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ABSTRACT  

The management of spatial variability of crop yields relies on the availability of 

affordable and accurate spatial data.  Yield maps are a direct measure of the crop yields, 

however, costs and difficulties in collection and processing to generate yield maps 

results in poor availability of such data in Australia.  In this study, we used historical 

mid-season normalised difference vegetation index (NDVI), generated from Landsat 

imagery over 4 years. Using linear regression model, the NDVI was compared to the 

actual yield map from a 257 ha paddock.  The difference between actual and predicted 

yield showed that 77% and 93% of the paddock area had an error of <20% and <30%, 

respectively.  The linear model obtained in the paddock was used to simulate crop yield 

for an adjoining paddock of 162 ha. On an average of 4 years, the difference between 

actual and simulated yield showed that 87% of the paddock had an error of <20%. 

However, this error varied from season to season.  Paddock area with <20% error 

increased exponentially with decreasing in-crop rainfall between anthesis and crop 

maturity. Furthermore, the error in simulating crop yield also varied with the soil 

constraints.  Paddock zones with high concentrations of subsoil chloride and surface soil 

exchangeable sodium percentage generally had higher percent of error in simulating 

crop yields. Satellite imagery consistently over-predicted cereal yields in areas with 

subsoil constraints, possibly due to chloride-induced water stress during grain filling. 

The simulated yield mapping methodology offers an opportunity to identify within-field 

spatial variability using satellite imagery as a surrogate measure of biomass. However, 

the ability to successfully simulate crop yields at farm scale or regional scale requires 

wider evaluation across different soil types and climatic conditions. 

This article was peer reviewed by two independent and anonymous reviewers



YP Dang, A Apan, RC Dalal, S Darr, M Schmidt, M Pringle 

1206 

 

INTRODUCTION 

Recent developments in remote sensing have shown promise for quantifying crop yield 

variations both within and between agricultural fields (Fisher et al. 2009).  Remotely 

sensed images show spatial and spectral variations resulting from soil and crop 

characteristics. Australia has more than 25 years of historical satellite data available 

thus there is great potential to increase the quantity and quality of spatial data needed to 

identify causes of spatial and temporal variability in cropping areas. The potential 

advantages of remote sensing images are: the ability to bypass field measurements of 

yield, estimate yield at a range of spatial scales thus eliminating sampling error within 

field variability, and the availability of archived imagery thus enabling analysis of past 

growing seasons that may not have recorded yield (Lobell et al. 2003).  
 

Measurements of reflected light have often been used for the assessment of green 

vegetation, biomass or physiological stresses in agricultural plants (Tucker, 1979). A 

number of vegetation indices have been developed to estimate or represent crop yield. 

The most commonly used ratio is the normalised difference vegetation index (NDVI) 

defined as:  
 

 NDVI = (NIR-RED)/(NIR+RED) 
 

where NIR is reflectance in near infrared spectral band, 790-900 nm, and RED is 

reflectance in red spectral band, 620-680 nm. The interactions of RED and NIR light 

with green plant material are very different; however, their reactions to most soil types 

are similar (Carlson & Ripley, 1997). Further, NDVI has been shown to be closely 

related to grain yield in terms of delineating a spatial pattern (Abuzar et al. 2004).   
 

Generally good relationships between satellite image derived NDVI and crop yield have 

been reported for a number of crop species (Hatfield, 1983; Labus et al. 2002; Scotford 

& Miller, 2005). Historical series of mid-season NDVI maps averaged for seasons of 

common crop type are traditionally used to determine zones of consistently average, 

below-average and above-average NDVI (Adams & Maling, 2005). Also growers 

readily recognise NDVI and easily relate it to their knowledge of the field (Robertson et 

al. 2007).  However, paddock zone maps obtained using NDVI do not provide spatial 

variability of yield for making economic calculations and farm management decisions. 

We therefore, attempted to develop an empirical-statistical model to estimate paddock 

yield variability at sub-paddock scale and to predict yield variability at farm scale.    

 

MATERIALS AND METHODS  

Site description 
Two adjoining paddocks were selected on a farm near Goondiwindi in southern 

Queensland. The Goondiwindi district is typical of much of Australia’s northern 

subtropical grains region. The climate of the region is semi-arid with high potential 

evapotranspiration (1300-2200 mm per annum), low (550-800 mm of average annual 

rainfall) and variable (coefficient of variation 27%) rainfall, most of which falls during 

summer (Webb et al. 1997). The common soil was grey cracking clay (Vertosol) (Isbell, 

1996). One of these two paddocks (15A; 257 ha; 28° 19' S and 150° 30' E) was selected 

for developing the empirical-statistical model to estimate grain yield. In general, the 
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western side of both the paddocks had higher levels of subsoil constraints particularly 

high concentration of subsoil chloride and high exchangeable sodium percent (Fig. 1).  
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Fig. 1. Distribution of subsoil constraints in the profiles of western (high yielding) and 

eastern (low yielding) sides of paddocks (a) 15A, and (b) 15B. 
 

