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Abstract

Detailed delineation of drainage networks is the first step for many natural resource
management studies. Compared with field survey and interpretation from aerial
photographs or topographic maps, automation of drainage network extraction from DEMs is
an efficient way and has received considerable attention. Toowoomba City is the principal
activity centre for the Darling Downs, Queensland. The development of the Surat Energy
and Resource Province will continue to drive population growth in Toowoomba, placing high
pressure on water and other resources in the region. This study aims to extract drainage
networks from a high resolution DEM to support the strategy for improving the
management of the impacts of stormwater, flooding, bank stability, pollutants, water
quality and creek health in Toowoomba City. Composition parameters of the drainage
network including the numbers of streams and the stream lengths are derived from the high
resolution DEM. Contributing area thresholds and their impacts on the extraction of
drainage networks are also discussed.

Introduction

Accurate delineation of drainage networks is a prerequisite for many natural resource
management issues (Paik, 2008; Liu and Zhang, 2010). Drainage network is one of the main




inputs for estimating rainfall runoff, predicting flood levels and managing water resources
(Maune et al., 2007). Automation of drainage networks extraction from Digital Elevation
Model (DEM) has received considerable attention. The most commonly used approach is
based on the deployment of a model for surface water flow accumulation. This method,
designated D8 algorithm (eight flow directions), was introduced by O’Callaghan and Mark
(1984) and has become widely used (Jenson and Domingue, 1988; Martz and de Jong, 1988;
Morris and Heerdegen, 1988; Jenson, 1991; Tarboton et al., 1991; Martz and Garbrecht,
1992). This approach (based on a grid-based DEM) specifies flow directions by assigning flow
from each cell to one of its eight neighbours, either adjacent or diagonal, in the direction
with steepest downward slope (Tarboton, 1997). As the flow of water is traced downhill
from a point, a counter is incremented for all the downstream points through which the
water flows (Jones, 2002). The drainage network is defined by the relative counts wherever
the upstream drainage area exceeds a specified threshold (Martz and Garbrecht, 1995).

A major problem in using the D8 approach to extract drainage network is the presence of
sinks or depressions in DEMs (Chorowicz et al., 1992; Martz and Garbrecht, 1992). Sinks are
cells which have no neighbours at a lower elevation and consequently, have no downslope
flow path to a neighbouring cell (Martz and Garbrecht, 1992). Sinks include both flat and
depressional areas. They occur in most raster DEMs, and usually are viewed as spurious
features (artefacts of the model). Truly flat surfaces seldom occur in natural landscapes. Yet
when a landscape is represented as a raster DEM, areas of low relief can translate into
perfectly flat surfaces (Garbrecht and Martz, 1997). Sinks may arise from input data errors,
interpolation procedures, and the limited resolutions of the DEM (O'Callaghan and Mark,
1984; Mark, 1988; Fairfield and Leymarie, 1991; Martz and Garbrecht, 1992; Martz and
Garbrecht, 1998). Whatever their origin, sinks in a DEM are a problem when it comes to
defining drainage, because flow directions on a perfectly flat surface are indeterminate
(Tribe, 1992; Garbrecht and Martz, 1997). Special treatment is required to allow the
complete definition of overland flow patterns across the DEM surface (Martz and Garbrecht,
1998).

For drainage network extraction, a number of methods have been developed for dealing
with sinks in a DEM (Jenson and Domingue, 1988; Fairfield and Leymarie, 1991; Martz and
Garbrecht, 1992; Tribe, 1992; Jones, 2002). Most methods have typically been implemented
in conjunction with the D8 algorithm, ranging from simple DEM smoothing to arbitrary flow
direction assignment (Garbrecht and Martz, 1997). However, these methods have
limitations. DEM smoothing introduces additional loss of information to the digital
elevations, while arbitrary flow direction assignment may require the modification of DEM
elevations (Tribe, 1992; Garbrecht and Martz, 1997). No matter what method is used, the
quality of the DEM is critical for the automatic extraction of drainage networks.

With the D8 algorithm, drainage networks are produced by applying a threshold value to the
flow accumulation data (Jenson and Domingue, 1988; Dobos and Daroussin, 2005). Cells
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with a contributing area greater than a defined threshold are classified as part of the
drainage network (Martz and Garbrecht, 2003). The density of the drainage network
increases as the threshold value decreases (Jenson and Domingue, 1988). The
determination of an appropriate contributing area threshold is difficult, and needs to take
into account the DEM resolution and terrain characteristics (Dobos and Daroussin, 2005).

