
Introductory Programming: What's Happening Today and Will There
Be Any Students to Teach Tomorrow?

Michael de Raadt Richard Watson
Department of Mathematics and Computing

University of Southern Queensland
Toowoomba 4350, Queensland

{deraadt,rwatson}@usq.edu.au

Mark Toleman
Department of Information Systems
University of Southern Queensland

Toowoomba 4350, Queensland

markt@usq.edu.au

Abstract
This paper reports the findings of a census of introductory
programming courses. Eighty five courses from Australian and
New Zealand universities are included. The census aims to
discover languages and paradigms taught, tools used, texts
employed, method of delivery to on-campus students, instructor
experience and how problem solving strategies are taught.

Of note in the 2003 census is the reduction in student enrolments
in introductory programming courses since 2001, the differences
in teaching between Australian and New Zealand courses, and
trends relating to language, tools and paradigms.
.Keywords: introductory programming, programming
languages, problem solving strategies, census.

1 Introduction

Instruction of introductory programming as an area of
teaching is young and still developing. It is not of benefit
to any instructor in this area to work in isolation. An
awareness of how other instructors are conducting their
teaching permits well informed decision making and also
encourages community building among instructors.

In the first semester of 2001 a census was undertaken
which created a picture of the languages, tools and
paradigms used in introductory programming courses in
Australian universities, and why instructors chose to use
them.

This current census has been conducted which attempts to
discover longitudinal trends concerning languages,
paradigms and tools. Additional data has been gathered
to discover which texts are being used, what contact
hours are employed for on-campus students, experience
of instructors, and methodologies employed for the
instruction of problem solving strategies.

Copyright ©2004, Australian Computer Society, Inc. This paper
appeared at Sixth Australasian Computing Education
Conference (ACE2004), Dunedin, NZ, January 2004.
Conferences in Research and Practice in Information
Technology, Vol. 30. Editors, Raymond Lister and Alison
Young. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

A related study (Robins 1998) surveyed six universities
within New Zealand and twenty within Australia. This
survey covered language choice and some qualitative
information. The 2003 census has been expanded to
include participants from New Zealand universities in
response to requests from instructors from New Zealand
and to allow comparison of Australian and New Zealand
systems.

This paper is organised into sections as follows. Section 2
briefly reviews the main findings of the 2001 census.
Section 3 presents the main findings of the 2003 census
as they relate to Australia and New Zealand. Section 4
presents notable trends between the 2001 census and the
2003 census and distinctions between Australian and
New Zealand teaching that have appeared in the 2003
census. Section 5 presents some concluding remarks and
suggestions for future studies.

The paper refers to courses presented over a single
semester instructional period. They typically form part of
a larger degree program. In some universities, this may
be equivalent to a subject, unit or paper.

2 2001 Census and Related Work

The initial census (de Raadt, Watson and Toleman 2002)
was conducted in the first half of 2001 and involved
universities within Australia. This census explored
language choice, paradigm choice, tools used to support
teaching and reasons given by academics for making
these choices. Brief statistics from the 2001 census are
shown in Table 1.

Universities Teaching Programming 37

Courses 57

Total Students (Approx) 19,900

Average Students per Course 349

Table 1: Brief statistics from the 2001 census

Participants were contacted by telephone. The 2001
census included the following questions.

1. What programming language is being used?
2. How many students are currently undertaking this

course?
3. Which languages were taught previously in the

course and when did use of the current language
start?

4. Why was this language chosen?
5. Are there plans to change the language?
6. What type(s) of student is your first programming

course designed for?
7. What paradigm is being taught using the language

(regardless of what is traditionally thought to
apply to this language)?

8. Are environments and/or tools beyond a simple
editor and command line compiler used to support
teaching of the language in practical sessions?

Nine different languages were being taught in Australian
universities during the first semester of 2001. The
number of courses teaching each of the nine languages
and the proportion of the student population taught each
language is shown in Table 2.

