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Abstract This paper is concerned with the development of a new compact 9-point stencil,

based on integrated-radial-basis-function (IRBF) approximations, for the discretisation of

the first biharmonic equation in two dimensions. Derivatives of not only the first order but

also the second order and higher are included in the approximations on the stencil. These

nodal derivative values, except for the boundary values of the derivative, are directly derived

from nodal variable values along the grid lines rather than from the biharmonic equation, and

they are updated through iteration. With these features, the double boundary conditions

are imposed in a proper way. The biharmonic equation is enforced at grid points near

the boundary without any special treatments. More importantly, they enable the IRBF

solution to be highly accurate and not influenced by the RBF width. There is no need for

searching the optimal value of the RBF width. The proposed stencil can be used to solve the

biharmonic problem defined on a rectangular/non-rectangular domain. A fast convergence

rate with respect to grid refinement (up to ten) is achieved.
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compact stencils, integrated radial basis functions

1 Introduction

The biharmonic equation arises in the mathematical modelling of many problems in engi-

neering and science such as the deformation of a thin plate and the flow of a fluid. There are

two types of biharmonic problems. For the second biharmonic problem, along the boundary,

the field variable and its second normal derivative are given. The problem can be converted

into the Dirichlet problems for two Poisson equations that are solved separately. For the first

biharmonic problem, along the boundary, the field variable and its first normal derivative are

given. Numerically solving the first biharmonic equation faces some significant challenges,

namely the approximation of high-order derivatives and cross derivatives, and the imposi-

tion of double boundary conditions. Various numerical schemes have been developed, e.g.,

[1,2,3,4,5,6,7]. In the context of finite difference methods [1], the standard 13-point stencil

with truncation error of O(h2) and the 25-point (5× 5) approximation with truncation error

of O(h4) are obtained, where some grid points outside the problem domain are required.

Approximations at these fictitious points are carried out to impose the boundary values of

the derivative. It was found in [8] that the boundary approximations used can strongly

affect the accuracy of the numerical solution. One way to avoid the fictitious points is to

use the 9-point (3× 3) stencil reported in [9], where the field variable and its first derivative

are considered as unknowns in the interpolation system (three unknown values at each grid

node for the formula with O(h4)). This approach results in a much larger system of algebraic

equations (27 unknowns in each equation while there are only 13 unknowns in each equa-

tion for the second order method). With regard to the calculation of high-order derivatives,

special attention is required as the approximation of derivatives of higher order has larger

errors. The use of higher-order conventional Lagrange polynomials does not guarantee to

yield a better quality (smoothness) of approximation.

The radial basis functions (RBFs) methods have been widely used in solving partial dif-
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ferential equations (PDEs), e.g., [10,11,12,13,14,15,16]. The RBF approximations can be

constructed through differentiation (DRBF) or integration (IRBF). In the early IRBF works

(e.g. [17,18,19,20]), the methods are based on global approximations that involve only the

nodal values of the field variable. The RBF methods are a kind of high-order discretisation

scheme and can work well with unstructured points. Some RBFs such as the multiquadric

function involve the shape parameter or the RBF width that can strongly affect the so-

lution accuracy. Choosing an optimal value of the RBF width is a difficult task. Since

integration improves smoothness, the IRBF approach is more suitable for approximating

high-order derivatives. In addition, with the presence of integration constants, there are

more unknown coefficients in the interpolation system and some extra equations can thus

be added. This provides an effective way of implementing double boundary conditions and

constructing compact stencils that involve the nodal values of both the field variable and its

derivatives. In this paper, we propose new IRBF approximations using only the nine grid

points for solving the first biharmonic equation. The construction of the proposed stencil

is based on 3-point approximations recently developed for solving second-order PDEs in

[21,22]. Nodal values of the first-order derivatives and higher ones along the grid lines are

included in the IRBF approximations. These derivative values are directly derived from the

nodal values of the field variable and updated through iteration. In this regard, the proposed

stencil is not dependent on the governing equation, and there are only 9 unknowns in each

equation. No modifications are needed at grid points adjacent to the boundary, in marked

contrast to special treatments required in the standard 13-point and 25-point stencils. The

proposed approach enables the boundary values of the derivative to be exactly satisfied, and

the IRBF solution to be highly accurate and not influenced by the RBF width. It is found

that the latter is achieved by simply employing an IRBF scheme of high order (i.e. ≥ 6)

on the stencil. There is no need for searching the optimal value of the RBF width. We

note some recent RBF works (e.g. [23]) concerning the use of polyharmonic splines with

augmented polynomials to overcome the issue of the RBF width. Like the polyharmonic-

spline-based methods, the proposed approximations also involve some polynomials of high

order. However, these polynomials are produced from the integration of the RBFs. Unlike

the polyharmonic-spline-based methods, the nodal values of the derivatives along the grid
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lines are incorporated into the IRBF approximations to form the determined interpolation

system.

The remaining of the paper is organised as follows. Section 2 is about the first biharmonic

equation. The proposed 9-point stencil is presented in Section 3 and numerically verified in

Section 4. Section 5 gives some concluding remarks.

2 Governing equations

Consider the first biharmonic problem governed by

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= b(x, y), (x, y) ∈ Ω, (1)

with the boundary conditions

u = g1(x, y),
∂u

∂n
= g2(x, y), (x, y) ∈ ∂Ω, (2)

where Ω is a rectangular domain, ∂Ω is its boundaries, ∂u/∂n represents the outward normal

on ∂Ω, and b(x, y), g1(x, y) and g2(x, y) are some given functions.

Equation (1) is equivalent to a set of two coupled Poisson equations for u and v

∂2u

∂x2
+
∂2u

∂y2
= v, (3)

∂2v

∂x2
+
∂2v

∂y2
= b. (4)

Numerically solving equation (1) involves the discretisation of fourth-order derivatives and

cross/mixed derivatives, while numerically solving equations (3) and (4) involves the dis-

cretisation of second-order derivatives only.

