve a quality result. Ideally the sound from the second party must be made

loud enough to be heard clearly without the use of headphones. Yet we wish only the

sound that actually originated from the room to be transmitted to back to the second

party. Modern echo cancellation is used for videoconferencing because it provides a

superior result. The use of comb filters would induce unnatural distortion of the sound

and the use of echo suppression would be an impediment to natural conversations.

8.1.1 ECOOSE

Echo cancellation is a field where new algorithms are constantly emerging. New algo-

rithms are generally claimed by their authors to have superior convergence properties

and superior computational complexity. These properties make the algorithms poten-

tial candidates for implementation. Implementers, on the other hand, should maintain

a certain degree of healthy scepticism. Algorithms need to be properly evaluation and

their peformance under a range of situations needs to be compared with the perfor-

mance of other algorithms before the process of implementation in firmware is under-

taken. ECOOSE provides a ready made framework for echo cancellation simulation

that is flexible enough to permit the exploration of the algorithm’s performance under

a diverse range of echo cancellation situations.
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Once one appreciates the object oriented framework approach used in ECOOSE, it is

relatively easy to simulate and plot the performance of a new echo cancellation algo-

rithm using ECOOSE. For example, in order to provide a new linear echo cancellation

algorithm which may be used as part of ECOOSE, one need only create a new subclass

of the linear algorithm class, and provide the methods that are directly related to the

new algorithm.

ECOOSE and its evolution is described in Chapter 3, Echo Cancellation Simulation.

ECOOSE has already been used to develop and evaluate the HLMS algorithm, as

documented in Chapter 4.

Future Work

ECOOSE will be used to simulate, evaluate and compare emerging echo cancellation

algorithms. The most recent generation of PNLMS algorithms are of particular interest.

The algorithms of (Dyba & Deng 2009) and of (das Chagas de Souza et al. 2010)

manage to achieve impressive convergence rates for sparse impulse responses with less

computational complexity than the NLMS algorithm, according to the papers in which

the algorithms were published. Independent verification of their performance would be

highly desirable, and ECOOSE would be a suitable platform for their evaluation.

8.1.2 Framework for Echo Cancellation with Non Linearities

In Chapter 4, Framework for Echo Cancellation with Non Linearities, the Method of

Innovations was applied to the case of Hammerstein channels and the resulting set

of formulas, dubbed the Hammerstein LMS (HLMS) algorithm was implemented in

ECOOSE. The HLMS algorithm and the NLMS algorithm converge equally well on

linear channels, but on Hammerstein channels the NLMS algorithm cancels only some

of the far end signal, while the HLMS algorithm is able to completely cancel it.

This work has shown the that the Method of Innovations may be applied to the problem

of echo cancellation. It has demonstrated that the Method of Innovations may be used

to create echo cancellation algorithms for models that incorporate memoryless non-
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linearities.

Future Work

It can be expected that the method can derive an algorithm that applies when the

memoryless non-linearity is at the end of a linear channel, or possibly both at the

beginning and the end.

The HLMS algorithm may potentially prove useful in the area of active noise control,

where Hammerstein channels arise when speakers used to cancel engine or transformer

noise have nonlinearities which often causes them to produce even harmonics of the

base frequency that the speakers are attempting to cancel.

8.2 Using the Statistics of the Channel and of the Noise

Whilst there are very few echo cancellation algorithms that utilise the auto-covariance

of the noise or the auto-covariance of the channel, there are numerous acoustic echo

cancellation algorithms which utilise the noise power and they generally assume that

the noise power, σ2z , can be estimated during periods when the excitation x(t) is silent

(Wei et al. 2001, Benesty et al. 2006, Costa & Bermudez 2007, Imam, Zerguine &

Deriche 2007, Zipf, Tobias & Seara 2008, Imam, Zerguine & Zerguine 2010). Clearly,

the autocovariance of the noise, Cz, may also be estimated during periods when the

excitation, x(t), is silent. Since successive channel estimates are continuously obtained

at a high rate, the first step towards obtaining the data required to estimate second

order channel statistics has already been taken.

Several schemes for OFDM make use of the second order statistics of the channel to

improve the estimation of the channel (Edfors et al. 1995, Negi & Cioffi 1998, Li 2000,

Srivastava, Ho, Fung & Sun 2004, Lee et al. 2006, Mehlfuhrer, Caban & Rupp 2008).

We have explained the essential background information relevant to estimation of the

wireless channel in OFDM and explored some of the more important schemes in Chapter

5, Lessons From the Wireless World.
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8.2.1 Optimisation of Test Signals

In OFDM, pilot test signals are incorporated as part of the transmitted signal. OFDM

receivers use those test signals in order to make an estimate of the channel, as described

in Subsection 5.1.3. In the acoustic world, test signals may be used in difficult acoustic

situations such as hearing aids (Long & Ling 1991, Kates 1991, Engebretson & French-

St.George 1993, Spriet et al. 2005), as described in Subsection 1.2.1. The use of test

signals may also provide a solution to the difficulties encountered in remote auscultation

described in Subsection 1.2.1.

