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Abstract
In this study, we examine the cross‐view gait recognition problem. Many existing
methods establish global feature representation based on the whole human body shape.
However, they ignore some important details of different parts of the human body. In the
latest literature, positioning partial regions to learn fine‐grained features has been verified
to be effective in human identification. But they only consider coarse fine‐grained fea-
tures and ignore the relationship between neighboring regions. Taken the above insights
together, we propose a novel model called GaitGP, which learns both important details
through fine‐grained features and the relationship between neighboring regions through
global features. Our GaitGP model mainly consists of the following two aspects. First, we
propose a Channel‐Attention Feature Extractor (CAFE) to extract the global features,
which aggregates the channel‐level attention to enhance the spatial information in a novel
convolutional component. Second, we present the Global and Partial Feature Combiner
(GPFC) to learn different fine‐grained features, and combine them with the global fea-
tures extracted by the CAFE to obtain the relevant information between neighboring
regions. Experimental results on the CASIA gait recognition dataset B (CASIA‐B), The
OU‐ISIR gait database, multi‐view large population dataset, and The OU‐ISIR gait
database gait datasets show that our method is superior to the state‐of‐the‐art cross‐view
gait recognition methods.

1 | INTRODUCTION

Gait recognition is a promising video‐based biometric identi-
fication technology applied to identify individuals by their
walking patterns. Compared to other biometric technologies,
such as the face, fingerprint and iris recognition, gait recog-
nition has the advantages of non‐contact, long‐distance and no
explicit cooperative interest‐subjects. Therefore, gait recogni-
tion has a potentially wide range of applications in video sur-
veillance. As the accuracy increases, gait recognition
technology will definitely become another effective tool for
crime prevention, forensic identification and social security. In
order to improve the accuracy of recognition, we need to
overcome various external factors, including walking speed,

bag‐carrying, coat‐wearing and camera viewpoint, that cause
dramatic changes in gait appearance. As shown in Figure 1, the
appearance of gait walking changes observably in different
directions, which may result in the similarity of inter‐class
common attributes greater than that of intra‐class common
attributes, and brings challenges to gait recognition.

There are several attempts in the literature to solve the
cross‐view gait recognition problem. A common strategy is to
extract global features by treating the whole human image as a
unit. It is worth mentioning that many methods [1–4] use
attention mechanisms to improve the performance of the
model, and our method is no exception. However, due to the
diversity of gait walking conditions in the cross‐view situation,
some important details are often ignored in the global features.
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Another learning strategy considers that different parts of the
human body poss evidently various shapes and moving pat-
terns during walking [5–10]. They aim to learn fine‐grained
features through specific regions. Unfortunately, they only
consider coarse fine‐grained features and ignore the relation-
ship between neighboring regions. To solve the problems in
the above two strategies, we propose a novel model called
GaitGP, which learns both important details through fine‐
grained features and the relationship between neighboring re-
gions through global feature representation.

Our novel model GaitGP consists of the following two
components. The first component is a Channel‐Attention
Feature Extractor (CAFE), which is a novel application of
convolution and can extract global features with channel atten-
tion mechanism. The other one is the Global and Partial Feature
Combiner (GPFC), which learns fine‐grained features in specific
regions of images. Moreover, the GPFC combines the global
features extracted by the CAFE with fine‐grained features to
obtain relevant information between neighboring regions.

In the CAFE, we jointly learn attention selection and feature
representation to extract global features with a channel attention
mechanism. From the experimental data, we find that channel
attention does enhance the performance of themodel compared
to the original global features extracted from the image. There-
fore, an effective channel attention mechanism method, called
the Channel‐level Spatial Pooling (CSP) is introduced to select
the channel attention information and optimize the global fea-
tures. Additionally, in order to improve the compatibility be-
tween channel attention selection and global features, our novel
convolution layer adopts the partitionable stacking design, which
will be discussed specifically in Section 3.2.

In the GPFC, we divide the global feature map extracted
from the CAFE into several sub‐branches. To combine the
global feature and the fine‐grained features, the first sub‐branch
contains only one whole partition to preserve the global infor-
mation. In the remaining sub‐branches, we divide the global
feature maps into different numbers of stripes as part regions to
learn local feature representations independently [5]. More de-
tails will be discussed specifically in Section 3.3.

More simply, we summarise our contributions as follows:

� We propose a novel model called the GaitGP, which learns
both important details through fine‐grained features and the
relationship between neighboring regions through global
feature representation.

� We propose a CAFE for the optimization of global feature
representation.

� We propose a GPFC for combining the global and fine‐
grained features.

� For gait recognition accuracy, we combine the above aspects
to conduct a large number of experimental ablation exper-
iments on the widely used gait datasets the CASIA gait
recognition dataset B (CASIA‐B) [11], The OU‐ISIR gait
database, multi‐view large population dataset (OU‐MVLP)
[12] and The OU‐ISIR gait database (OULP) [13].
Compared to several state‐of‐the‐art methods, GaitGP
shows superiority.

2 | RELATED WORK

2.1 | Cross‐view gait recognition

To adapt to the situation of cross‐view for gait recognition, one
of themost typical gait recognitionmethods is treating the whole
humanbody shape as a unit to extract features and can be divided
into two categories: model‐based [14–17] and appearance‐based
[18–25]. The model‐based method tries to reconstruct the hu-
man 3D‐body and motion models to identify individuals. Wolf
et al. [14] used to model the dynamic characteristics of the gait
sequence to express the overall understanding of the gait
sequence. The gait silhouettes under different views are mapped
on a common template by the 3D‐model, but it is difficult to
train because of the complexity of network architecture.