In this work, we discretise the biharmonic equation in the form of a coupled system of (3)
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and (4) for which only second derivatives are approximated. However, in discretisation form,

the nodal values of v are replaced with the nodal values of u through (3), resulting in the

final algebraic equation set that contains only the nodal values of the variable u. Thus, the

non-coupled approach is actually employed here to solve the first biharmonic problem.

3 Proposed stencil

We first present the proposed stencil for the case of rectangular domain. An Nx-by-Ny

Cartesian grid is employed to represent the problem domain. The proposed stencil uses

only the 9 grid nodes on which the approximations are built from one dimensional 3-point

approximations. The 3-point approximations in the x and y directions are constructed

separately. When compared to [24], where nodal PDE values are taken as extra information,

the sizes of the present interpolation matrices are much smaller.

3.1 3-point approximations

Let η represent the independent variable x and y, and f the dependent variable u and v.

Consider 3 grid points (ηi−1, ηi, ηi+1), over which the variable f can be represented by an
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IRBF approximation scheme

∂qf(η)

∂ηq
=

3∑
i=1

wiGi(η) =
3∑
i=1

wiI
(q)
i (η), (5)

∂q−1f(η)

∂ηq−1
=

3∑
i=1

wiI
(q−1)
i (η) + c1, (6)

∂q−2f(η)

∂ηq−2
=

3∑
i=1

wiI
(q−2)
i (η) + c1η + c2, (7)

· · · · · · · · ·

∂f(η)

∂x
=

3∑
i=1

wiI
(1)
i (η) + c1

ηq−2

(q − 2)!
+ c2

ηq−3

(q − 3)!
+ · · ·+ cq−1, (8)

f(η) =
3∑
i=1

wiI
(0)
i (η) + c1

ηq−1

(q − 1)!
+ c2

ηq−2

(q − 2)!
+ · · ·+ cq−1η + cq, (9)

where Gi(η) is the RBF, I
(q−1)
i (η) =

∫
I
(q)
i (η)dη, I

(q−2)
i (η) =

∫
I
(q−1)
i (η)dη, · · · , I(0)i (η) =∫

I
(1)
i (η)dη, (w1, w2, w3) the RBF coefficients, and (c1, c2, · · · , cq) the integration constants.

For the multiquadric function, Gi(η) =
√

(η − ηi)2 + a2i , where a is the width/shape-parameter.

In (5)-(9), RBFs are used to represent the qth order derivative and we refer it to as an IRBF

scheme of order q, denoted by IRBFq. The analytical IRBF forms are shown in the Appendix.

For an IRBFq, the presence of q integration constants enables the addition of q extra equa-

tions to the conversion of the RBF space into the physical space. We utilise these equations

to impose derivatives at the two end-nodes: the first-, · · · , and the
(
q
2

)
th-order derivatives

for equation (3) and the second-, · · · , and the
(
q
2

+ 1
)
th-order derivatives for equation (4).

For equation (3), the conversion system is constructed as follows

û = Cuŵu, (10)

where

û =

(
ui−1, ui, ui+1,

∂ui−1

∂η
,
∂ui+1

∂η
, · · · , ∂

q/2ui−1

∂ηq/2
,
∂q/2ui+1

∂ηq/2

)T
,

ŵu = (w1, w2, w3, c1, · · · , cq)T ,
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and

Cu =



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1)

ηq−1
i−1

(q−1)!
· · · ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi)

ηq−1
i

(q−1)!
· · · ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1)

ηq−1
i+1

(q−1)!
· · · ηi+1 1

I
(1)
1 (ηi−1) I

(1)
3 (ηi−1) I

(1)
3 (ηi−1)

ηq−2
i−1

(q−2)!
· · · 1 0

I
(1)
1 (ηi+1) I

(1)
3 (ηi+1) I

(1)
3 (ηi+1)

ηq−2
i+1

(q−2)!
· · · 1 0

· · · · · · · · · · · ·

I
(q/2)
1 (ηi−1) I

(q/2)
3 (ηi−1) I

(q/2)
3 (ηi−1)

η
q/2−1
i−1

(q/2−1)!
· · · 0 0

I
(q/2)
1 (ηi+1) I

(q/2)
3 (ηi+1) I

(q/2)
3 (ηi+1)

η
q/2−1
i+1

(q/2−1)!
· · · 0 0



.

Solving (10) yields

ŵu = C−1
u û. (11)

Thus, the second derivative of u at ηi is calculated by

∂2ui
∂η2

= D[q]
2uηû, (12)

where D[2]
2uη =

[
I
(2)
1 (ηi) I

(2)
2 (ηi) I

(2)
3 (ηi)

ηq−3
i

(q−3)!
· · · 0

]
C−1
u . It is noted that D[q]

2uη is a

row matrix of the (q+3) coefficients by the qth-order IRBF scheme. In practice, the coefficient

set D[q]
2uη is obtained by using Gaussian elimination to solve the following algebraic equation

set:

CTuD
[q]T

2uη =

(
I
(2)
1 (ηi), I

(2)
2 (ηi), I

(2)
3 (ηi),

ηq−3
i

(q − 3)!
· · · , 0

)T
. (13)

For equation (4), the conversion system is constructed as follows

v̂ = Cvŵv, (14)

where

v̂ =

(
vi−1, vi, vi+1,

∂2vi−1

∂η2
,
∂2vi+1

∂η2
, · · · , ∂

q/2+1vi−1

∂ηq/2+1
,
∂q/2+1vi+1

∂ηq/2+1

)T
,

ŵv = (w1, w2, w3, c1, · · · , cq)T ,
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and

Cv =



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1)

ηq−1
i−1

(q−1)!
· · · ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi)

ηq−1
i

(q−1)!
· · · ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1)

ηq−1
i+1

(q−1)!
· · · ηi+1 1

I
(2)
1 (ηi−1) I

(2)
3 (ηi−1) I

(2)
3 (ηi−1)

ηq−3
i−1

(q−3)!
· · · 0 0

I
(2)
1 (ηi+1) I

(2)
3 (ηi+1) I

(2)
3 (ηi+1)

ηq−3
i+1

(q−3)!
· · · 0 0

· · · · · · · · · · · ·

I
(q/2+1)
1 (ηi−1) I

(q/2+1)
3 (ηi−1) I

(q/2+1)
3 (ηi−1)

η
q/2−2
i−1

(q/2−2)!
· · · 0 0

I
(q/2+1)
1 (ηi+1) I

(q/2+1)
3 (ηi+1) I

(q/2+1)
3 (ηi+1)

η
q/2−2
i+1

(q/2−2)!
· · · 0 0



.