In Chapter 6, Optimisation of Test Signals, we have shown that the optimal test signal

may be described in terms of the strengths in each frequency, i.e. when we assume the

channel to be linear, the phases do not effect the expectation of the error of estima-

tion. The phases are often important in practice, however. Transmission and receiving

equipment, for example, are often linear only within certain limits. Given these limits,

the amount of test signal power that can be transmitted is determined by the crest

factor of the test signal, which is a function of the phases. We have reviewed existing

optimisation techniques for improving the crest factor of a test signal in Chapter 5.

While literature exists for the optimisation of the crest factor of a test signal, no such

literature exists on choosing the strengths of each frequency given the second order

statistics of the noise and the second order statistics of the channel. In Chapter 6,

Optimisation of Test Signals, we have developed prototype optimisation techniques

which estimate the optimal test signal given those second order statistics. We also

developed an optimal estimator for a given signal, given those same secondary statistics

that is potentially useful in its own right.

Our work with optimal test signals demonstrate that the optimal test signal is not

white whenever the noise is colored or the history of the channel is colored. We took

the commonly accepted concept of colour in sound, which is analogous to that of colour

in the visible light spectrum, and defined a measure called coloredness which may be

applied to the near end noise and to the channel history. We showed that the amount

that the optimal estimator and test signal can be improved is potentially unbounded,

and depends on the coloredness and of the noise and of the channel history.
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Comparison with Other Methods of Channel Estimation

It is difficult to directly compare our technique that uses test signals with channel

estimation techniques such as LMS and RLS as these have different modes of operation.

These methods use the operational signal for excitation, and continuously update their

estimate of the channel, whereas our method uses a fixed test signal, and updates its

estimate of the channel at intervals dictated by the effective length of the channel. We

are currently endeavoring to make that comparison for a hypothetical channel where

the history of the channel and the noise are known, by using a block based version of

the RLS algorithm excited by a white noise test signal, and compare results against

those using the optimal test signal and the optimal estimator.

In some instances, such as the earphone adaption systems described in (Kates 1991,

Engebretson & French-St.George 1993, Goodings et al. 1993, Spriet et al. 2005), a test

signal is already being used, and a more efficient test signal would be highly desirable.

If the noise or the channel is colored, then this technique will produce a more efficient

test signal.

Future Work

One future endeavour would be to derive an analytical expression that generates the

optimal test from the second order statistics. It may be possible to tackle this prob-

lem by formulating it as an optimisation problem in the Hilbert space of stochastic

channels, measurements based on such channels, and estimates of channels based on

such measurements. Comparisons with results obtained from our existing optimisation

routines will provide validation of our results. It is expected that the use of such an

analytical expression would yield an answer in a small fraction of the time required by

numerical methods.

Our optimisation finds the best test signal for a given amount of RMS power output,

which implies a multidimensional sphere as our constraint, and the subsequent use of

crest factor optimisation using the spectral densities given by our optimisation is an

option. However, we are aware that equipment often limits the peak output power, and
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clearly an optimisation that used peak power as the constraint would be a worthwhile

endeavour.

8.2.2 Simplified Models for Impulse Response and Noise Covariances

In order to thoroughly test our optimisation methods, we used an ensemble of randomly

generated scenarios and observed the means and the standard deviations of the perfor-

mance of the optimised channels. The test signal optimisation techniques were tested

using autocovariance matrices generated using pseudo-random numbers. Although the

covariance matrices are fully general, they are too complex in practice to assign without

having a model that enables their creation. The channel covariance matrices needed to

be symmetrical, to be positive definite, to have an arbitrarily specified profile along the

diagonal in the time domain and to have arbitrarily specified power spectral densities

in the frequency domain.

In Chapter 7, Statistical Model of Channel Variation, we developed a model and a

technique for the creation of a channel autocovariance matrix by specifying the diagonal

in the time domain and the diagonal in the frequency domain. These diagonals, in

turn, may be specified by simpler models, as shown in Chapter 7. This model may also

provide a basis for efficient statistical estimation of the channel autocovariance.

We made the assumption of stationarity for the noise, which means that the noise

covariance matrix was diagonal in the frequency domain. Thus, we needed only to

assign the diagonal of the noise covariance in the frequency domain, and convert it to

the time domain.

Future Work

The development of efficient algorithms for estimating the autocovariance matrix of a

channel remains as future work. A statistical model of channel variation with a small

number of parameters has been found, and the maximum likelihood procedure may be

used to develop an efficient estimator using this model.
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8.3 Chapter Summary

Wireless channel estimation is used in most modern wireless applications and is an

important and ongoing area of research. Acoustic channel estimation is also very im-

portant and is a vital part of the echo cancellation that is found in many applications

such as mobile phones, videoconferencing, telephony and earphones.

A flexible framework for the simulation of channel estimation and echo cancellation

has been developed. It can simulate echo cancellation using virtually any algorithm

including online or block based algorithms and any channel including dynamic and

non-linear channels.

It has been demonstrated that the method of innovations can be used to create channel

estimation techniques for non-linear channels. An algorithm was developed and testing

has shown that it can perform echo cancellation for non-linear channels where linear

echo cancellation fails.

