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Abstract

This paper provides means for performance evaluation of a queue with Poisson Pareto Burst Process (PPBP)
input. Because of the long range dependent nature of the PPBP, straightforward simulations are unreliable. New
analytical and simulation techniques are described in this paper. Numerical comparison between the results
shows consistency. Conservative dimensioning rules using zero buffer approximations are examined versus the
more aggressive analytical approach based on the results of this paper to provide practical guidelines for network
design.

1 Introduction

The Poisson Pareto Burst Process (PPBP), also known as the M/Pareto process [4, 16, 17, 18], is a specific form of
the Poisson Burst Process [22] or the M/G/∞ process [11, 20, 25, 29]. The PPBP has gained its appeal because it is
formed in a way consistent with the way people generate Internet traffic, and because it can be used to model real
traffic streams.

The PPBP also has the highly attractive property that its variance-time curve (the variance of the total traffic
arriving in an interval of lengtht, as a function oft) is asymptotically, for larget, the same as fractional Brownian
noise with Hurst parameterH > 0.5, which is the form that has been observed in real traffic in many studies [13]. In
fact, the variance-time curve (and therefore also the autocovariance) of the PPBP can be made as close as required
to that of any long-range dependent fractional Brownian noise process by appropriate choice of parameters.
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The PPBP is based on an underlying Poisson process representing points in time at which any of a large number
of users begins transmitting a traffic burst. It has been shown [7] that the distribution of the sizes of files transmitted
across the Internet is heavy-tailed. If we assume that each file is transferred in a single burst, it seems reasonable
to model the burst lengths by a heavy-tailed random variable. The Pareto distribution has been chosen to model
the heavy-tailed burst lengths. In this paper, we choose the parameters of the Pareto distribution such that the burst
length will have infinite variance but finite mean.

Given its practical viability, the PPBP and its associated queueing problems have been extensively studied.
Tsybakov and Georganas have been amongst the leaders in studies of these processes. Together with Likhanov
they showed in [14] that a model such as the PPBP could be considered a limiting case for the multiplexing of
a large number of independent on-off sources with heavy tailed on and/or off time distributions. They examined
the conditions under which M/G/∞ processes are self-similar in [27]. Results regarding the properties of burst
processes in which the transmission rate of each burst is not necessarily constant, or the same for all bursts, are
presented in [28].

A number of authors have also worked to develop approximations for the stationary queueing distribution of
the PPBP and related processes. By far the most common approach to developing approximations for stationary
queueing distributions is to develop a formula which is exact, or which provides upper and lower bounds, for a
limiting case, as a certain parameter tends to a specific value. Typically the approximation is assumed to provide a
satisfactory approximation for values of this parameter which are sufficiently close to the limiting value.

Large deviations theory has provided a fruitful approach, and in the present context it has been used to provide
asymptotically accurate upper and lower bounds in the usual large deviations sense asx→ ∞, wherex is the buffer
contents. Examples of this approach may be found in the work of Tsoukatos and Makowski [25], Parulekar and
Makowski [20], Gonźalez-Aŕevelo and Samorodnitsky [9] and Mandjes [15]. In [29], Tsybakov and Georganas use
a large deviations approach to find expressions for both upper and lower bounds of the queueing performance of a
finite buffer single server queue (SSQ) fed by an M/G/∞ process.

A different limiting case is considered by Addie, Mannersalo and Norros in [1]. They consider an approxima-
tion which is accurate for a Gaussian traffic stream. The queueing performance of the PPBP tends towards Gaussian
asλ, the level of multiplexing in the stream, increases [4]. Thus the approximation in [1] is accurate in the limit as
λ→ ∞.

Despite these efforts, accurate performance results for an SSQ fed by a PPBP under normal traffic conditions
have not been achieved. Although the approximations are goodin the limit, they are not satisfactory for values of
real interest, which happen to be not sufficiently close to the limiting value for the quality of the approximation to
be satisfactory. The difficulty of estimating the queueing performance of the PPBP is compounded by the fact that
the infinite variance of the burst size means that straightforward simulations of PPBP SSQs are unreliable.

In this paper, we present new insight into the PPBP queue behaviour, based on the idea of dividing the process
into a pair of independent sub-processes. One of these sub-processes will be made up ofshort bursts, while the
other sub-process is made up oflong burstswhich will last longer than the time scale of interest. We use this insight
to develop new techniques for dealing with the complexities of the PPBP.

The contribution of this paper is fourfold: (1) we provide a new analytical method for obtaining the queueing
performance of a PPBP SSQ; (2) we provide a technique to improve the reliability of PPBP SSQ simulation; (3)
we use the improved simulations to show that the analytical method is accurate; and (4) we provide dimensioning
guidelines considering the above in conjunction with the zero buffer approximation (ZBA).

The remainder of the paper is organized as follows. In Section 2, we provide a formal description of the PPBP
and discuss its peculiarities related to long bursts. In Section 3, we motivate and present our improved simulation
technique for a PPBP SSQ. In Section 4, the analytical approximation is obtained. Then, in Section 5, we present
numerical results and discuss the accuracy of the different approaches. Finally, in Section 6, we discuss queue
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dimensioning implications.

2 The Poisson Pareto Burst Process

As mentioned in the introduction, the PPBP is attractive as a model for Internet traffic because it has some of the
same properties of observed traffic and it is formed in a way which appears consistent with the way Internet users
generate traffic. A number of recent studies [5, 13, 21, 30] have shown that many sources of Long Range Dependent
(LRD) traffic streams supply a significant part of the traffic carried on broadband networks. In [30], it was shown
that one possible source of this burstiness was in the aggregation of independent on-off sources with heavy tailed,
on and/or off, time distributions. In [14], it was shown that a model such as the PPBP could be considered a limiting
case for the multiplexing of a large number of such independent heavy-tailed on-off sources. Thus, the PPBP is a
natural candidate for the modeling of LRD packet data traffic streams.

In this section, we will present mathematical definitions of the PPBP. We note that when the Pareto-distributed
burst lengths have infinite variance, the PPBP is LRD. We observe that the probability of very long bursts existing
within an LRD PPBP is significant, and explain how separating the long bursts from the rest of the process can aid
in PPBP queues.

2.1 Definition and Statistics

Let us denote byZ+ the set of non-negative integers,R the real numbers, andR+ the non-negative real numbers. We
consider a continuous time process{Bt : Bt ∈ Z+, t ≥ 0} which represents the number of active bursts contributing
work to the traffic stream at timet. We define a series of arrival times{αi : αi ∈ R, i = 0,1,2, . . .} and a series of
departure times{ωi : ωi ∈ R, i = 0,1,2, . . .}. The value ofBt increases by one at timet = αi and decreases by one
at timet = ωi . We defineωi = αi + di and labeldi (di ∈ R+) the duration of theith burst. We assume{αi} is a
non-decreasing series, i.e.αi ≤ αi+1 for i = 0,1,2, . . ., but we do not restrictdi (apart from the requirement that the
burst duration is positive) and so{ωi} is not ordered. The value ofBt is given by

Bt =
∞

∑
i=0

1t∈[αi ,ωi ]

where

1X =
{

1, if X is True,
0, otherwise.

The arrival of bursts is a Poisson process with rateλ, so the intervals between adjacent burst arrival times,
αi −α(i−1), are negative exponentially distributed with mean 1/λ, and the mean number of new bursts arriving in
a time interval of lengthT is Poisson distributed with meanλT. It is well known that if the bursts arrivals are a
Poisson process, the value ofBt is Poisson-distributed, with meanλ times the mean burst duration (e.g., [6]).

