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The Gut-Brain Axis, the Human Gut
Microbiota and Their Integration in
the Development of Obesity
Edward S. Bliss* and Eliza Whiteside

School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia

Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems,

especially within the so-called Western countries, such as Australia, United States,

United Kingdom, and Canada. Obesity results from an imbalance between energy

intake and energy expenditure, where energy intake exceeds expenditure. Current

non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is

a multi-faceted and more complex disease than previously thought. This has led to

an increase in research exploring energy homeostasis and the discovery of a complex

bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis

is comprised of various neurohumoral components that allow the gut and brain to

communicate with each other. Communication occurs within the axis via local, paracrine

and/or endocrine mechanisms involving a variety of gut-derived peptides produced from

enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin

(CCK), peptide YY3−36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural

networks, such as the enteric nervous system (ENS) and vagus nerve also convey

information within the gut-brain axis. Emerging evidence suggests the human gut

microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence

weight-gain through several inter-dependent pathways including energy harvesting,

short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety

and modulating inflammatory responses within the host. Hence, the gut-brain axis,

the microbiota and the link between these elements and the role each plays in either

promoting or regulating energy and thereby contributing to obesity will be explored in

this review.

Keywords: gut-brain axis, microbiota, cholecystokinin (CCK), glucagon-like peptide 1 (GLP1), peptide YY3−36

(PYY), lipopolysaccharide (LPS), obesity, short-chain fatty-acids (SCFA)

OBESITY: AN INCREASING PROBLEM

Obesity is one of the most rapidly escalating epidemics faced by global public-health systems, in
particular, those belonging to developed Westernised societies, such as Australia, United States,
United Kingdom, and Canada. In the 1970s, overweight and obesity were uncommon with
less than 15% of Australians being described in this category (Hayes et al., 2017). By
1995, the rate of overweight and obesity had increased to approximately 20% (Tolhurst
et al., 2016; Hayes et al., 2017). Australia now possesses one of the highest incidence of
overweight and obesity worldwide, affecting 63.4% of adults and 29.5% of people aged less
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than seventeen (Grima and Dixon, 2013; Tolhurst et al., 2016).
Additionally, 44.5% of adults and between 70.1 and 91.7% of
people 17 or under do not meet the minimum daily physical
activity requirements and approximately 40% of the nation
acquire their daily energy intake from “junk” food, which is
described as a Westernised-diet high in both saturated and
trans fats and simple carbohydrates and, therefore, hyper-
caloric (Tolhurst et al., 2016). Obesity occurs when there
is increased fat deposition following an imbalance between
energy consumption and expenditure, where consumption
exceeds expenditure. Extending from this simplistic definition,
obesity is a consequence of multifaceted interactions among
genetic, environmental, socio-economic, psychological, and
dietary factors, thus making obesity a complex disease to
understand and combat (Moran and Shanahan, 2014; Bauer et al.,
2016).

Obesity is characterised by the presence of parameters
indicating increased adiposity, low-grade inflammation,
dysbiosis, increased neurogenic tone and hormonal imbalances
(Buhmann et al., 2014; Moran and Shanahan, 2014; Bauer
et al., 2016). These obesogenic factors give rise to comorbidities
(Table 1), which in turn increase morbidity and mortality.
Therefore, obesity determinants, as well as the associated costs,
which are in excess of $8 billion per year in Australia alone, and
unsuccessful non-invasive treatment interventions have resulted
in an increase in research aimed at improving weight-loss
approaches (Grima and Dixon, 2013; Buhmann et al., 2014).
Currently, bariatric surgeries such as Roux-en-Y gastric bypass,
laparoscopic sleeve gastrectomy and laparoscopic adjustable
gastric banding, are the most effective treatments in increasing
and sustaining long-term weight loss. However, it is relatively
unknown why bariatric surgeries are successful. It is suggested
that changes in the systemic and local concentrations of gut-
derived peptides and the altered responses that are subsequently
generated at the sites of action, in addition to changes in
vagal firing and, therefore, signalling to the brain may be the
key to understanding the success of bariatric surgeries (Santo
et al., 2016; Yavuz et al., 2017). Consequently, a large degree of
knowledge regarding the interplay between the central nervous
system (CNS) and the gastrointestinal tract (GIT), and more
recently the gut microbiota, with regard to energy homeostasis
has been generated. Hence this review will focus on exploring
the link between the gut-brain-microbiota axis and the role each
aspect of this axis plays in either promoting or regulating energy,
thus contributing to the obesogenic state.