In this paddock, cereal crops are generally sown in May. The anthesis is around mid-

September, and crops are harvested during October. Long-term average annual rainfall 

for this area is 617 mm and the growing season rainfall (May-October) is 225 mm. The 

second paddock (15B; 162 ha) was selected to validate the empirical-statistical model 

and predict grain yield using relationship developed from paddock 15A. The study 

focussed on wheat and barley crops. Information on the rotation for each paddock and 

average yield of the cereal crops as reported by growers are given in Table 1. 
 

Table 1. Crop rotations, paddock yields (t ha
-1

) for paddocks 15A and 15B and the date 

of satellite image acquisition 

Paddock Year Rotation Sowing Harvesting Image 

acquisition 

Av. Yield 

(t/ha) 

15A 

 

 

 

 

 

 

 

15B 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

Wheat 

Wheat 

Chickpea 

Wheat 

Barley 

Sorghum 

Wheat 

 

Wheat 

Wheat 
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Wheat 

Wheat 
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 June 
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1
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 Nov 
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28
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 Oct 

13
th
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15
th

 Oct 
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st
 Nov 
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 Nov 

10
th
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28
th

 Oct 

24
th

 Sept 

10
th

 Sept 

 

22
nd

 Aug 

27
th

 Sept 

 

31
st
 Aug 

 

24
th

 Sept 

10
th

 Sept 

 

22
nd

 Aug 

27
th

 Sept 

 

31
st
 Aug 

1.78 

0.81 

0.97 

2.42 

2.10 

1.27 

1.25 

 

2.35 

1.09 

0.95 

2.40 

1.92 

1.95 

1.88 
 

Grain yield 
Site-specific yield data for the cereal crops since 2001 were accessed from a grower 

who collected yield data at harvest using AgLeader yield-monitoring equipment fitted in 
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the grain harvester linked to a differentially corrected GPS. Point data were collected at 

1-s intervals along the path of the harvester. The raw yield monitor data were extracted 

from yield mapping software format and pre-processed passed through a routine to 

provide a consistent data set for analysis. Positional data were transformed into Map 

Grid of Australia 1994 (MGA 94, Zone 56) co-ordinate set. Yield monitor data was 

cleaned by deleting outliers (0 t/ha) and above a specific improbable value for the 

region (>10 t/ha). The average yield and standard deviation for the whole dataset was 

calculated, and then the normalised yield was obtained for each individual data point: 
 

 Normalised yield = (Yield – average yield)/standard deviation 

 Data was sorted on the basis of normalised yield and all records outside ±3 t/ha were 

deleted. The clean yield data was used for statistical analysis and map production. Grain 

yield from different seasons were combined to develop standardised temporal mean 

yield (Larscheid and Blackmore, 1996), thereby removing inter-year offset (Blackmore 

et al 2003).  
 

Actual grain yield data and standardised yield data for each season was spatially 

interpolated using kriging to the 25x25 m grid using Vesper software (Whelan et al. 

2001).  With all seasons’ yield data on a common grid, multivariate k-means clustering 

analysis based upon a process of fitting data iteratively to a specified number of clusters 

was used to define the potential management zones. The method creates disjoint classes 

by estimating cluster means which maximises the variation within the cluster groupings 

(Whelan & McBratney, 2003). The number of clusters was obtained by calculating 

confidence interval (Taylor et al. 2007) using the mean kriging variance to determine if 

yield response in classes is statistically different from each other.  
 

 
Satellite images 
Cloud-free images of Landsat 5 TM (Thematic Mapper) and Landsat TM 7 ETM+ 

(Enhanced Thematic Mapper) satellite sensors were acquired close to the crop anthesis 

(Table 1).  All images were geometrically and radiometrically corrected before analysis 

using National Mapping 9 second DEM, and Supplemental Control Points, derived from 

controlled full length Landsat 7 passes of the Australian continent. The effects of relief 

displacement are corrected using DEM (Geoscience Australia 2009). The location of 

both the paddocks’ boundary was identified on the satellite image using ENVI software 

(ITT Visual Information Solutions, 2008), and the NDVI transformations were obtained 

for each crop year that a cereal crop was grown. Similar to grain yield data, standardised 

temporal mean NDVI (SNDVI) for each individual data point was obtained by dividing 

each NDVI value with mean NDVI for the season. For each node of 25x25 m grain 

yield grid, the NDVI values and standardised NDVI (SNDVI) values were obtained 

using nearest neighbour interpolation. 
 