Solving (14) yields

ŵv = C−1
v v̂. (15)

Thus, the second derivative of v at ηi is calculated by

∂2vi
∂η2

= D[q]
2vηv̂, (16)

where D[q]
2vη =

[
I
(2)
1 (ηi) I

(2)
2 (ηi) I

(2)
3 (ηi)

ηq−3
i

(q−3)!
· · · 0

]
C−1
v . It is noted that D[q]

2vη is a

row matrix of the (q + 3) coefficients by the qth IRBF scheme. In practice, the coefficient

set D[q]
2vη is acquired by using Gaussian elimination to solve the following algebraic equation

set:

CTv D
[q]T

2vη =

(
I
(2)
1 (ηi), I

(2)
2 (ηi), I

(2)
3 (ηi),

ηq−3
i

(q − 3)!
, · · · , 0

)T
. (17)

The row matrices D[q]
2uη and D[q]

2vη are all obtained numerically. There is no difference in

handling between uniformly and non-uniformly distributed grid points. The conversion

systems for q = (2, 4, 6, 8) are shown in the Appendix.
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3.2 9-point (3× 3) approximations

Consider an interior node and its associated eight neighbouring nodes. They are locally

numbered from bottom to top and from left to right (Figure 1). Enforcing equation (4) at

the central node yields

∂2v5
∂x2

+
∂2v5
∂y2

= b5. (18)

Making use of an IRBF scheme of order q, the left-side terms of (18) are approximated as

∂2v5
∂x2

= D[q]
2vx(1)v2 +D[q]

2vx(2)v5 +D[q]
2vx(3)v8+[

D[q]
2vx(4)

∂2v2
∂x2

+D[q]
2vx(5)

∂2v8
∂x2

+ · · ·+D[q]
2vx(q + 2)

∂q/2+1v2
∂xq/2+1

+D[q]
2vx(q + 3)

∂q/2+1v8
∂xq/2+1

]
,

= D[q]
2vx(1)v2 +D[q]

2vx(2)v5 +D[q]
2vx(3)v8 +R

[q]
2vx, (19)

where D[q]
2vx(k), k = (1, 2, · · · , q + 3), is the kth element of the coefficient set D[q]

2vx, and the

notation R
[q]
2vx is used to denote the terms in square brackets.

∂2v5
∂y2

= D[q]
2vy(1)v4 +D[q]

2vy(2)v5 +D[q]
2vy(3)v6+[

D[q]
2vy(4)

∂2v4
∂y2

+D[q]
2vy(5)

∂2v6
∂y2

+ · · ·+D[q]
2vy(q + 2)

∂q/2+1v4
∂yq/2+1

+D[q]
2vy(q + 3)

∂q/2+1v6
∂yq/2+1

]
,

= D[q]
2vy(1)v4 +D[q]

2vy(2)v5 +D[q]
2vy(3)v6 +R

[q]
2vy, (20)

where D[q]
2vy(k), k = (1, 2, · · · , q + 3), is the kth element of the coefficient set D[q]

2vy, and the

notation R
[q]
2vy is used to denote the terms in square brackets.

Equation (18) thus reduces to

(
D[q]

2vx(1)v2 +D[q]
2vx(2)v5 +D[q]

2vx(3)v8

)
+
(
D[q]

2vy(1)v4 +D[q]
2vy(2)v5 +D[q]

2vy(3)v6

)
= b5−R[q]

2vx−R
[q]
2vy.

(21)

A next step is to express the nodal values of v on the left side of (21) in terms of the nodal

values of u. Through equation (3) and by means of an IRBF scheme of order q, the following

expressions are obtained.
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At the central node x5,

v5 =
∂2u5
∂x2

+
∂2u5
∂y2

, (22)

where

∂2u5
∂x2

= D[q]
2ux(1)u2 +D[q]

2ux(2)u5 +D[q]
2ux(3)u8+[

D[q]
2ux(4)

∂u2
∂x

+D[q]
2ux(5)

∂u8
∂x

+ · · ·+D[q]
2ux(q + 2)

∂q/2u2
∂xq/2

+D[q]
2ux(q + 3)

∂q/2u8
∂xq/2

]
,

= D[q]
2ux(1)u4 +D[q]

2ux(2)u5 +D[q]
2ux(3)u6 +R

[q]
2ux, (23)

and

∂2u5
∂y2

= D[q]
2uy(1)u4 +D[q]

2uy(2)u5 +D[q]
2uy(3)u6+[

D[q]
2uy(4)

∂u4
∂y

+D[q]
2uy(5)

∂u6
∂y

+ · · ·+D[q]
2uy(q + 2)

∂q/2u4
∂yq/2

+D[q]
2uy(q + 3)

∂q/2u6
∂yq/2

]
,

= D[q]
2uy(1)u2 +D[q]

2uy(2)u5 +D[q]
2uy(3)u8 +R

[q]
2uy. (24)

At the left node x2,

v2 =
∂2u2
∂x2

+
∂2u2
∂y2

, (25)

= D[q]
2uy(1)u1 +D[q]

2uy(2)u2 +D[q]
2uy(3)u3 +R

[q]
2uL, (26)

where

R
[q]
2uL =

∂2u2
∂x2

+

[
D[q]

2uy(4)
∂u1
∂y

+D[q]
2uy(5)

∂u3
∂y

+ · · ·+D[q]
2uy(q + 2)

∂q/2u1
∂yq/2

+D[q]
2uy(q + 3)

∂q/2u3
∂yq/2

]
.