Many appearance‐based methods in this fashion perform
gait recognition in a more lightweight (easily to train) network
architecture. Inspired by the great achievements in face recog-
nition and action recognition, some researchers leverage
generative methods to reconstruct the gait template in all views.
The generative adversarial network (GAN) [26] is used to
generate invariant side‐view gait images to adapt to the situation
of appearance changes caused by different clothing. Yu et al. [22]
proposed a unified cross‐view gait recognitionmodel based on a
generative framework to learn view‐invariant features. A multi‐
loss strategy is used in GaitGAN [27] to optimize the network
to increase the inter‐class distance and reduce the intra‐class
distance. All these methods compress the gait silhouettes from
different views into a uniform template for gait recognition.
However, it is believed that these methods retain unnecessary
sequential constraints for periodic gait [3] and ignore some
important details of different parts of the human body.

For learning more detailed information to enhance feature
representation, many advanced methods in Re‐Identification
(Re‐ID) task [5–9, 28–30] have proved that locating important
body parts from images to represent local identity information is
an effective method to improve the accuracy and robustness of
recognition.One of themost commonly used strategies is to split
the feature map into strips and merge them into column vectors.
Wang et al. [31] designed a Multiple Granularity Network with
multiple branches, which uniformly partitions the images into
several stripes, and varies the number of parts in different local
branches to obtain local feature representation with multiple

F I GURE 1 From left to right are silhouettes of all views in The
CASIA gait recognition dataset B (CASIA‐B), gait dataset, which possess
evidently different shapes and moving patterns during walking
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granularities. Fu et al. [8] proposed a simple and effective hori-
zontal pyramid matching method to fully exploit various partial
information of a given person. In the task of gait recognition,
many of the latest articles have applied the strategies of fine‐
grained features. Chao et al. [3] used Horizontal Pyramid Map-
ping tomap the set‐level feature into amore discriminative space
for robust feature representation. Zhang et al. [32] employed the
idea of part‐based unified segmentation to extract local features
of gait. However, these methods only consider coarse fine‐
grained attentional features and ignore the relationship be-
tween neighboring regions.

To learn both the complement of important details
through fine‐grained features and the relationship between
neighboring regions, in this work, the proposed model GaitGP
combines the attention information to learn global feature
representation and aggregate it with the fine‐grained features
to make feature representation more robust.

2.2 | Deep learning on attention

One common learning strategy is long short term memory
(LSTM)‐ based [32, 33]. They employ LSTM to temporal
attention scores to pay more attention on those discriminative
frames, and thus, improving the overall performance. However,
thesemethods are considered to retain the unnecessary sequence
constraints on the periodic gait. Additionally, some new ap-
proaches in the Re‐ID task combine the local attention‐based
representation of the image to improve performance [1, 30,
34–38]. Li et al. [34] proposed a Spatial Transformer Network
(STN) with spatial constraints [36] to locate deformable pedes-
trian features. Zhao et al. [39] built a hard attention model by the
STN to search for components, given the pre‐defined spatial
constraints. Li et al. [1] presented Harmonious Attention con-
volutional neural network (CNN) for joint learning of different
levels of visual attention subject along with simultaneous opti-
mization of feature representation.

Inspired by the successful application of visual attention,
some methods directly perform on random sequences to get
attention information, thus, avoiding unnecessary sequence
constraints on the periodic gait. GaitSet [3] presented the Set
Pooling applying attention mechanism [1, 40, 41] to improve
its performance. GaitPart [4] applied the channel‐wise atten-
tion mechanism [6, 42, 43] to the re‐weighted micro‐motion
feature, which aims to overcome the limitation of the global
feature. The above methods show that the attention infor-
mation is beneficial to improve the performance of gait
recognition. Therefore, in our method, we propose the CSP to
learn channel‐wise attention to enhance the global feature.

3 | PROPOSED METHOD

In this section, we first summarize the overall network archi-
tecture of the GaitGP model. This is followed by a detailed
description of the two components of the model, that is, the
CAFE and GPFC.

3.1 | Overall framework

The overall of the proposed method is shown in Figure 2.
Given a dataset of n people with identity yi, i ∈ 1, 2, …, n, we
assume that the sequence of each identity is Xi. s silhouettes
given from each Xi are expressed as Xi ¼ fx

j
i; j ¼ 1; 2;…; sg.

We first use the CAFE to jointly perform attention selection
and feature representation. Then, the global features are
extracted through a channel attention mechanism, which is
formulated as follows:

χτ ¼ CAFE φ Xið Þð Þ ð1Þ

where χτ denotes the output feature map of the CAFE and φ
denotes the function of attention selection, which is imple-
mented by the CSP in the CAFE. The details of the CSP will
be introduced in Section 3.2.

Then, the GPFC divides χτ into t sub‐branches. Each sub‐
branch is horizontally split into p = 2γ, γ = 1, 2, …, denoted as
χpτ partitions, Finally, the GPFC combines all the fine‐grained
features and the global feature χτ to learn the relationship
between the neighbor regions. The GPFC is formulated as
follows:

νδ ¼GPFC
Xt

i¼1
δ χpτ
� �

 !

ð2Þ

where νδ denotes the column vector down‐sampled by the δ; δ
denotes a Multi‐Granularity Mapping (MGM) module. More
details will be introduced in Section 3.3.

Finally, we choose the separate triplet loss [3, 4] to train the
proposed model.

3.2 | Channel‐Attention Fusion Extractor

The CAFE learns global features with channel‐level atten-
tion to enhance representation. There are two components
in the CAFE: The CSP which aims to learn the attention
information and the Partitionable Convolution layer
(PConv) used to extract the global feature for integrating
the attention information freom the CSP. Next, the CSP is
described in detail first, followed by the exact structure of
the PConv.