All interpolated files for grain yield and NDVI were then imported into the SAS JMP 

statistical analysis software (SAS Institute Inc., 2007). A linear relationship was 

obtained between temporal standardised mean grain yields and corresponding temporal 

standardised mean NDVI (Fig. 2).   
 

The coefficients of the linear model were used to simulate the spatio-temporal 

variability of grain yield, based on NDVI.  Using simulated yield data, simulated 

potential management zones were created with k-mean clustering to compare with 
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management zones created using actual yield maps. The coefficients of the linear model 

were further used to predict the spatial and temporal variability in the grain yield of 

adjoining paddock (15B) and compared with actual yield maps obtained by the grower. 

The accuracy of the simulated yield mapping was evaluated by calculating the 

difference between actual yield map and the simulated yield map.  
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Fig. 2. Relationship between standardised temporal mean actual yield and satellite 

derived standardised temporal mean NDVI for Paddock 15A. 

 

RESULTS AND DISCUSSION 

Actual cereal yields were mapped by the grower for paddock 15A in 2001, 2002 and 

2007. The mean spatial and temporal variability map for paddock 15A over these years 

is shown in Fig. 3a. The mean simulated yield map for Paddock 15A, obtained from 

satellite images acquired in 2001, 2002, 2004 and 2007, is shown in Fig. 3b.  The 

residual yield map was obtained by calculating the difference between the three years of 

mean actual yield map and the four years of mean simulated yield map (Fig. 3c).  The 

difference between actual and simulated yield showed that 77% of the paddock area 

(198 ha) had yield predictions within ±0.2 t/ha, 20% of the paddock area (52 ha) had 

yield predictions between > ±0.2 but < ±0.4 t/ha and only 3% of the paddock area (7 ha) 

had > ±0.4 t/ha error of prediction. 

 



YP Dang, A Apan, RC Dalal, S Darr, M Schmidt, M Pringle 

1210 

 

(a)

 

(b)

 

(c)

 
 

Fig. 3. Maps of Paddock 15A showing spatial variation in cereal yield for (a) mean 

actual yield (b) mean simulated yield and (c) difference between actual and simulated 

yield. 

In terms of expressing residual yield as a percentage of actual yield, 88% of the area had 

an error of <20% from the actual mean yield, and 97% of the area had an error of <30% 

(Figure 4a).  The majority of the paddock (55%) yields were over-predicted by 

simulated yield mapping (Figure 4b). The yields in the eastern side of the paddock with 

low levels of subsoil constraints were under-predicted whereas the western side of the 

paddock with relatively high levels of subsoil constraints had over-predicted yields. 
 

(a)  
(b)  

 

Fig. 4. Map of Paddock 15A showing spatial variability in the difference between actual 

and simulated yield expressed as (a) percentage of actual yield, and (b) an over or under 

prediction by the simulated yield map. 
 

Productivity maps prepared either using actual grain yield data for 2001, 2002 and 2007 

(Fig. 5a) or using simulated yield maps derived from NDVI data obtained from satellite 
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images in 2001, 2002, 2004 and 2007 (Fig. 5b) showed an overall classification 

accuracy of 90%.  
 

(a)  
(b)  

 

Fig. 5. Map of Paddock 15A showing potential management zones based on crop 

productivity obtained using (a) actual yield maps, and (b) simulated yield maps. 

 

The linear model coefficients obtained in the paddock 15A was used to simulate crop 

yield for an adjoining paddock 15B (162 ha). On this paddock, cereal crops were grown 

in 2001, 2002, 2005 and 2007.  The mean spatial and temporal variability of actual yield 

and simulated yield are shown in Fig. 6a and Fig. 6b, respectively.  
 

(a)

 

(b)

 

(c) 

 
 

Fig. 6. Maps of Paddock 15B showing spatial variation in cereal yield for (a) mean 

actual yield (b) mean simulated yield and (c) difference between actual and simulated 

yield. 