Bayesian methods that utilise the secondary statistics of the noise and the channel have

been developed for channel estimation. An optimal estimator for a given test signal has

been derived. Efficient methods for finding the optimal test signal have been devised.

The methods have been tested on an ensemble of randomly generated scenarios. A

definition of coloredness has been proposed, and it has been shown that the developed

methods easily outperform non-Bayesian methods that do not take the statistics of the

channel and the noise into account whenever the noise or the channel autocovariance

become more colored.

A model of statistical channel variation has been developed that permits creation of an

autocovariance matrix by specifying the diagonal of the matrix in the time domain and

in the frequency domain, or by the use of a simpler model that specifies these diagonals.

This model was needed in order to randomly generate channel scenarios for the purpose

of testing the optimisation of test signals. This model can also provide a parsimonious

model which enables efficient estimation of the statistics of channel variation.
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Appendix A

Mathematical Results

A.1 Identities Developed for Optimisation of Test Signals

These identities in this section have not been discovered in the literature, but were

developed because they were required in order to find the the optimal test signal.

A.1.1 Identity

Let D be a diagonal square matrix and let A and B be arbitrary square matrices. Then

diag(ADB)i =
n∑
k=1

AikBkiDkk. (A.1)

proof

(DB)kj =
n∑
i=1

DkiBij = DkkBkj

(ADB)ij =
n∑
k=1

Aik(DB)kj =
n∑
k=1

AikDkkBkj

diag(ADB)i = (ADB)ii =
n∑
k=1

AikBkiDkk
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A.1.2 Identity

Let D be a diagonal square matrix and let A and B be arbitrary square matrices. Then

diag(ADB) = (A �BT )diag(D). (A.2)

proof

(A �BT )ik = AikBki

((A �BT )diag(D))i =
n∑
k=1

(A �BT )ikDkk =
n∑
k=1

AikBkiDkk

By Identity (A.1)

= diag(ADB)i

A.1.3 Identity

Let d be a vector and let D be a diagonal square matrix, such that

D = diag(d).

Let A be any square matrix. Then

∇dTr(DA) = diag(A)T (A.3)

Note that this also implies

∇dTr(BDA) = diag(AB)T

proof

∇d(Tr(DA)) = ∇d(d1A11 + d2A22 + ...+ dnAnn)

= [A11,A22, ...,Ann]T = diag(A)
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A.1.4 Identity

Let d be a vector and let D be a real diagonal square matrix, such that

D = diag(d).

Let A and B be arbitrary square matrices. Then

∇dTr(DADB) = diag(ADB + BDA)T , (A.4)

Note that this also implies

∇dTr(CDADB) = diag(ADBC + BCDA)T ,

proof

(DA)pr =
n∑
k=1

DpkAkr = DppApr

(DA)rq =
n∑
k=1

DrkAkq = DrrArq

(DADB)pq =

n∑
r=1

(DA)pr(DB)rq =

n∑
r=1

DppAprDrrBrq

Tr(DADB) =

n∑
s=1

(DADB)ss =

n∑
s=1

n∑
r=1

DssAsrDrrBrs

=
n∑
s=1

ds

n∑
r=1

drAsrBrs =
n∑
r=1

dr

n∑
s=1

dsAsrBrs

Application of the product rule gives:-

∂

∂di
Tr(DADB) =

n∑
r=1

drAirBri +

n∑
s=1

dsAsiBis

=
n∑
r=1

DrrAirBri +
n∑
s=1

DssBisAsi

By applying Identity (A.1) to both of these terms, we get

∂

∂di
Tr(DADB) = diag(ADB)i + diag(BDA)i

Therefore

∇dTr(DADB) = diag(ADB + BDA)T
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A.1.5 Identity

Let A be an arbitrary real matrix. Let x be an arbitrary real vector, and X = Circ(x).

Then

∇xtr(XA) = traces(A)T (A.5)

proof:

(XA)ij =
n−1∑
k=0

Xi,k Ak,j

=

n−1∑
k=0

x(i−k)%n Ak,j

=
n−1∑
k=0

xk A(i−k)%n,j

tr(XA) =

n−1∑
l=0

n−1∑
k=0

xk A(l−k)%n,l

=
n−1∑
k=0

xk

n−1∑
i=0

A(i−k)%n,i

[∇xtr(XA)]k =
n−1∑
i=0

A(i−k)%n,i

= traces(A)k

A.1.6 Identity

Let A be an arbitrary real matrix. Let x be an arbitrary real vector, and X = Circ(x).