In the PPBP, the burst durations,di , are independent and identically distributed Pareto random variables, having
the same distribution as random variabled. Using Pareto distributed burst durations allows the significant long
bursts that characterize LRD traffic to occur in the model. The complementary distribution function ofd is

Pr{d> x}=
{(

x
δ
)−γ

, x≥ δ,
1, otherwise,

(1)

δ> 0. For 1< γ< 2, we have that

E(d) =
δγ

(γ−1)
(2)
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and the variance ofd is infinite.
In order that the burst process should be stationary, the system is initialized withb0 initial bursts, whereb0 is a

Poisson random variable with meanλE(d). The durations of these bursts are independent and identically distributed
random variables. Their common distribution is the same as a random variableω which is the forward recurrence
time of the Pareto distribution. Thusαi = 0 for i ∈ {1, . . . ,b0} andωi values fori ∈ {1, . . . ,b0} are drawn from

Pr{ω> x}=

{
1
γ
(

x
δ
)1−γ

, x≥ δ,
γ−1

γ
(
1− x

δ
)

+ 1
γ , otherwise.

(3)

We then consider a related process,Ât , the continuous time process representing the total amount of work
contributed by all bursts in the period(0, t]. We consider the case where all bursts contribute work at a constant rate
r. Thus

Ât = r
∫ t

0
Bsds.

This gives a mean of

E(Ât) =
λtrδγ
(γ−1)

.

Cases in which the bursts do not all contribute equal rate, or in which the work rate from a given burst may vary
as a function of time, are not considered here. Results regarding the properties of burst processes in whichr is not
necessarily constant, or the same for all bursts, are presented in [28].

By [22], the variance ofÂt can be obtained by repeatedly integrating the complementary distribution function
of the burst distribution:

Var[Ât ] = 2λr2
∫ t

0
dt
∫ u

0
du
∫ ∞

v
dxPr(d> x) .

This calculation is performed in [18] to give

Var[Ât ] =

 2r2λt2
(

δγ
2(γ−1) −

t
6

)
, 0≤ t ≤ δ,

2r2λ
{

δ3γ
6(3−γ) −

δ2tγ
2(2−γ) −

t3−γδγ

(1−γ)(2−γ)(3−γ)

}
, t > δ.

(4)

Examining the expression for the variance given in (4), we see that for larget, the dominant term is
2r2λ δγt3−γ

(1−γ)(2−γ)(3−γ) . If we defineH = (3− γ)/2, then we can observe that for increasingt the growth of this

function is proportional tot2H . This implies that for 1< γ < 2 the PPBP isasymptotically self similarwith Hurst
parameter

H =
3− γ

2
. (5)

The conditions under which M/G/∞ processes are self-similar are examined in more depth in [27].
Note that in simulations we will consider a discrete time version ofÂt , where time is divided into fixed length

intervals called time-slots. We choose an arbitrary value,τ, to be our time-slot size and define our discrete time
process to be

A j = Â( j+1)τ− Â jτ = r
∫ ( j+1)τ

jτ
Bsds. (6)

The time-slot size,τ, may take on any value, but our usual choice isτ = 1. We will useµ= E(A j) andσ2 = Var(A j)
to denote the statistics of this discrete time process.

This discrete time process differs slightly from the processes considered in [11, 20], and also from the processes
analyzed in [26, 28, 29], in that the processes considered in those works sample the value ofBt , not the value of
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Ât as we do. Samples drawn fromBt can take on only discrete values, while our process is a continuous-valued,
discrete-time process. Notice that if a burst starts in the middle of a time-slot and continues beyond the end of that
time-slot, its contribution to the work arriving in that time-slot isτr/2, which is not necessarily integer. In limiting
cases for lowλ and/or high E(d) our process will behave in a very similar fashion to the discrete-valued processes
of [11, 14, 20, 26, 28, 29].

In this paper, we discuss the queueing performance of the PPBP, and of other related processes. The queueing
performance of a process is generally expressed as the queue length distribution of an infinite buffer SSQ fed by that
process. However, in Section 6, and in Subsection 4.2, we shall be considering more realistic dimensioning rules,
involving finite buffer SSQs (mostly zero buffer SSQs). For these finite buffer queues, the queueing performance is
calculated in terms oftime congestionvalues. The time congestion value for a given (finite) buffer size corresponds
to the proportion of time for which the buffer is full. To avoid confusion between finite and infinite buffer scenarios,
in the remainder of the paper we shall refer to time congestion values in the context of finite buffer queues, and to
queue length distributions for infinite buffer queues. Both measures can provide approximations to the probability
of work being lost in a finite buffer, which is the value of practical concern in network dimensioning.

2.2 Infinite Variances and Long Bursts

For x≥ δ, Equation (1) shows that the Pareto distribution has a complementary distribution function which decays
geometrically in the form ofx−γ. For 1< γ < 2, a Pareto distributed random variable will have infinite variance
and finite mean. This range of values ofγ is of interest to us, as for 1< γ< 2 the resulting PPBP will be LRD.

When initializing the PPBP we consider a number of initial bursts. The duration of each of these bursts has
the forward recurrence time distribution given in Equation (3). Its tail decays in the form ofx1−γ, i.e. considerably
more slowly than the corresponding Pareto distribution given in Equation (1). Notice that, for 1< γ< 2, the Pareto
forward recurrence time will have infinite mean as well as infinite variance.

To illustrate the effect of infinite variances on a distribution, we compare complementary distribution functions
for three different distributions in Table 1. The exponential distribution considered has a finite mean of 3 and also a
finite variance. The Pareto distribution has parametersδ = 1 andγ = 1.5, giving a mean of 3 once more. Unlike the
exponential distribution, the Pareto distribution has infinite variance. The distribution of Pareto forward recurrence
times has infinite varianceandan infinite mean. The values given for the Pareto forward recurrence distribution are
for the same value ofδ andγ used to give the Pareto tail probabilities.

The sample values in the table clearly illustrate the effects of using a heavy-tailed distribution. The tail prob-
abilities of the exponential distribution drop to be virtually zero forx≥ 1000. By comparison, the probability of
a Pareto sample exceeding 1000 is still quite significant. The probability of a sample from the Pareto forward
recurrence time distribution exceeding 1000 is even larger.

In Table 1 we can see that, even for quite moderate values ofγ (we choseγ = 1.5 which givesH = 0.75 in the
corresponding PPBP), the probability of an initial burst in the PPBP having extremely long duration is significant.
The probability of an equally long burst arriving later is significantly smaller than the probability of an initial burst
having that length, but is still much higher than it would be for an exponential distribution.

2.3 Long Bursts and Short Bursts Components of the PPBP

In order to separate the PPBP into long bursts and short bursts components, we consider a finite interval of length
W. If we consider the PPBP over any such interval, i.e.,[t, t +W], for arbitraryt, then there is always a probability
that some of the initial bursts will last for the entire time period. We label any such bursts aslong bursts. All other
bursts are calledshort bursts. The short bursts include: (1) those bursts that start at or beforet and end before
t +W, (2) those bursts that start aftert and finish at or aftert +W and (3) those bursts that start aftert and finish at
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Pr{X > x}
x Exponential Pareto Pareto forward recurrence
10 0.03567 0.03162 0.2108
100 3.34×10−15 0.001 0.06667
1000 0 3.162×10−5 0.02108
104 0 1.000×10−6 0.006667
105 0 3.162×10−8 0.002108
106 0 1.000×10−9 0.000667
107 0 3.162×10−11 0.000211
108 0 1.000×10−12 6.67×10−5

Table 1: Comparison of sample tail probabilities

or beforet +W. Considering these long and short bursts, we will divide the PPBP into two independent processes:
(1) thelong bursts processand (2) theshort bursts process. The long bursts process is a stationary but non-ergodic
process containing only the long bursts. The short bursts process contains all the remaining bursts, which we have
labeled short bursts above.