On an average of 4 years, the difference between actual and simulated yield showed that 

67% of the paddock area (108 ha) had yield predictions within ±0.2 t/ha, 24% of the 
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paddock area (40 ha) had yield predictions between > ±0.2 but < ±0.4 t/ha and 9% of 

the paddock area (14 ha) had >±0.4 t/ha error of prediction (Fig. 6c).  In terms of 

percent of actual grain yield, 87% of the paddock area had an error of <20% and 95% of 

the paddock area had an error of <30% (Fig. 7a).   
 

 

(a)  (b)  
 

Fig. 7. Map of Paddock 15B showing spatial variability in the difference between actual 

and simulated yield expressed as (a) percentage of actual yield, and (b) an over- or 

under-prediction by the simulated yield map. 

The western end of the paddock generally had high concentration of subsoil chloride 

and high levels of exchangeable sodium percentage was over-predicted as compared to 

the eastern end with relatively low levels of subsoil chloride and exchangeable sodium 

percent (Fig. 7b).   
 

Potential management zones obtained, using k-clustering, from simulated yield data 

showed overall classification accuracy of 80% with actual yield data (Fig. 8a, 8b).  
 

(a)  (b)  
 

Fig. 8. Map of Paddock 15B showing potential management zones based on crop 

productivity obtained using (a) actual yield maps, and (b) simulated yield maps. 
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Individual year NDVI data was converted into annual simulated maps (figure not 

shown) and compared with actual yield maps (figure not shown). The maps of percent 

error of prediction showed that this error varied from season to season (Fig. 9).  
 

    
 

Fig. 9. Maps of paddock 15B showing difference between actual and simulated yield for 

individual years. 
 

The paddock area with <20% error increased exponentially with decreasing in-crop 

rainfall between anthesis and crop maturity (Fig. 10).  
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Fig. 10. Relationship between percent area with <20% prediction error and in-crop 

rainfall. 
 

Given that only a small number of Australian growers have yield monitoring, the 

methodology proposed in this paper suggests that grain yield can be adequately 

predicted using NDVI derived from satellite images acquired at anthesis, allowing 

comparisons between simulated yield maps and actual yield maps. The usefulness of 

this technique relies on a strong positive correlation between NDVI and yield. 

Generally, there was a good agreement between harvested yield and NDVI in this study. 

A number of studies have shown good relationship between mid-season satellite-

derived NDVI and grain yield (Hatfield, 1983; Labus et al. 2002; Scotford & Miller, 

2005). However, a number of factors can cause differences between the mean simulated 

yield map and mean actual yield map.  The relationship between NDVI and actual yield 

can differ from season to season, and is particularly dependent on the in-crop rainfall 
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especially after anthesis. Other environmental factors such as frost that usually occurs 

after anthesis can cause differences between simulated yield and actual yield.  

In this study, the presence of subsoil constraints which are commonly present in the 

region (Dang et al. 2006) can influence the prediction, due possibly to water stress at 

grain filling from high subsoil Cl concentrations (Dang et al. 2008). The simulated yield 

mapping consistently over-predicted the western side of both the paddocks which 

correspond to relatively high concentration of chloride in the subsoil and high levels of 

exchangeable sodium (Fig. 1). The effect of subsoil constraints have been investigated 

(Dang et al. 2008) and shown to result in reduced uptake of subsoil water and nutrients.  

The simulated yield mapping methodology offers an opportunity to identify within-field 

spatial variability using satellite imagery as a surrogate measure of biomass. Moreover, 

the technique developed here it provides an opportunity to identify areas suspected of 

subsoil constraints using multi-year satellite imagery on farm or regional scale at low 

cost. However, the ability to successfully simulate crop yields at farm scale or regional 

scale requires wider evaluation across different soil types and climatic conditions.  

CONCLUSIONS 

This study demonstrated that historical mid-season NDVI generated from Landsat 

imagery can predict crop yield with high level of accuracy. The location and magnitude 

of prediction errors varied from season to season primarily due to in-crop rainfall 

between anthesis and crop maturity. However, in this study, the error in simulating crop 

yield was also found to vary with the soil constraints prevailing in the area. Paddock 

zones with high concentrations of subsoil chloride and surface soil exchangeable 

sodium percentage generally had higher percent of error in simulating crop yields. 

Satellite imagery consistently over-predicted cereal yields in areas with subsoil 

constraints. The techniques developed in this work offer an opportunity to identify 

within-field spatial variability using satellite imagery as a surrogate measure of 

biomass. However, the ability to successfully simulate crop yields at farm scale or 

regional scale requires wider evaluation across different soil types and climatic 

conditions. 
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