Toowoomba is located at the western edge of the south east Queensland region.
Toowoomba City sits in two catchments, with the eastern flowing into south east
Queensland, and with the western flowing into the Condamine catchment in the Murray
Darling Basin. Toowoomba City is also the principal activity centre for the sub-region and
services the Darling Downs and Surat Basin. The development of the Surat Energy and
Resource Province will continue to drive population growth in Toowoomba, placing high
pressure on water and other resources in the region. In order to support efficient natural
resource management and sustainable development, high resolution elevation data were
acquired for the area of Toowoomba City. This study aims to derive drainage networks and
some parameters describing the drainage network composition, including the stream
orders, the numbers of streams and the stream lengths from the high resolution DEM.
Contributing area thresholds and their impacts on the extraction of drainage networks are
also discussed.

Materials and method
Study Area

The study area is in the region of Toowoomba Regional Council, covering the area of the
Toowoomba City. The Toowoomba City is the regional centre of the Darling Downs, located
approximately 130 km out of Brisbane, Queensland, Australia (ANRA, 2009). The city sits on
the crest of the Great Dividing Range, around 700 metres above sea level. The majority of
the city is west of the divide. It occupies the edge of the range and the low ridges behind it.
The area of Toowoomba City is on the edge of the Condamine Catchment and is also part of
the Murray-Darling Basin in southern Queensland. The study area, shown in Figure 1, covers
an area of 265.97 square kilometres, with elevations ranging between 234 metres to 722
metres. It is at the headwaters of a number of drainage systems (ANRA, 2009). Two valleys
run north from the southern boundary, each arising from springs either side of Middle Ridge
near Spring Street at an altitude of around 680 m. These waterways, East Creek and West
Creek flow together just north of the CBD to form Gowrie Creek. Gowrie Creek drains to the
west across the Darling Downs and is a tributary of the Condamine River, part of the
Murray-Darling Basin. The water flowing down Gowrie Creek makes its way some 3000 km
to the mouth of the Murray River near Adelaide in South Australia.



http://www.statemaster.com/encyclopedia/Great-Dividing-Range
http://www.statemaster.com/encyclopedia/Darling-Downs
http://www.statemaster.com/encyclopedia/Condamine-River
http://www.statemaster.com/encyclopedia/Murray-River
http://www.statemaster.com/encyclopedia/Adelaide
http://www.statemaster.com/encyclopedia/South-Australia
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Figure 1. Study area

Data

As part of the strategy for improving the management of the impacts of stormwater,
flooding, bank stability, pollutants, water quality and creek health in Toowoomba City, the
digital elevation data in the Toowoomba City area was acquired in 2006. These data were
generated from orthorectified digital colour aerial photography, and provided with 1m grid
elevation points. Vertical accuracy was estimated as 0.5m in standard error. In this study, a
5-m resolution (grid) DEM was generated from these elevation data and shown in Figure 2.

Method

The extraction of drainage networks from the DEM in the study area was carried out using
the Arc Hydro extension within ArcGIS (Maidment, 2002). Arc Hydro tools are based on the
most widely used D8 algorithm (O'Callaghan and Mark, 1984). The main steps include sink
filling, identification of flow direction, calculation of flow accumulation and stream
definition (ESRI, 2005). An important note in the above steps is the definition of a threshold
as stated in the introduction section. With the high-resolution DEM over the study area, the
use of a relatively small threshold can provide a detailed description of drainage networks.
In this study, the threshold areas with 0.5, 0.25, 0.125, and 0.05 square kilometres were
tested for the delineation of drainage networks in the study area.
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Figure 2. 5-m resolution DEM in the study area

The composition of a drainage network can be described quantitatively in terms of some
attributes such as stream order, stream lengths and drainage density (Horton, 1945). A top-
down stream order system (also called Strahler Order) developed by Horton (1945) and
modified by Strahler (1952) is used to classify stream segments based on the number of
upstream tributaries. With the Strahler system, stream order increases when streams of the
same order intersect. For example, a second-order stream is formed by the junction of any
of two first-order streams. The intersection of two streams of different orders will not
increase the stream order (Strahler, 1952). Stream ordering ranks the size and the flow
regime of streams. It is a measure of the position of the stream in the tributary hierarchy
and is sensitive to the accuracy of the drainage pattern delineation (Mourier et al., 2008).
Some characteristics of streams can be inferred from stream orders. For example, first-order
streams have no upstream concentrated flow. Therefore, they are most susceptible to
nonpoint source pollution problems (ESRI, 2009). In this study, the numbers of streams of
different orders in the study area were also calculated. The drainage density, a measure of
the length of stream per unit area, was calculated with the total length of streams divided
by the study area. The length of streams of each order was obtained by measuring all the
drainage in the study area of a given order (Schumm, 1956).



Results and discussion

Drainage networks extracted from the DEM using different thresholds are shown in Figure
3. The overall view of drainage networks in the figure illustrates that the area of the
Toowoomba City is at the headwaters of a number of drainage systems. Water from the
study area drains to all directions: east into the Lockyer Creek system, south into the
Hodgson Creek system, west into the Westbrook Creek system and north into the Gowrie
Creek system. The majority of the streams flows to the north into the Gowrie Creek, which
is located in the headwaters of the Murray Darling Basin (ANRA, 2009).
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Figure 3. Drainage networks derived from the DEM using different threshold areas: (a) using
0.5 km? threshold, (b) using 0.25 km? threshold, (c) using 0.125 km? threshold, and (d) using
0.05 km? threshold.



