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ABSTRACT Feature selection (FS) is an irreplaceable phase that makes data mining more efficient.
It effectively enhances the implementation and decreases the computational problem of learning models.
The comprehensive and greedy algorithms are not suitable for the present growing number of features
when detecting the optimal subset. Thus, swarm intelligence algorithms (SI) are becoming more common in
dealing with FS problems. The grasshopper optimizer algorithm (GOA) represents a new SI; it showed good
performance in different fields. Another promising nature-inspired algorithm is a salp swarm algorithm,
denoted as SSA, an SI used to tackle optimization issues. In this paper, two phases are applied to propose
a new method using crossover-salp swarm with grasshopper optimization algorithm (cSG). In this method,
the crossover operators are used to maintain the population of the SSA then the improved SSA is used
as a local search to boost the exploration phase of the GOA. Subsequently, this improvement prevents the
cSG from premature convergence, high computation time, and being trapped in local minimum. To confirm
the effectiveness of proposed cSG method, it is evaluated in different optimizations problems. Eventually,
the obtained results are compared to a number of well-known algorithms over global optimization, feature
selection datasets, and six real-engineering problems. Experimental results point out that the cSG is superior
in solving different optimization problems due to the integration of crossover operators and SSA which
enhances its performance and flexibility.

INDEX TERMS Grasshopper optimization algorithm, crossover operator, salp swarm algorithm, optimiza-
tion problems, feature selection, engineering problems.

I. INTRODUCTION
Recently, feature selection (FS) has acquired much attention
from researchers working in machine learning and data min-
ing domain. However, the increase in data size and dimen-
sions causes different problems, such as the appearance of
noisy, inconvenient and redundant data. Hence, it is hard to
find optimal group of features and remove redundant ones.
Dealing with datasets, some features are insignificant in the
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presence of irrelevancy and redundancy. Therefore, consider-
ing such features is not valuable and usually affects the clas-
sification accuracy [1]. FS attempts to enhance classification
performance through selecting from the original enormous
range of features just a small subset of suitable features [2].
The extraction of redundant and irrelevant features will,
thus, minimize the data dimensionality, enhance the learning
process by simplifying model learning and enhancing per-
formance [3], [4]. Other benefits of FS are that: reducing
overfitting minimizes redundant data, decreases chances for
noise-based rulemaking, enhances precision and minimizes
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misleading data which means enhancing the precision of
modeling. Furthermore, decreases training time, minimizes
data points, reduces complexity of the algorithms, and accel-
erates the algorithm’s training [5], [6].

During the past few years, meta-heuristic algorithms have
become very popular. They have been widely applied to find
solutions for different complex problems in computer sci-
ence and engineering. They are essentially utilized to obtain
the optimal solution by getting different optimal values for
producing a candidate value to completely solve the under-
lying issue [7], [8]. Generally, meta-heuristic optimization
methods consider the optimal value by decreasing or increas-
ing the objective function to get the optimal decision [9].
Most of them are inspired by evolution laws and intelligent
behaviors of the natural animals [10]. For example, particle
swarm optimizer (PSO) [11], monarch butterfly optimizer
(MBO) [12], whale optimization (WO) [13], Grasshopper
Optimization (GO) [14], salp swarm algorithm (SSA) [15],
moth search (MS) [16], Harris hawks optimizer (HHO) [17],
slime mould algorithm (SMA) [18], Gradient-based opti-
mization (GBO) [19], Heap-based optimization (HBO) [20],
hunger games search algorithm (HGS) [21], RUNge Kutta
optimization (RUN) [22], as well as Colony Predation (CP)
Algorithm [23].

These strong meta-heuristic algorithmic methods have
been suggested, improved, or hybridized to solve differ-
ent problems in several fields, such as, Mozaffari et al. [24]
introduced a new inclined planes system optimization (IPO)
algorithm to address optimization problems. Mozaffari &
Lee [25] applied PSO to detect the optimal multilevel thresh-
olds in image segmentation. Faris et al. [26] proposed an
enhanced MBO with the aim of unconstrained global search
as well as neural network training. Alweshah et al. [27]
applied MBO with k-nearest neighbor (KNN) classifier for
tackling feature selection problems. For image segmentation
issues theMBO [28] was applied at multiple threshold values.
Strumberger et al. [29] merged MSA with the algorithm of
artificial bee colony, abbreviated as ABC, to handle con-
strained optimization issues. Elgamal et al., [2] improved
HHO by the chaotic maps and simulated annealing (SA)
algorithm and apply it to address feature selection issues
in the medical field. Kundu & Garg [30] improved HHO
by applying enhanced teaching–learning-based optimization
to address engineering design and numerical optimization
issues. Premkumar et al. [31] introduced GBO to address
the multiobjective optimization problems. Helmi et al. [32]
merged GBO with GWO for human activity recognition.
To boost the optimization performance of SMA the authors
of [33] hybridized SMA with inertia weight parameter,
as well as reverse learning strategy for the best opera-
tion of cascade hydropower stations. Moreover, in [34] the
SMA was hybridized with WOA adopting thresholding tech-
nique to address the image segmentation problem. Abdel-
Basset et al. [35] improved HBO algorithms for parameters
estimation of proton exchange membrane fuel cells model.
Onay & Aydemir [36] proposed a chaotic HGS for han-

dling real engineering problems and global optimizations.
Devi et al. [37] proposed a binary HGSO algorithm relied on
V- and S-shaped transfer functions to handle feature selec-
tion problems. Ahmadianfar et al. [22] proposed RUN opti-
mizer to handle global optimization problems. Shi et al. [38]
applied CPA with kernel extreme learning machine (KELM)
for detecting COVID-19 from view of biochemical indexes.
According to the good results of the previous studies in
solving different types of problems, the improved and hybrid
algorithms can effectively find the best solution compared
to the ordinary algorithm. Consequently, in this work, the
crossover operators are combined with SSA to enhance the
search capability for the original GOA.