Then

∇xtr(XTA) = traces(AT )T (A.6)
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proof:

(XTA)ij =
n−1∑
k=0

Xk,i Ak,j

=

n−1∑
k=0

x(k−i)%n Ak,j

=
n−1∑
k=0

xk A(k+i)%n,j

tr(XTA) =

n−1∑
l=0

n−1∑
k=0

xk A(k+l)%n,l

=

n−1∑
k=0

xk

n−1∑
l=0

A(k+i)%n,i

[
∇xtr(XTA)

]
k

=
n−1∑
i=0

A(k+i)%n,i

= traces(AT )k

A.1.7 Identity

Let A and B be arbitrary real matrices. Let x be an arbitrary real vector, and X =

Circ(x). Then

∇xtr(XTAXB) = traces(BTXTAT )T + traces(B XTA)T (A.7)

proof:

tr(XTAXB) = tr(XT (AXB)) = tr(X(BXTA))

Therefore, applying Identity (A.5) and Identity (A.6) using the product rule:-

∇xtr(XTAXB) = traces(BTXTAT )T + traces(B XTA)T
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A.1.8 Identity

Let A and B be a arbitrary real matrices. Let x be an arbitrary real vector, and

X = Circ(x). Then

traces(A XTB) = Gx (A.8)

where the elements of the matrix G are given by

Gs,k =
n−1∑
i=0

n−1∑
j=0

Ai,jB(j+k)%n,(i+s)%n

proof:

(AXT )i,j =

n−1∑
k=0

Ai,k Xj,k

=

n−1∑
k=0

Ai,k x(j−k)%n

=
n−1∑
k=0

Ai,(j−k)%n xk

(A XTB)i,r =

n−1∑
j=0

(AX)i,j Bj,r

=
n−1∑
j=0

n−1∑
k=0

Ai,(j−k)%n xk Bj,r

=

n−1∑
k=0

xk

n−1∑
j=0

Ai,(j−k)%n Bj,r

We can define traces() by

traces(P)s =
n−1∑
i=0

Pi,(i+s)%n

for each index s. Therefore:-

traces(A XTB)s =
n−1∑
i=0

(
A XTB

)
i,(i+s)%n

=
n−1∑
i=0

n−1∑
k=0

xk

n−1∑
j=0

Ai,(j−k)%n Bj,(i+s)%n

=
n−1∑
k=0

xk

n−1∑
i=0

n−1∑
j=0

Ai,j B(j+k)%n,(i+s)%n
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(Gx)s =

n−1∑
k=0

Gs,k xk

=

n−1∑
k=0

n−1∑
i=0

n−1∑
j=0

Ai,jB(j+k)%n,(i+s)%n

xk

=

n−1∑
k=0

xk

n−1∑
i=0

n−1∑
j=0

Ai,jB(j+k)%n,(i+s)%n

= traces(A XTB)s

A.2 Identities Adopted for Optimisation of Test Signals

A.2.1 Identity

Given a vector of random variables x and symmetric matrix A then

E(xTAx) = tr(ACx) + mTAm (A.9)

Where Cx is the covariance matrix of x and m is the mean of x ((Petersen & Pederson

2008) Identity 306).

A.2.2 Identity

Given arbitrary square matrices A, B and X then

∇X tr(AXB) = ATBT , (A.10)

((Petersen & Pederson 2008) Identity 93).

A.2.3 Identity

Given arbitrary square matrices A and X then

∇X tr(XAXT ) = XAT + XA, (A.11)

((Petersen & Pederson 2008) Identity 101).
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A.2.4 Identity

Given an square matrix Y that is a function of a scalar x then

∇x(Y−1) = −Y−1 ∇x(Y) Y−1, (A.12)

((Petersen & Pederson 2008) Identity 53).

A.3 Well Known Results

The identities in this section are well known, but have been proved here because it was

difficult to find a suitable reference.

A.3.1 Linear Minimum Mean Square Estimator (LMMSE) of a vari-

able given an observed variable

If we have two random variables (or vectors) x and y that are not independent, then

they have a non trivial joint 2D probability distribution. If x is observable and we wish

to estimate y given x, we may do so using a linear estimator if we know the appropriate

covariances:

ŷ = CxyC
−1
xxx (A.13)

proof: Let us express the linear estimation using a matrix:

y = Ax.

Then the expectation of the square of the absolute error is given by

E[(Ax− y)(Ax− y)∗] = E[Axx∗A]− E[yx∗A∗]− E[Axy∗] + E[yy]

= ACxxA]−CxyA
∗ −ACxy + Cyy

and since covariance matrices are Hermitian, we may factor in the following way

= (A−CxyC
−1
xx )Cxx(A−CxyC

−1
xx )∗ −CxyC

−1
xxCxy + Cyy.
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Now all of the terms involving A are in the first term. It is known that covariance

matricies are positive semidefinite. Therefore the first term is positive unless the first

term is zero, and the minimum occurs when

A = CxyC
−1
xx .

Hence

ŷ = CxyC
−1
xxx.

A.3.2 Identity

∇x(xTAx) = 2xTA (A.14)

where x is a real vector and A is a symmetric matrix.

proof:

xTAx = xT



∑n
i=1 A1i xi∑n
i=1 A2i xi

...∑n
i=1 Ani xi

 =
n∑
j=1

n∑
i=1

xjxiAji

∂

∂xk
(xTx) =

n∑
j=1

xjAjk − xkAkk +
n∑
i=1

xiAki − xkAkk + 2xkAkk

=

n∑
j=1

xjAjk +

n∑
i=1

xiAki

and by symmetry
∂

∂xk
(xTx) = 2

n∑
j=1

Akj xj

∇x(xTAx) =


∂
∂x1

(xTAx)

∂
∂x2

(xTAx)

...