3.2.1 | Channel‐level Spatial Pooling

To enhance the expressiveness of global features, the CSP
learns a channel‐wise attention map to refine it. As shown in
Figure 2, each block of the Partial Branch contains a CSP,
assuming that f b ∈ Rc�s�h�w is the input feature map of the
CSP; b represents the block in the CAFE; c is the number of
channels; s is the length of the gait sequence and h;wð Þ is the
size of each feature map.

XIAO ET AL. - 189

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12051 by U

niversity O
f Southern Q

ueensland, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Since the length of the input gait may be different,
many previous works [3, 4, 10] successfully utilize pooling
to aggregate the gait information of elements in a
sequence. Therefore, as shown in Figure 3, we first use
Spatial Pooling to aggregate the information of gait ele-
ments to represent the gait motion pattern. A natural
choice of the Spatial Pooling is to apply the statistical
max function [3] on channel dimension. We pre‐divide fb
into τ, τ ∈ 1; 2; 4;…½ � channel‐level partitions to aggregate
the information of gait elements which is formulated as
follows:

f τ
sp ¼maxs

1
H �W

XH

h¼1

XW

w¼1
f bc

τ;s;h;w

 !

ð3Þ

where f bc
τ;s;h;w

∈ R
c
τ�s�h�w is the sequence‐level feature map and

f τ
sp ∈ Rc�h�w is the frame‐level feature map.

Then, f τ
sp is divided into two streams denoted as f τ

sp1 and
f τ
sp2 . f

τ
sp1 is used to extract spatial attention by the ConvNet.

The ConvNet consists of 1� 1 convolutional layer. We assume
that each pre‐partitioned τ partition corresponds to a ConvNet
module for extracting the local spatial attention. Note that
these ConvNet modules are independent. Then, we get a sa-
liency channel‐level attention score fscore, formulated as
follows:

f score ¼ Concat
Xτ

1
ConvNet f τ

sp1

� �
ð4Þ

where Concat represents the concatenation on the dimension
of the channel.

Finally, fscore is merged into the f 2sp collected by the statis-
tical functions, formulated as follows:

f weight ¼ SP f
τ
sp2

� �
⊕ f score ð5Þ

where f weight ∈ Rc�h�w is the final output of the CSP and ⊕ is
a channel‐wise fusion operation. fweight contains the frame‐
level Global information.

3.2.2 | Partitionable convolution layer

The PConv is a basic unit of the blocks in the CAFE. To
improve the compatibility between attention information and
the global feature, the PConv is designed to be partitionable.
As shown in Figure 2, we design the CAFE as a multi‐
branched structure. In the Global Branch, the PConv is
mainly utilised to extract global features; while in the Partial
Branch, the PConv is used to collect channel‐level attention
information. The global feature extracted in different blocks of

F I GURE 2 The framework of GaitGP. Channel‐Attention Fusion Extractor is consistsof CSP and Blocks. CSP represents the Channel‐level Spatial Pooling
and the Blocks are composed of two convolutional units (PConvs). In the Global Branch, PConv is mainly utilized to extract global features; while in the Partial
Branch, PConv is used to collect channel‐level attention information. Global And Partial Feature Aggregator is used to gather the global and fine‐grained
features. MGM represents the Multi‐Granularity Mapping. Note that the MGMs are independent, each of which has a different scale. The dimension of the final
feature is 256. FC, Fully Convolution
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the Global Branch are added to the Partial Branch. In order to
adapt to the various‐level fusion of global features and
channel‐level attention information, we pre‐define that each
block has τ channel‐wise regions. In the initialization block
(Block1), the PConv (τ = 1) is equivalent to the regular con-
volutional layer. In the remaining blocks (Block2 and Block3),
the PConvs are divided; The input global features are divided
into t channel regions for convolution operation, and then
vertically spliced together as the final output.

Supposing the output of the Global Branch is
Sglobal ∈ Rc�h�w and output of partial branch is
Spart ∈ Rc�h�w, we connect both the two feature maps, rep-
resented as follows:

Spart ¼ CSP f i
� �

⊕ PConvp f weight
� �

ð6Þ

Sglobal ¼ PConvg f i
� �

ð7Þ

where PConvp and PConvg represent the convolutional layer
in the Partial Branch and in the Global Branch, respectively. ⊕
denotes the concatenate operation.

Scaf e ¼ Concat
Sglobal
Spart

� �

∈ R2c�h�w ð8Þ

where Scafe is the final feature map of the CAFE, Concat
represents the function Concatenate. Note that 2c means that
the dimension of the channel becomes twice after the opera-
tion Concat.

Different layers have different receptive fields and each
block contains two PConv layers, as shown in Figure 4(b). The
exact structure and parameters of each PConv are shown in
Table 1. As shown in Figure 4(a), taking the PConv in Block3
as an example, the input feature map is horizontally divided
into τ = 4 partitions, which are operated independently. Then,

the obtained channel‐level feature vectors are spliced vertically
as the final output.

3.3 | Global and Partial Feature Aggregator

In literature, splitting the feature map into strips is
commonly used in person Re‐ID task [5, 8, 31]. Horizontal
Pyramid Pooling (HPP) [8] proposes to learn different fine‐
grained features with four scales, and thus, can help the
deep network focus on features with different sizes to
gather both partial and global information. We improve the
HPP to obtain relevant information between neighboring
regions. The most obvious modification is that we divide the
subsequent part into five independent sub‐branches after the
CAFE process. Each sub‐branch has similar architecture
with different scales.