Having made this division between the long bursts process and the short bursts process, the behaviour of the
PPBP within a finite time can be more readily understood. The long bursts process will simply be a CBR component
for the duration of the time period. The rate of the long bursts process will be a Poisson distributed value.

The first and second order statistics of this short bursts process over the interval[t, t +W] can be shown to be
stationary because:

(a) The long bursts and short bursts processes are independent; this is clear because each is formed by thinning a
Poisson process, and each burst is in one process or the other, never in both.

(b) The whole process is stationary over the interval and the long bursts process is stationary over the interval,
hence stationarity of the mean and covariance of the short bursts process over the interval[t, t +W] follows by
subtraction.

For example, if the short bursts process is denoted bySt , the long bursts process byLt and the total process,
which is a conventional PPBP, byBt ,

Cov(Ss,St) = Cov(Bs,Bt)−Cov(Ls,Lt).

Since Cov(Bs,Bt) depends only ont−s, and the same is true ofLt , this is also true ofSt .

Note that the termstationaryhere applies only to the finite time-interval processes on the time interval[t, t +W].
The meaning of such a term is directly analogous to the usual meaning, but expectations and events to which the
stationarity condition (i.e. time invariance) applies are all constrained to lie entirely inside the interval[t, t +W].

Strict stationarity of the processS in the interval[t, t +W] can be shown by using basically the same argument
just used to show that the autocovariance is time-invariant to show that themoment generating functionalof the
stochastic processS is time-invariant. This is proved in Appendix A.

This is not the only way to subdivide the process into long and short bursts. For example, we could subdivide the
process defined on the entire real line by removing all bursts longer thanW. This would be adifferentsubdivision of
the process into short and long bursts. Both decompositions are valid. The latter decomposition is more complicated
because in the interval[t, t +W] there will be long bursts which finish in the interval and ones which start in the
interval.
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The effect of long bursts can be seen most clearly in simulation, where we examine the PPBP over a finite time
period. Regardless of the duration of the simulation, there will always be a significant probability of one or more
long bursts being present. As these long bursts can have a significant impact on the properties of the process, and
in particular on the queueing performance of the process, it is important that they are dealt with. This issue is the
main theme of Section 3.

The same division between the long bursts process and the short bursts process is used in the development of
the quasi-stationary approximation described in Section 4.1. In the quasi-stationary approximation, we separate the
PPBP into long bursts and short bursts components. Existing techniques for estimating the queueing performance
of stationary processes are used to estimate the performance of the short bursts process. These results are then com-
bined according to the probabilities of the long bursts process being in given states to give an overall performance
estimate for the PPBP queue.

3 Simulation Techniques

We consider a discrete time, infinite buffer SSQ with constant service rateC fed by a PPBP. Let the amount of work
buffered in the queue at the end of time intervaln beQn. In this section, we will consider simulation techniques that
could be used to generate an estimate of the stationary queue length complementary distribution, Pr{Q> x}, for
anyx≥ 0. In particular, we consider the impact of long bursts on the accuracy of simulation results for the PPBP
SSQ. In Subsection 3.3 we show how to factor in the effects of the long bursts in queueing simulations in order to
produce reliable results.

3.1 Long Bursts in PPBP Simulations

There is always a probability that any finite length simulation of the PPBP process should include bursts which last
for the entire duration of the simulation. Depending on the parameters of the PPBP process, the probability of such
long bursts occurring may be relatively small, but their effect may be quite significant. We therefore search for a
method to account for the effects of such long bursts on PPBP queueing results.

We consider the case where the duration of the simulation is some timeT. We will separate the PPBP into long
bursts and short bursts components based on the simulation durationT, makingT the simulation counterpart of the
interval lengthW which in this paper we use for the analytical approach. The long bursts will be those which are
present for the entire duration of the simulation. This means that those bursts must be among of those present at
t = 0. By (3), forT > δ, the probability of any given initial burst lasting the entirety of the simulation is

p = Pr{ω> T}=
1
γ

(
T
δ

)1−γ
. (7)

The total number of (long and short) initial bursts is a Poisson random variableB0 with meanλE(d). Let N be
the number of initial bursts with durationT or greater (long bursts). Because each of the bursts inB0 is included in
N independently with probabilityp, N also has a Poisson distribution [23] with parameter

µN = λE(d)p. (8)

Substituting (2) and (7) into (8) gives

µN =
λδγ

γ−1
1
γ

(
T
δ

)1−γ
=

λδγ

γ−1
T1−γ. (9)
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We are dividing the PPBP into two independent sub-processes. The mean of the PPBP isλE(d). The mean of
the long bursts process isµN given by Equation (9) above. At any point in time, the number of bursts in progress in
the short bursts process is a Poisson random variable with meanλE(d)(1− p).

3.2 Determining the Minimum Simulation Duration

For a given realization of the PPBP over a finite period of time, the long bursts process will behave as a CBR
component. In an SSQ queueing simulation the effect of the long bursts process will be a reduction in the capacity
available to the short bursts process. Given the duration of the simulation, and the properties of the PPBP, we
can determine the probability with which the short bursts process will have a given capacity available to it. The
probability of the long bursts process having ratenr for the duration of the simulation is Poisson with meanµN

given by (9).
There is a non-zero probability that the long bursts process will reduce the capacity available to the short bursts

process so much that the mean rate of the short bursts process will exceed the capacity available to it, pushing
the system into an unstable state. AssumingC> λrE(d), this instability would only be “temporary”. In order to
guarantee the reliability of our results, we need to ensure that the probability of an unstable simulation occurring is
less than some valueε.

In an infinite buffer system the busy period caused by this instability could conceivably continue for a consid-
erable time after the instability ceases. However, we can put a strict bound on the duration of this period of time as
follows.

Consider an aggregated input process formed by collecting the work arriving in the intervals(0,T), (T,2T),
. . . , and then subtracting from each number in this sequence the work which can be completed in an interval of
durationT. Let us denote this process by{WkT}, k = 0, 1, . . . . What we have here is a very broad aggregate
overview of the process, in which each number in the sequence{WkT} is a summary of quite a long period of time.
The great majority of entries must be negative (since the process as a whole is stable, andT has been chosen long
enough that the probability thatWkT > 0 is quite small, e.g. 10−9.

We seek a bound on the proportion of the intervals in the sequence(0,T), (T,2T), . . . , during which the original
process is either (i) unstable, i.e. the number of long bursts is sufficient that short bursts process is unstable in this
interval, or (ii) affected by a preceding interval or sequence of intervals in which the short bursts process was
unstable to the extent that the buffer is still non-empty.

Actually, we have a very good estimate and upper bound for the proportion of intervals(0,T), (T,2T), . . . ,
which are unstable, namelyP{W1 > 0}, which is basically, by construction,ε. The difficult issue is to know how
manyother intervals are affected by the heavy queues which build up in the buffers during overloads caused by
these unstable intervals. However, this proportion can be estimated, and bounded, by the probability that the buffer
in a certain queueing system is non-empty. The queueing system in question is the one where the net input process
is {WkT}, k = 0, 1, . . . . Let{V }kT denote the buffer process associated with this net input process, soV0 = 0 and

VkT = max(V(k−1)T + WkT), (10)

k> 0. From the proposition in Section 2.4 of [1], Pr{V∞ > 0} is bounded byΦσ
(
Ψ−1

c,σ (0)
)

in which Φσ denotes
the Gaussian complementary distribution function with mean zero and standard deviationσ andΨ−1

c,σ (0) denotes
the inverse of thenormal loss function, i.e.