(27)

At the right node x8,

v8 =
∂2u8
∂x2

+
∂2u8
∂y2

, (28)

= D[q]
2uy(1)u7 +D[q]

2uy(2)u8 +D[q]
2uy(3)u9 +R

[q]
2uR, (29)
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where

R
[q]
2uR =

∂2u8
∂x2

+

[
D[q]

2uy(4)
∂u7
∂y

+D[q]
2uy(5)

∂u9
∂y

+ · · ·+D[q]
2uy(q + 2)

∂q/2u7
∂yq/2

+D[q]
2uy(q + 3)

∂q/2u9
∂yq/2

]
.

(30)

At the bottom node x4,

v4 =
∂2u4
∂x2

+
∂2u4
∂y2

, (31)

= D[q]
2ux(1)u1 +D[q]

2ux(2)u4 +D[q]
2ux(3)u7 +R

[q]
2uB, (32)

where

R
[q]
2uB =

∂2u4
∂y2

+

[
D[q]

2ux(4)
∂u1
∂x

+D[q]
2ux(5)

∂u7
∂x

+ · · ·+D[q]
2ux(q + 2)

∂q/2u1
∂xq/2

+D[q]
2uy(q + 3)

∂q/2u7
∂xq/2

]
.

(33)

At the top node x6,

v6 =
∂2u6
∂x2

+
∂2u6
∂y2

, (34)

= D[q]
2ux(1)u3 +D[q]

2ux(2)u6 +D[q]
2ux(3)u9 +R

[q]
2uT , (35)

where

R
[q]
2uT =

∂2u6
∂y2

+

[
D[q]

2ux(4)
∂u3
∂x

+D[q]
2ux(5)

∂u9
∂x

+ · · ·+D[q]
2ux(q + 2)

∂q/2u3
∂xq/2

+D[q]
2uy(q + 3)

∂q/2u9
∂xq/2

]
.

(36)

The proposed IRBF discretisation thus results in an algebraic equation that can be described

in the following form

F1(u1, u2, · · · , u9) = b5 + F2(
∂ui
∂x

,
∂ui
∂y

, · · · , ∂
2vj
∂x2

,
∂2vj
∂y2

, · · · ), (37)

where F1 is a function of u at the nine grid points of the stencil and F2 is a function of

derivatives of u at the neighbouring nodes of the central node. An IRBF scheme of higher
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order involves more derivative terms in function F2.

3.3 Solution procedure

The nodal derivative values in function F2 on the right side of (37) are unknown, except for

the boundary values of the first derivative of u. We employ an iterative scheme to find those

unknown derivative values. The solution procedure is described below:

1. Set unknown values of u and v to zero.

2. Compute the nodal values of derivatives of u along the grid lines, where the boundary

values of the first derivatives of u are substituted with prescribed values.

3. Compute the nodal values of v.

4. Compute the nodal values of derivatives of v along the grid lines.

5. Solve the algebraic equation set derived from (37) for the interior nodal values of u,

where the boundary values of u are substituted with prescribed values.

6. Compute CM (i.e., Convergence Measure) defined as the 2-norm ratio of the two

vectors (solk − solk−1) and solk, where subscript k denotes a current iteration and sol

is composed of the interior nodal values of u.

7. Check CM . If CM < 10−10, stop the iteration and output the result. Otherwise, relax

the solution, which is described in detail below, and repeat from Step 2

solk = ζsolk + (1− ζ)solk−1, (38)

where ζ a relax factor (0 < ζ ≤ 1).
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To compute the derivatives along the grid lines in Steps 2-4, we employ a global one-

dimensional IRBF approximation scheme. Along a grid line, the scheme is based on

∂qf(η)

∂ηq
=

Nη∑
i=1

wiGi(η) =

Nη∑
i=1

wiI
(q)
i (η), (39)

∂q−1f(η)

∂ηq−1
=

Nη∑
i=1

wiI
(q−1)
i (η) + c1, (40)

· · · · · · · · ·

∂f(η)

∂η
=

Nη∑
i=1

wiI
(1)
i (η) + c1

ηq−2

(q − 2)!
+ c2

ηq−3

(q − 3)!
+ · · ·+ cq−1, (41)

f(η) =

Nη∑
i=1

wiI
(0)
i (η) + c1

ηq−1

(q − 1)!
+ c2

ηq−2

(q − 2)!
+ · · ·+ cq−1η + cq, (42)

where Nη is the number of nodes on the grid line. To replace the IRBF coefficients and

integration constants in (39)-(42) with the nodal values of f , equation (42) is enforced at ηi,

i = (1, 2, · · · , Nη), resulting in

f̂ = Cŵ, (43)

where

C =



I
(0)
1 (η1), I

(0)
2 (η1), · · · , I

(0)
Nη

(η1),
ηq−1
1

(q−1)!
, · · · , η1, 1

I
(0)
1 (η2), I

(0)
2 (η2), · · · , I

(0)
Nη

(η2),
ηq−1
2

(q−1)!
, · · · , η2, 1

· · · · · · · · ·

I
(0)
1 (ηNη), I

(0)
2 (ηNη), · · · , I

(0)
Nη

(ηNη),
ηq−1
Nη

(q−1)!
, · · · , ηNη , 1


,

f̂ =
(
f1, f2, · · · , fNη

)T
,

ŵ =
(
w1, w2, · · · , wNη , c1, c2, · · · , cq

)T
.

