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Abstract

The first step in the formulation of disease management strategy for any cropping system is 
to identify the most important risk factors. This is facilitated by basic epidemiological stud-
ies of pathogen life cycles, and an understanding of the way in which weather and cropping 
factors affect the quantity of initial inoculum and the rate at which the epidemic develops. 
Weather conditions are important factors in the development of fungal diseases in winter 
wheat, and constitute the main inputs of the decision support systems used to forecast dis-
ease and thus determine the timing for efficacious fungicide application. Crop protection 
often relies on preventive fungicide applications. Considering the slim cost−revenue ratio 
for winter wheat and the negative environmental impacts of fungicide overuse, necessity for 
applying only sprays that are critical for disease control becomes paramount for a sustainable 
and environmentally friendly crop production. Thus, fungicides should only be applied at 
critical stages for disease development, and only after the pathogen has been correctly iden-
tified. This chapter provides an overview of different weather-based disease models devel-
oped for assessing the real-time risk of epidemic development of the major fungal diseases 
(Septoria leaf blotch, leaf rusts and Fusarium head blight) of winter wheat in Luxembourg.

Keywords: mechanistic model, stochastic model, integrated pest management

1. Introduction

Plant disease epidemics involve changes in disease intensity in a host population over time and 
space. Acquiring comprehensive information on this process is necessary to understanding  
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the factors that cause epidemics. However, even a complete set of data on disease intensity 
does not automatically lead to insights into the epidemic process. Furthermore, the informa-
tion regarding risk of disease needs to be communicated stakeholders who can subsequently 
take management decisions to protect the crop when risk of an epidemic is deemed high. 
Various mathematical models are used to summarize the essential features of the data or mea-
surements of interest regarding disease development. Models for biological or physical pro-
cesses can be developed using several methods. Empirical models are developed to describe 
an observed process, phenomenon, or relationship between variables using established sta-
tistical principles, and do not use previously developed theory or concepts to establish the 
relationship between the response variable and predictor variables. In contrast, mechanistic 
models are developed based on a theory, hypothesis, or concept of how a phenomenon or 
process occurs. Data are later considered after the mechanistic model is developed and might 
be used to improve the theory on which the model is based.

2. Challenges in predicting plant disease epidemic development

In many of the models that are discussed in this chapter, diseased individuals are grouped 
in three categories. After infection of the host takes place, the infected individual first goes 
through a phase where the disease develops and “grows” in the individual, but the infected 
individual does not produce propagules or infectious units. The infected individual is in a 
latent state. After the latent period, the infected individual becomes an infectious individual, 
meaning that it now produces infectious units that have the potential to cause subsequent 
infections. “Disease forecasting,” “disease prediction,” and the development of “disease 
warning systems” are activities familiar to plant disease epidemiologists [1–6]. Having identi-
fied the factors that lead to epidemics, it is of great importance to use this information to pro-
vide a basis for the management of plant disease. The level of disease risk to which a crop is 
exposed may be influenced by many factors, some of these are beyond the control of growers, 
but some factors are integral components of crop production systems and can be managed to 
minimize that risk.

2.1. Seasonality and the disease cycle

Many cropping systems are cyclical or seasonal. With annual plants, the crop is planted and 
harvested at specific times each year. Planting a specific (or a few) genotype(s) results in 
an abrupt increase in population of susceptible individuals. While harvesting immediately 
decreases both the population of susceptible individuals and the population of latent, infectious 
individuals. In the period between harvest and planting, the pathogen has to survive either as 
propagules or on living or dead plant material left in the field, in the soil, or in other locations. 
Crops are exposed to a risk of infection from pathogens, the outcome of which is economic loss 
when the epidemic increases above a certain threshold, which results from reduction in both 
the quantity and quality of crop yield. In this chapter, we are interested in quantifying the risk 
of infection to which a crop is exposed as a basis for deciding whether intervention aimed at 
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disease suppression is justified. Aspects of this process differ from pathogen to pathogen, from 
crop to crop, and from location to location [4]. Goulds and Polly [7] and Binns et al. [8] draw 
a distinction between crop protection based on either curative or preventative action. Without 
necessarily wishing to adhere rigidly to this dichotomy, it is nevertheless clear that in some 
cases, sample data are the most important components of the information on which decision 
making is based. In others, data relating to the host and the environment often play a more 
important role, and the evidence on which a decision is made about the need for appropriate 
control action is therefore likely to be more wide ranging. The first step in the formulation of 
a disease management strategy for any cropping system is to identify the most important risk 
factors among those on the long list of possible candidates. This is facilitated by basic epide-
miological studies of pathogen life cycles, and an understanding of the way in which weather 
and cropping factors affect the quantity of initial inoculum and the rate of the pathogen life 
cycle. To be able to identify risk factors, we need information both on the candidate risk factors 
and on the definitive status of the crops in which they are studied.