The use of a small contributing area threshold can produce a more detailed delineation of
the drainage network, but obviously, smaller threshold value is only applicable to high
resolution DEMs. The determination of an appropriate contributing area threshold is
dependent on the DEM resolution and the application. With the decrease of the threshold
value, the density of derived drainage network increased. Drainage density is one of the
important aspects of the drainage network composition, which measure the degree of
drainage development within a region. This value is indicative of the rugged texture of the
area, providing a useful numerical measure of dissection and runoff potential for a region
(Horton, 1945).

Table 1. The stream lengths (km) within each stream order derived from the DEM using
different threshold areas

Threshold 1 Threshold 2 Threshold 3 Threshold 4

Streamorder (0500 km?)  (0.250 km?) (0.125km?) (0.050km?)

1 123.11 189.59 265.98 394.91

2 64.14 89.03 116.43 200.48

3 42.5 38.54 50.67 97.05

4 1.89 22.78 40.92 44.1

5 0 0 0 22.84

Total 231.64 339.94 474.00 759.38
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Figure 4. The stream lengths (km) within each stream order derived from the DEM using
different threshold areas



Stream lengths within each order derived from the DEM using different threshold areas in

the study area are listed in Table 1, and are plotted in Figure 4 as well. The general trend of

stream lengths within each stream order is that stream length decreases as stream order

increases no matter what threshold area is used. The total length of streams increases with

the decrease of threshold area. When the threshold area increases, the stream lengths

within each order also increase, except for the third order using threshold 2. With small

threshold area, the details of the description of low-order streams increase. The low-order

streams are also known as headwaters. Accurate extraction and mapping of low-order

streams is important for the physically based characterisation of hydrologic processes
(Tribe, 1991; Wharton, 1994).

Table 2. The numbers of streams within each stream order derived from the DEM using

different threshold areas

Stream order

Threshold 1 Threshold 2 Threshold 3 Threshold 4

(0.500 km?) (0.250 km?) (0.125km?) (0.050km?)
1 256 514 1349 5313
2 107 229 608 2044
3 93 124 199 953
4 4 83 254 446
5 0 0 0 180
Total 460 950 2410 8936
6000
Q =&— Threshold 1 —#= Threshold 2
,, 5000
= \ Threshold 3 == Threshold 4
S 4000
)
w
'S 3000
|-
3
£ 2000
>
Z
1000
0
1 2 3 4 5
Stream order

Figure 5. The numbers of streams within each stream order derived from the DEM using

different threshold values



The number of streams within different orders obtained from the DEM using different
threshold areas in the study areas are presented in Table 2, and depicted in Figure 5. The
decrease of the threshold areas leads to the increases of both the total number of streams
and the numbers of streams within each stream order in the study area. As we can see from
the Figure 5, there is a significant increase in the numbers of low-order streams when using
small threshold value (0.05km? in this study). Generally speaking, the use of a bigger
threshold area can derive an overall pattern of drainage networks while a smaller threshold
area can give more detailed description for the drainage networks, especially for the low-
order streams (headwaters). It should be noted that the use of a small threshold area
require a high resolution DEM.

Over-land (or surface) water flow path is one of the most important hydrological
parameters. The extraction of adequate drainage networks is usually the first step in the
simulation of hydrological and geomorphological processes (Paik, 2008). The development
and the application of D8-based algorithms for automatic extraction of drainage networks
from DEMs have attracted lots of research interest since the 1980s. One of the problems in
the use of these methods is the inadequate resolution of the DEMs. High-resolution DEMs
allow for a more accurate representation of the terrain surface and make it possible to
extract detailed drainage networks. In this study, the analysis of some parameters of the
drainage network composition demonstrated that the high resolution DEM provides
capability of extracting drainage networks at different detail levels when using different
threshold values.

Conclusion

The adequate extraction and delineation of drainage networks is one of the critical steps for
many geological-related applications. Determination of detailed drainage networks requires
DEMs with higher resolution. From comparing some parameters of the drainage network
composition including the stream orders, the numbers of streams and the stream lengths,
this study showed that the high resolution DEM offers scope for drainage network
delineating at different detail levels when using different threshold values. With a high
resolution DEM, it is possible to use smaller threshold values for the delineation of the
drainage networks and some composition parameters such as the numbers of streams and
the stream lengths. High resolution DEMs support greater detail in the extraction of the low-
order stream (headwater) segments of drainage networks for the applications in the
physically-based hydrologic processes (Giertz et al., 2006; Tague and Pohl-Costello, 2008).
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