The grasshopper optimization algorithm (GOA) is a new
algorithmic method inspired from lives of grasshoppers pro-
posed in [14]. The search method of nature-inspired opti-
mization algorithms contains two phases that are: explo-
ration and exploitation, which appear during the search for
food [39], [40]. GOA has many merits: simplicity, robust-
ness, few parameters, ease in implementation, and strong
potential exploratory ability [41]. It has been utilized for
handling many optimization problems in various applica-
tions as feature selection [42], global optimization [43],
power system stability [44], numerical optimization [45],
and skin color segmentation [46]. Despite the advantages
of GOA, it suffers from some shortcomings in exploiting
the search space, premature convergence in a number of
complex optimization techniques, and can get stuck into
local optima. To overcome that, many improvements were
proposed. Ewees et al. [47] introduced an opposition-based
GOA for engineering problems and benchmark optimization
functions. Bala et al. [48] presented an enhanced GOA for
fault prediction in airplane engines. Huang et al. [49] pro-
posed an improved GOA for enhancing the parameters of
power filter (HAPF). Li et al. [50] integrated GOA with
differential evolution (DE) to detect color differences of dyed
fabrics. Motlagh & Foroud [51] proposed a hybrid GOA with
SVM to recognize power quality disturbances.

Another promising nature-inspired algorithm is called the
salp swarm algorithm, abbreviated as SSA, which is a new
swarm intelligence algorithm proposed by [52]. It is based on
gathering behavior, sailing the intellect of salp swarms [53].
SSA is simple to implement [54]. It confirmed its ability to
settle large-and-small-scale issues [52]. SSA is characterized
by its strength and flexible stochastic nature [15]. In recent
years SSA has attracted attention of several researchers.
One of the leading works on SSA was presented in [15] in
which the authors applied a crossover operator with trans-
fer functions to enhance SSA. In [55] the extreme learning
machine (ELM) was hybridized with SSA to handle com-
plex engineering problems. Another work on feature selec-
tion was conducted in [56], Sayed et al. suggested a new
hybridization method relied on SSA and chaos theory to
address feature selection issues. The outcomes of the sug-
gested method showed that the CSSA is a good optimizer
compared to several former methods. SSA was conducted
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together with k-NN in [57] to select sub-features and obtain
higher classification reliability in optimizing chemical syn-
thesis activities. Ismael et al. [58], applied SSA to investigate
the issue of choosing the optimal conductor in a radiate
distribution framework in Egypt. The acquired results showed
the impact of the method in satisfying the thematic function
and constraints. Moreover, SSA has been utilized to define
the optimal controller parameters for the AVR system [59].
The simplicity of the SSA method achieved a high-quality
set of optimal controller parameters. Xing & Jia [60] pro-
posed an amended SSA to optimize GLCM multi-threshold
picture segmentation algorithm. The findings showed that
the suggested method achieved better segmentation results
and can handle complicated picture segmentation functions.
Hegazy et al. [54] suggested chaotic-SSA to handle feature
selection issues in the wrapper mode for data classification.

The proposed method was validated on 27 datasets. The
findings proved that the suggested approach successfully
balanced the primary two aims of any meta-heuristic tactic:
exploration and exploitation.

According to the characteristics of GOA and SSA, a hybrid
salp swarmwith grasshopper optimization algorithm (cSG) is
suggested for improving the potential of GOA. Whereas, the
GOA suffers from premature convergence, high computation
time, and getting trapped in a local minimum. This paper
combines GOA with SSA to benefit from the strong potential
exploratory capability of GOA besides the strength, flexible
stochastic nature, and fast convergence ability for SSA to
effectively accelerate the search capability of cSG.Moreover,
the crossover operators are used to maintain the population of
the SSA and enhance the exploration phase. Subsequently, the
improved SSA acts as a local search for the GOA.

The contribution of this paper can be summarized in the
subsequent points:

• Integrate the crossover operators with SSA to improve
the search ability of the original GOA. This version is
called cSG method.

• Extensive experiments are carried out for validating the
performance of GOA using CEC2017 functions and
eleven well-known benchmarks for feature selection,
then comparing its performance with eleven well-known
optimizers to confirm its superiority.

• A comparative study is applied depending on other opti-
mization algorithms for solving six popular engineering
problems.

The forthcoming of this paper is arranged as follows:
Section 2 shows a brief description of the used meth-
ods. Section 3 sheds light on the proposed cSG method.
Section 4 provides the experiments and results. Whereas the
last section concludes the paper and lists some of the feature
works.