∂
∂xn

(xTAx)



T

=


2
∑n

j=1 A1j xj

2
∑n

j=2 A2j xj

...

2
∑n

j=n Anj xj



T

= 2xTA
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A.3.3 Identity

n−1∑
k=0

ωjk =


n ωj = 1,

0 otherwise.

(A.15)

where k is an integer and ω is known as the nth root of unity and is given by

ω = e(
2πi
n

).

proof:

Clearly,
∑n−1

k=0 ω
jk = n, whenever ωj = 1, so we now need to prove that it is zero

whenever ωj 6= 1 .

Let S be the sums of the powers of ωk:

S = 1 + ωk + ω2k + ...+ ω(n−1)k

ωS = ωk + ω2k + ...+ ω(n−1)k + 1

(ωj − 1)S = 0

Therefore S = 0, whenever (ωj 6= 1).

QED.

A.3.4 Identity

√
n Diag(Fx) = FCirc(x)F∗. (A.16)

proof:

Let us begin with the definition (1.3) of the unitary DFT square matrix of dimension

n:

Fj,k =
1√
n
ξjk, (A.17)

where ξ is given by

ξ = e(
−2πi
n

),

and for convenience lets us also define

ω = ξ−1.
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Let us examine a key term from our LHS:

√
n (Fx)q =

n−1∑
p=0

xp
√
n Fq,p,

and by substituting (A.17) into the above, we get:

=

n−1∑
p=0

xpξ
qp. (A.18)

Each element of our LHS is given by:

(LHS)q,s =
√
n Diag(Fx)q,s,

and substuting (A.18) into the above gives:

=


∑n−1

p=0 xp ξ
qp q = s

0 otherwise.

Let us now define a matrix which rotates a vector or the columns of a matrix by

pre-multiplication:

Q = Circ({0, 1, 0, 0, ... , 0}T ),

and let us define our circulant matrix Circ(x) in terms of Q:

Circ(x) =

n−1∑
p=0

xpQ
p. (A.19)

Since the matrix Q rotates the columns of a matrix, and since ωk = ωk%n, we may

write

(QmF∗)p,q =
1√
n
ω(p−m)q

=
1√
n
ωpq ω−mq. (A.20)

From the first principles of matrix multiplication:

(FQmF∗)s,q =
1

n

n−1∑
p=0

Fs,p (QmF∗)p,q

Substituting (A.20) into the above gives:
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=
1

n

n−1∑
p=0

ω−sp ωqp ω−mq

=
1

n

n−1∑
p=0

ωp(q−s) ω−mq

= ξmq
1

n

n−1∑
p=0

ωp(q−s),

and applying (A.15) :

=


ξmq q = s,

0 otherwise.

(A.21)

By expanding into the left hand side below using (A.19), we get:

FCirc(x)F∗ = F(
n−1∑
p=0

xpQ
p)F∗

=
n−1∑
p=0

xpFQpF∗. (A.22)

Finally, we have:

(RHS)s,q = (FCirc(x)F∗)s,q,

and substituting (A.22) into the above gives us:

= (
n−1∑
p=0

xpFQpF∗)s,q.

and substituting (A.21) into the above gives us:

=


∑n−1

p=0 xp ξ
pq q = s,

0 otherwise.

= (LHS)s,q.

QED.

A.3.5 Utilising Knowledge of the Noise Power

If we dont know the second order statistics of the noise, but we do know the noise

power, then a better estimator than X−1 is obtained by a shrinkage estimate (van

Houwelingen 2001).
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Let us say we have a random variable x, and random noise, z, is added to it before we

can take a measurement y, so that y = x + z. We do not know x and z, but we know

that they both have zero mean, and we know their power, σx and σz.

If we use cy as our estimate of x, x̂, then what is the best value of c to use? Let us

take the power of the error of our estimate of x,

ε = E[(x− cy)T (x− cy)]

= E[xTx]− 2cE[xTy] + c2E[yTy]

= E[xTx]− 2cE[xTx]− 2cE[xT z] + c2E[xTx] + 2c2E[xT z] + c2E[zT z].

Noting that x and z are uncorrelated and therefore E[xT z] = 0,

= σ2x − 2cσ2x + c2σ2x + c2σ2z
dε

dc
= 2(σ2x + σ2z)c− 2σ2x

The best estimate of x is where the error of our estimate is at a minimum, so choosing

c at the stationary point gives us

c =
σ2x

σ2x + σ2z
.

Applying this principle to our case, w = Xh + z, we can see that X−1w is no longer

the best estimate of h. Knowing the noise power allows us to make a better estimate,

specifically:

ĥ =
σ2w

σ2w + σ2z
X−1w. (A.23)
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Guide to Software Source Code

I have made the software source code associated with this dissertation readily available

for download. The code may be executed using MATLAB 2008 for evaluation or for use.

I have chosen not to bind the printed software code into this dissertation. If printed

the computer code would be approximately 200 pages long and it seems inconceivable

that anyone would actually read the printed source code.