2.2. Basis of decision making

Jones [9] discussed a decision-making guideline based on impact on yield for fungicidal con-
trol of eyespot disease of winter wheat (Triticum aestivum L.). Treatment was considered to 
be worthwhile if ≥20% of tillers were diseased at growth stage (GS) 30–31. Accordingly, the 
recommendation was for a sample of tillers to be collected at the appropriate growth stage 
and a decision of whether to treat was made based on the percentage of tillers with symptoms 
of eyespot disease, in relation to the specified threshold. Decision making was based on a 
two-stage cluster sampling procedure, collecting a total of 50 tillers for the assessment [7]. The 
economic threshold is the level of risk exposure at which crop protection measures should 
be applied, in order to prevent the economic injury level from being reached. An economic 
threshold may be used to identify circumstances in which it becomes economically advanta-
geous to apply crop protection measures. The economic threshold is a discrete choice thresh-
old: the only options are to apply crop protection measures or to withhold them. However, 
the choice between these two options must be made before it is known for sure whether a 
crop will sustain economic loss resulting from reductions in the quantity and quality of yield. 
Thus, the economic threshold may be used as a basis for deciding whether or not crop protec-
tion measures are required, at a time when it is still possible to keep damage below the eco-
nomic injury level. Weather-based systems, or weather-based systems combined with other 
disease or agronomic variables have been developed in various areas in Europe to determine 
whether fungicide sprays should be applied to prevent the risk of epidemics that might oth-
erwise lead to yield loss. For example, Audsley et al. [10] developed a model in the UK based 
on weather, host resistance and inoculum pressure to project effects on green leaf area, which 
was coupled with effects on yield loss as a decision support system for Septoria leaf blotch, 
powdery mildew, and yellow and brown rusts.

In this chapter we specifically provide an overview of different weather-based disease models 
developed and used for assessing in real time the risk of epidemic development for the major 
fungal diseases (i.e., Septoria leaf blotch, powdery mildew, leaf rusts and Fusarium head 
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blight) of winter wheat in Luxembourg. A description of the models is provided along with 
the constraints associated with their use for in-season disease monitoring. The challenges 
faced using weather-based models in a changing climate are also discussed.

3. Main fungal diseases of wheat in Luxembourg and associated 
decision support systems

Wheat represents one of the most widely cultivated cereals with a production area of 215 
million ha worldwide [11]. Unfortunately, wheat diseases remain a major constraint to wheat 
production [12]. Crop protection often relies on calendar-date applied, preventive fungicide 
applications, and small grain cereals are typically treated with two or three foliar fungicide 
applications in Luxembourg and Belgium [13, 14]. The marginal cost/revenue ratio for winter 
wheat and the potential negative impacts that overuse of pesticides can have on the envi-
ronment are compelling arguments to minimize inputs, including fungicides. Effective esti-
mation of the risk of disease epidemic development can minimize the number of fungicide 
spray applied, leading to a more sustainable and environmentally friendly system of wheat 
production. Using tools to develop integrated pest management can lead to fungicides being 
applied only at particular stages that are at risk of infection, and only when the pathogen 
has been correctly identified (accurate identification and/or estimation of severity of disease 
can be critical to effective management). Diseases of wheat that have become economically 
important in Luxembourg include Septoria leaf blotch (SLB) caused by Zymoseptoria tritici 
Roberge in Desmaz., wheat leaf rust (WLR) caused by Puccinia triticina Eriks., wheat stripe rust 
(WSR) caused by Puccinia striiformis Westend. f. sp. Tritici Eriks., and Fusarium Head Blight 
(FHB) caused mainly by Fusarium graminearum. The control of the diseases caused by these 
pathogens is a high priority to minimize yield and grain quality losses.