II. MATERIAL AND METHODS
This section gives details on the different stages of the SSA,
the GOA algorithm and the crossover operator:

A. SALP SWARM ALGORITHM (SSA)
SSA is considered an optimization method. It was suggested
by the authors of [52]. It imitates the existing salp chains
which are: a swarm utilized to move and forage to get to
the food source. Salp is distributed under the category of the
Salpidae family. Also, the swarming salps are highly notice-
able as they can construct cooperative chains through forag-
ing actions in deep oceans. Such attitude makes salps gain
more kinetic ability throughout tracking the food source [61].
The SSA method is based on the mechanism of swarming
salps out of producing the salp chain, which assists SSA in
relieving inertia to the native optima to several extents. How-
ever, SSA cannot constantly carry out an appropriate balance
among exploration and exploitation stages. Subsequently, the
premier method sometimes fails to acquire a high-quality,
comprehensive optimum in several real-world issues [62].
The Salp chain is subdivided into two sets of salps: leader and
followers. Accordingly, the first class represents the leader of
a salp, whereas the second class is the followers. Leader salp
leads the direction and movement of the swarm, whilst the
followers benefit from other peers [63].

From this view, this behavior is transformed into a mathe-
matical form to produce SSA. In SSA, the population is sub-
divided into two sets; the first set is the leader the second is the
followers. The leader is set before the followers. To change
the status of a set, the leader updates his status that can be
denoted by,

x ij =

{
Fj + c1(

(
ubj − l??j

)
× c2 + lbj), c3 ≤ 0

Fj − c1(
(
ubj − lbj

)
× c2 + lbj), c3 > 0

(1)

where the position can be defined by x1j , the boundaries of the
upper and lower search area j-th represented by ubj and lbj,
the target is denoted by Fj, c2 and random parameters [0, 1]
is defined by c3 where c1 value is determined as,

c1 = 2e−(
4t

tmax
)
2

(2)

where, the highest loop number is represented by tmax and the
latest loop is indicated by t .

The followers’ status is updated relied on Eq. 9.

x ij =
1
2
(x ij + x

i−1
j ) (3)

where i > 1, and the i-th follower status indicated by x ij .

B. GRASSHOPPER OPTIMIZATION ALGORITHM (GOA)
GOA is a well-known optimization method in the last years.
It was improved by the authors of [14]. It imitates the
grasshopper insect’s nature. It is a harmful roach that eats
crops, which affects the output of agriculture. The life cycle
of grasshoppers contains three periods: firstly, the egg period;
then comes the larval period; and at last, the adult period.
The larval period is described as a slow movement besides
small steps, while in the adulthood period, the grasshopper
can move abruptly and rapidly. GOA relies on the following

23306 VOLUME 10, 2022



A. A. Ewees et al.: Grasshopper Optimization Algorithm With Crossover Operators for FS

tactic: grasshoppers can form swarms in the larval and adult-
hood periods together [64]. These swarms are permanently
searching for a food source. In general, in the first stage, the
grasshoppers’ positions alter suddenly, while they are encour-
aged to proceed locally during the second stage. Grasshop-
pers essentially perform these two stages over the nymph and
adulthood periods together, making grasshoppers the appro-
priate choice for mathematically resolving their swarming
behavior as a robust optimization algorithm [39], [40]. And
so, this attitude can be performed mathematically as,

xi = Si + Gi + Ai, i = 1, 2, . . . ,N (4)

where, the grasshopper status in i-th dimension indicated
by xi. The social interaction indicated by Si, and can be
determined as,

Si =
N∑
j=1
i6=j

s(dij)d̂ij, dij =
∣∣xi − xj∣∣, d̂ij =

xi − xj
dij

(5)

where the distance among grasshoppers is denoted by dij and
the unit vector among grasshoppers is defined by d̂ij. The
parameter s can be determined as.

s (y) = fe
−y
l − e−y (6)

Here, the attractive length scale is represented as l and the
attraction intensity is represented asf .
Besides, wind and gravity affect the small movements of

the grasshoppers which can be determined as,

Wind advection = Ai = uêw,

Gravity force = Gi = −gêg (7)

where, a drift constant is represented by u and the unit vector
of wind direction represented by êw, while g and êg denote
the constant of the gravity and the unit vector across earth’s
center, respectively.

Consequently, the status of the grasshoppers is reformed
applying the next equation.

xdi = c

 N∑
j=1
i6=j

c
ud − ld

2
s(|xdj − x

d
i |)

xj − xi
dij

+ T̂d , (8)

where the boundaries of the upper and lower search area are
represented by u and l, and the optimal solution value is
represented by T̂d . The problem dimension is denoted by D
while the population size is denoted by N, and the c parameter
is determined as,

c = cmax − t
cmax − cmin

tmax
(9)

where cmax and cmin equal 1 and 0.0001, respectively, the
highest loop number is defined by tmax , while, the actual loop
is denoted by t .

C. CROSSOVER OPERATOR
Crossover is a genetic operator applied to change the chro-
mosome or chromosome programming from one generation
to another [65]. Crossover is sexual reproduction. Two chains
are selected from the mating pool randomly to crossover for
producing optimal offspring. The selected method relied on
the Encoding Method. The crossover operator aims to select
a middle to solve in a binary search space to imitate detecting
a solution among two solutions. It transforms between two
input vectors that have the same probability.