Specifically, the GPFC has ρ scales. On scale ρ, the feature
map, Scafe, extracted by the CAFE is split into five independent
sub‐branches, expressed as fParttgt¼1;2;…;5. Each sub‐branch
uses an MGM module with different scales, as shown in
Figure 2. The MGM splits each Partt into ρ = 2m−1 on height
dimension, that is,

PM
m¼12

M−1 strips in total, where
m ∈ 1; 2;…;Mf g, M = 1. The upper sub‐branch Part1 con-
tains only one whole partition (preserve global feature), which
is used to supplement the relevant information between
neighboring regions of other sub‐branches. For the remaining
four sub‐branches, the Scafe is split into different ρ scales, that
is, horizontally divided into ρ stripes to learn different fine‐
grained features independently.

Moreover, the structure of the MGM module is shown in
Figure 5. On scale ρ, the Separate Max Pooling (SMP) is
applied to downsample Scafe into 3‐D strip features of equal
size. Then the Separate Conv1dNet (SC) module is leveraged
to reduce the dimension, presented as vt, which consists of a 1‐
D convolutional layer with a kernel size of ρ. The specific
parameters of each MGM component are shown in Table 2.
The MGM is formulated as follows:

F I GURE 3 The structure of CSP. Take τ = 4 as
an example. The SP module applies an improved
statistical max function to gather the most
discriminative feature. The ConvNet is a
convolutional layer with an activation function
rectified linear unit (ReLU), which obtains the
channel‐level attention scores. CSP, Channel‐level
Spatial Pooling
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GPFC vtð Þ ¼
Xt

i¼1
MGMt Scaf e

� �
ð9Þ

MGMt Scaf e
� �

¼ Concat SC vpð Þð Þ ð10Þ

vp ¼ SMP
X5

p¼1

Xρ

j¼1
vpj

0

@

1

A ð11Þ

where MGMt is a ρ‐granularities extraction feature; vpj is hor-
izontally divided into ρ scales; vt is the aggregated output
vector and Concat represents the concatenate operation. The
SMP is implemented by the 1‐D Max Pooling with the kernel
size of ρ, which is formulated as follows:

SMPðvpj Þ ¼Maxpool2dðv
p
j Þ ð12Þ

Finally, we perform the Separate Fully Convolution (FC)
layer to obtain the final features of the GaitGP, described as fc,
formulated as follows:

vf c ¼ Sepatate FC
Xρ

j¼1
vt

0

@

1

A ð13Þ

In the testing phase, to obtain the discriminating ability, we
splice all the features down to 256 dimensions as the final feature
map, combining the global and fine‐grained information to
improve the comprehensiveness of the learning features.

3.4 | Implementation details

3.4.1 | Loss function

As shown inFigure 2,we add a SeparatedTriplet Loss function to
supervise learning, which applies the Separate Batch All (BA+)
triplet loss [44] to train the network and use the corresponding
column feature vectors between the different adversarial samples
to calculate the loss. The triplet loss is defined as follows:

Ltri ¼ D N γ;Np
� �

−D N γ;Nn
� �

þm
� �

þ
ð14Þ

where Nγ is a random sample. Np is a positive sample with the
same identity as the Nγ. Nn is a negative sample with a different
identity from the Nγ. m is the margin of the triplet loss. The
operation[ϑ]+ is equal to max(ϑ, 0).

3.4.2 | Training

The input of the network is a series of silhouettes. We
randomly select samples from the entire gait sequence, which
can be regarded as a time data enhancement method. We
sample a batch of size n � s from the training set, where n

F I GURE 4 (a) The illustration of the PConv in Block3 and the
dimension of the input feature map is expressed as c � h w. (b) Block3 is a
deep‐layer block and consists of two PConvs. PConv, Partitionable
Convolution

TABLE 1 The exact structure of the CAFE and the specific
parameters of PConv. In_D, Out_D, Kernel represent the input dimension,
output dimension and kernel size of the PConv, respectively. In particular, τ
indicates the pre‐defined partition in the PConv. Feature denotes the output
feature maps of each block

Block Layer τ In_D Out_D Kernel Feature

Block1 PConv1 1 1 32 5� 5; 2ð Þ f b11

PConv2 1 32 32 3� 3; 1ð Þ

MaxPool2d, kernel size = 2, stride = 1

Block2 PConv3 2 32 64 3� 3; 1ð Þ f b2t |
T
t¼1

n o

PConv4 2 64 64 3� 3; 1ð Þ

MaxPool2d, kernel size = 2, stride = 1

Block3 PConv5 4 64 128 3� 3; 1ð Þ f b3t |
T
t¼1

n o

PConv6 4 128 128 3� 3; 1ð Þ

MaxPool2d, kernel size = 2, stride = 1

Abbreviations: CAFE, Channel‐Attention Feature Extractor; PConv, Partitionable
Convolution.

F I GURE 5 The structure of Multi‐Granularity Mapping (MGM). Take
scale ρ = 16 as an example, the Separate Max Pooling (SMP) is applied to
downsample. The Separate Conv1dNet (SC) is leveraged to reduce the
dimension
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represents the number of people with different ids, and s
represents the number of different sequences used by each
person with the same id in the batch. Sampling strategies in
[3, 4] are applied, and the Separate Batch All (BA+) triplet loss
[44] is used to calculate the loss.

3.4.3 | Testing

The gait sequence is tested using the spatio‐temporal features
extracted for each gait sequence. The average Euclidean dis-
tance between the gallery and the feature column vector of the
gallery can be used to match the metric.