3.1. Septoria leaf blotch

The majority of the SLB disease prediction systems proposed for the management of Z. tritici 
assume that the main risk of infection of the upper leaves (the most critical for grain fill [15]) 
comes from the inoculum that developed on the leaves during the winter and spring before 
the extension of the stem [16]. These prediction systems are based solely on rainfall occurring 
during stem extension, without considering the development of individual leaves [17–19]. 
The importance of rain and splash dispersal for development of severe SLB has been demon-
strated in several studies (e.g., [16, 20–22]). Shaw and Royle [19] suggested that the amount 
of Septoria inoculum at GS31 (first node detectable) [23] was only a partial guide to forecast 
the inoculum available during the expansion of the last two leaves. The progression of the 
disease on the upper leaves depends on the sensitivity of the cultivar, and the period of infec-
tion (infections occurring during and/or just after the emergence of these leaves could lead to 
severe impacts if the weather conditions are favorable) [24]. The mechanisms by which the 
pathogen population increases on the upper leaves are determined by the interaction of plant 
growth, the meteorological conditions allowing the dispersal of the inoculum and thus oppor-
tunity for new infections, and the availability of that inoculum in sufficient proximity to the 
upper leaves [19]. El Jarroudi et al. [20] suggested that the greatest risk to a wheat crop occurs 
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from infections arising between the emergences of leaf 2 (L2) and the flag leaf and roughly 
two latent periods before these leaves would naturally begin senescence. If the upper leaves 
are infected early in the cropping season, they are likely to suffer much more severe disease 
for two reasons: a) there is sufficient time for the pathogen to have more than one multiplica-
tion cycle on the leaves, with a longer time during which dissemination and infection may 
occur, resulting in premature loss of leaf area; b) these leaves are closer to the sources of the 
inoculum and extreme splashing events will no longer be necessary to disperse sufficient 
number of spore onto a susceptible tissue that is higher in the crop canopy. Furthermore, 
the structure of the wheat plants and the position of the source of the inoculum on specific 
leaves relative to each other are constantly changing and thus the risk of disease progression 
is dynamically complex and specific to each crop, cultivar and season [22]. In addition, the 
life of the upper leaves is considerably shortened by secondary infections resulting from the 
inoculum produced by primary lesions in the same leaf layer [19]. The detection of spores of 
Z. tritici during the season demonstrates the need for a predictive model [25, 26]. Both asexu-
ally produced pycnidiospores and sexually produced ascospores of Z. tritici are known to 
cause disease in wheat [22, 27], with ascospores being aerially dispersed over relatively long 
distances, and the pycnidiospores being primarily splash dispersed. Furthermore, the asco-
spores have an impact not only as primary inoculum in autumn and winter [27], but also as 
secondary inoculum at the end of spring and in summer. This airborne inoculum could help 
to colonize the upper leaves without the need for splash-dispersed pycnidiospores or could 
exacerbate the damage caused by splash-dispersed Z. tritici (Photo 1) due to the presence of 
the additional ascospore inoculum [28].

Due to the potential for yield loss from SLB, growers tend to spray fungicides several times 
during the winter wheat season to protect their crops. The development of resistance in 

Photo 1. Symptoms of Septoria leaf blotch caused by Zymoseptoria tritici on leaf L3 of the cultivar Achat. The black dots 
in the tan lesions are the pycnidia that produce the splash dispersed pycnidiospores (photo taken on May 30, 2007 at 
Everlange, Luxembourg; photo credit: El Jarroudi M.).
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Z. tritici to the main fungicides used for its control [20] has been demonstrated in many coun-
tries. Moreover, actual disease severity does not always justify a fungicide spray. In years 
with a low disease risk, a lower fungicide dose could be used [29]. There are several weather-
based Decision Support Systems (DSSs) available to help a grower decide whether a fungicide 
application is required [30–32]. These models rely mainly on rainfall measurement, or in some 
case more comprehensively on weather data, without considering the development of the dif-
ferent leaf layers during stem elongation [18, 33–37].

However, many models neglect the periods of interruption of acceptable temperature or 
humidity for infection which are important factors in disease development, and can be an 
indispensable element in developing more accurate models. According to Shaw [38], interrup-
tions in periods at 75% relative humidity for 48 h slightly reduced the efficiency of the infection 
process, but interruptions at 50% relative humidity resulted in major effects, but still allowed 
infection to occur. To simulate infection, some models take daily conditions [39, 40], while 
others, for example the PROCULTURE model are based on hourly weather conditions [14, 20].

3.1.1. The PROCULTURE model

The PROCULTURE model is an interactive web-based, field-specific, DSS based on the mecha-
nistic modeling of the development of the last five leaf layers of the wheat plant coupled with 
the progress of SLB on these layers [14, 20, 41, 42]. A descriptive flowchart of the model is 
presented in Figure 1. The main inputs include weather data (hourly air temperature, rainfall 
and relative humidity) and field-specific data including the location, sowing date and cultivar 
susceptibility. Field observations are also important since a fine-tuning of the model may be 
required based on the actual growth stage (around the first node stage, GS32) and the severity 
of SLB on the particular leaf layer as specified by the model. The model considers infection to 
have occurred when, during a 2 h rainfall event, precipitation for the first hour is at least 0.1 mm 
(to allow for the swelling of pycnidia), followed by a second hour with at least 0.5 mm precipi-
tation (Figure 1), leading to the release and splash dispersal of the conidia [14, 20]. In addition, 
after rainfall, relative humidity should be higher than 60% during the following 16 h [20, 43] 
and the temperature should remain above 4°C for 24 h [20] for germination and infection.