It can be categorized into three groups: the first is a single-
point crossover in which a crossover point is chosen on the
parent organism chain. All data behind that point in the organ-
ism chain, is exchanged between the two parent organisms.
Positional Bias is used to characterize the strings. The second
one is a two-point crossover which is a particular condi-
tion of an N-point Crossover tactic. Two points are selected
randomly on the independent chromosomes, and the genetic
substance is swapped at these points. The third one is a
uniform crossover: every gene (bit) is chosen randomly from
one of the identical chromosomes’ genes of the parent [65].

The crossover between two superior decisions may not
consistently yield an optimum or a good decision. The better
the parents are, the more expectation; that the child will
be good. If children are not good (poor decision) during
selection, it will be rejected in the upcoming iteration.

III. PROPOSED METHOD
The proposed cSGmethod is detailed in this section. It stands
for crossover SSA and GOA. In the proposed cSG the
crossover operators are used to maintain the population of
the SSA and enhance the exploration phase. Subsequently,
the improved SSA is applied as a local search to the GOA.
This improvement prevents the standard GOA version from
premature convergence, the high computation time, besides
trapping in local minima.

In the cSG the local search of the standard version of
the GOA is supported by the enhanced SSA algorithm. The
population of the SSA is improved by adding a new step to
maintain the search domain; this step utilizes the crossover
operator with the population of the SSA. Therefore, it selects
two solutions to start the crossover operators; then it produces
two new solutions, which helps maintain the search domain
and avoid trapping in a local point.

The proposed cSG begins by providing a new random
population (X) with (N) length and (D) dimension. This
population contains the initial solutions of the problem. Each
solution is evaluated using a fitness function. Eq. (10) shows
the fitness function implemented in this study.

fi = γ er i + (1− γ )
(
ld
d

)
(10)

where eri defines the error produced by the classification step,
(this work applies the KNN classifier); whereas, the second
part of this equation refers to the selected features number.
ld and d is selected features, and the whole number of all
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FIGURE 1. Phases of the proposed cSG method.

features, respectively. The parameter (γ ∈ [0, 1]) is applied
in order to balancing the selected features number and the
classification error.

Furthermore, each solution is updated. This update is
applied by both the SSA and GOA based on a variable gen-
erated by using a probability formula (sp) as described in the
following equation:

spi =
fi∑n
i=1 fi

(11)

Here, fi denotes the last obtained fitness value produced by
Eq. 10. The spi value determines the updating algorithm by
checking its value; therefore, if spi < 0.5, the solution will be
updated using GOA by Eqs. 8-9, otherwise the enhanced SSA
will be used to update the solution using Eqs. 1-3. Later, each
solution’s quality is evaluated by using the fitness function
(Eq. 10), and the best one is saved. This sequence is repeated
until reaching the stop condition, which in this study set to
2500 fitness evaluations. The main phases of the proposed
method are illustrated in Figure 1 and Algorithm 1.

The complexity of the cSG consists of the complexity of
GOA, SSA and crossover operators as follows:
O(cSG) = O(GOA) + (O(SSA) + O(Crossover)) where,

O(GOA) = O(t(N 2
× D + N × C)), O(SSA) = O(t(D ×

N + C × N )), and O(Crossover) = O(t × N ); here, (t) is
the iterations number, (N ) is the solutions number, and (D)
dimension. (C) denotes the cost of fitness function.

IV. EXPERIMENTS
The performance of suggested cSGmethod is assessed in this
section by using four experiments. Accordingly, the first one
evaluates the components of the proposed method. Whereas,
the second one tests the performance of cSG using CEC2017
functions. The third experiment aims to test the cSG in
solving the general feature selection problems. Whereas, the
fourth one tests the performance of the cSG in solving six

Algorithm 1 Pseudocode of the Proposed Method cSG
1 Determine the number of dimension (d), solutions (N ),

and number of fitness function evaluation ( stopCondi-
tion)

2 Define the parameters for both SSA and GOA.
3 Generate the initial population X .
4 While (t <= stopCondition)
5 Compute the fitness value for each solution X using Eq.

(10).
6 Save the best solution based on the fitness value.
7 FOR (i = 1 to N )
8 Calculate the probability sp for each solution using Eq.

(11).
9 If (sp >= 0.50)
10 Normalize the distance between the solutions in X in

the interval [1,4].
11 Update X using operators of GOA (as in Eqs. 8-9).
12 Else
13 If (rand() < 0.25)
14 Select randomly values from a solution.
15 Apply crossover to update the current solution.
16 End if
17 Update X using SSA equations as in Eqs. (1-3)
18 Enf if
19 End for
20 End while
21 Output the result.

common engineering problems design. The implementation
of the experiments was applied using ‘‘MATLAB2014b’’ and
‘‘Windows 10’’ over ‘‘CPU Core i5’’ with ‘‘8GB of RAM’’.
The compared methods and the parameter settings are listed
in the next subsection.

A. PARAMETER SETTINGS
The proposed method is compared with eleven algorithms,
namely salp swarm algorithm (SSA) [52], grasshopper opti-
mization algorithm (GOA) [14], particle swarm optimiza-
tion (PSO) [11], genetic algorithm (GA) [66], multi-verse
optimizer (MVO) [67], opposition-based learning GOA [47],
Harris hawks optimizer (HHO) [17], Gradient-based opti-
mizer (GBO) [19], slime mould optimization algorithm
(SMA) [18], RUNge Kutta optimizer (RUN) [22], hunger
games search algorithm (HGS) [21], Differential evolution
based upon learning the covariance matrix and setting the
bimodal distribution parameter (CoBiDE) [68], enhanced
SSA based upon particle swarm optimizer (SSAPSO) [53],
and LSHADE with semi-parameter adaptation hybrid with
CMA-ES (LSHADSP) [69].