4 | EXPERIMENTS

In this section, we first describe two databases, CASIA‐B and
OU‐MVLP, to evaluate our model GaitGP, followed by
comparing the performance of GaitGP with the state‐of‐the‐
art methods and ending with ablation study on CASIA‐B to
verify the effectiveness of each component in GaitGP.

4.1 | Datasets and training details

4.1.1 | CASIA‐B

CASIA‐B [11] is a widely used gait dataset containing 124
subjects, each of which includes 11 views. Among the views,
there are 10 sequences with three gait conditions; one normal
condition normal (NM) that includes six sequences. The first 4
sequences NM#01‐04 form a gallery, and the remaining two
sequences NM#05‐06 are used as probes. In addition to the
normal condition sequence, there are two sequences; one is
wearing a coat cloth (CL)#01‐02, the other is carrying a bag
(BG)#01‐02. The dataset enables researchers to simultaneously
study cross‐view and cross‐wearing issues, in other words, each
body contains 11 � (6 + 2 + 2) = 110 sequences. There are
various experimental schemes [45] based on CASIA‐B to verify
the feasibility and effectiveness of the proposed method. For

fairness, this study strictly follows the popular protocol [6].
Besides, there are three training settings which are configured
according to the different training scales in the training stage
[3], that is, small‐scale training (ST), medium‐scale training
(MT), and large‐scale training (LT). Among them, 124 subjects
are divided into two groups; 24, 63, and 74 subjects are put
into the training set, and the remaining subjects are reserved
for testing. During the test, the first 4 sequence conditions of
NM (NM#01‐04) are regarded as a gallery and the rest are
divided into three subsets of walking conditions based on these
six sequences, which are the NM subset of NM#05‐06, the
other BG subset of BG#01‐02, and the last CL subset of
CL#01‐02.

4.1.2 | OU‐MVLP

OU‐MVLP [12] is the newly released public gait data-
base with the largest view changes, which consists of
10,307 subjects; each subject containing 14 views
0; 15;…; 90; 180; 195;…; 270ð Þ. We use the first 5153 for
training and the remaining 5154 for testing. There are
two sequences in the dataset. In the testing stage, the
sequence #01 is classified as the gallery set, and the other
sequences #00 are classified as the probe set. According
to [12], four typical viewing angles 0°; 30°; 60°; 90°ð Þ are
evaluated. In addition to doing these four typical views,
we conduct experiments with all the views [3, 4, 32, 46].
The data set can provide us with stable comparison
results.

4.1.3 | OULP

OULP [13] is a large dataset with only 4 view angles(55°, 65°,
75°, 85°). There are 4,007 subjects (2135 males and 1872 fe-
males) with ages ranging from 1 to 94 years and each subject
containing two sequences, one in the gallery and the other as a
probe sample. Compared with CASIA‐B, OULP has smaller
view differences and no variants in walking conditions. How-
ever, the large number of subjects enables us to compare
different gait recognition approaches with statistical signifi-
cance. Our experimental setting is the same as in [20], since not
all samples of each subject are covered from four view angles.
A total of 3714 subjects (according to the file of first view
angle) are used in the subsequent experiments. We use 1857
subjects as the train set and the rest as the test set. Note that
the original silhouettes have already been cropped and aligned.
We directly use the given silhouettes to construct the gait
templates.

4.1.4 | Training details

During the experiment, the length s of the input gait sequences
is set to 30, the same as [3, 4]. We use the method mentioned in
[12] to crop, align all input sequences, and adjust their size to

TABLE 2 Comparison of the settings for the MGM in five sub‐
branches. “Sub” refers to the name of sub‐branches. “P” refers to the
number of partitions on feature maps. “Map Size” refers to the size of the
output feature maps from each branch. “Dim” refers to the dimensionality
and number of features for the output representations. “Feature” means the
symbols for the output feature representation

Sub ρ Map Size Dim Feature

Part1 1 8� 1ð Þ 256� 2� 16ð Þ vp1j¼1

Part2 2 8� 1ð Þ 256� 2� 16ð Þ vp2j |
2
j¼1

Part3 4 4� 1ð Þ 256� 4� 16ð Þ vp3j |
4
j¼1

Part4 8 2� 1ð Þ 256� 8� 16ð Þ vp4j |
8
j¼1

Part5 16 1� 1ð Þ 256� 16� 16ð Þ vp5j |
16
j¼1

Abbreviation: MGM, Multi‐Granularity Mapping.
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64 � 64. The optimizer Adam is Adopted [47] to perform
gradient optimization and the learning rate is set to 1e − 4. In
addition, the momentum is set to 0.9 and the margin of the
Separate Triplet Loss is set to 0.2, the same as [44]. In CASIA‐
B, we set the batch size to 8; 16ð Þ, and the number of training
iterations is 90K. In OU‐MVLP, because it contains far more
sequences than CASIA‐B, we set the number of parts of the
GPConv layer in block2 and block3 to 2, 2, 4, 4, and the batch
size to 32; 8ð Þ, the number of iterations is set to 250K, and the
learning rate is set to 1e‐5.