The minimum-norm solution to (43) is then substituted into (39)-(42).
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Thus, the derivatives of f at ηj are computed using the nodal values of f

∂fj
∂η

=

[
I
(1)
1 (ηj), · · · , I(1)Nη

(ηj),
ηq−2

(q − 2)!
, · · · , 1, 0

]
C−1f̂ , j = (1, 2, · · · , Nη), (44)

· · · · · · · · · · · · · · · · · ·
∂qfj
∂ηq

=
[
I
(q)
1 (ηj), · · · , I(q)Nη

(ηj), 0, · · · , 0, 0
]
C−1f̂ , j = (1, 2, · · · , Nη), (45)

or

∂̂f

∂η
= D[q]

1 f̂ , (46)

· · · · · · · · ·

∂̂qf

∂ηq
= D[q]

q f̂ , (47)

where

∂̂kf

∂ηk
=

(
∂kf1
∂ηk

,
∂kf2
∂ηk

, · · · ,
∂kfNη
∂ηk

)T
, k = (1, 2, · · · , q),

and D[q]
k is the differentiation matrix for computing the kth-order derivative of f . For a

square region, one needs to compute the differentiation matrices on only one grid line and

then can use them for the other grid lines.

It is noted that by taking appropriate derivatives as the original functions, the calculation of

high-order derivatives can be based on the differentiation matrices for the first and second

derivatives only. For example, in computing the third and fourth derivatives, one can consider

the second derivatives as the original functions. In computing the fifth and sixth derivatives,

one can consider the fourth derivatives as the original functions. With the presence of

the integration constants in (39)-(42), extra information can also be included in the IRBF

approximations to enhance the solution accuracy. Examples of extra information include

the boundary values of the first derivative and the periodic conditions (if existed).
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3.4 Implementation notes

The proposed stencil results in a sparse system matrix, which has only nine non-zero entries

per row. These algebraic systems can be solved in an efficient way. On the other hand, the

proposed method involves an iterative scheme for finding derivative values at the neighbour-

ing nodes of the central node. In addition, to achieve a high level of accuracy, the method

needs to use extended precision arithmetic for solving some local conversion systems in the

IRBF formulation. It is noted that as shown in [25], utilisation of extended-precision float-

ing point arithmetic is an effective way to bypass the solution of the ill-conditioned linear

system. In this study, the local conversion systems are solved with 32 digits of precision,

and the computation of other tasks such as computing derivatives, and forming and solving

the final system of algebraic equations are all carried out with standard double precision.

For the region discretised with a uniform grid, one needs to solve the conversion systems

on only one stencil, and the obtained results are then used for other stencils and for every

iteration step. They can be taken as a preprocessing step. Also, the final system matrix

stays the same during the iteration process. The calculation of derivatives along the grid

lines is simply the process of doing function approximations. Its computational efficiency

can be improved by employing overlapping domain decomposition as discussed in [22].

3.5 Extensions to non-rectangular regions

The proposed stencil can be extended to solve the biharmonic equation defined on a non-

rectangular region. The reason for this is that the proposed stencil involves only nodal

derivative values rather than nodal PDE values. The calculation of nodal derivative values

is carried out along the grid lines. Special attention is needed to compute the boundary

values of v

vb =
∂2ub
∂x2

+
∂2ub
∂y2

, (48)

where the subscript b is used to denote the boundary point.
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The directional derivative of function f(x, y) along a curved line is given by

∇tf(x, y) = t · ∇f(x, y) =
∂f

∂x
tx +

∂f

∂y
ty, (49)

where t is a unit tangent vector.

Taking f = ∂ub/∂x yields

∇t

(
∂ub
∂x

)
=
∂2ub
∂x2

tx +
∂2ub
∂x∂y

ty, (50)

or

∂2ub
∂x∂y

=
1

ty

(
∇t

(
∂ub
∂x

)
− ∂2ub
∂x2

tx

)
. (51)

Taking f = ∂ub/∂y yields

∇t

(
∂ub
∂y

)
=

∂2ub
∂x∂y

tx +
∂2ub
∂y2

ty, (52)

or

∂2ub
∂x∂y

=
1

tx

(
∇t

(
∂ub
∂y

)
− ∂2ub

∂y2
ty

)
. (53)

From (51) and (53), one can derive the relationship between ∂2u/∂x2 and ∂2u/∂y2 at a

boundary point

1

ty

(
∇t

(
∂ub
∂x

)
− ∂2ub
∂x2

tx

)
=

1

tx

(
∇t

(
∂ub
∂y

)
− ∂2ub

∂y2
ty

)
. (54)

For boundary points on the x-grid lines, equation (48) thus reduces to the equation containing

only the second derivative with respect to x

vb =

[
1 +

(
tx
ty

)2
]
∂2ub
∂x2

+ py, (55)
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where py is a known quantity

py =
1

ty
∇t

(
∂ub
∂y

)
− tx
t2y
∇t

(
∂ub
∂x

)
.

For boundary points on the y-grid lines, equation (48) thus reduces to the equation containing

only the second derivative with respect to y

vb =

[
1 +

(
ty
tx

)2
]
∂2ub
∂y2

+ px, (56)

where px is a known quantity

px =
1

tx
∇t

(
∂ub
∂x

)
− ty
t2x
∇t

(
∂ub
∂y

)
.

It is noted that there is no approximation error in equations (55) and (56) [26]. For bet-

ter accuracy, the boundary values ∂ub/∂x and ∂ub/∂y are included in the approximation

of ∂2ub/∂x
2 in (55) and ∂2ub/∂y

2 in (56), respectively. It is expected that the ability of

RBFs to work well with irregular nodes and the inclusion of nodal derivative values into the

approximations will alleviate the loss of accuracy caused by the non-rectangular shapes of

the stencil.