Table 1 records the parameter settings of the algorithms
for all experiments. In addition, the population size for all
algorithms was set to 25 and the fitness value evaluation was
set to 2500; each experiment was implemented 30 times for
a statistical purpose.
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TABLE 1. Parameter settings for all methods.

B. EXPERIMENT 1: COMPARISON WITH CSG, CROSSOVER
SSA, AND GOASSA
This experiment compares the cSG to two othermodels which
formed the proposed methods to show the effectiveness of
each model on the cSG in solving global optimization prob-
lems. These models are: crossover SSA and GOASSA. The
first model is the improved version of the SSA algorithm
by using the crossover operator, whereas the second model
improves the local search of the GOAwith the SSA algorithm
without using the crossover operators. Ten different func-
tions: (1) unimodal, (2) multimodal, (3) hybrid, and (4) com-
position, were selected for this evaluation from the CEC2017
benchmark. All results are recoded in Table 2.

By inspecting these results, we can show that, the cSG
outperformed the two other models with regard to average of
fitness function values by showing the optimal results over
8 functions which are F1, F2, F5, F6, F15, F16, F24, and
F25, whereas the GOASSA reached the best values across
only two functions, which are F14 and F23. In this regard,
the crossover SSA failed to fulfill the optimal values over
all functions. Moreover, the cSG had been noticed as the
most stable algorithm since it succeeded in achieving the
smallest values over eight functions, whereas the GOASSA
showed a smaller standard deviation over two functions, and
the crossover SSA was ranked third in all functions in terms
of the stability behavior.

From the above results, we can conclude that, the combi-
nation of both crossover operators and SSA adds a significant
improvement and enhances the searching behavior of the
original GOA. Therefore, in the following experiments we
evaluate and compare the performance of the cSG over differ-
ent problems and some recently meta-heuristics algorithms.

C. EXPERIMENT 2: SOLVING GLOBAL OPTIMIZATION
PROBLEMS
This experiment evaluates the proposed method over the
CEC2017 benchmark [70] and compares the results of the

TABLE 2. Comparison between the proposed method and its
components.

cSG with some recently meta-heuristic algorithms from the
literature including: the SSA, HHO, GBO, SMA, RUN,
HGS, CoBiDE, OBLGOA, SSAPSO, and LSHADSP (it was
named in the following tables as LSHADSP).We reported the
results of: (1) the average fitness, (2) the standard deviation,
and (3) the computational time across 29 test functions of the
CEC2017 benchmark in Tables 3-5. The experiment settings
were 200 iterations and 30 population size. The dimension
was set to 50 with 9000 fitness function evaluations.

As far as the unimodal functions, denoted as F1-F2, the
cSG fulfilled the best values respecting average fitness as
demonstrated in Table 3, whereas the other competitors failed
to achieve the optimal values. Furthermore, the cSG was
ranked first concerning standard deviation, as it was the most
stable algorithmic method over the two functions F1 and F2,
followed by the RUN and LSHADSP algorithms, whereas the
GPO was ranked third in the stability measure as in Table 4.

In the multimodal functions, denoted as F3-F9, the
LSHADSP was ranked first by reaching the best average
fitness over three functions that are F4, F5 and F9, whereas
the cSG, HHO, GPO, RUN, and HGS were ranked second
by showing the optimal values on F8 and F9. The SMA and
CoBiDE ranked third by performing well across both F9 and
F7. Moreover, the LSHADSP was also observed to be the
most stable method as it attained the smallest standard devia-
tion across three functions, F5, F7 and F9, which is followed
by the cSG, HHO, GPO, RUN, and HGS, respectively.

In the hybrid functions, denoted as F10-F19, the cSG was
the best-performing method concerning the average of the
fitness function values. It was superior with regard to the
best average fitness of the best solutions so-far over four
functions, F12, F15, F16, and F19. The RUN was ranked
second by showing the optimal fitness values in three out
of ten functions (F10, F13, and F17), while the HGS and
SMA were ranked third by achieving good performance in
only two hybrid functions. The obtained results over the F10
and F14 functions were the best ones with regard to HGS,
while the SMA showed the optimal values in both F10 and
F18. Additionally, the GBO came in the first rank respecting

VOLUME 10, 2022 23309



A. A. Ewees et al.: Grasshopper Optimization Algorithm With Crossover Operators for FS

TABLE 3. Results of the fitness values of the proposed method and the compared methods over global optimization functions.

the standard deviation, where it outperformed the other meta-
heuristics with respect to stability in four out of ten functions
namely F10, F11, F14 and F17, followed by the cSG, HHO,
SMA, RUN, HGS, and SSAPSO which gained the second
rank.

In the composition functions, denoted as F20-F29, the
cSG showed dominant performance over this group by real-
izing the best average fitness values over most functions,
i.e., F21, F22, F24, F25, F27, and F25. The HGS was the

second best-performing method by achieving the optimal
values across two functions (i.e., F20 and F29), whereas the
SSA and RUN gained the third rank, which showed the pest
performance over F23 and F26, respectively. In addition, the
cSG was also dominant across this group and superior to the
other competitors in achieving a low standard deviation over
eight out of ten functions.