Ψc,σ(x) =
1

σ
√

2π

∫ ∞

x
(y−c)e

−y2

2σ2 dy=
σ√
2π

e−
x2

2σ2 −cΦσ(x),

evaluated at zero. The parameters−c andσ here are the mean and standard deviation ofWkT, and for any choice
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of these parameters of real interest,

Φσ
(
Ψ−1

c,σ (0)
)
< 3Pr{WkT > 0}= 3ε (11)

(actually,Φσ
(
Ψ−1

c,σ (0)
)
≈ 2Pr{WkT > 0}, but a bound is what is wanted here, so we must use the larger estimate).

Now, if we modified the original queueing system by supplying no work at all to the buffer during intervals
when, originally, it was unstable, the effect would be largely limited to those periods where the aggregate queue,
as defined in (10), was busy. This is still a relatively small proportion of all intervals because we have chosenε
as quite a small number. It is also possible that an interval immediately following a busy period could be affected,
and such intervals are theonly other intervals which might be affected by our modification of the process, because
all other intervals will be separated from our modifications by idle periods. It is to be expected that these unstable
intervals will usually occur in long clumps separated by very long periods of time, however, in the worst case, from
the present point of view, it is possible that each busy period was of length 1, in which case theextrainterval would
double the number of intervals affected. Hence, the modified queueing system, in which instability never occurs, is
identical to the original system except in a collection of intervals, the proportion of which is less than 2×3× ε.

We therefore limit the scope of this paper to systems where the probability of instability,ε, is negligible –1
6×

the degree of accuracy sought for the distribution function in the simulation output. We know that the state space
includes some states where the system is unstable, but the total probability of this part of the state space is less than
ε. The flow-on effects from these states to other states still only affects a proportion 6ε of the state space. Therefore,
if we alter the behaviour of our system in this region of the state space, by ignoring the possibility that we reach an
unstable state, the error in our estimates of any probability at all in the system, caused by this adjustment, will be
less than 6ε.

This scope limitation does not significantly weaken the results of this paper, because analytical results for heavy
traffic cases are already available [25]. Our work in fact extends the scope to other, more realistic, cases.

Let φ be the largest value ofn for which the capacity available to the short bursts process exceeds the mean
rate of that part of the process. We therefore considerφ = bC/r−λE(d)(1− p)c, wherep = Pr{ω > T} as in the
previous subsection. Ifn> φ then the system will be unstable for the length of the simulation.

Increasing the duration of the simulation will reduce the probability of long bursts occurring, so we need to find
the simulation time durationT which ensures that Pr{N> φ} ≤ ε. We solve

Pr{N> φ}=
∞

∑
n=φ

(µN(T))n

n!
e−µN(T) = ε (12)

to find the value ofT for given values ofφ andε. Notice thatT obtained by (12) may be too long for practical
purposes. The scope of this paper is restricted to cases whereby the simulation length is practical.

We now present several sample values to give the reader an idea about the length of simulations required in
order to ensure a small probability,ε = 10−9, of the system being unstable for the duration of the simulation. We
consider a family of PPBPs, all withσ2 = 0.1066̄6 andH = 0.75, each fed into a SSQ with capacity such that the
service margin isC−µ= 1. We takeγ = 1.5 andδ = 1 in all cases. The parameterλ is varied, and for each value of
λ, (4) is solved to give the value ofr. Using the above discussed methods, we determine the length of a simulation,
such that the simulation is not overwhelmed by a collection of very long initial bursts.

The results are presented in Table 2. We see that the size ofT decreases asλ increases. For all the cases
considered,T = 106 is easily sufficient for us to be assured that the long bursts are extremely unlikely to push the
system into instability.
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λ T
0.5 302578
1 2314
10 52.49
100 14.48

1 000 9.819

Table 2: Sample values of the required minimum simulation duration to avoid a significant probability of long
bursts dominating behaviour

3.3 Factoring in Long Bursts

Even when the effects of the long bursts are very unlikely to cause instability, they may have a significant impact
on queueing performance. To calculate simulation estimates which account for the long bursts, we simulate to
calculate estimates of the queue length distribution in SSQs with service ratenr lower than the service rate of
interest. The short bursts process fed into an SSQ with service rateC−nr simulates the effect of a PPBP withn
bursts enduring for the length of the simulation being fed into an SSQ with service rateC.

We choose the simulation time duration,T, according to (12) so as to avoid any significant impact from long
bursts driving the system into instability. We consider the discrete time version of the PPBP given by (6) to be input
to an infinite buffer SSQ with constant service rateC. At the end of a time-slotj, the amount of work in the buffer
will be given byQ j = (Q j−1 +A j −C)+, whereX+ = max(X,0). We setQ0 = 0.

To calculate the overall performance of the PPBP SSQ, we subdivide the PPBP into its long bursts and short
bursts components. The long bursts and short bursts processes are as presented in Subsection 2.3 above. The time
period of interest is the simulation time duration,T. All initial bursts which last the entire length of the simulation
are assigned to the long bursts process. All other bursts form part of the short bursts process. This means that the
short bursts process includes: those initial bursts that end beforet = T; those bursts that start aftert = 0 and finish
after t = T; and those bursts that start aftert = 0 and finish beforet = T. The effect of the long bursts process
is simulated by adjusting the service rate. To estimate the queueing performance of the short bursts process, we
simulate an SSQ with service rateC−nr fed by the short bursts process.

The short bursts component of the PPBP is initialized withb∗0 initial bursts, whereb∗0 is Poisson with parameter
λE(d)(1− p). In the short bursts process, these initial bursts must be short bursts, so we truncate the Pareto forward
recurrence time, to ensure that none of the initial bursts have length larger thanT. After this initial point, the short
bursts component is allowed to evolve as if it were the full PPBP.

The estimate of the performance of the short bursts process will be given by averaging the results ofM simu-
lations, each of which will includeT sample intervals. In each simulation we estimate Pr{Q> x} by the number
of time intervals in which the amount of buffered work exceedsx, divided by the total number of intervals inT.
We will denote the estimate of the queue length complementary distribution given by such a set of simulations as
S∗(x;C−nr,M,T). Assuming that the queue size distribution process is both stationary and ergodic, this simulation
estimate will approximate the queue length complementary distribution for the infinite buffer SSQ with service rate
C− nr fed by the short bursts process. These values ofS∗(x;(C− nr),M,T) are estimates of the queue length
complementary distribution for the original queue (with service rateC) fed by a PPBP in whichn bursts are active
for the duration of the simulation.

To estimate the total queue length distribution, taking into account the probability of existing long bursts, we
sum these estimates, weighted by the probability ofn long bursts appearing at the start of the simulation. The
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estimate of the queue length complementary distribution for the PPBP is then given by

Pr{Q> x}=
∞

∑
n=0

Pr{N = n}S∗(x;(C−nr),M,T). (13)

Equation (13) uses the idea known as the quasi-stationary approximation. It relies on the assumption that
the input process transits slowly between certain states, so slowly that the stationary behaviour of the queue is
approximately the weighted average of the different behaviours in the different states, weighted by the probability
of being in each state. The idea of the quasi-stationary approximation is used again in Section 4 to produce a very
accurate approximation for the performance of the PPBP SSQ.