The CNS, in particular, the brain, has the elaborate task of
interpreting continuous information provided to it by neural
networks and chemical messengers with respect to the body’s
energy state. It uses this information to initiate an appropriate
reaction to maintain homeostasis. These signals vary throughout
time and the responses alter depending on what type of food has
been ingested. Although foodstuffs are first encountered by the
oral microbiome, the GIT remains one of the primary sites where
they are first sampled. Therefore, the gut becomes responsible
for generating the majority of inputs communicated to the CNS
regarding the content and size of a meal, thus establishing a
complex bi-directional communication system, referred to as

the gut-brain axis (Bauer et al., 2016; Gribble and Reimann,
2016).

THE GUT-BRAIN AXIS: CONNECTIONS
FROM THE GUT TO THE BRAIN

The gut-brain axis is a complex neurohumoral communication
network imperative for maintaining metabolic homeostasis.
It is comprised of the CNS, enteric nervous system (ENS),
the autonomic nervous system (ANS) and its associated
sympathetic and parasympathetic branches, neuroendocrine and
immunological systems, in addition to the gut microbiota,
which will be discussed below (Grenham et al., 2011). Axis
communication is formed through sensory information being
converted into neural, hormonal and immunological signals,
which are relayed back and forth from the CNS to the gut and
vice versa (Mayer et al., 2015). Whilst there is increasing evidence
that changes in intestinal immune-signalling convey shifts in
gut-facilitated energy homeostasis, the majority of recognised
axial effects on energy homeostasis are a consequence of neural
and hormonal gut-derived signals, as the GIT possesses over
500 million neurons and is capable of producing an array of
hormones (Monje, 2017). Hence, due to the large degree of
innervation supplying the GIT, preabsorptive foodstuffs can
initiate signals to the CNS regarding macronutrient content and
caloric value through individualised nutrient-specific sensory
mechanisms located throughout the GIT (Hamr et al., 2015).
These signals are subsequently conveyed to various regions of
the brain, such as the brainstem and hypothalamus. The higher-
order processing of these centres consequently initiates a series
of reactions that result in both acute and chronic deviations
in energy consumption and expenditure, thus maintaining
metabolic homeostasis pre- and post-prandial (Buhmann et al.,
2014).

Gut hormones are released by enteroendocrine cells (EECs),
which initiate the majority of signalling and communication
within the gut-brain axis in response to preabsorptive nutrients.
These cells are located throughout the epithelium of the GIT, with
many containing an apical cell membrane covered in microvilli,
which open to and directly contact the luminal contents (Gribble
and Reimann, 2016). An overview of EEC function is provided
below (Figure 1).

The bulk of digestion and nutrient absorption occurs within
the stomach and small intestine. Therefore, these organs are
highly innervated as they are the primary sites responsible for
nutrient-sensing. This dense area of innervation originates from
the vagal and splanchnic nerves (Bauer et al., 2016). Here the
quantity of afferent fibres outnumbers the quantity of efferent
fibres, indicating a fundamental role of neuronal gut-to-brain
signalling (Prechtl and Powley, 1990; Berthoud et al., 1995).
Vagal fibres in particular, extend into the lamina propria of
the intestinal villi, terminate at the basolateral cell membrane
of EECs and express receptors for gut hormones such as
ghrelin, leptin, cholecystokinin (CCK), glucagon-like peptide 1
(GLP1), and peptide YY3−36 (PYY), thus leading to receptor
activation and subsequent neuronal stimulation (Dockray, 2013).
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TABLE 1 | Overweight and obesity comorbidities in different physiological systems.