Furthermore, in terms of computational time of all meth-
ods, the cSG showed acceptable computational time in all
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TABLE 4. Results of the standard deviation of the proposed method and the compared methods over global optimization functions.

functions, as recorded in Table 5, whereas, the HGS was
faster than the compared methods and it was ranked first
followed by the SSA, CoBiDE, SSAPSO, and GBO, respec-
tively. However, the cSGwas considered as a faster algorithm,

it obtained the best fitness values and showed good stability
in most cases.

Moreover, the convergence behaviors for all methods are
illustrated in Figure 2. This figure shows and compares the
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TABLE 5. The Computational time of the proposed method and the compared methods over global optimization functions.

convergence curves to evaluate the behavior of each method
in reaching the optimal values. From the figure, we can see
that the cSG showed fast convergence (the black curve) to
the optimal value and improved its behavior in the course
of iterations than the compared methods, especially in F19
and F28. The LSHADSP also showed good convergence in
most of the functions. In function F23, the SMA and HGS
showed fast convergence at the beginning of the iterations;
then, they did not show any convergence until the last quarter
of iterations; they also showed good convergence in F29.
In general, all algorithms were able to update their search

domains during the process, except the original GOA took a
long time to update its populations; therefore, the proposed
cSG effectively improved the local search of the original
GOA.

D. EXPERIMENT 3: SOLVING FEATURE SELECTION
PROBLEMS
In this experiment, eleven datasets, including Wine, Breast-
cancer, Glass, Lymphography, Waveform, Spect, Zoo, Ecoli,
Vote, Breastw, and Ionosphere, were used to evaluate the pro-
posed cSG method. These benchmark datasets were chosen
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FIGURE 2. Example of the convergence curves for all methods in global optimization experiment.

from the UCI Repository Machine Learning Database [71],
which all have distinct properties as shown in Table 6. In order

to prove the performance of suggested cSG algorithm in
solving the general feature selection problems, we compared
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it to some recent and well-known competitive optimizers,
including: SSA, GOA, GA, PSO, and MVO.

The experimental results are discussed based on some
performance measures, namely: 1) The fitness function value
as in Eq. (10). 2) The number of selected features formulated
in Eq. 12. 3) The classification accuracy as in Eq. (13). 4)
The computation time. 5) The Wilcoxon rank-sum test as a
statistical test.

The number of selected features is calculated as:

NF =

[
1−

∑S
i=1 ei
S

]
, ei←

{
1 if ei is selected
0 if ei is neglected

(12)

where, S is the feature number. ei denotes the selected
attribute.

The accuracy (ACC) is calculated as:

ACC =
TP+ TN

TP+ TN + FP+ FN
(13)

Here TP symbolizes the true positive instances, FP indicates
the false positive instances, FN symbolizes the false negative
instances, TN indicates the true negative instances.

In terms of the fitness function values, according to
Table 7, the cSG method achieved the lowest fitness val-
ues in 8 datasets out of 11: Glass (0.1266), Lymphography
(0.2605),Waveform (0.6325), Spect (0.3120), Ecoli (0.2077),
Vote (0.1274), Breastw (0.1009), and Ionosphere (0.1620).
Furthermore, the PSO ranked second in three datasets namely
Wine (0.0042), Breastcancer (0.1682), and ZOO (0.0037).
It is also noted that the cSG algorithm similarly acts with
PSO in Breastcancer and Zoo datasets, achieving RMSE of
0.1898 and 0.0047, respectively. It is observed that the GOA
realized the last rank by showing the highest error rates across
all the tested datasets. These results reflect the stability of the
cSG algorithm over the different runs. Figure 3 illustrates the
average results of fitness function value.

In terms of classification accuracy, as observed in
Table 8, the cSG method realized the highest accuracy over
9 datasets: Breastcancer (0.9705), Glass (0.7862), Lymphog-
raphy (0.9305), Spect (0.8972), Zoo (1), Ecoli (0.8492), Vote
(0.9833), Breastw (0.989), and Ionosphere (0.9735). These
results reveal the general capability of the algorithm to effec-
tively search the promising regions within the search space.
Furthermore, the classification accuracy results of cSG are
very close to these of PSO in two datasets that are Wine
andWaveform, respectively. Accordingly, the PSO algorithm
took the second rank after the proposed method with respect
to classification accuracy, while the GOA also achieved the
last rank between the other compared models. Moreover, the
F-measure for all methods was also calculated and presented
in Table 9. It is observed from this table that the proposed
cSG method obtained the best F-measure results in 8 out of
11 datasets. Whereas, the PSO ranked second, it realized the
best results over 3 datasets with a slight difference from cSG.
The SSA andMVOwere ranked third and fourth, respectively
followed by the GA and GOA.

TABLE 6. Description of the benchmark datasets.

TABLE 7. Results of fitness function value.

In terms of computational time, as seen in Table 10, the
MVOmethod ranked first based on the average of all datasets,
whereas the PSO, cSG, and SSA methods showed similar
times to some extent followed by GOA and GA, respectively.
That means the cSG is faster than the original version of
the GOA due to the effective balance of the SSA and the
GOA operators. Figure 4 illustrates the average results of the
classification accuracy for all methods.