3.4 Quantum Simulation

Another related simulation technique has also been applied to this problem: quantum simulation. Quantum simu-
lation is a method of rare event simulation in which multiple simulations evolve according to a variety of models,
not necessarily independent, and not necessarily consistent individually with the original model. This aggregate of
simulations is related to the original model under consideration in such a way that an appropriate weighted aggre-
gate of all these simulations is consistent with the original model. See [2] for further details on this method and its
relationship with other fast simulation techniques. Results from quantum simulations appear to be consistent with
the simulation results presented in this paper, however it would add little to the present paper to include a discussion
of those results here.

4 Analytical Queueing Results for the PPBP

By far the most common approach to developing approximations for stationary queueing distributions is to develop
a formula which is exact for a limiting case, as a certain parameter tends to a specific value. Typically the approxi-
mation is assumed to provide a satisfactory approximation for values of this parameter which are sufficiently close
to the limiting value.

For example, we might find an approximation which works well asx→∞, wherex is the buffer contents, or, in
the present instance, we might develop an approximation which is better and better asλ→ ∞. In fact, several such
approximations are available for the stationary queueing distribution of the PPBP. The papers [9, 20, 29] provide
an approximation of the first form for this process, and [1] provides an approximation of the second form.

However, with all such approximations there is the possibility that, although the approximation is goodin
the limit, it is not at all satisfactory for values of real interest, which happen to be not sufficiently close to the
limiting value for the quality of the approximation to be satisfactory. In fact, this appears to be the case for both
the approximations just mentioned. The approximations which hold for sufficiently large buffer values are actually
quite poor for buffer values of practical use. Similarly, although there are some cases of interest where the Gaussian
approximation is satisfactory, cases whereλ is not sufficiently large for the Gaussian approximation to be useful
are also of interest.

We present, in this section, a new approximation for PPBP SSQ performance evaluation based on the quasi-
stationary idea. This approximation, which we call thequasi-stationary approximation, is most similar to the
Gaussian approximation and is consistent with it in the sense that for sufficiently largeλ, the two become closer
and closer. However, the quasi-stationary approximation is better than the Gaussian approximation for small values
of λ.

In this section, we present some of the analytical expressions that can be used to estimate the queueing perfor-
mance of the PPBP. In the first subsection, we present the new quasi-stationary approximation. In Subsection 4.2
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we give consideration to a zero buffer approximation, which could be considered an approximation which is most
accurate asx→ 0. In Subsection 4.3 we summarize the existing results developed by Tsybakov and Georganas
[29], which give an accurate approximation forx→ ∞. In Section 5, we will compare the estimates given by these
various techniques with simulation results.

4.1 Quasi-stationary Approximation of the Queueing Behaviour of a PPBP

We will now apply the quasi-stationary idea to obtain an analytic approximation for the queue length distribution of
the PPBP SSQ. The approximation is basically Equation (13), except that the simulation estimate values given by
S∗, are replaced by estimates obtained by analytical means. In the analytic case, we do not have the limitation of a
given simulation length, imposed by the speed computers operate, so instead of the valueT, we will use the variable
W, representing the minimum length of the long bursts. We will then use the quasi-stationary idea to compute an
estimate for the queue length distribution as a function ofW. Notice that, for each value ofW, the distribution of
the number of long bursts is Poisson, and the performance of the short bursts process can be obtained using known
approximations for SRD queues. As in Subsection 3.3, the queue length distribution for the short bursts process
given thatn long bursts exist, is the queue length distribution of an SSQ fed by the PPBP excluding the long bursts,
and with server rateC−nr.

The use of SRD queue approximations is justified, because the remainder of the process, excluding the long
bursts, is made up of short bursts, and hence can be modeled as an SRD process. Each of these short bursts
processes switches slowly between states dictated by the number of long bursts, and hence the quasi-stationary
approximation is promising.

There are various ways of modeling the queueing behaviour of the short bursts process. One way which is
convenient and may perhaps be sufficiently accurate is to model this process as Gaussian. Then, the formula of [1]
is applicable. We could regard this approximation as asymptotically accurate asλ→ ∞, because for largerλ the
short-range dependent process becomes more and more similar to Gaussian.

We might expect this model, in which the slowly moving and quickly moving parts of the process have been
separated, to be reasonably accurate for a range of different values ofW, although for quite shortW, the assumption
that the process moves slowly between states with a certain number of bursts longer thanW would be violated and
also the Gaussian approximation for the short bursts process might not be satisfactory. On the other hand, for large
W, the Gaussian approximation of the short bursts process might lose accuracy for a different reason, because in
this case the quasi-stationary approximation becomes closer and closer to a purely Gaussian approximation of the
process, which is known, experimentally, to underestimate queueing delay [18].

In order to apply this method, we need the mean and the variance-time curve of the short bursts process. The
mean of the short bursts process ismW = rλδγ

γ−1

(
γδ1−γ−W1−γ) . The original PPBP is a sum of two independent

components: the long bursts process and the short bursts process. Therefore, the variance-time curve, Var[Ât ], up
to timeW, of the original process, given in Equation (4) is equal to the sum of the variance time curve of the long
bursts process,vl (t) and the variance time curvevs(t) of the short bursts process, i.e.

Var[Ât ] = vl (t)+vs(t), 0≤ t ≤W.

Now, the long bursts process is constant over the interval(0,W), where the constant rate is a multiple of a

Poisson distributed random variable with meanλW(1−γ)

γ−1 , so

vl (t) = t2 r2λW(1−γ)

γ−1
.
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Hence

vs(t) = Var[Ât ]− t2 r2λW(1−γ)

γ−1
, 0≤ t ≤W. (14)

For times longer thanW, the short burst process would exhibit roughly linear growth of the variance-time curve.
Actually, we will not make use of the form of this variance-time curve for values oft larger thanW and it is even
reasonable to argue that since the short-burst process is only defined on the interval[0,W], there is no meaning for
vs(t) for t >W.

At this point, however, let us recall the formula for the delay distribution from [1] and its derivation. Suppose
V denotes the contents of a buffer supplied by Gaussian traffic with meanm, served by a server with ratec, and
in which the Gaussian traffic has variance time functionv(t). Then the stationary complementary distribution ofV
has the approximation

Pr{V > x} ≈ exp

(
−(x+(c−m)t∗)2

2v(t∗)

)
, (15)

wheret∗ is a valuet ≥ 0 which minimizes the expression(x+(c−m)t)2/v(t). If v is differentiable att∗, this value
can be found as a positive solution of

2
v(t∗)
v′(t∗)

− t∗ = x/(c−m). (16)

The quantityt∗ has a simple interpretation. It is the most likely duration of the period of time over which the
queue builds up to the levelx. Returning to our quasi-stationary approximation, the scenario we are contemplating
here is that the levelx in the buffer will be achieved by the following events occurring one after the other

(i) a larger than normal number,n, of long bursts (longer thanW) occurs simultaneously;

(ii) during this unusual period, the short bursts also conspire to assemble an unusual amount of work over a
relatively short period of time (shorter thanW).

So, in the present context,V is the buffer content of our short bursts SSQ, andt∗ is the period of time over
which the short bursts process accumulates sufficient work that the buffer builds to the levelx. This value oft∗

must be less thanW or the quasi-stationary approximation is not valid. On the other hand, ift∗, as found from (16),
is less thanW, then the variance time curvev(t) which is used in this equation will be given by Equation (14) over
the range oft values from 0 toW. Thus, in solving fort∗, it is not important to definev(t) for values oft larger than
W.

What value should we choose forW? If we chooseW too large, our approximation becomes identical to the
direct Gaussian approximation of the entire system, which we know provides an estimate, but is always optimistic.
For small values ofW, the quasi-stationary approximation is an underestimate for a different reason. The time
it takes for the buffer to build up to levelx will be, in such cases, longer thanW, and so, any estimate based on
the assumptionthat t∗ is less thanW will be low. In fact, t∗ is chosen to maximize the probability of the queue
exceeding the threshold, so values fort∗ which are forced to be below this natural maximum will simply produce
low probabilities.