B.1 ECOOSE Source Code

The object oriented echo cancellation simulation environment presented in Chapter 3

is publicly available at (Braithwaite & Addie 2008) and can be readily used by anyone

undertaking research in this field. Researchers who wish to propose new algorithms or

analyse new ones are welcome to provide Matlab definitions of an algorithm class which

can be used with the ECOOSE framework, by them or by others, thereby providing

objective evidence regarding its performance.

B.1.1 The Directory Tree

The ECOOSE directory tree is described in this subsection.
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Sounds The far end signal (i.e. the input to the channel) and the near end signal (i.e.

the noise) are stored in Waveform Audio File Format (WAV) (Mathworks 2008c,

Kabal 2006), in the directory Sounds. Only the discrete values of the sound from

the WAV files are used. Once the files are in that directory, they are accessed via

their file name without the ”.wav” extension. The sound clips for both the near

end and the far end need to be at least as long as the desired experiment.

LinChannels The linear channels are also stored as WAV files in the LinChannels

directory. Like sounds, ECOOSE treats the channels as simply a series of discrete

values. ECOOSE may use a truncated version of the channel, so the channels

in these files may be longer than that actually used. Once the files are in that

directory, they are accessed via their file name without the ”.wav” extension.

Predists The memoryless non-linear part of a Hammerstien channel are stored in this

directory. Once the files are in that directory, they are accessed via their file name

without the ”.mat” extension.

Classes The code for the classes that are part of the major class hierarchies are kept

in this directory. The class name is the same as the file name without the ”.m”

extension in this directory. The major class hierarchies are depicted in Figure

3.2, and the classes belonging to the major class hierarchies are described in

Subsection B.1.2.

Functions Miscellaneous code that is not part of the major class hierarchies is stored

in this directory.

Runs Each file in this directory subtree represents an experiment. One simply in-

vokes the file name without the ”.m” extension from Matlab in order to run the

corresponding experiment. The currently available experiments are described in

Subsection B.1.3.

Results Holds the results from experiments as well as data created by one run for use

in a later experiment.



B.1 ECOOSE Source Code 195

B.1.2 Classes

ECOOSE has been recreated in a fully object oriented manner, and therefore a detailed

description of ECOOSE must necessarily focus on its major class hierarchies. Here, we

outline the classes belonging to the major class hierarchies of ECOOSE.

Channel Source Classes

Each experiment or run must instantiate a channel source class. The channel source

class instantiated is the final authority on the channel state, and it is responsible for

communicating that state to any other class that requires it.

chnlSrc This is the base class for all of the channel source classes. It is an abstract class

and cannot be instantiated. This class has methods that implements the observer

design pattern. Channel observer and channel calculator classes subscribe to a

channel source class. The channel source class will notify all subscribing classes

whenever the channel characteristics change, and it is then up to those classes to

request the new channel information from the channel source class.

chnlSrcDummy This channel is is a subclass of chnlSrc. Although ECOOSE is pri-

marily designed for evaluating echo cancellation algorithms for known channels,

ECOOSE may also be used to determine an channel. In this case we do not know

the channel beforehand, and we use chnlSrcDummy in this case.

chnlSrcLin This channel is is a subclass of chnlSrc. It is an abstract class and cannot

be instantiated. In addition to the base channel source class, this class under-

stands that the channel is represented by an impulse response. It is intended that

dynamic and static linear channels inherit from this channel.

chnlSrcLinStat This class is used for static linear channels. This class may be in-

stantiated. Most runs use this channel source class.

chnlSrcBaysStat This class is used for Hammerstein channels. It is a subclass of the

chnlSrcLinStat class and in addition to the static linear channel, it also under-



B.1 ECOOSE Source Code 196

stands the memoryless nonlinear channel, which is parameterised by Legendre

Polynomial coefficients.

Channel Calculator Classes

Each experiment or run must instantiate a channel calculator class. The purpose of

the instantiated channel calculator class is to calculate and provide the current value of

y(t) as depicted in Figure 1.1. The channel calculator class has no concept of whether

a channel is static or dynamic. It merely updates its understanding of the channel

whenever the channel source class sends a message to say that the channel has been

updated.

chnlCalc This is the base class for all of the channel calculator classes. It is an abstract

class and cannot be instantiated. This class has methods that communicate with

the channel source class.

chnlCalcDummy As explained above, ECOOSE may also be used to determine an

channel. In this case we do not know the channel beforehand, and we use chnl-

SrcDummy in this case.

chnlCalcLin This class is a subclass of chnlCalc and is used for all linear channels.

This class may be instantiated. Most runs use this channel calculator class.

chnlCalcBays This class is a subclass of chnlCalcLin. It adds a memoryless nonlinear

distortion to the linear channel, thus forming a Hammerstien channel.