In terms of the selected attributes number, checking the
results of Table 11, the cSG method was capable of selecting
the significant features over 2 datasets out of 11 (namely
Spect and Breastw) and acts like the ISSALD approach in
one dataset (named Exactly2 dataset). Although the GOA
method realized the last rank in terms of RMSE and classi-
fication accuracy, it comes in the first place with regard to
the number of selected attributes by realizing the best results
over 5 datasets (namely Wine, Glass, Waveform, Zoo, and
Ecoli). In addition, the PSO model achieved the third rank by
showing the best results over 3 datasets (namelyBreastcancer,
Breastw, and Ionosphere). Moreover, the SSA model took
the fourth rank by achieving the least number of selected
attributes in only 1 dataset (namely Lymphography).

Furthermore, Table 12 records the statistical results of all
methods using the Wilcoxon rank-sum test for inspecting if
there is a significant difference between the cSG and the
other algorithms or not at p-value < 0.05. The Wilcoxon
rank-sum is a statistical test implemented for assessing the
performance significance. It is non-parametric test that sets
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FIGURE 3. Average results of the fitness function value.

TABLE 8. Results of the classification accuracy.

FIGURE 4. Average results of the accuracy measure.

ranks for the scores. It ranks all the scores in one group
then it sums the ranks of the groups. In this two-sample test,
the null assumption assumes that the samples are from the
same population. Accordingly, if there is a difference in two
rank sums, the sampling error will be the reason of that.
From Table 12 we can notice that, the cSG has a significant
difference to the compared algorithms in most cases namely:
64% with SSA and GA, 100% with GOA, 45% with PSO,
and 55% with MVO.

The results of this experiment indicate that the cSG is a
strong algorithm in solving the global optimization problems.
The superiority of the algorithm above all the other applied
algorithms is due to the integration of both genetic crossover
operator and SSAwhich enhanced the exploitation and explo-

TABLE 9. F-measure results for all methods.

TABLE 10. Results of the computational time.

TABLE 11. Results of the selected features by each algorithm.

ration of both algorithms. This hybridization added more
flexibility for both algorithms and ensured finding the best
solution for the optimization problem quickly and efficiently.

E. EXPERIMENT 4: SOLVING DIFFERENT PROBLEMS OF
ENGINEERING APPLICATIONS
This experiment evaluates the proposed cSG using six popu-
lar engineering problems including: (1) Welded beam design.
(2) Pressure vessel design. (3) Three-bar truss. (4) Ten-
sion/compression spring. (5) Rolling element bearing. (6)
Multi-plate disc clutch brake. These problems were solved by
the proposed cSG and some meta-heuristic methods formerly
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TABLE 12. Statistical results of the proposed cSG method with respect to
wilcoxon rank-sum test.

FIGURE 5. Problem of welded beam design.

implemented in the literature. The following subsections
compare the solutions reached by cSG and the other methods
to solve these optimization problems.

1) PROBLEM OF WELDED BEAM DESIGN
This problem tries to minimize fabrication cost for welded
beam as shown in Figure 5. There are four variables to
be optimized namely the weld’s thickness of (h), the bar’s
thickness (bb), length of an attached part (l), and the bar’s
height (tt).

The results in Table 13 point out that the cSG algorithm
obtained the best result among the compared methods for
the welded beam structure through finding the lowest cost
namely 1.72586; this cost represents the minimum optimum
cost among all other compared algorithms. The GWO,MVO,
and WOA achieved 1.72624, 1.72645, and 1.73049 and were
ranked as second, third, and fourth, respectively. The highest
cost was reported by the GA which reached 2.43312. It is
apparent that the cSG significantly outperforms the afore-
mentioned techniques in solving this problem.

2) PROBLEM OF PRESSURE VESSEL DESIGN
This experiment is intended to minimize the cylindrical pres-
sure vessel’s cost. Figure 6 shows the design of this prob-
lem. Four variables in this experiment need to be optimized
namely: both thickness of a shell (Ts) and head (Th), the
cylindrical section length (L), and the inner radius (R).
This subsection gives a comparison on the optimal results

taken for the problem of pressure vessel design by cSG
and the other previously mentioned models. As shown in
Table 14, the lowest cost was reported by the cSG algorithm

TABLE 13. Results of the proposed method for solving the problem of
welded beam design.

FIGURE 6. Pressure vessel design problem.

TABLE 14. Results of the proposed method for solving the problem of
pressure vessel design.

which is 1.72586. It is also seen that the GWO, MVO, and
WOA came in the second, third, and fourth rank with the cost
of 1.72624, 1.72645, 1.73049, respectively. In this regard, the
GA reported the highest cost of 2.43312 among the other
algorithms. These results demonstrate the merits of cSG algo-
rithm in solving this design problem.

3) PROBLEM OF THREE-BAR TRUSS
The aim of this experiment is minimizing the truss weight.
Two variables in this experiment need to be optimized namely
A1 and A2. Variable A3 = A1 as shown in Figure 7.
The results of the cSG algorithm for solving the design

problem of three-bar truss in comparison to some algorithms
are provided in Table 15. It can be noticed that the algorithm
of cSG is competitive. It achieved the lowest cost of 263.896.
It is also clear that the MVO is competitive to the GOA and
MFO by reporting lower cost of 263.896 while the two other
algorithms reported 263.896 and 263.896, respectively. The
highest cost was reached by the CS algorithmwhich achieved
a value of 263.972. From these results, it is apparent that cSG
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FIGURE 7. Three-bar truss problem.