4.2 | Comparison with the state‐of‐art
methods

4.2.1 | CASIA‐B

As shown in Table 3, we compare our method with the latest
gait recognition methods, which mainly include CNN‐LB [20],
GaitNet [46], GaitSet [3], MGAN [25] and ACL [33]. To make
a systematic and comprehensive comparison with the advanced
methods, all conditions (NM, BG, CL) are included, and

TABLE 3 In three experimental environments with different sample sizes(BT, MT, LT), CASIA‐B’s average level 1 accuracy under all viewing angles and
different conditions (not including the same viewing angle)

Gallery 0°‐180°

Size Probe NM#1‐4 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

ST(24) NM#5‐6 CNN‐LB [20] 54.8 ‐ ‐ 77.8 ‐ 64.9 ‐ 76.1 ‐ ‐ ‐ ‐

GaitSet [3] 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5

GaitGP(ours) 70.0 83.7 91.3 89.3 81.6 77.4 82.0 88.8 91.4 86.0 67.5 82.6

BG#1‐2 GaitSet [3] 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6

GaitGP(ours) 62.1 74.2 79.0 76.5 72.5 64.1 69.7 77.0 79.2 74.3 58.2 71.5

CL#1‐2 GaitSet [3] 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9

GaitGP(ours) 31.8 47.3 50.9 48.1 46.2 41.8 44.4 44.3 42.9 34.8 28.3 41.9

MT(62) NM#5‐6 GaitNet [46] 49.3 61.5 64.4 63.6 63.7 58.1 59.9 66.5 64.8 56.9 44.0 59.3

MGAN [25] 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1

GaitSet [3] 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0

GaitGP(ours) 88.9 95.3 98.2 97.4 91.4 90.0 92.7 98.4 98.7 94.3 85.2 93.7

BG#1‐2 GaitNet [46] 29.8 37.7 39.2 40.5 43.8 37.5 43.0 42.7 36.3 30.6 28.5 37.2

MGAN [25] 48.5 58.5 59.7 58.0 53.7 49.8 54.0 51.3 59.5 55.9 43.1 54.7

GaitSet [3] 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3

GaitGP(ours) 80.9 87.7 91.9 90.6 85.1 77.9 81.9 90.5 94.5 89.5 77.7 86.2

CL#1‐2 GaitNet [46] 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2

MGAN [25] 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5

GaitGP(ours) 54.8 63.5 72.4 67.4 61.7 58.7 60.8 64.9 64.6 59.8 48.8 61.6

LT(74) NM#5‐6 CNN‐LB [20] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9

GaitNet [46] 91.2 92.0 90.5 95.6 86.9 92.6 93.5 96.0 90.9 88.8 89.0 91.6

GaitSet [3] 90.8 97.8 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

ACL [33] 92.0 98.5 100.0 98.9 95.7 91.5 94.5 97.7 98.4 96.7 91.9 96.0

GaitGP(ours) 91.7 98.2 98.8 98.3 95.7 93.4 95.9 99.4 99.1 98.3 89.6 96.2

BG#1‐2 CNN‐LB [20] 64.2 80.6 82.7 76.9 64.7 63.1 68.0 76.9 82.2 75.4 61.3 72.4

GaitNet [46] 83.0 87.8 88.3 93.3 82.6 74.8 89.5 91.0 86.1 81.2 85.6 85.7

GaitSet [3] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitGP(ours) 87.1 91.9 94.6 92.2 88.9 82.7 86.2 94.1 96.5 94.5 84.7 90.3

CL#1‐2 CNN‐LB [20] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0

GaitNet [46] 42.1 58.2 65.1 70.7 68.0 70.6 65.3 69.4 51.5 50.1 36.6 58.9

GaitGP(ours) 60.0 74.0 78.6 77.8 69.5 67.7 69.7 72.3 73.5 66.6 51.5 69.2

Note: The parts in bold are the best experimental results.
Abbreviations: BG, bag; CASIA‐B, the CASIA gait recognition dataset B; CL, cloth; LT, large‐scale training; MT, medium‐scale training; NM, normal; ST, small‐scale training.
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further experiments and comparative analyses are carried out
with different training sample sizes (BT, MT, LT). The pro-
posed method achieves the best recognition accuracy in almost
all angles.

(1)As shown in Table 3, CNN‐LB [20] is a GEI‐based
method and others are all based on the silhouettes, but
the latter all perform better than the former. It shows that
video‐based methods have great potential in extracting
more fine‐grained information and distinguishing infor-
mation from images.
(2)We discuss with GaitNet [46] and MGAN [25],
which have the same structural purpose but different
architecture composition. In GaitNet [45], the Auto‐
Encoder is introduced to obtain more distinguishing
functions, and the multi‐layer LSTM is applied for
spatio‐temporal modeling. MGAN uses a generative
confrontation network to map different costumes to
the same template from the front and side perspec-
tives. In our model, we introduce the CSP to extract
the local feature attention through channel‐level divi-
sion as the spatio‐temporal attention feature of the
subject.
(3)Compared with GaitSet [3], our structure is used a
partitionable convolution unit called the PConv, which is
used to obtain the channel‐level feature fusing with spatial
attention. The MGM of GaitGP also has a similar struc-
ture as that of GaitSet, but the MGM pays more attention
to the fine‐grained local segmentation using the inde-
pendent operation to enlarge more representative features
and reduce the similarity between different subjects. This
result reveals the advantages of the PConv and MGM
through experiments. From the experiment, GaitGP has
obtained better results under various walking conditions
on CASIA‐B.

4.2.2 | OU‐MVLP

To prove the effectiveness of our method, we conduct two
large‐scale experiments on OUMVLP. (1) We use the same
evaluation setting as [12] where 5153 people are trained and
5154 people are tested. The silhouettes of four typical views
0°; 30°; 60°; 90°ð Þ are evaluated for cross‐view recognition, as
shown in Table 4. (2) We list the results in two gallery col-
lections including all the 14 views and the results are averaged
on the gallery view (exclude the identical‐view). We set the
dimension of the global feature and the local feature as 512 and
reduce the dimensionality through MGM to 256, as shown in
Table 5.