The evaluation of the PROCULTURE model at several sites in Belgium [14, 44] and 
Luxembourg [20] demonstrated that the model can explain disease progression in the can-
opy (Figure 2) and can be used to advise farmers when to apply fungicides during stem 
elongation, as the three upper leaves emerge. The need for and timing of a single fungicide 
spray using the PROCULTURE model is based on the observed disease severity earlier in the 
cropping season (i.e., severity on the lower leaves L5-L4 at GS 31–37, L1 being the flag leaf), 
the susceptibility of the cultivar, past and forecasted weather conditions, and the predicted 
development of leaves based on the output of the PROCULTURE model. Furthermore, his-
torical data (weather and disease incidence and severities) were used as a basis for similarity 
analysis to further evaluate the risk of severe disease development. Given the threshold level 
of observed disease severity (namely on the lower leaves) and weather conditions (actual 
and forecasted), an advice for fungicide treatment was taken and fungicides applied only if 
required to protect the upper leaves. For example, a 5% of emergence of L3 coinciding with 
SLB symptoms on L5 and a rainfall event, results in a greater risk that L3 will be affected by 
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SLB during full emergence. Consequently, a fungicide treatment against the risk of SLB is 
recommended if a latency period of the disease is completed at 75% emergence and favor-
able weather conditions forecasted. Overall, the assessment of the infection periods achieved 
an accuracy of 85%. The results showed that the PROCULTURE model satisfactorily recom-
mended none or a single fungicide treatment at each study site, regardless of geographical 
location or possible variability among the fungal diseases involved [45].

3.1.2. Spatialization of PROCULTURE alerts using radar rainfall

The PROCULTURE model is being used in early warning systems in Belgium and 
Luxembourg to define, in real time, the risk of SLB developing on the upper leaves of winter 
wheat during stem elongation. However, setting up an operational network for recommend-
ing the optimal time for fungicide application requires a representative network of weather 
stations throughout the region where the DSS will be used. In our studies (e.g., [20, 46])  
overestimation or underestimation of the risk of SLB progression could often be traced back 
to differences in rain events captured by the tipping-bucket rain-gauges at the weather sta-
tion compared with the rainfall to which a particular field was actually exposed. Rainfall 
data could be interpolated between weather stations, but precipitation between fields are 
characterized by high spatial and temporal variability [47, 48], making the interpolation 
unreliable [49, 50].

Radar may provide a solution for improving the interpolation of precipitation data [51, 52]. 
Over the past few years, radar-derived estimates have been increasingly used in disease fore-
casting applications as an alternative to gauge-derived measurements [51, 53].

Figure 1. Descriptive flowchart of the PROCULTURE model for predicting the risk of Septoria leaf blotch (SLB) infection 
events. T: Air temperature; RH: Relative humidity.
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Mahtour et al. [42] validated the simulation of infection periods for Z. tritici calculated by 
PROCULTURE using radar-based rainfall measurements. The duration of periods with a high 
probability of infection by Z. tritici was calculated by PROCULTURE and using radar rainfall 
data for these trials was similar to that based on gauge measurements (Table 1). A better spa-
tial representation of precipitation will inevitably improve present DSSs. Consequently, the 
DSSs could more accurately be the basis for recommending appropriate fungicide applica-
tions. If the results of the radar-based rainfall measurements combined with PROCULTURE 
are confirmed for a larger precipitation dataset and a larger number of stations, the sole use 
of radar data in the disease-warning system will be considered in the future. The results from 
this work should encourage research on additional radar-based rainfall applications for dis-
eases of other crops.

3.2. Wheat leaf rust

WLR is of major historical significance and is of economic importance worldwide. It is the 
most widespread of the three species of rusts causing significant yield losses over large 
geographical areas [54–59]. Several studies in major cereal-producing areas have revealed 

Figure 2. Output of the Septoria risk simulation model from 2006  in winter wheat fields at Reuler Luxembourg. A: 
Observed daily values of air mean temperature (°C) and rainfall (mm). B: Number of hours per day with a  >  80% 
probability of infection. C: Lines: Leaf area development (0–100%) of leaves L5–L1 (flag leaf is L1). Gray: Accumulation 
of hours of primary infection expressed on leaves L5–L1 (maximum of 100 h) (Reuler is one of the representative sites 
of winter wheat cropping regions in Luxembourg selected for field experiments in the framework of the SENTINELLE 
project. It is located in the northern part of Luxembourg).
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Field sites Observation 
period