4 Numerical examples

4.1 Example 1

We consider the biharmonic problem defined in −1 ≤ x, y ≤ 1 with the exact solution

u(x, y) =
1

π4
sin(πx) sin(πy),

from which the forcing term b(x, y) and boundary conditions g1(x, y) and g2(x, y) are derived.
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Approximations over the stencil and grid lines are carried out by using IRBFq. Four values

of q, i.e. (2, 4, 6, 8), are considered.

First we study the effect of the RBF width associated with the approximations on the nine-

point stencil on the solution accuracy. A wide range of the RBF width from 10−4 to 100

is considered. The RBF width associated with the approximations on the grid lines is kept

at a value of 0.001. The obtained results are displayed in Figure 2. It can be seen that

the IRBF solution becomes more accurate and less dependent on the RBF width with an

increase in the order of the IRBF scheme. For IRBF6 and IRBF8, the IRBF solutions are

highly accurate and not influenced by the RBF width.

The proposed discretisation process involves four matrices, the conversion matrix used in

solving equation (3), denoted by Cu, the conversion matrix used in solving equation (4),

denoted by Cv, the conversion matrix in approximating the variables u and v along the grid

lines, denoted by C, and the system matrix, denoted by A. Figure 3 shows the effect of

the RBF width associated with the nine-point stencil on the condition numbers of these

matrices. The four IRBF schemes produce similar values for the condition number of A.

They are quite low (i.e. O(102)), which suggests that the resultant global systems, which are

large, can be handled with standard/double precision. On the other hand, an IRBF scheme

of higher order produces larger values for the condition numbers of Cu, Cv and C. For IRBF6

and IRBF8 here, a higher level of precision (e.g. 32-digit accuracy) is needed. It is noted

that Cu, Cv and C are relatively-small matrices. The calculation of derivatives along the grid

lines is simply the process of doing function approximations and one can utilise overlapping

domain decomposition to improve its matrix condition number and efficiency.

Figure 4 shows the effect of the RBF width associated with the grid lines on the solution

accuracy. A wide range of the RBF width from 10−4 to 10−1 is considered. At the smallest

value of 10−4, the IRBF solution converges as O(h3.89) for IRBF4, O(h6.04) for IRBF6 and

O(h8.25) for IRBF8. At the largest value of 10−1, the IRBF solution converges as O(h4.85)

for IRBF4, O(h6.85) for IRBF6 and O(h9.59) for IRBF8. It can be seen that the RBF width

(grid lines) also does not have a strong influence on the solution accuracy.
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The CPU times used by our Matlab code for solving this problem are relatively small. For

example, for a grid 21 × 21 and on a Laptop with an CPU Intel(R) Core(TM) i7-10610U

1.80GHz 2.30GHz, the CPU time is 0.012 seconds for solving the conversion systems on the

stencil , 0.37 seconds for solving the conversion system on the grid line, and 0.0014 seconds

for solving the final system matrix.

The obtained numerical results indicate that IRBF4, IRBF6 and IRBF8 using the 9 grid

points are high-order approximation schemes. An IRBF scheme of higher order yields a

faster convergence rate but produces a larger matrix condition number. In general, there is

a need for using extended precision to handle small local systems. It should be pointed out

that an IRBF scheme of high order (i.e. ≥ 6) produce solutions that are not much influenced

by the RBF width.

4.2 Example 2

Unlike Example 1, the forcing function in this example is chosen as a polynomial

b = 8
[
3y2(1− y)2 + 3x2(1− x)2 + (6x2 − 6x+ 1)(6y2 − 6y + 1)

]
, (57)

where 0 ≤ x, y ≤ 1. The exact solution to this problem is

u =
[
(x− x2)(y − y2)

]2
, (58)

from which the boundary values of the first derivative are derived. This problem was stud-

ied by Gupta and Manohar [8], Stepheson [9] and other authors. It serves as a basis for

comparison purposes. The obtained results using IRBF8 are shown in Figure 5 and Table 1.

From Figure 5, like Example 1, the IRBF solutions are seen not to be influenced by the RBF

widths. The numerical errors are consistently reduced with a small decrease in the grid size.

In Table 1, for a given grid size, the obtained results are much more accurate than those by

the conventional 13-point stencil [8] and the compact 9-point stencil [9].
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4.3 Example 3

The domain of interest is chosen as a region inside the unit square and outside the circle of

radius 0.125 as shown in Figure 6. The square and circle are both centered at the origin.

The forcing function and exact solution are given by

b = (2π)4 [4 cos(2πx) cos(2πy)− cos(2πx)− cos(2πy)] , (59)

u = [1− cos(2πx)] [1− cos(2πy)] . (60)

The boundary values of the first derivative are derived from (60). We also use a Carte-

sian grid to represent the domain. Let h be the grid size. Grid nodes close to the inner

boundary (within distance h/6) and those inside the circle are removed. Boundary nodes

are intersections of the grid lines and the boundaries. When the density is increased, the

grid becomes more non-uniform. With the presence of inner boundary nodes, the minimum

distance between nodes becomes smaller. In this regard, a range of the RBF width is chosen

as [10−5, 10−2] instead of [10−4, 10−1]. The obtained results using IRBF6 are shown in Fig-

ure 7. It can be seen that similar levels of the solution accuracy are obtained. The solution

converges fast with grid refinement for any value of the RBF width. For example, taking the

RBF width of 0.001 for the approximation on the stencils and 0.01 for the approximation

on the grid lines, the rate of convergence is 9.03.

5 Concluding remarks

This paper reports a new compact 9-point stencil based on IRBFs for solving the first bihar-

monic problem in two dimensions. Using integration to construct the RBF approximations

has its own strengths. Through integration, nodal derivative values are included in the 9-

point stencil in a natural way. The higher the order of an IRBF scheme used, the greater the

number of the derivative terms is included. It is found that employing a high-order IRBF

scheme on the stencil results in a solution that is highly accurate and not influenced by the
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RBF width. With extra information being derivatives along the grid lines, the proposed

compact stencil can also be used for problems with curved boundaries. In numerical exam-

ples, the proposed stencil compares favourably with the conventional 13-point and 9-point

stencils, and high-order convergence of the proposed IRBF process is achieved for problems

defined on rectangular and non-rectangular domains.