Channel Observer Classes

Each experiment or run must instantiate a channel observer class. The purpose of

the instantiated channel observer class is observe the observe and plot or save some

functions of either the coefficients estimated by the algorithm class or the some functions

of the difference between the estimated channel coefficients and the known values of the

channel coefficients. The channel observer class has no concept of whether a channel

is static or dynamic. The channel observer class must understand the model of the
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channel assumed by the algorithm class. It keeps track of the known channel, getting

the latest values whenever the channel source class says it has been updated. At each

time step it will ask the algorithm class for the values it needs for plotting or saving.

obsBase This is the base class for all of the channel observer classes. This class has

methods that communicate with the channel source class. This class may be

instantiated, and has code to monitor the difference between the estimated value

of y(t) and the known value of y(t).

obsLin This is a subclass of obsBase, and has code to monitor the difference between

the estimated value of the impulse response and the known value of the impulse

response.

obsBays This is a subclass of obsLin, and has code to monitor the difference between

the estimated value of the memoryless nonlinear part of a Hammerstien channel

and its known value.

Result Classes

The instantiated channel observer class expects a results object, and gives all its results

to the results object. The purpose of the results object is to either plot or to save the

results provided by the channel observer class.

rsltBase This is the base class for all of the results classes. It allows the observer class

to create curves and to provide the data for them at each timestep. It does not

actually do anything with that data.

rsltPlot This is a subclass of rlstBase. It plots the data collected in each curve when-

ever its plotting method is invoked.

rsltFile This is a subclass of rlstBase. It saves the data collected in each curve into a

file in matlab format whenever its output method is invoked.

rsltWav This is a subclass of rlstBase. It saves the data collected in each curve into

a file in WAV format whenever its output method is invoked.
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Algorithm Classes

Each experiment or run must instantiate a algorithm class. Algorithm classes that can

be instantiated are implementations of a given echo cancellation algorithm. Algorithm

classes do not have information about the known channel, but have x(t) and w(t) as

their only inputs.

algBase This is the base class for all of the algorithm classes. It is an abstract class

and cannot be instantiated.

algDummy This is an algorithm class that can be instantiated, but has no actual

echo cancellation algorithm. It is useful when we are not interested in testing an

algorithm.

algBlock This is a subclass of algBase. This is the base class for all of the block based

algorithm classes such as frequency division algorithms. It is an abstract class

and cannot be instantiated.

algFreqLms This is a subclass of algBlock. It implements frequency division echo

cancellation.

algLinear This is the base class for all of the time domain algorithms that use an

impulse response. It is an abstract class and cannot be instantiated.

algLinNLMS This is the standard reliable NLMS algorithm. Very useful for making

comparisons with more advanced algorithms.

algLinAP This is an implementation of the AP algorithm. The order of the AP

algorithm is one of the configuration parameters.

algNlinBays1 This is the implementation of the HLMS algorithm as documented in

Chapter 4.

B.1.3 Demonstrations

Ready made demonstrations have been distributed as part of ECOOSE. They require no

arguments and may be easily invoked by name from the MATLAB command prompt,



B.1 ECOOSE Source Code 199

providing one has invoked MATLAB from (or started MATLAB and set the current

directory to) the main directory of ECOOSE, and then set up the execution paths

for ECOOSE by issuing the command “setPaths”. The following demonstrations are

available:

nlmsTiny1 Plots the convergence of the NLMS algorithm excited with white noise

and no doubletalk.

freqLmsTiny1 Plots the convergence of the block based frequency domain algorithm

excited with white noise and no doubletalk.

nlmsUseY In this experiment, the channel is not known in advance, but is being

determined. The dummy channel source and the dummy channel calculator are

used, and x(t) and y(t) are supplied from sound files. The NMLS algorithm is

used to cancel the echo and the results are plotted. Since there is considerable

distortion in y(t), the cancellation is not cancelled down to zero.

apSimpleTiny Plots the convergence of an order 4 AP algorithm excited with white

noise and no doubletalk.

apTiny1 Plots the convergence of four different orders of AP algorithms excited with

white noise and no doubletalk together on the one plot.

nlmsLinTiny1 Generates the first plot displayed in Figure 4.1. It features the NLMS

algorithms peforming cancellation on a linear channel.

baysLinTiny1 Generates the second plot displayed in Figure 4.1. It features the

HLMS algorithms peforming cancellation on a linear channel.

nlmsPreDistTiny1 Generates the third plot displayed in Figure 4.1. It features the

NLMS algorithms peforming cancellation on a non-linear channel.

baysPreDistTiny1 Generates the final plot displayed in Figure 4.1. It features the

HNLMS algorithms peforming cancellation on a non-linear channel.
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B.2 Optimal Test Signal Source Code

The code that implements the theory presented in in Chapter 6 is publicly available

from (Braithwaite & Addie 2010). One can view the code, and could potentially invoke

the optimiser routines directly to perform an optimisation problem. There are also

high level ready made routines available for easy invocation.

B.2.1 The Directory Tree

The Optimal Test Signal directory tree is described in this subsection.

Functions The core frequency domain and time domain optimisation are in this di-

rectory, along with scripts to perform sets of experiments and miscellaneous sub-

routines.

TimingRuns This directory contains some scripts that perform sets of experiments

for the purpose of timing.

Results This directory is a place for files containing the results of experiments to

reside temporarily.