4.2.3 | OULP

To prove the broad applicability of our method, we also
perform the experiments on OULP. The results are shown

in Table 6: We compare our method with CNN‐LB [20],
GEINet [46], and MGAN [25]. These methods are based
on cross‐view to calculate the accuracy, that is, calculating
the average accuracy of each view angle excluding the same
view angle. Our GaitGP performs better than these
methods.

4.3 | Ablation study

To further verify the effectiveness of each component in our
proposed network GaitGP, the two components of the CAFE,
PConv and CSP, and the MGM module in the GPFC pipeline
are included. We perform the ablation study of these compo-
nents on the CASIA‐B data set. Research, experimental results,
and analysis are as follows.

TABLE 4 OUMVLP results excluding the identical‐view cases under
four typical views 0°; 30°; 60°; 90°ð Þ

Probe

Gallery 0°, 30°, 60°, 90°

GEINet [46] 3in + 2diff [12] GaitGP(ours)

0° 8.2 25.5 73.8

30° 32.3 50.0 87.3

60° 33.6 45.3 84.5

90° 28.5 40.6 83.9

Mean 25.7 40.4 83.4

Note: The parts in bold are the best experimental results.

TABLE 5 OUMVLP results excluding the identical‐view cases under
all views

Probe

Gallery all 14 views

GEINet [46] GaitGP(ours)

0° 11.4 73.8

15° 29.1 84.0

30° 41.5 87.3

45° 45.5 87.6

60° 39.5 84.5

75° 41.8 86.2

90° 38.9 83.9

180° 14.9 77.4

195° 33.1 82.5

210° 43.2 85.9

225° 45.6 86.3

240° 39.4 82.5

255° 40.5 84.6

270° 36.3 81.6

Mean 35.8 83.4

Note: The parts in bold are the best experimental results.
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4.3.1 | Effectiveness of PConv

As introduced in Table 1, we present the parameter settings of
the PConv. To evaluate the robustness, we design four groups
of experiments. The blocks in the CAFE are composed of two
PConv. In Exp.1‐1, we set the τ = 1 in Block1 for retaining its
original state and the remaining two blocks are parameterized
as 1. The difference between Exp.1‐2 and Exp.1‐1 is that
Block1 remains unchanged, but the parameter τ in Block2 and
Block3 are set to 2 and 4. Exp.1‐3 is based on Exp.1‐2, but the
latter two blocks are sets to 4. Similarly, the parameter τ of
Block2 and Block3 in Exp.1‐4 are set to 4 and 8. All the results
of these controlled experiments are shown in Table 7.

Comparing Exp.1‐1 and Exp.1‐2, on the one hand, we
found that the blocks with the original state(τ = 1) are not
effective, which shows the advantages of partitionable extrac-
tion. On the other hand, the features of Exp.1‐4 are too
dispersed and lead to poor performance in the superficial layer,
which is probably because of too much subdivision destroying
the information of silhouette between the edges of the adjacent
regions and increases the proportion of noise covariates.
Finally, by comparing the differences of Exp.1‐2, Exp.1‐3,
Exp.1‐4, we observe that the average rank‐1 accuracy first rises
and then falls on the NM and BG subset, while it continues to
rise under the CL subsets. It is believed that the reason for this

phenomenon is that the different receptive fields of the top
neurons can adapt to different walking conditions.

4.3.2 | Effectiveness of CSP

The traditional spatial feature mapping [3, 4] uses Max ⋅ð Þ or
Avg ⋅ð Þ to aggregate spatial information. But, using them alone
cannot realize the mapping adaptively. In this paper, we
introduce CSP to achieve spatial feature mapping. Figure 3
shows its internal structure and describes the components used
inside. Inspired by the idea in [1], slicing the feature map at the
channel level, we design a new statistical function SP and use
ConvNet to weight the local features to enhance attention. To
verify the effectiveness of CSP, we design comparative exper-
iments by implementing methods with different spatial feature
mapping strategies on the CASIA‐B data set. Note that the
channel‐level slice parameters are referred to the parameters τ
in the previous ablation experiment.

The results are shown in Table 8. Exp.2‐1 uses the traditional
statistical function SP under the conditions of NM and BG.
Compared with Exp.2‐2, we set the parameter τ of SP1, SP2, SP3
to slice 1, 2, and 4 in different blocks, which has better perfor-
mance. In Exp.2‐3, the addition of the ConvNet layer aims to
enhance the attention and make the aggregation of spatial

TABLE 6 OULP cross‐view average
accuracies %ð Þ for all pairs of four view angles