Appendix

Analytical forms: The following are integrated basis functions derived from the multi-

quadric function by using Mathematica

I
(1)
i (η) = (η−ηi)

2
A+

a2i
2
B,

I
(2)
i (η) =

(
−a2i
3

+ (η−ηi)2
6

)
A+

a2i (η−ηi)
2

B,

I
(3)
i (η) =

(
−13a2i (η−ηi)

48
+ (η−ηi)3

24

)
A+

(
−a4i
16

+
a2i (η−ηi)2

4

)
B,

I
(4)
i (η) =

(
a4i
45
− 83a2i (η−ηi)2

720
+ (η−ηi)4

120

)
A+

(
−3a4i (η−ηi)

48
+

4a2i (η−ηi)3
48

)
B,

I
(5)
i (η) =

(
113a4i (η−ηi)

5760
− 97a2i (η−ηi)3

2880
+ (η−ηi)5

720

)
A+

(
a6i
384
− 3a4i (η−ηi)2

96
+

2a2i (η−ηi)4
96

)
B,

I
(6)
i (η) =

(
−a6i
1575

+
593a4i (η−ηi)2

67200
− 253a2i (η−ηi)4

33600
+ (η−ηi)6

5040

)
A+(

5a6i (η−ηi)
1920

− 20a4i (η−ηi)3
1920

+
8a2i (η−ηi)5

1920

)
B,

I
(7)
i (η) =

(
−1873a6i (η−ηi)

3225600
+

4327a4i (η−ηi)3
1612800

− 551a2i (η−ηi)5
403200

+ (η−ηi)7
403200

)
A+(

−a8i
18432

+
15a6i (η−ηi)2

11520
− 30a4i (η−ηi)4

11520
+

8a2i (η−ηi)6
11520

)
B,

I
(8)
i (η) =

(
a8i

99225
− 54511a6i (η−ηi)2

203212800
+

20939a4i (η−ηi)4
33868800

− 5309a2i (η−ηi)6
25401600

+ (η−ηi)8
362880

)
A+(

−35a8i (η−ηi)
645120

+
280a6i (η−ηi)3

645120
− 336a4i (η−ηi)5

645120
+

64a2i (η−ηi)7
645120

)
B,

where A =
√

(η − ηi)2 + a2i and B = ln
(

(η − ηi) +
√

(η − ηi)2 + a2i

)
.

Conversion systems: The following are the systems used for the conversion of the RBF

space into the physical space for the variables u and v.
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IRBF2:



ui−1

ui

ui+1

∂ui−1

∂η

∂ui+1

∂η


=



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1) ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi) ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1) ηi+1 1

I
(1)
1 (ηi−1) I

(1)
3 (ηi−1) I

(1)
3 (ηi−1) 1 0

I
(1)
1 (ηi+1) I

(1)
3 (ηi+1) I

(1)
3 (ηi+1) 1 0





w1

w2

w3

c1

c2


, (61)



vi−1

vi

vi+1

∂2vi−1

∂η2

∂2vi+1

∂η2


=



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1) ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi) ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1) ηi+1 1

I
(2)
1 (ηi−1) I

(2)
3 (ηi−1) I

(2)
3 (ηi−1) 0 0

I
(2)
1 (ηi+1) I

(2)
3 (ηi+1) I

(2)
3 (ηi+1) 0 0





w1

w2

w3

c1

c2


, (62)

IRBF4:



ui−1

ui

ui+1

∂ui−1

∂η

∂ui+1

∂η

∂2ui−1

∂η2

∂2ui+1

∂η2



=



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1)

η3i−1

3!

η2i−1

2
ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi)

η3i
3!

η2i
2

ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1)

η3i+1

3!

η2i+1

2
ηi+1 1

I
(1)
1 (ηi−1) I

(1)
3 (ηi−1) I

(1)
3 (ηi−1)

η2i−1

2
ηi−1 1 0

I
(1)
1 (ηi+1) I

(1)
3 (ηi+1) I

(1)
3 (ηi+1)

η2i+1

2
ηi+1 1 0

I
(2)
1 (ηi−1) I

(2)
3 (ηi−1) I

(2)
3 (ηi−1) ηi−1 1 0 0

I
(2)
1 (ηi+1) I

(2)
3 (ηi+1) I

(2)
3 (ηi+1) ηi+1 1 0 0





w1

w2

w3

c1

c2

c3

c4



, (63)



vi−1

vi

vi+1

∂2vi−1

∂η2

∂2vi+1

∂η2

∂3vi−1

∂η3

∂3vi+1

∂η3



=



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1)

η3i−1

3!

η2i−1

2
ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi)

η3i
3!

η2i
2

ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1)

η3i+1

3!

η2i+1

2
ηi+1 1

I
(2)
1 (ηi−1) I

(2)
3 (ηi−1) I

(2)
3 (ηi−1) ηi−1 1 0 0

I
(2)
1 (ηi+1) I

(2)
3 (ηi+1) I

(2)
3 (ηi+1) ηi+1 1 0 0

I
(3)
1 (ηi−1) I

(3)
3 (ηi−1) I

(3)
3 (ηi−1) 1 0 0 0

I
(3)
1 (ηi+1) I

(3)
3 (ηi+1) I

(3)
3 (ηi+1) 1 0 0 0





w1

w2

w3

c1

c2

c3

c4



, (64)
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IRBF6:

ui−1

ui

ui+1

∂ui−1

∂η

∂ui+1

∂η

∂2ui−1

∂η2

∂2ui+1

∂η2

∂3ui−1

∂η3

∂3ui+1

∂η3



=



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1)

η5i−1

5!

η4i−1

4!
· · · ηi−1 1

I
(0)
1 (ηi) I

(0)
3 (ηi) I

(0)
3 (ηi)

η5i
5!