Language Courses Weighted by
Students

Java 23 43.9%

VB 14 18.9%

C++ 8 15.2%

Haskell 3 8.8%

C 4 5.5%

Eiffel 2 3.3%

Delphi 1 2.0%

Ada 1 1.7%

jBase 1 0.8%

Table 2: Languages taught

Instructors were also asked to indicate the language
taught prior to these 2001 languages. The results showed
a reduction in language diversity from 18 languages
taught in 1996, 17 in 1997, 16 in 1998, 14 in 1999, 11 in
2000, to 9 in 2001. This trend indicated that choice of
language was tending towards a smaller group of
languages.

Instructors were asked to indicate (potentially multiple)
reasons for their language choice. The most common
reason (as indicated by 56% of participants) was the
industry relevance of the language and its potential to
attract students. The second most common reason was
the perceived pedagogical benefits of the chosen
language.

Only five instructors indicated that they had definite plans
to change the language they were teaching. There were
no languages that were prominent among these changes,
nor was there a pattern indicating that people using a
language would change to another particular language.

Used in industry / Marketable 56.1%

Pedagogical benefits of language 33.3%

Structure of degree/dept politics 26.3%

OO language 26.3%

GUI interface 10.5%

Availability/Cost to students 8.8%

Easy to find appropriate texts 3.5%

OS/Machine limitations of dept 1.8%

Table 3: Reasons for choosing language

Instructors indicated the types of students towards which
their teaching was directed, for instance computer
science, business, engineering or other. Most instructors
indicated that they taught a broad range of students rather
than a particular type.

Instructors were asked to classify their approach to
teaching by paradigm. As can be seen in Table 4, over
half of all introductory programming students were taught
using a procedural paradigm, even though 81% were
taught using an object-oriented language.

Paradigm By Language Taught By

Procedural 10% 51%

Object-Oriented

81% 40%

Functional 9% 9%

Table 4: Paradigm used in teaching

Participants were asked to indicate if any tools beyond a
simple text editor and command line compiler were used
to assist in teaching in practical lessons. When not forced
to use an environment or tool by their choice of language,
the majority of instructors avoided additional tools.

No Tool 45%

VB IDE 19%

Other IDE 13%

Other Tool 10%

Functional Environment 9%

BlueJ 4%

Table 5: Environments and/or tools used.

‘Sandstone’ universities (Australian universities
established before 1950) offered four of the six courses
teaching ‘non-commercial’ languages (Ada, Eiffel and
Haskell). Haskell was only taught in Sandstone
universities. Within Sandstone universities the ordering
of the first two reasons for choosing a particular language

(see Table 3) was reversed, indicating that the
pedagogical benefits of a language were more highly
valued that the perceived marketability of a language.

The results of the initial census were sent to all
participants and have been published. The results
stimulated discussion among introductory programming
instructors. The authors have consulted to a number of
instructors from university and high school settings
regarding the information gathered by the census.

Because many instructors perceived they were teaching
industry relevant languages, a survey was subsequently
performed in order to gauge industry demand by language
during the period when the census was conducted.
Information was gathered through advertisements in The
Australian newspaper. The survey showed a correlation
between language demand and language being taught in
universities. Most demanded languages were equally
C++ and Java, followed by Visual Basic then C. Full
results of this survey are available (de Raadt, Watson and
Toleman 2003a, 2003b).

3 Current Teaching in Australia and
New Zealand

Another census was conducted in order to gather data
relating to longitudinal trends and to capture new
information relating to text books used, hours spent in
lectures, tutorials and practicals by on-campus students,
the number of years that each instructor has been
involved in the teaching of introductory programming,
and how problem solving strategies are presented to
students. As with the 2001 census, participants were
contacted by telephone. Telephone interviews lasted
about five minutes. This method was used to ensure a
high response rate. All contacted instructors willingly
participated in the census. The 2003 census included all
questions from the 2001 census with the following
exceptions.

The question "What type of student is your first
programming course designed for?" was removed
as it was felt that data gathered from this question
was not reliable or important.

A history of languages taught and the reasons for
choosing the language were not sought unless the
course was new to the census. Where a course
previously covered had changed the language used
in teaching, a history of the last two years was
gathered.

In addition, new questions were included as follows.