So, the way to chooseW is simply to find the value ofW which maximizes the estimate of Pr{Q> x}.

4.2 Zero Buffer Approximations (ZBAs)

If we consider a fluid flow process with known increments process fed into an SSQ with no buffering available,
then the time congestion value is simply the probability that the instantaneous arrival rate will exceed the service
rate. This time congestion value can be used as an estimate of the probability of a non-empty queue in an equivalent
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infinite buffer SSQ. For the PPBP, the number of active bursts at timet, Bt , is defined in Section 2, and is known
to be Poisson distributed with meanλE(d). The instantaneous rate of work arriving isrBt , and the zero buffer time
congestion value is exactly equal to the probability that the number of active bursts will exceed the capacity of the
queue. For a queue with deterministic service rate,C, this is

Pr{Bt >C/r}. (17)

Henceforth, we call this thePoisson ZBA.
In simulating the PPBP, we have considered a discretization of the system into time-slots of fixed lengthτ. The

discrete time simulations will not give time congestion values exactly equal to the Poisson values, as there is an
averaging in the discretization process, as described in (6). However, forτ→ 0, the zero buffer time congestion
value observed in a simulation of the PPBP should be well approximated by (17).

Note also that our simulation results, including the results given in Section 5, are queue length complementary
distribution values for an infinite buffer queueing system. The value of Pr{Q> 0} in the infinite buffer system
will exceed the time congestion value for the zero buffer case. This effect of the infinite buffer will cancel out the
averaging effect discussed above to some extent.

Forλ→∞ the PPBP will converge to a Gaussian process [3]. Another simple estimate of the probability of the
infinite buffer queue being non-empty is given by considering the probability that a Gaussian random variable with
the same mean,µ, and standard deviation,σ, as the PPBP, exceeds the available capacityC. This approximation
will henceforth be called theGaussian ZBA.

4.3 Tsybakov and Georganas Bounds

Bounds for the queueing performance of M/G/∞ processes, and specifically for an M/Pareto/∞ process similar
to the PPBP, are presented in [29]. In [29] estimates of both finite queue time congestion values (proportion of
time intervals when loss occurs) and finite queue loss probabilities (proportion of work arriving which is lost) are
presented. Only the expressions for the time congestion values are presented here.

The upper bound is given by

Pr{Q> x} ≤

(
λγδγ(γ−1)−γ (C

r +2
)γ−1

rγ−1
)k

k!
x(1−γ)k. (18)

and the lower bound by

Pr{Q> x} ≥ γkδγkr(γ−1)k

γ(γ−1)k
(
E(d)+(1−e−ρ/E(d))−1−1

)γ+k x(1−γ)k. (19)

where

k = 1+
⌊

C
r
−λE(d)

⌋
, (20)

δ = λE(d)−bλE(d)c , (21)

∆ =
C
r
−
⌊

C
r

⌋
, (22)

and the value ofρ depends upon whetherλE(d)≤ 1 as follows: ifλE(d)≤ 1,

ρ = λE(d), (23)
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Figure 1: Comparison of the queueing estimates given for performance of a PPBP SSQ using the techniques
discussed in this paper.

while if λE(d)> 1, ρ may be any value in the range

0≤ ρ<
{

1+ δ−∆, if ∆≥ δ,
δ−∆, if ∆< δ.

(24)

Both the bounds given above are valid forx→ ∞, and both the upper and lower bounds decay at the same
rate. We would therefore predict that for large buffer sizes the PPBP process should show queueing performance
in which the time congestion function decays asx(1−γ)k. However, we may observe simulation results which differ
from this for two reasons. Firstly, both bounds are valid only for large buffer sizes, where simulation results are
likely to be least reliable, and secondly, the systems considered by Tsybakov and Georganas in deriving these
bounds are not quite identical to the cases we consider. In particular, the bounds given above are for finite buffer
time congestion values, while we consider the infinite buffer queue length distribution in the comparison presented
below.

5 Comparison of Simulation and Analytical Results

In Figure 1, we present a typical set of results for the PPBP SSQ. We include results given by all the different
techniques discussed in this paper. The specific case considered in this figure is a discrete time SSQ with service
rateC = 2.897 units of work per interval fed by PPBP input. The PPBP fed into this queue has meanµ = 1.897,
varianceσ2 = 0.1066̄6 and Hurst parameterH = 0.75. The parameters of the PPBP areλ = 10, r = 0.0632,δ = 1
andγ = 1.5.

The simulation results shown in the figure are generated using the methodology discussed in Section 3.3. The
quasi-stationary estimate values are calculated by the technique described in Section 4.1. We observe that the
quasi-stationary estimate agrees with the simulation results.
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We also compare against the LRD Gaussian estimate given in [1]. This Gaussian estimate forms the basis of the
quasi-stationary estimate, but we do not divide the PPBP into long and short bursts components when calculating
the LRD Gaussian estimate. The LRD Gaussian estimate is simpler to calculate than the quasi-stationary estimate,
but it does not guarantee accurate results. Recall that, by [3], asλ→ ∞ the LRD Gaussian estimate will provide
accurate results.

The Poisson and Gaussian ZBAs are also shown. We observe that the value of Pr{Q> 0} given by simulation
falls between the two zero buffer estimates. Both the Poisson ZBA and the Gaussian ZBA represent reasonable
estimates of the probability of the infinite buffer SSQ fed by the PPBP being non-empty.

Note that the Tsybakov and Georganas upper and lower bounds (Equations (18) and (19) respectively) differ
only by expressions which are constant with respect tox. Although they are asymptotically accurate asx→ ∞, for
the set of parameters considered here these bounds are far apart. For example, for the set of parameters considered
here, (18) gives Pr{Q> 1} ≤ 3.67× 1016 (in fact, since we are discussing a probability, Pr{Q> 1} ≤ 1 gives
a tighter bound) while (19) gives Pr{Q> 1} ≥ 2.06×10−25. To improve the readability of the figure, we show
here the rate of decay of the common tail in these bounds. The curve labelledTsybakov & Georganas Tail (1)in
Figure 1 shows a curve of the formLx(1−γ)k, wherek is given by (20) and the weight of the tail,L is given by the
value of Pr{Q> 1} produced by the simulation results. The curve labelledTsybakov & Georganas Tail (3.5)also
shows a curve of the formLx(1−γ)k, this time with the value ofL matched to the value of Pr{Q> 3.5} produced
by the simulation results. Comparing these two curves with our simulations, we see that the rate of decay of the
tail matches the simulation results reasonably well asx becomes larger, however for small to moderate values ofx
these bounds are of limited usefulness.

In Figure 2, we present a second scenario, in which the value ofλ is increased. The case considered in this
figure is an SSQ with service rateC = 7. The PPBP fed into this queue has meanµ = 6, varianceσ2 = 0.1066̄6
and Hurst parameterH = 0.75. The parameters of the PPBP areλ = 100, r = 0.02,δ = 1, andγ = 1.5. Although
the level of aggregation,λ is increased over that considered in Figure 1, the service margin,C−µ, and the variance
and Hurst parameter of the PPBP are identical in both cases.

The six curves in Figure 2 are produced using the same techniques as described for the curves in Figure 1. We
would expect the quasi-stationary estimate to continue to improve, as it is based on an assumption that the short
bursts process is Gaussian, and this assumption improves asλ→ ∞, however it is not necessarily clear from these
results whether such an improvement is observable. We note, however, that the quasi-stationary estimate remains a
good approximation of the simulation results.