η4i
4!

· · · ηi 1

I
(0)
1 (ηi+1) I

(0)
3 (ηi+1) I

(0)
3 (ηi+1)

η5i+1

5!

η4i+1

4!
· · · ηi+1 1

I
(1)
1 (ηi−1) I

(1)
3 (ηi−1) I

(1)
3 (ηi−1)

η4i−1

4!

η3i−1

3!
· · · 1 0

I
(1)
1 (ηi+1) I

(1)
3 (ηi+1) I

(1)
3 (ηi+1)

η4i+1

4!

η3i+1

3!
· · · 1 0

I
(2)
1 (ηi−1) I

(2)
3 (ηi−1) I

(2)
3 (ηi−1)

η3i−1

3!

η2i−1

2
· · · 0 0

I
(2)
1 (ηi+1) I

(2)
3 (ηi+1) I

(2)
3 (ηi+1)

η3i+1

3!

η2i+1

2
· · · 0 0

I
(3)
1 (ηi−1) I

(3)
3 (ηi−1) I

(3)
3 (ηi−1)

η2i−1

2
ηi−1 · · · 0 0

I
(3)
1 (ηi+1) I

(3)
3 (ηi+1) I

(3)
3 (ηi+1)

η2i+1

2
ηi+1 · · · 0 0





w1

w2

w3

c1

c2

c3

c4

c5

c6



,

(65)

vi−1

vi

vi+1

∂2vi−1

∂η2

∂2vi+1

∂η2

∂3vi−1

∂η3

∂3vi+1

∂η3

∂4vi−1

∂η3

∂4vi+1

∂η3



=



I
(0)
1 (ηi−1) I

(0)
3 (ηi−1) I

(0)
3 (ηi−1)

η5i−1

5!

η4i−1

4!
· · · ηi−1 1
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Table 1: Example 2: Results by the proposed 9-point stencil are much more accurate than
those by the conventional 13-point stencil (Gupta and Manohar [8]) and the compact 9-point
stencil (Stephenson [9]). It is noted that the IRBF approximations are all carried out with
the RBF width a = 0.001, a tolerance in the iterative procedure is set to 10−14, and α(γ)
means α× 10γ.

Gupta, Stephenson Proposed stencil
h Manohar h O(h2) O(h4) h (IRBF8)
1/20 1.981(-2) 1/4 3.873(-4) 2.555(-5) 1/4 2.8706(-5)

1/8 9.492(-5) 6.523(-7) 1/5 2.5461(-6)
1/16 3.035(-6) − 1/6 7.8680(-9)

1/7 4.9778(-10)
1/8 3.0615(-11)
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Figure 1: A 9-point stencil: The process of replacing the nodal derivative values with nodal
function values involves the approximations along the two red grid lines for the variable v, and
along all the grid lines of the stencil for the variable u. If the grid node is a boundary node,
the associated value of the variable v can be calculated from the boundary approximation
and there is no need for expressing it in terms of the nodal values of the variable u.
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Figure 2: Example 1, Nx × Ny = (11 × 11, 13 × 13, · · · , 31 × 31): Effect of the RBF width
associated with the stencil on the solution accuracy. The approximations over the stencil
and along the grid lines are all carried out by using IRBF2, IRBF4, IRBF6 and IRBF8. For
the approximations along the grid lines, the RBF width of 0.001 is implemented for all the
four schemes. It can be seen that the IRBF solution is more accurate and less dependent on
the RBF width with an increase in the order of the IRBF scheme.
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Figure 3: Example 1, Nx × Nx = 31 × 31: Effect of the RBF width associated with the
stencil on the condition numbers of the conversion matrices and the system matrix. For
the system matrix A, the four IRBF schemes produce similar condition numbers, which are
small (about O(102)) and stay unchanged with the RBF width. For the conversion matrices,
the condition numbers are increasing functions of the RBF width. In addition, an IRBF
scheme of higher order produces a larger condition number. Large global systems can be
handled by standard/double precision (16-digit accuracy), while a higher level of numeric
precision is needed for dealing with small local conversion systems.
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Figure 4: Example 1, Nx × Ny = (11 × 11, 13 × 13, · · · , 31 × 31): Effect of the RBF width
associated with the grid lines on the solution accuracy. For the approximations on the stencil,
the RBF width of 0.001 is implemented for all the schemes. The behaviours of convergence
of the IRBF process at two end-points of the width range are displayed. At the left value of
the range (a = 10−4), the solution converge as O(h3.89) for IRBF4, O(h6.04) for IRBF6 and
O(h8.25) for IRBF8. At the right value a = 10−1, the IRBF solution converges as O(h4.85) for
IRBF4, O(h6.85) for IRBF6 and O(h9.59) for IRBF8. High rates of convergence are obtained
over a wide range of the RBF width. In this regard, the RBF width here does not have a
strong influence on the solution accuracy.
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Figure 5: Example 2, Nx ×Ny = (5× 5, 6× 6, · · · , 9× 9), IRBF8: Effect of the RBF width
associated with the stencil (left) and effect of the RBF width associated with the grid lines
on the solution accuracy. The RBF solutions are not influenced much by the RBF widths.
Highly-accurate results are obtained over a wide range of the RBF width.
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Interior node

Boundary node

Figure 6: Domain of interest and its associated discretisation.
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Figure 7: Example 3, non-rectangular domain, IRBF6, Nx×Ny = (10×10, 14×14, 18×18):
Effect of the RBF width associated with the stencils (left) and effect of the RBF width
associated with the grid lines (right) on the solution accuracy. For the former, the RBF
width used for the grid lines is set to 0.001. For the latter, the RBF width used for the
stencils is also set to 0.001. The RBF solutions are not influenced by the RBF widths. The
solution converges as O(h8.97) for the left values on the right figure and O(h9.03) for the right
values on the right figure.
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