1. What textbook(s) do you use in your course?
2. How many hours per week do on-campus students

spend in lectures, tutorials and practicals?
3. How many years have you been involved in the

teaching of introductory programming?

Also, a series of questions relating to how problem
solving strategies are taught was posed. The questions
included the following.

4. What percentage of your lecture time throughout
the semester do you spend teaching problem
solving strategies?

5. What percentage of your tutorial time throughout
the semester do you spend teaching problem
solving strategies?

Courses included in the 2001 census displayed a 28%
reduction in student enrolments in the two year period
prior to the 2003 census.

The number of Australian universities encompassed by
the census includes the Australian Defence Force
Acadamy, which runs an independent course from its
`parent' institution UNSW. Only one university in
Australia does not offer an introductory programming
course.

The number of Australian courses increased from 57 in
the 2001 census to 71 in the 2003 census. Part of the
reason for this increase was some new courses came into
existence in the two years since the 2001 census. Also
greater success was experienced in searching for courses
in non-Computer Science areas like Business and
Engineering. Many courses can be found through
Australian Computer Society accreditation, but many are
not accredited and finding these courses relies on
participants' knowledge of other courses at their
universities.

A brief summary of the universities and courses involved
in the 2003 census is shown in Table 6.

Australia

N.Z.

Universities 40 8

Universities Teaching Programming 39 8

Courses 71 14

Total Students (Approx) 16300 3000

Average Students per Course 229 214

Table 6: Brief statistics

3.1 Languages in Australia

Table 7 shows the languages taught within Australian
universities. This includes the number of courses using
each language and the proportion of all students being
taught each language.

Languages taught have not changed greatly since the
2001 census. Absent since the 2001 census are Delphi,
Ada and jBase which were taught in one course each.
One course now teaches Fortran. Another course teaches
Matlab. The instructor of this Matlab course stated the
course was an introductory programming course and not a
mathematics course using Matlab.

Figure 1 shows the popularity of each language
comparing the 2001 census and the 2003 census results.
There have been changes in the ordering of languages
when weighted by student numbers. C++ moved from
third most taught language to second, not because of an
increase in the teaching of this language, but because it
did not lose as many students as Visual Basic. C passed

Haskell to become the fourth most taught language due to
the discovery of a number of new courses teaching C.

Language Courses Weighted by
Students

Java 29 44.4%

C++ 8 18.7%

VB 19 16.4%

C 9 10.6%

Haskell 3 6.0%

Eiffel 1 2.1%

Matlab 1 1.0%

Fortran 1 0.7%

Table 7: Languages taught in Australia

3.2 Languages in New Zealand

In the 2003 census, participants included instructors of
introductory programming languages at universities
within New Zealand. Languages reported as used in the
Robins (1998) study are presented in Table 8 alongside
information gathered in the 2003 census. In New Zealand
C is absent as is Haskell. JavaScript is taught in one
course. Compared to Australia, Java is used more in New
Zealand and C++ is used less.

Language Courses
1998

Courses
2003

Weighted by
Students

2003

Java 3 5 60.35%

VB 1 4 17.31%

Delphi 0 2 8.34%

JavaScript 0 1 7.34%

C++ 1 2 6.67%

Pascal 2 0

Haskell 1 0

Table 8: Languages taught in New Zealand

3.3 Paradigms

In Australia, there is a mismatch between the paradigms
commonly associated with the languages taught and the
actual paradigms used to teach them. Although over 80%
of instructors are choosing to use an object-oriented
language, more than half of Australian instructors are
choosing to teach using a procedural paradigm. One
Australian instructor reported teaching the language C
using a functional paradigm. Instructors in New Zealand
display a closer paradigm-language match. Paradigm use
by language and teaching method for both countries is
described in Table 9.

Australia New Zealand

By Lang.

Taught By Lang.