Year Eventsa Duration 
of infection 
periodb

PODso
c FARso

d CSIso
e

Gauge Radar Gauge Radar Gauge Radar Gauge Radar

HUMAINf 21/05 to 
05/07

2003 18 60 62 0.93 0.83 0 0 0.93 0.83

03/05 to 
28/06

2004 16 46 40 0.73 0.87 0 0 0.73 0.87

20/05 to 
15/07

2005 8 24 27 0.86 1.00 0 0.12 0.85 0.87

42 130 129 0.84h 0.90 0 0.04 0.84 0.86

USELDANGEg 13/05 to 
29/06

2003 15 56 44 0.87 0.80 0 0 0.87 0.80

16/05 to 
09/07

2004 18 48 48 0.72 0.78 0 0 0.72 0.78

14/05 to 
12/07

2005 15 33 32 0.71 0.86 0.09 0.07 0.67 0.81

48 137 124 0.77 0.81 0.03 0.02 0.75 0.80

BURMERANGEg 17/05 to 
03/07

2003 10 30 22 0.70 0.70 0 0 0.70 0.70

05/05 to 
13/07

2004 15 43 55 0.73 0.93 0 0 0.73 0.93

12/05 to 
04/07

2005 12 24 28 0.91 0.83 0 0 0.91 0.83

37 97 105 0.78 0.82 0 0 0.78 0.82

REULERg — 2003 — — — — — — — — —

27/05 to 
05/07

2004 10 45 32 0.70 0.70 0 0 0.70 0.70

16/05 to 
11/07

2005 11 24 23 0.82 1.00 0 0 0.82 1.00

21 69 55 0.76 0.85 0 0 0.76 0.85

All 148 433 413 0.79 0.84 0.01 0.02 0.77 0.83
aNumber of infection events deduced from visually observed symptoms in the field sites on the upper three leaves.
bTotal number of hours with a high probability of infection simulated by PROCULTURE.
cProbability of Detection of infection by Z. tritici is the number of cases where infections are both simulated and observed 
against the number of infections observed. Perfect forecast = 1.
dFalse Alarms Ratio of infection by Z. tritici is the number of observed infections not simulated against the number of 
infections observed in the field. Perfect forecast = 0.
eCritical Success Index of Z. tritici infection takes into account both false alarms and missed events. The PODso, FARso and 
CSIso show the infection occurrence comparison between infection periods (on the last 3 leaves) determined by visual 
observations and simulated by the PROCULTURE model using measurements from four rain-gauges or radar-based 
estimates. Perfect value = 1.
fSite in Belgium.
gSite in Luxembourg.
hAverage for each field site over three cropping seasons indicated in bold.
- No data.

Table 1.  Comparison of the performance when using rain-gauge or radar-based rainfall measurements in the 
PROCULTURE model for estimating the risk of infection events in winter wheat by Zymoseptoria tritici at four sites 
during three cropping seasons in Luxembourg and Belgium [42].
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that epidemics of WLR occur under (i) favorable conditions for overwintering spores as a 
source of primary inoculum, (ii) rapid and abundant production of wind-dispersed uredinio-
spores, and (iii) a complex interaction between environmental conditions and host resistance  
[54, 60]. The dispersal of foliar pathogens and WLR in particular around a spore source has 
been described in many studies, sometimes confirming dispersal over large distances [61] but 
most often at the spatial scale of an infected plant or group of plants [62, 63], or even a single 
leaf [64]. Although these studies give valuable insights to allow understanding of epidemic 
spread of diseases like WLR and to parameterize simulation models, they most often do not 
take into account the local structure of the host crop and its potential effect on disease distri-
bution [64].

Two different approaches have been used to forecast development of epidemics of WLR. Some 
forecasting systems consider the effect of weather on the disease by means of empirical rules, 
flow charts [65], disease indices [66, 67], or regression equations [68, 69]. Other models fore-
cast severity of WLR on the basis of the dynamic of the epidemic, using a fixed relative growth 
rate of the disease [70–72].

Moisture and temperature are reported to be the most important meteorological parameters 
influencing the development of epidemics of WLR [73]. Nevertheless, the genetic resistance 
of wheat cultivars is critically important factor in determining the impact of the disease [74]. 
Urediniospores are deposited by wind or rain on the adaxial and abaxial surfaces of wheat 
leaves. Rain on, or turbulence around the leaf surface allows the dispersal of urediniospores. 
In addition, wet deposition (spore scavenged from the air by rain) is considered an important 
mechanism of crop contamination by some rusts [75]. Although most rainfall events promote 
spore dispersal in the field, heavy rain may also induce the leaching of spores deposited on 
leaves and may totally deplete the lesions in the process [76]. When the urediniospores of 
WLR are in contact with susceptible wheat leaves, the success of infection requires a minimal 
duration of surface wetness, which varies as a function of temperature [50, 77]. De Vallavieille-
Pope et al. [77] showed that optimum temperatures for uredospore germination ranged from 
12 to 15°C and that the germination process ceased above 35°C. As noted, the presence of 
free water on the leaf surface is essential for urediniospore germination. In an earlier study, 
Eversmeyer [78] proposed an optimum temperature of 16°C for completion of the infection 
process by uredinisospores of P. triticina, with infection needing a dew period of at least 3–4 h. 
In the same study, it was shown that the latent period for WLR ranged from 8 to 20 days for 
air temperatures between 10 and 20°C. The process of infection has an approximately linear 
relationship with the sum of base 0 degree-days. It has also been demonstrated that germina-
tion of urediniospores of P. triticina could be delayed or inhibited by increasing light intensity 
[78, 79]. For this reason, infections occur preferentially at night (Photo 2).