Physiological

system

Comorbidities References

Cardiovascular Stroke

Myocardial infarction

Angina

Coronary heart disease

Cardiac failure

Hypertension

Deep vein thrombosis

Pulmonary embolism

Dyslipidaemia

Wilson et al., 2002; Stein et al., 2011; Global

Burden of Metabolic Risk Factors for Chronic

Diseases Collaboration et al., 2014; Writing Group

et al., 2014; Klovaite et al., 2015; Aune et al., 2016

Gastrointestinal Non-alcoholic fatty liver disease

Gallbladder and pancreatic disease

Gastro-oesophageal reflux disease

Liver, colorectal, oesophageal, gallbladder and pancreatic cancers

Chen et al., 2012; Eslick, 2012; Stinton and Shaffer,

2012; DiBaise and Foxx-Orenstein, 2013

Endocrine Non-insulin dependent diabetes mellitus

Gestational diabetes mellitus

Polycystic ovary syndrome

Flegal et al., 2007; Arendas et al., 2008; Yang et al.,

2008

Genitourinary Chronic kidney disease/chronic renal failure

Kidney stones

Renal and prostate cancers

Urinary incontinence

Erectile dysfunction

Buried penis

Bump et al., 1992; Esposito et al., 2004; Ejerblad

et al., 2006; Flegal et al., 2007; Polednak, 2008;

Munkhaugen et al., 2009; Pestana et al., 2009;

Stinton and Shaffer, 2012; Grima and Dixon, 2013

Pulmonary Obstructive sleep apnoea

Obesity hypoventilation syndrome

Asthma

Chronic obstructive pulmonary disease

Guerra et al., 2002; Steuten et al., 2006; Eisner

et al., 2007; O’Donnell et al., 2014

Musculoskeletal Osteoarthritis

Spinal disc disorders and lower back pain

Tendons, fascia and cartilage disorders

Foot pain

Impaired mobility

Molenaar et al., 2008; Tukker et al., 2009; McAdams

DeMarco et al., 2011; Grima and Dixon, 2013

Reproductive Menstrual disorders

Pregnancy complications, such as miscarriage and intrauterine foetal death

Birth defects

Infertility

Breast (post-menopause), endometrial and ovarian cancers

Bianchini et al., 2002; Arendas et al., 2008;

Polednak, 2008; Grima and Dixon, 2013

Mental/Psychological Dementia

Depression

Eating disorders

Reduced health-related quality of life

Psychosocial stigma and poor self esteem

Beydoun et al., 2008; Molenaar et al., 2008; Grima

and Dixon, 2013; Hilbert et al., 2014

Integumentary Increased sweat gland activity

Impaired epidermal barrier repair

Striae

Cellulitis

Hyperpigmentation

Intertrigo

Lymphoedema

Löffler et al., 2002; Yosipovitch et al., 2004, 2007

Immune Disruption of lymphoid tissue integrity

Changes in leukocyte development, phenotypes and activity

Decreased immunity from infection

Decreased efficacy of vaccines

Increased pro-inflammatory markers, such as IL6 and TNFα

Ghanim et al., 2004; Bremer et al., 2011;

Kanneganti and Dixit, 2012; Sheridan et al., 2012

Additionally, ENS neurons, which possess receptors for various
gut hormones, may indirectly activate vagal and spinal afferents
(Amato et al., 2010; Richards et al., 2014). Whilst the ENS
controls intestinal function locally via reflex actions, it cannot be

dismissed from playing a role in transmitting nutrient-derived
signals to vagal afferents, thus contributing to the gut-brain
axis (Costa et al., 2000; Sayegh et al., 2004). Intrinsic ENS
neurons are proximally located to both EECs and various afferent
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FIGURE 1 | EEC function and communication. Intracellular metabolism and activation of chemoreceptors located on the apical cell membrane of EECs, result in

calcium influx, which induces the synthesis and release of gut hormones into the sub-epithelial space (1, 4) (Psichas et al., 2015). Various gut-derived hormones are

synthesised and secreted in response to luminal constituents and released from EECs systemically to induce an effect on various tissues throughout the body, such as

the brain, via, metabolic, local, paracrine (3) and/or endocrine (2) action, as well as the activation of afferent neurons innervating the GIT wall (5, 6, 7, 8) (Psichas et al.,