Probe angle Method

Gallery angle

Identical angle55° 65° 75° 85° Mean

55° CNN‐LB [20] ‐ 98.3 96.0 80.5 91.6 98.8

GEINet [46] ‐ 93.2 89.7 79.9 87.6 94.7

MGAN [25] ‐ 99.4 96.1 77.9 91.6 98.8

Method [13] ‐ ‐ ‐ ‐ ‐ 84.7

GaitGP(ours) ‐ 98.9 96.8 90.3 95.3 99.6

65° CNN‐LB [20] 96.3 ‐ 97.3 83.3 92.3 98.9

GEINet [46] 93.7 ‐ 93.8 90.6 92.7 95.1

MGAN [25] 97.7 ‐ 98.5 84.4 ‐ ‐

Method [13] ‐ ‐ ‐ ‐ ‐ 86.6

GaitGP(ours) 99.0 ‐ 97.1 90.8 95.6 99.1

75° CNN‐LB [20] 94.2 97.8 ‐ 85.1 92.4 98.9

GEINet [46] 90.1 94.1 ‐ 93.8 92.7 97.7

MGAN [25] 94.8 97.8 ‐ 86.4 ‐ ‐

Method [13] ‐ ‐ ‐ ‐ ‐ 86.9

GaitGP(ours) 98.6 98.7 ‐ 91.1 96.1 99.1

85° CNN‐LB [20] 90.0 96.0 98.4 ‐ 94.8 98.9

GEINet [46] 81.4 91.2 94.6 ‐ 89.1 94.7

MGAN [25] 86.9 97.4 99.5 ‐ ‐ ‐

Method [13] ‐ ‐ ‐ ‐ ‐ 85.7

GaitGP(ours) 97.5 98.0 97.1 ‐ 97.5 99.2

Note: The parts in bold are the best experimental results.
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informationmore effective, reaching accuracy rates of 96.2%and
90.3%. Besides, in the CL setting, when the parameter τ of SP1,
SP2, SP3 is set to 1, 4, and 8, as shown in Exp.2‐4, the highest
accuracy rate is 69.2%.Thismay indicate thatfine‐grained feature
extraction is better for extracting silhouette maps with bags.

4.3.3 | Effectiveness of the MGM

We duplicate five branches of the intermediate feature maps
obtained by the backbone network, named Part1, Part2, Part3,
Part4 and Part5, and the corresponding configurations are
shown in Table 2. From the experimental results, we found
that setting the horizontal stripes as ρ = 2m−1,m ∈ 1, 2, 3, 4, 5,
the same as in [3], performs well, which shows that different
fine‐grained segmentation can better capture details that are
easily ignored for recognition.

In our experiment, we explore the influence of multi‐
branch architecture from two aspects. As shown in Table 9,
on the one hand, the structure with only one partition branch
Part1(considered as the global representation) is compared
with the structure of integrating only four independent
different multi‐granularity branches. It is shown that the inte-
grated strategy achieves better performance than any single
participating network. It shows that, compared with the global

network, the collaborative learning of branches has more
discriminatory feature representations. On the other hand, we
combine the two structures and compare them with the above
two experiments. The effect of combining the global features
and local features is higher than using one of them alone. We
believe that the mutual influence between the four independent
different multi‐granularity branches supplements their blind
spots in their learning process.

4.3.4 | Efficiency of GaitGP

As discussed in [48], the efficiency of the pair‐wise simulation
degree learning method [49] is limited. On the other hand,
since each sample only needs to be calculated once [3], our
network takes 1.36 min to complete the test on 4 NVIDIA
1080TI GPUs. Table 10 lists the efficiency comparison on
CASIA‐B.

5 | CONCLUSION

This paper proposes a new network architecture and designs
the PConv to extract the global and partial features by
combining the advantages of both. We also propose CSP for
spatial learning attention and feature expression to improve
the performance of gait recognition tasks. In addition,
through the multi‐granularity horizontal segmentation pipe-
line, MGM, different multi‐granularity branches are inte-
grated to obtain the final gait representation. Experimental

TABLE 7 The ablation experiment performed on CASIA‐B using the
setup LT. The result is the average level 1 accuracy of all 11 views, excluding
the case of the same view. Comparison of different parameter settings of
PConv

Exp1

τ of PConv

NM BG CLτBlock1 τBlock2 τBlock3

1‐1 1 1 1 95.3 88.8 68.1

1‐2 1 2 4 96.2 90.3 67.8

1‐3 1 4 4 96.0 89.8 68.7

1‐4 1 4 8 95.9 90.2 69.2

Note: The parts in bold are the best experimental results.
Abbreviation: BG, bag; CASIA‐B, the CASIA gait recognition dataset B; CL, cloth; LT,
large‐scale training; NM, normal.

TABLE 8 The ablation experiment performed on CASIA‐B using
setup LT. Results are rank‐1 accuracies of all 11 views, excluding the case of
the same view. Comparison of CSP with different settings for different
blocks

Exp2

τ of CSP

ConvNet NM BG CLτSP1 τSP2 τSP3

2‐1 1 1 1 93.4 82.8 59.1

2‐2 1 2 4 94.3 86.5 64.5

2‐3 1 2 4 ✓ 96.2 90.3 67.8

2‐4 1 4 8 ✓ 95.9 90.2 69.2

Note: The parts in bold are the best experimental results.
Abbreviations: BG, bag; CASIA‐B, the CASIA gait recognition dataset B; CL, cloth;
CSP, Channel‐level Spatial Pooling; LT, large‐scale training.

TABLE 9 The ablation experiment performed on CASIA‐B using
setup LT. The result is the average level 1 accuracy of all 11 views, excluding
the case of the same view. Accuracy (%) of using different branches in
MGM

Part1 Part2 Part3 Part4 Part5 NM BG CL

✓ 80.4 70.3 43.2

✓ ✓ ✓ ✓ 90.6 80.4 57.8

✓ ✓ ✓ ✓ ✓ 96.2 90.3 69.2

Note: The parts in bold are the best experimental results.
Abbreviation: BG, bag; CASIA‐B, the CASIA gait recognition dataset B; CL, cloth; LT,
large‐scale training; MGM, Multi‐Granularity Mapping; NM, normal.

TABLE 10 The ablation experiment performed on CASIA‐B using
setup LT. The result is the average level 1 accuracy of all 11 views, excluding
the case of the same view. Accuracy (%) of using different branches in
MGM

Method CASIA‐B

Wu et al.[49] 40 min

Zhang et al.[48] 3 min

Zhang et al.[32] 1.5 min

GaitGP(ours) 1.36 min

Note: The parts in bold are the best experimental results.
Abbreviation: CASIA‐B, the CASIA gait recognition dataset B; LT, large‐scale training.
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results on three public datasets verify the effectiveness and
efficiency of our method.
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