Considering these data, an empirical approach for simulating infection by WLR and progress 
of the disease on the upper three leaf layers has been proposed and validated in Luxembourg 
[2]. The model used only weather data logged between 8 pm to 5 am based on the assump-
tion that spore germination is inhibited by light. Each infection event was deemed to require 
a period of at least 12 consecutive hours counted on at least two nights with air temperatures 
ranging between 8 and 16°C and a relative humidity greater than 60% (Figure 3). Moreover, 
the hourly rainfall totals during these 12-hour periods must be less than 1 mm to avoid the 
leaching of spores present on leaves. Furthermore, the primary infection in a field requires a 
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light rain (0.1–1.0 mm) in the first hour of an infection event supposing that this rainfall allows 
the first deposition of the inoculum in the field. This light rain event is not a necessity once the 
primary infection has occurred. The model has led to a DSS that allows optimizing timing of 
applications of the fungicide for controlling WLR in fields in Luxembourg.

Photo 2. A leaf showing symptoms of infection by Puccinia triticina, causing pathogen of wheat leaf rust (photo taken on 
June 2009 at Burmerange, South Luxembourg; photo credit: El Jarroudi M.).

Figure 3. Descriptive flowchart of the model used for predicting wheat leaf rust (WLR) infection events caused by 
Puccinia triticina [80].
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The presence of primary inoculum in the air is not considered as a limited factor in this model. 
We assumed that spores of P. triticina are already present in fields during the period of study. 
A fine-tuning of the DSS will include an effective assessment (i.e., spore dispersion estimates) 
for the spores in the same field, since spores from outside the field are only required to initiate 
the first infection (exogenous inoculum). Indeed, the assessment of the model coupled with 
detection of spores showed that the infection periods on susceptible cultivars (Figure 4) were 
well predicted [81].

Thus, the detection of airborne inoculum by sensors and its coupling to a reliable model of dis-
persion could help improve forecasting the occurrence of WLR. In Belgium, a recent study on 
the spatio-temporal distribution of the airborne inoculum of P. triticina indicated that infection 
on the three youngest leaf layers could originate from endogenous and/or exogenous inoculum. 
The first symptoms observed on crops can be the result of either infection by urediniospores car-
ried upwind by air masses from distant infected fields or the consequence of sporulating lesions 
occurring in the fall and remaining active after the winter [82]. Airborne inoculum was gener-
ally detected in fields during the growing season between March and May (during the spring 
green-up). Various densities of airborne inoculum were observed depending of the site and 
the year, and the severity of WLR on the upper leaf layers during the grain filling was strongly 
influenced by the density of spores collected during the development of these leaf layers [83].

Molecular diagnostics combined with sampling of airborne inoculum could be exploited to 
more accurately predict the risk of epidemics in wheat agro-ecosystems. Strategies for con-
trolling WLR in fields include the use of resistant cultivars. But a prolonged period of moni-
toring WLR involving susceptible cultivars and favorable night conditions conducive to spore 
production, dispersal of, and infection by P. triticina with subsequent development of WLR 
should demonstrate the capability of the DSS in these situations. Junk et al. [84] studied the 
potential infection periods of WLR in a changing climate at two selected sites in Luxembourg 
(Burmerange and Christnach) using a weather threshold-based model for infection and devel-
opment and progress of WLR that involved hourly night-time data for air temperature, rela-
tive humidity and rainfall. Their findings revealed that highest proportions of favorable days 
for infection with P. triticina and development of WLR in the future would occur during 
spring and summer at both sites, with the proportions more marked at Burmerange.