Taught

Procedural 11.7% 53.0% 8.3% 34.0%

Object-Oriented

82.2% 36.6% 91.7% 66.0%

Functional 6.1% 10.3% 0% 0%

Table 9: Paradigm used in teaching

0.0%

10.0%

20.0%

30.0%

40.0%

Figure 1: Australian Language Use Comparison 2001-2003

2001 43.9% 15.2% 18.9% 5.5% 8.8% 3.3% 0.0% 0.0% 0.8% 1.7% 2.0%

2003 44.4% 18.7% 16.4% 10.6% 6.0% 2.1% 1.0% 0.7% 0.0% 0.0% 0.0%

Java C++ VB C Haskell Eif fel Matlab Fortran JBase Ada Delphi

3.4 Tools

Tools used in teaching during practical work again show
similar results to the 2001 census. Most instructors are
choosing to use a simple editor and command line
compiler when not forced to use an environment by the
choice of language taught. There has been an increase in
the number of courses using BlueJ. Use of tools is shown
in Table 10.

Australia New Zealand

Courses

Students

Courses

Students

None 26 45.4% 5 55.7%

Other IDE 13 21.7% 2 12.7%

VB IDE 19 16.4% 4 18.9%

BlueJ 10 11.2% 1 12.7%

Functional 2 5.0% 0 0%

Other Tool 1 0.3 0 0%

Delphi IDE 0 0% 2 9.1%

Table 10: Tools used other than simple editor and
command line compiler

3.5 Text Books

Instructors were asked for details of the text or texts they
used, if any. Most instructors use one text, while some
use none or two. Instructors tended to use texts that
involved the language they were teaching. There was
only one text that appeared to be widely used: "Simple
Program Design" (Robertson 2000) is used by several
courses in Australia and New Zealand.

3.6 Teaching to On-Campus Students

Table 11 shows time spent each week in lectures, tutorials
and practical classes by on-campus students. The
definition of a lecture was common to all participants, but
tutorials and practicals are defined differently from
institution to institution. In New Zealand, only four of
fourteen courses had classroom tutorials and practicals;
the remainder had practicals only. Many New Zealand
instructors stated that there was an instructor conducting
face to face teaching within practical classes.

Australia N.Z.

Lecture 2.2 2.4

Tutorial 0.6 0.4

Practical 1.8 2.4

Total 4.6 5.3

Table 11: Average hours spent in lectures, tutorials
and practical classes per week.

3.7 Instructor Experience

Instructors were asked how many years they had been
involved in teaching introductory programming. Table
12 shows that New Zealand instructors are, on average,
more experienced.

Australia N.Z.

Minimum 0.5 3

Average 8.6 10.5

Std Dev 7.2 9.4

Maximum 30 40

Table 12: Instructors' experience in years

3.8 Problem Solving Strategy Instruction

Participants were asked to estimate what percentage of
time in lectures and tutorials is spent on the teaching of
problem solving strategies. Where a participant indicated
that there was no tutorial or there was a combined
tutorial/practical class, the amount in practicals was used.
Average and standard deviations for percentage of
instruction of problem solving strategies in lectures and
tutorials is shown in Table 13.

Australia N.Z.

Lecture Average 29% 21%

Lecture Std. Dev. 22% 20%

Tutorial Average 46% 28%

Tutorial Std. Dev. 36% 31%

Table 13: Amount of problem solving strategy
instruction in different class types

4 Discussion

The number of students enrolled in introductory
programming courses has fallen by over a quarter in two
years. Instructors were not reminded of their last
response for class size and were not told that other
institutions were showing shrinking class sizes, yet all but
three repeat participants reported a reduction in
enrolments.

Languages taught in Australia in 2003 are much the same
as those in the 2001 census. The number of languages
has fallen from nine to eight with five languages used in
more than one course each. This follows the trend of
reduction in diversity of languages that was predicted by
the 2001 census.

As a measure of the stability of languages taught,
instructors were asked to indicate if they had definite
plans to change the language they were teaching. Nine
Australian participants indicated they had plans to

change, which is a small rise from the five participants
indicating an intention to change in 2001. As well as this,
four Australian and two New Zealand participants
planned a change from VB6 to VB.Net.