B.2.2 Core Routines for Optimisation

function [xRslt,rslt] = optx(n, xInit, Ch, Cz, p)

This routine finds an optimal test signal of size n and the expected error for that test

signal given the impulse response covariance matrix Ch, the covariance of the noise Cz,

and the maximum test signal power p. optx() performs the optimisation in the time

domain . The algorithm for the time domain routine optx() is as follows :-

• call makexA() to obtain the optimal estimator A using the formula (6.7).

• call makexEps() to obtain ε using the formula (6.6).
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• Loop until the reductions in ε are smaller than a given threshold:

– Use the class makeX to find a new value of x using the formulas (6.13) and

(6.15).

– call makexA() to obtain the optimal estimator A using the formula (6.7).

– call makexEps() to obtain ε using the formula (6.6).

– The difference between the newly derived value of x gives us a direction to

move.

– Choose points x along a line in this direction in geometrically increasing step

sizes for as long as doing so reduces the value of ε.

• optx() monitors the current value of ε to ascertain if the algorithm is still making

progress.

function [xRslt,rslt] = optf(n, xInit, Ch, Cz, p)

This routine finds an optimal test signal of size n and the expected error for that test

signal given the impulse response covariance matrix Ch, the covariance of the noise

Cz, and the maximum test signal power p. optf() performs the optimisation in the

frequency domain. optx() and optf() use different formulas, and those formulas are

implemented into different routines. Despite this optx() and optf() essentially use

the same algorithm. Where optx() uses makexEps(), makexA() and makeX(), optf()

uses makefEps(), makefA() and makef().

B.2.3 Manufacturing the Problem

Functions that have names begin with newCh produce impulse response covariance

matrices. The function newChDist1() is of particular interest, because it manufactures

a covariance matrix using the method described in Section 7.1.5. Functions that have

names begin with newCz produce the covariance of the noise. Functions that have

names begin with newX produce initial starting points for the test signal.
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B.2.4 Orchestrating Experiments and Making Plots

We refer to an invocation of the optimiser routines as an experiment. It would be very

tedious to manually assemble the data for each experiment and to archive and plot the

results. These tasks need to be automated, and code which performs the experiments

and plots the results is described here.

exploreRuns This is a class that performs a series of runs, and saves the results into

multidimensional arrays and saves them into a file. Once the data has been saved, it

may be loaded into MATLAB at a later time in order to generate graphs or tables.

There are several parameters that may be set by member functions, and these all have

default values. The default size of the problem, n, is 64. Other parameters are varied

and an experiment is performed for each combination. The defaults are as follows: The

Signal to Noise Ratio (SNR) is varied from 0.1 to 10 in 10 logarithmic steps (i.e. 11

different values). The coloredness of the covariance of the noise (Czc) is varied from 0

to 2 in 10 steps. The coloredness of the covariance of the channel (Chc) is varied from

0 to 2 in 10 steps. For each Chc, the random number generator seed is varied from

10 to 21 in 10 steps. And for each random number generator seed, a initial starting

point for the test signal, is randomly generated. Experiments are performed both in

the frequency domain and the time domain. Hence 29282 experiments are performed

if the default values are used.

mkpErr mkpErr, like exploreRuns, is also a class that performs a series of runs and

saves the results and timings into a file for later use. mkpErr differs from exploreRuns,

in that mkpErr does not generate a hypercube of data. mkpErr exploits an object

oriented design so that it may carry out just the runs required for a given plot and has

methods that read its data file output, and generates the desired plots. mkpErr is an

abstract class and cannot be instantiated.

Generally, these plots show how results change as some parameter is varied. Subclasses

of mkpErr must provide the method setVP(k) (Set Variable Parameter) which sets the

protected property of mkpErr that is to vary according to the value of its argument
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k so that that property will vary over a series of experiments in order to make the

plot. In addition, the subclasses also create the covariance matrices Ch and Cz, and

override default values such as the size of the problem and the range of random number

generator seeds. These subclasses also have methods to set various parameters of the

plot.

B.2.5 Demonstrations

Ready made demonstrations accompany this distribution. They require no arguments

and may be easily invoked by name from the MATLAB command prompt, providing

one has invoked MATLAB from (or started MATLAB and set the current directory to)

the main directory called “Optsig”, and then set up the execution paths by issuing the

command “setPaths”.

The plots in Figure 6.1 can be created as follows:

clear % Removes old state and class definitions.

setPaths % Sets MATLAB paths for the source code here.

mkpErr_Dist_cch.doit100() % Make left top graph.

mkpErr_Dist_cch.doit025() % Make left bottom graph.

mkpErr_Dist_ccz.doit100() % Make right top graph.

mkpErr_Dist_ccz.doit025() % Make right bottom graph.

Timing runs may be performed by using the ttx runs() which will invoke the time

domain optimiser, optx() with experiments that have dimensions, n, of 16, 32, 64, 128,

256, 512, 1024 in turn. This scripts prints a time stamp just before and just after

each invocation of optx() so that the execution time may be evaluated. It may well

take a week for these timing runs to complete. The script ttf runs() performs the same

experiments with the frequency domain optimiser optf().
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