3.3. Wheat stripe rust

WSR is an example of a disease of world-wide importance and ability for long distance dis-
persal. Crop pathogens with worldwide prevalence and potential for long distance migration 
and thus invasions into new areas may pose a serious threat to food security regionally or 
globally [85]. WSR of wheat is among the most important crop diseases causing a continuous 
threat to crop production [86, 87]. Worldwide. the virulence and race diversity of populations 
of P. striiformis is apparent. Races from regionally prevalent lineages cause epidemic outbreaks 
resulting in widespread economic losses in wheat production [85, 88]. Virulence to most of the 
characterized resistance genes has been observed in Europe, reflecting the large-scale deploy-
ment of these genes in Europe in the past [89–93]. More recently, the footprint of epidemics of 
WSR appears to be moving into non-traditional, warmer and dryer areas suggesting a wider 
range of adaption [85]. Based on an ostensibly representative selection of isolates of WSR 
collected from the United States (and genetically similar isolates from Denmark, Mexico and 
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Figure 4. Severity of wheat leaf rust (WLR) on the three upper leaves in wheat plants. Severity of WLR, infection by, and 
latent periods of P. triticina were determined based on favorable night weather conditions at Perwez, Belgium in 2009 
(a), 2011 (B) and 2013 (C). The arrows show the time of the first disease observation in the field. Phenology of the plants 
including the appearance of the three upper leaves is represented at the bottom of each figure. The airborne inoculum 
trapped in the field allows determination of when the “inoculum condition” was reached (black bars). The gray bars 
symbolize the moment when the “rain conditions” of the original model were reached. (source: [81]).
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Figure 5. Descriptive flowchart of the modeling approach for predicting infection events of wheat stripe rust caused by 
Puccinia striiformis [13]. Air temperature (T), relative humidity (RH) and rainfall (R).

Eritrea) before and after 2000 [94], it was demonstrated that isolates collected after 2000 were 
more aggressive and had adapted to produce more urediniospores in a shorter time period, 
and at higher temperatures. The pathogen has been highly mobile and the geography of its 
genetics has changed and expanded, especially since 2000. Multiple new incursions of the 
pathogen have been reported in Australia and South Africa [95, 96] and international move-
ment of spores of P. striiformis from Europe (in 1979) and North America (in 2002) has been 
implicated on the clothing of travelers [97]. Indeed, in 2011 a new race of P. striiformis, named 
“Warrior,” was detected in various European countries including France, Germany and the 
UK [93]. Since urediniospores of P. striiformis can spread over large distances [98], the race 
Warrior is probably already present in Luxembourg. Confirming the existence of Warrior in 
commercial Luxembourgish wheat fields was not part of this study.

In most seasons, environmental conditions during spring and early summer are conducive 
to the production of large quantities of spores of P. striiformis, which are dispersed from dis-
tances of a few centimeters to thousands of kilometers (Photo 3), where they might reach a 
susceptible host plant [76, 98]. The sporulation capacity and infection efficiency of P. striifor-
mis are affected mainly by air temperature, leaf-wetness duration and light intensity [77]. 
Urediniospores of P. striiformis require a relative humidity near saturation for at least three 
hours to germinate [99] and are sensitive to an interruption of the wet period during germina-
tion [77]. The presence of free water on the leaf surface is also essential for spore germination 
[77, 99, 100]. Thus, rain is often considered conductive to disease spread because rain events 
are generally followed by extended periods of leaf wetness [76, 99].

The model developed is based on a stepwise approach (Figure 5) consisting of (1) the determina-
tion of the potential range of weather conditions conducive to WSR in Luxembourg using a sto-
chastic approach, and (2) the determination of optimum classes of combined weather variables  
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Photo 3. Fungicide treated and non-treated plots of winter wheat and a leaf (inset) showing symptoms of wheat stripe 
rust caused by Puccinia striiformis (photo taken on 2015 in Burmerange, South Luxembourg. Photo credit: Beyer M.).

Figure 6. Example of simulated infection events by Puccinia striiformis (cause of wheat stripe rust (WSR)), observed green 
leaf area (GLA) and severity of WSR on the three upper leaves (L3 to L1, L1 being flag leaf) at Burmerange, Luxembourg 
during the 2015 cropping season. The severity of WSR is expressed as percentage leaf area diseased [13].
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(air temperature (T), relative humidity (RH) and rainfall (R)) conducive to the disease and 
building of a weather threshold based model for predicting WSR infection events [13].

The threshold-based model for development of WSR was evaluated using independent data 
from experiments in Luxembourg in 2002–2015 [13]. Infection days and latency periods for  
P. striiformis (Figure 6) were calculated based on periods when the combined favorable 
weather variables (4°C < T < 16°C, RH > 92% and R ≤ 0.1 mm) were met. The overall perfor-
mance of the threshold-based weather model developed in this study is quite similar to that 
developed for WLR across the same geographical region. Although the findings are area-spe-
cific and may differ in other geographic regions, the underlying hypothesis and approach can 
be extended to different locations and/or explored for other economically important fungal 
diseases of other crops.