The simpler LRD Gaussian estimate is now a much better estimate of the queueing performance of the PPBP.
This reflects the fact that the whole PPBP is also tending towards Gaussian asλ→ ∞.

We also note that the gap between the Poisson and Gaussian ZBAs has narrowed asλ has been increased. The
value of the infinite buffer measure Pr{Q> 0} given by simulation continues to fall between the two zero buffer
estimates, so asλ→∞ the Gaussian ZBA improves as a conservative estimate of probability of a non-empty buffer
in the infinite buffer system.

In Figure 2, the Tsybakov and Georganas tail is shown only with a weight ofL as given by the value of
Pr{Q> 1} produced by the simulation results. As in the previous example, the actual weights for the tail, produced
by Equations (18) and (19), are far apart. The rate of decay of this tail better matches that of the simulation results
asx becomes larger.

6 Simple Dimensioning Rules

In this section, we consider several of the dimensioning implications of the PPBP as a model for data traffic. In
particular, we highlight a simple dimensioning rule based on a Gaussian zero buffer approximation. We make use
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Figure 2: Comparison of the queueing estimates given for performance of a PPBP SSQ for more highly aggregated
traffic.

of a PPBP fitted to real traffic to estimate the extent to which the Gaussian rule is optimistic.

6.1 The Gaussian ZBA Rule

As demonstrated in [3], as the number of independent sources being multiplexed together increases, the multiplexed
stream converges towards a Gaussian process. This is true, provided that the multiplexed processes have finite mean
and variance, and are of “similar” magnitude. Convergence to a Gaussian marginal distribution occurs regardless
of the correlation structures of the combined traffic streams. However, the correlation structures of the combined
streamswill have an effect on the correlation structure of the aggregate stream.

Where we use a zero buffer approximation, the correlations in the stream are irrelevant, and dimensioning
can be carried out based only on the properties of the marginal distribution. Any complexities in the correlation
structure of the aggregate stream can then be ignored. If the traffic has a true Gaussian marginal distribution, with
meanµ and varianceσ2, the time congestion value for the zero buffer case will be given by the probability that a
sample from a Gaussian distribution centred atC−µ with standard deviationσ will be greater than zero.

The standard normal distribution has cumulative distribution function:

Φ(x) = Pr{X ≤ x}=
1√
2π

∫ ∞

−∞
e−t2/2dt (25)

and complementary distribution function given byΦ̄(x) = 1−Φ(x). In a zero buffer SSQ fed by a Gaussian input
stream the time congestion value will be

Time Congestion= Φ̄
(

C−µ
σ

)
. (26)

Note that this is the proportion of time when losses occur, which is not identical to the proportion of packets lost.
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Allowable congestion,ξ K
0.1 1.28
0.01 2.33
0.001 3.09
10−4 3.72
10−5 4.27
10−6 4.77

Table 3:K required to give maximum congestion ofξ.

See Figure 1 of [4] for an illustration of the difference between these two probabilities in queues fed by an Ethernet
trace.

If the capacity,C, is
C = µ+Kσ, (27)

and the input traffic stream has a Gaussian marginal distribution, then the zero buffer time congestion is a function
only of the valueK. The choice of the parameterK will determine the probability of time congestion in the system.
For a given target congestion rate ofξ, a value ofK can be determined, and the capacity required for a traffic stream
with known mean and variance is then given by (27). This Gaussian dimensioning rule is equivalent to Equation
(4-3) in [24] and similar to the one given in [10].

The success of this dimensioning rule is dependent upon the choice of the constantK. Where the arrival process
is Gaussian in nature, the required value ofK can be determined simply from̄Φ−1(ξ). Table 3 shows some sample
values ofK determined in this way. For non-Gaussian processes (27) still provides a simple dimensioning rule,
however using the value ofK used for a Gaussian arrival process may not be appropriate. In [12] simulation is used
to calculate the values ofK required for real traffic streams.

The Gaussian ZBA rule gives significant scope for multiplexing gain. We consider multiplexingM identical
Gaussian streams to form a single aggregate traffic stream. Each of theM streams has meanµ and varianceσ2.
The aggregate stream will be a Gaussian traffic stream with meanµtot = Mµ and varianceσ2

tot = Mσ2. We assign
capacity to this aggregate stream.

In the curve labeledGaussian ZBAin Figure 3 we examine the efficiency gains whenM identical Gaussian
processes are multiplexed in a zero buffer system. The base process is Gaussian with the same mean and variance
as the IP traffic trace examined in [17], i.e.,µ = 5225 andσ2 = 21.22×106. We then consider the process created
by multiplexing M independent copies of this base process. The result will be a Gaussian process with mean
µM = Mµ = 5224.66M and varianceσ2

M = Mσ2 = 21.22×106M. Using the Gaussian ZBA rule from (27), and
choosingK = 4, we assign capacityC = µM + 4σM to this process. This value ofK gives a time congestion value
of ξ = 3.17×10−5. The efficiency is given byµM/C.

The second curve in Figure 3 shows the efficiency gains when capacity is assigned according to a Poisson
ZBA. For M = 1, the process is a PPBP fitted to the same IP trace considered for the Gaussian dimensioning.
We have examined this IP trace in [17]. Using repeated simulation, we have found that a PPBP with parameters
λ = 0.4, r = 3060,δ = 0.9153,γ = 1.18 models the IP trace, and we have found that this process can accurately
predict the queueing performance of the original trace in an SSQ. A CBR component labeledκ is added to the
PPBP in the fitting of the real traffic carried out in [17]. The relevant value ofκ for this stream isκ =−2119.

The PPBP equivalent to the multiplexing ofM independent copies of the fitted PPBP has parametersλM =
Mλ, rM = r,δM = δ,γM = γ andκM = Mκ. Like the Gaussian process, this PPBP will have meanµM = Mµ and
varianceσ2

M = Mσ2. As in the Gaussian case, we determine the capacity,C, required such that the ZBA predicts a
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Figure 3: Improvement in efficiency with increasing multiplexing.

time congestion ofξ = 3.17×10−5 and plot the efficiency given byµM/C for each value ofM.
We see from the figure that the Gaussian rule significantly under-estimates the capacity required by the PPBP.

6.2 Rate of Convergence to Gaussian

In the previous subsection we have shown that using the Gaussian ZBA rule gives a reasonably simple dimensioning
rule. We will now examine the effectiveness of the Gaussian ZBA rule as a simple dimensioning rule for realistic
streams.

We have shown in [17, 18] that real traffic streams can be modeled using the PPBP. We have also observed
that if multiple PPBPs are multiplexed together, the queueing performance of the overall aggregate stream tends
towards the performance of an LRD Gaussian stream [4, 18].

As the multiplexing level in the PPBP increases, we expect to see the PPBP behaving more like a Gaussian
process. We will evaluate the closeness of the PPBP to Gaussian by examining the time congestion function
obtained by feeding the PPBP into a finite buffer SSQ with service rate determined by the Gaussian zero buffer
approximation. As the level of multiplexing increases, we would expect to see the accuracy of this approximation
improving, i.e., the time congestion value in the SSQ fed by the multiplexed PPBP should approach the allowable
time congestion used for dimensioning.

The multiplexing of realistic traffic streams is simulated by creating scaled PPBPs. Once again, we consider a
PPBP fitted to the IP traffic byte stream examined in [17]. This stream contains measurements of the number of
bytes arriving on a single link measured in 0.1 second intervals. The measurement was made in early 1999. The
stream has a mean rate ofµ = 5225, variance ofσ2 = 2.122×107 and a Hurst parameter ofH = 0.91. We have
found that a PPBP with parameters:λ = 0.4, r = 3060,δ = 0.9153,γ = 1.18 andκ = −2119; accurately predicts
the behaviour of the real traffic.