Some differences are immediately apparent when
comparing courses taught in Australia with those taught
in New Zealand. The languages C and Haskell are not
taught in introductory programming courses within New
Zealand. Delphi and JavaScript are taught in New
Zealand but not in Australia at an introductory level.
Pascal has not been taught in Australia since 1997,
although one participant in the 2003 census indicated they
were planning to start teaching Pascal in a coming
semester. Pascal was taught in New Zealand up to 2002.

In New Zealand, paradigms used in teaching more closely
reflect those commonly associated with the languages
being taught. This could partly be due to the absence of
C++, which in Australia is widely taught using a
procedural paradigm.

Total teaching time for on-campus students differs
slightly between Australia and New Zealand. The
average New Zealand on-campus student receives 42
more minutes of instruction per week. There is a
difference in delivery to students between the two
countries. In Australia, 60% of courses offer a one hour
tutorial per week. In New Zealand in most cases this time
is spent in a laboratory setting instead.

Instruction of problem solving strategies varied greatly in
the courses covered by the census. Estimates of the
proportion of lecture time devoted to the instruction
varied greatly. Some participants indicated that teaching
problem solving strategies was not a part of their course.
Several of these instructors felt problems used in their
teaching were not of a large enough scale to warrant
teaching problem solving strategies explicitly. Others
said that their entire lecture time focussed on teaching of
problem solving strategies. These instructors did not
distinguish explicit teaching of problem solving strategies
from other parts of their teaching. This variation may be
due to instructors not having a common definition of
what is involved in the explicit teaching of problem
solving strategies.

Instructors in New Zealand are more experienced on
average. It appeared to be more common for a single
course (or paper) in New Zealand to be taught by a
rotating group of instructors who taught for one semester
at a time.

The two languages most highly demanded by industry are
C++ and Java. From 1994 to 2001, Java was adopted by
many instructors as they perceived it to be a highly
marketable language and preferred over C++ because of
this aspect. Between 2001 and 2003, the growth of Java
in introductory programming courses seems to have
plateaued.

5 Conclusions and Future Work

The reduction in numbers of student enrolments in
introductory programming courses is a trend that will be
of great importance to a future running of the census. A

future census may indicate if this trend reverses and, if
not, an investigation may be required to determine why
the trend is occurring.

Having collected information about the texts being used
in courses, an exploration of these texts could be
performed to reveal the following aspects of interest.

Amount of content dedicated to problem solving
strategy instruction

Target language (if any)

Cost

Additional resources (for instance, a language
reference)

With this data instructors could make informed choices of
textbook, and authors of future texts could see what is
currently contained in introductory programming texts.

Answers relating to how problem solving strategies are
taught are not reported in great detail here. Further
analysis of these answers would create a picture of how
instructors define problem solving strategy instruction
and perceptions and importance of implicit versus explicit
teaching of problem solving strategies. This may allow a
better definition of what is meant by problem solving
strategy instruction and lead to a more focussed effort for
the improvement of teaching in this area.

As well as providing data about continuing trends in
introductory programming courses, the census has also
proven its potential for capturing real data on topical
issues concerning introductory programming instructors.
Another census is planned for 2005.

The authors would like to thank the census participants
for their involvement.

6 References

de Raadt, M., Watson, R. and Toleman, M. (2002).
Language Trends in Introductory Programming
Courses. The Proceedings of Informing Science
and IT Education Conference, Cork, Ireland,
InformingScience.org.

de Raadt, M., Watson, R. and Toleman, M. (2003a).
Introductory programming languages at
Australian universities at the beginning of the
twenty first century. Journal of Research and
Practice in Information Technology

35(3): 163-
167.

de Raadt, M., Watson, R. and Toleman, M. (2003b).
Language Tug-Of-War: Industry Demand and
Academic Choice. Proceedings of the Fifth
Australasian Computing Education Conference
(ACE2003), Adelaide, Australia, Australian
Computer Society.

Robertson, L. A. (2000). Simple Program Design, Nelson
Australia.

Robins, A. (1998). First language survey. Last accessed
August 18 Access, 1998. Available online
http://www.cs.otago.ac.nz/survey/surveyhome.ht
ml.

http://www.cs.otago.ac.nz/survey/surveyhome.ht