TABLE 15. Results of the proposed method for solving the design
problem of three-bar truss.

FIGURE 8. Tension/compression spring problem.

significantly outperforms the other compared meta-heuristic
algorithms when solving this design problem.

4) PROBLEM OF TENSION/COMPRESSION SPRING
The objective of this experiment is to minimize the ten-
sion/compression spring weight. Three variables in this
experiment need to be optimized namely the mean coil diam-
eter (D), the active coils number (NN), and the wire diameter
(dd). These variables are illustrated in Figure 8.

The problem of tension/compression spring design prob-
lem was extensively addressed through various bio-inspired
optimization algorithms including: MVO, GSA, PSO, WOA,
GWO, MFO, SSA and RO. Table 16 presents the comparison
results between the proposed cSG and the other competitors’
algorithms with regard to the values of design variables and
the cost value for this problem. Accordingly, the results in
Table 16 shows that the proposed cSG is capable of finding
the optimal design for this problem achieving aminimum cost
of 0.012665. Such cost is slightly lower than those given by
other algorithms. The WOA and SSA showed similar cost of
0.01268 whereas theMVO algorithm showed the highest cost
of 0.01279. These results confirm that cSG performs better
than other meta-heuristic optimization methods in reaching
the optimum solution for solving this design problem.

TABLE 16. Results of the proposed method for solving the design
problem of tension/compression spring.

FIGURE 9. Rolling element bearing problem.

5) PROBLEM OF ROLLING ELEMENT BEARING
The aim of this experiment is maximizing the ability of
the dynamic load carrying. In this experiment, ten variables
used for assembling and restrictions of geometric, need to be
obtimized. Figure 9 illustrates an overview of this problem.

A comparison between the cSG and the HHO, MVO, PVS,
and TLBO, for solving the rolling element bearing design
problem is illustrated in Table 17. Regarding the optimal costs
in Table 17, cSG presented the best value for that design
problem with 85446.7489. The MVO came in the second
rank by reporting a cost value equals 83535.147 followed
by the HHO which showed a cost equals 83011.883. On the
other side, the PVS and TLBO algorithmic models reported
almost similar cost values. These results reflect that the cSG
outperforms the other meta-heuristic optimization techniques
in reaching the best optimal solution for this design problem.

6) PROBLEM OF MULTI-PLATE DISC CLUTCH BRAKE
The aim of this experiment is minimizing the multiple disc
clutch brake weight. Five variables in this experiment need
to be optimized namely outer radius, discs thickness, inner
radius, actuating force, and friction surfaces. Figure 10 illus-
trates an overview of this problem.

The cSG algorithm is used to solve multi-plate disc clutch
brake problem and compared to MVO, PVS, WCA, and
TLBO. Table 18 reports the results of this comparison to
get the best cost found by such meta-heuristics. The findings
report that the proposed cSG algorithm outperformed all
other methods in finding the optimum minima solution of
this design. It showed the lowest cost of 0.2598 followed by
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TABLE 17. Results of the proposed method for solving the design
problem of rolling element bearing.

FIGURE 10. Multi-plate disc clutch brake problem.

TABLE 18. Results of the proposed method for solving multi-plate disc
clutch brake problem.

the MVO with 0.2606. The other algorithms namely WCA,
TLBO, and PVS showed roughly similar values for the cost
of 0.3136560, 0.313656, and 0.313660, respectively. These
results confirm that the proposed cSG algorithm is superior
to the other meta-heuristic techniques and demonstrates very
competitive results compared to all others when solving the
problem of multi-plate disc clutch brake.

According to the previous experiments, the superiority and
dominance of the proposed cSG algorithm can be summa-
rized by two factors. The first is the use of crossover operators
to prevent being caught in a local optimum through increasing
the diversity for population of the SSA. The second one is the
utilization of crossover SSA as a local search for GOA, which
leads to promoting the GOA’s capacity to maintain its popula-

tion as well as find the best solution. Switching between these
factors enhances the cSG’s behavior and allows it to retain the
benefits of the crossover operators, SSA, and GOA. In addi-
tion, the simplicity of the cSG, few predefined parameters and
its ability to escape from local optima, help in giving stable
results.

V. CONCLUSION
In this work, an improved grasshopper optimization algo-
rithm (GOA) is proposed by applying the crossover opera-
tors to maintain the population of the salp swarm algorithm
(SSA), then the improved SSA is applied as local search
to the original GOA. This improvement prevents the pro-
posed method from premature convergence, the high com-
putation time, besides getting trapped in local minima. The
proposed method was applied to solve 29 global optimization
problems, feature selection (FS) tasks, and real-engineering
problems. For FS problems, eleven well-known benchmark
datasets and four performance measures were selected for
the experiment. Additionally, the performance of the pro-
posed cSG method was compared with several algorithms
in the state-of-the-art. The experimental results demonstrated
the superiority of the proposed method compared to other
optimization algorithms in all metrics. Moreover, the results
showed that using crossover operators with SSA improved
the performance of GOA effectively and enhanced the explo-
ration behavior. In future, it would be attractive to examine
the performance of cSG method on more advanced science,
machine learning tasks in dealing with other datasets, and
further improve its complexity with no effect on the perfor-
mance.
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