We then use the PPBP to model the effect of increasing levels of multiplexing in the IP traffic. As before, the
PPBP equivalent to the multiplexing ofM independent copies of the original PPBP has parametersλM = Mλ, rM =
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M Threshold for Gaussian ZBA congestionDelay (ms)
1 74 150 313
2 18 900 51.8
4 15 450 26.7
8 11 100 11.8
16 8 650 5.50
32 6 000 2.22
64 2 100 0.43

Table 4: Buffering required to achieve allowable time congestion level.

r,δM = δ,γM = γ and κM = Mκ. This process will have meanµM = Mµ and varianceσ2
M = Mσ2. The Hurst

parameter will be unchanged by the level of multiplexing.
Figure 4 shows results for this set of PPBPs. The dimensioning rule used isC = µ+ 4σ, giving a maximum

Gaussian time congestion of 3.17× 10−5. We see that asM increases, the zero buffer time congestion value,
Pr{Q> 0}, approaches the target value permitted under the dimensioning rule. The results shown are given by
simulation. Although error bars are not shown in the figure, the zero buffer approximation falls within the 95%
confidence interval of the Pr{Q> 0} values forM = 64 but not forM = 32.

Table 4 shows the amount of extra buffering required to compensate for the fact that real traffic is not Gaussian.
This is minimum buffer size for which the time congestion value is less than the time congestion value given by the
Gaussian zero buffer approximation of 3.17×10−5. To give an idea of the impact of this extra buffering we also
show the maximum delay which may be encountered by data arriving at the buffer.
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Figure 5: Growth in number of IP hosts.

6.3 When Will Convergence to Gaussian Happen?

The results given in the previous subsections indicate that the Gaussian ZBA is still a gross approximation for
real data traffic on fine timescales. However, we also see that the usefulness of the Gaussian ZBA as a conservative
dimensioning rule at these timescales improves considerably as the level of multiplexing increases. Here we present
some of the evidence which suggests that the level of multiplexing in real networks is increasing.

Figure 5 shows the growth in the number of hosts connected to the public Internet. The diamonds show counts
of the number of hosts, as recorded in the Internet Domain Survey at the Internet Software Consortium (http://-
www.isc.org/ds/ ). The solid line represents a doubling in the number of hosts occurring every 12 months. This
gives a good estimate of the growth of the Internet for the period between January 1991 and January 1996. The
dashed line represents a doubling every 24 months, and appears to give a good estimate of the growth rate since
January 1996.

More direct evidence of the increase in the amount traffic being carried across the Internet has been compiled
by Odlyzko [19]. Evidence from a range of sources is summarized in [19] and indicates that the amount of traffic
being carried on the Internet is doubling every twelve months.

Thus we see that, although direct measurement of the Internet is becoming increasingly difficult, the best
evidence suggests that the amount of traffic carried across the Internet is growing exponentially. Further, the
increasing number of Internet hosts suggests that the growth is at least partly caused by an increasing number of
streams being carried, suggesting that the level of multiplexing on individual links is also increasing. The trace
modeled in Section 6.2 was recorded in early 1999. Since that time the total traffic on the Internet has probably
quadrupled, and the number of Internet hosts at least doubled. Assuming that this overall increase translates to
similar increases on individual links, there is every reason to suspect that the level of multiplexing on the measured
link is likely to have at least doubled in the period since that measurement was made.

If Internet traffic growth results primarily from an increasing number of streams (as opposed to an increase in
the bit rate per stream), then a doubling in load will translate to a doubling in multiplexing level. On current trends,
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the traffic on the backbone IP link where the 1999 trace was recorded will become close to Gaussian by 2004 under
this assumption. Alternatively, if we assume that the level of multiplexing is directly proportional to the number
of separate hosts, then the traffic on this link will be close to Gaussian by around 2010. It is likely that there are
already core links with Gaussian traffic.

7 Conclusions

We have presented new insights into the behaviour of SSQs fed by the PPBP. We have developed our ideas by
dividing the PPBP into two sub-processes; a long bursts process and a short bursts process, and considering the
impact of each of these sub-processes separately.

We have seen that, irrespective of the duration of a simulation, the existence of long bursts at the beginning of
the simulation may impact on the reliability of the simulation. We have described an improved methodology for
simulation of the PPBP which takes into account the impact of long bursts. We have also developed a bound on the
simulation duration required to ensure reliable results.

A quasi-stationary approximation for the performance of a PPBP SSQ, which is also based on the idea of
treating long bursts separately, has also been presented. Comparisons with simulation results have shown that the
quasi-stationary approximation accurately predicts the performance of a PPBP SSQ.

Simple link dimensioning and multiplexing gain evaluations based on Poisson and Gaussian ZBAs were given.
We have demonstrated that the less conservative Gaussian ZBA becomes more useful as traffic becomes Gaussian.

Finally, the question of how close is traffic in today’s networks to being Gaussian was addressed. By means
of both simulations and the quasi-stationary approximation which was developed in this paper it is possible to see
explicitly how significant is the difference between a burst model of network traffic and a Gaussian model. Appar-
ently, in some cases, the difference is not so great. It seems likely that there are already places in today’s networks
where traffic can be regarded close enough to Gaussian. Of course, this depends on the level of aggregation, which
will always vary from place to place.

A Proof of Strict Stationarity of the Short Burst Process

The same argument used in Subsection 2.3 to show second-order stationarity can be applied to the moment gener-
ating functionals,ΦS(θ), ΦB(θ), andΦL(θ), defined, for example, by

ΦS(θ) = E{e
∫ t+W

t Ssdθ(s)}, (28)

for θ any peicewise continuous real-valued function defined on[t, t + W]. (Aside from a coefficient,i, in the
exponent this is the definition of the characteristic functional as given in [8]). As we now show, this will demonstrate
strict stationarity of the processS.

The moment generating functional of a stochastic process, e.g.S as at (28), completely characterizes the
process. To see this, observe that if we choose forθ a function which takes the value∑i

j=1 θ j on (ti , ti+1), i = 0,. . . ,
n, wheret0 = t, tn+1 = t +W andti ∈ [t, t +W], i = 1, . . . ,n, then, as as function ofθi , i = 1,. . . ,n, ΦS(θ1, . . . ,θn) =
ΦS(θ) is the joint moment generating function ofSt1, . . . ,Stn. It follows that the joint distribution of any collection of
values of the processSis completely determined byΦS and hence this stochastic process is completely characterized
by its moment generating functional.

By independence of the processesSandL, and using the fact thatB = S+L, we findΦB(θ) = ΦS(θ)×ΦL(θ),
so

ΦS(θ) = ΦB(θ)/ΦL(θ), (29)
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for θ any peicewise continuous real-valued function defined on[t, t +W]. Because the functionsθ take real values
only, the moment generating functionals have no zeros, so the division in (29) does not present a problem.

Strict stationarity ofS will follow from the fact that the characteristic functional,ΦS(θ), is invariant under
suitable time shifts ofθ. In the present case, since we are consideringstrict stationarity on the interval[t, t +W],
by a suitable time shift we mean any time shift which does not push the support ofθ outside the interval[t, t +W].
(The support ofθ(s) is the set ofswhereθ(s) 6= 0.) Since this is true of the processB and of the processL, because
they are both strictly stationary, by (29), it is also true forS. Thus,S is also strictly stationary.
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