3.4. Fusarium head blight

Besides the yield loss that it can cause, FHB can negatively affect the entire human food and 
animal feed chain through the contamination of wheat grains with mycotoxins. Contamination 
with fumonisins can result in grains unusable for consumption or for further processing into 
bakery products, breakfast cereals, pasta, snacks, beer or animal feed, etc., [101–106].

Photo 4. Fusarium growth on wheat (Photo credit: Giraud F.).
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Weather is a critical factor influencing FHB. Frequent rainfall, high humidity and warm tem-
peratures, coinciding with flowering and early kernel filling, favor infection by Fusarium spp. 
and development of the disease [107]. Numerous research and survey reports have shown 
that the main environmental factors influencing the development of FHB (Photo 4) are tem-
perature and humidity/wetness [108, 109] It has been speculated that the difference observed 
in severity of FHB between 2007 and 2008 (Figure 7) (21.0 ± 17.8% versus 13.5 ± 16.2%) may, at 
least in part, be explained by the warmer temperature observed in 2007 (11.9°C) compared to 
2008 (9.4°C) [103, 110]. Climatic factors can also influence the impact of fungicide application 
and its effect on Fusarium strain population [111].

Many studies have highlighted the relationship between the severity of FHB in specific fields 
where certain cereals particularly maize, were the previous crop [103, 112]. Maize residues 
are a host for several Fusarium species and thus provide a source of inoculum for infection 
of any susceptible crops planted in that land [113, 114]. Suitable cultural practices (e.g., crop 
rotation) aiming to reduce inoculum borne plant residues could be effective in controlling 
FHB in winter wheat fields.

A simulation model for predicting the periods of infection by Fusarium spp. was developed and 
evaluated at various sites in Luxembourg during 2007–2009 [115]. Like the models developed 
for other fungal diseases, the main inputs are T, R and RH. Information on the cultivar and the 
previous crop are also considered while using the model outputs for recommending fungicide 
sprays (i.e., the model is only used when sensitive cultivars are planted after maize or sorghum).  

Figure 7. Incidence of fusarium head blight (% infected wheat spikes), caused by Fusarium spp. in various districts of 
Luxembourg (n = 17) in 2007 (a) and 2008 (B) as assessed between GS 77 and GS 87 ([45]).
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An example of the number of infection events by Fusarium spp. is depicted in Figure 8.  
Because of the changes in the composition of Fusarium population across sites and other 
site-specific characteristics related to the climate and topography, a mixed performance of the 
model. Thus, knowledge of the spatial patterns of epidemics of FHB, along with information 
on the Fusarium species involved are crucial to developing improved control and manage-
ment measures relevant to each region, as in Luxembourg [116]. Furthermore, management 
strategies based on fungicide application should also take into account the effect chemical 
treatments may have on toxin induction by Fusarium species [103, 111]. Management tools in 
the future might include a weather-based DSS to help predict and eventually manage FHB.

4. Concluding remarks

Meteorological variables are most often used as the input data for disease forecasting models 
of fungal diseases of winter wheat in Luxembourg and elsewhere. For disease risk assess-
ments at the regional scale, the meteorological data in these forecasting models must originate 
from local weather stations which are part of a meteorological networks consisting of auto-
matic weather stations (AWSs). However, the choice of location for an AWS within a field or 
the distance between AWSs locations are both factors that hamper accurate forecasting of fun-
gal diseases at regional scales. Moreover, techniques used to interpolate weather data from a 
set of neighboring sites suffer from some potential sources of error, e.g., difficulty in capturing 
small scale variation, failure to account for local topographical features, etc.

With the changes in the patterns of world climate expected during the coming decades [117], 
the pattern of corresponding distributions of fungal diseases will be affected accordingly. 
Thus, new challenges are emerging that need to be addressed. Climate change affects patho-
gen biology not only directly but also indirectly through effects on host development and 
phenology. Modeling to predict new disease threats is expected to be beneficial since many 
years of data are needed to prepare appropriate solutions to developing issues. However, 
although the impacts of climate change on crop disease are being studied, uncertainties inher-
ent in crop disease models remain largely unexplored and unreported [118]. Moreover, accli-
mation to future climatic conditions by both the pathogen and the host can significantly alter 
the outcome of the plant–pathogen interaction [119].

Figure 8. Example of simulated infection events by Fusarium spp. at Reuler, Luxembourg during the 2007 cropping 
season.
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Wheat diseases present a constant and evolving threat to food security. Decision-support 
tools based on in-season disease monitoring and disease progress models in relation to 
weather variables present various advantages for managing the development of epidem-
ics of those diseases, while limiting potentially harmful side effects of excessive fungicide 
applications while ensuring economic benefit. Embedded in operational warning systems 
for plant disease monitoring, DSSs could provide a valuable service to the farmer commu-
nity for pest and disease management through integrated and environmentally friendly 
methods.
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