2015). Further, EEC/ENS crosstalk can result from the direct absorption of nutrients through the intestine (7). The production of SCFA by the microbiome, which can

be subsequently utilised by colonocytes as an energy source, can activate EECs, thus contributing to gut-brain activation (8).

nerve terminals; stimulated by intestinal nutrient infusion; and
stimulate vagal afferent fibres in the gut (Sayegh et al., 2004;
Ritter, 2011). Whilst the exact mechanisms have not been
completely elucidated and the notion that the ENS can function
independently of CNS involvement is still favoured, it is clear
from these studies that the gut-brain neuronal-signalling axis is
initiated by nutrient-induced gut hormone secretion.

Upon food consumption, sensory information is conveyed
from the gastrointestinal vagal and/or somatosensory (spinal)
afferent fibres to the nucleus tractus solitarius (NTS). More
specifically, vagal afferents converge in the NTS of the dorsal
vagal complex within the brainstem, and somatosensory afferents
synapse with neurons in the posteromarginal nucleus of the
spinal dorsal horn, which then project to the NTS (Zittel
et al., 1994; Schwartz et al., 2000). The NTS, in turn, integrates
and carries these gut-derived signals to the hypothalamus
(Craig, 1996; Schwartz et al., 2000). Using c-Fos—a marker
used to represent increased neuronal activity—Zittel et al.
(1994) demonstrated that its expression in the NTS increased
upon nutrient infusion within the gut, whilst high-dose
capsaicin treatment, which acts as a neurotoxin, decreased c-
Fos expression and blocked gut-brain vagal communication
(Mönnikes et al., 1997). Additionally, Campos et al. (2013)
reported that NTS neurons were stimulated by vagal afferents
by the activation of n-methyl-D-aspartate (NMDA) receptors in
afferent terminals, which subsequently led to neurotransmitter
release via phosphorylation of extracellular signal-related kinases
1/2 and synapsin 1. Babic et al. (2009) established that other

NTS neurons are activated via vagal afferents stimulating
pro-opiomelanocortin (POMC) and catecholaminergic neurons.
These NTS neurons have been linked to contributing to satiety
via signalling melanocortin receptors within the hypothalamus
(Figure 2). Interestingly, a deficiency in melanocortin-receptor
4 has been demonstrated to contribute to obesity (Farooqi
et al., 2003). Whilst, more studies in this area are needed
to confirm the exact mechanisms as to how these different
receptors and neurons interact, it may lead to a potential and
more advanced understanding of how NTS subset populations
contribute to energy homeostasis. Furthermore, the findings
implicating POMC and catecholaminergic neuron stimulation
via a vagal pathway, as well the presence of NMDA receptors
within the NTS, may assist in understanding the pathways
that link food consumption with behavior modifications, given
that these neurons release neurotransmitters, such as dopamine,
which are linked to reward, arousal, motivation and emotion.

NTS neurons project and terminate at several higher-
order centres of the brain, including the melanocortin system
incorporating the hypothalamus (Suzuki et al., 2012). The
hypothalamus performs the fundamental role of integrating
peripheral humoral signals that transduce information
regarding nutrient consumption and energy expenditure,
as well information relayed from the NTS and other superior
regions of the brain (Bauer et al., 2016). Of particular importance
with respect to feeding behaviour and energy homeostasis are the
arcuate (ARC), paraventricular, ventromedial and dorsomedial
nuclei, as well as the lateral hypothalamic area (Cone et al., 2001;
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FIGURE 2 | Proposed mechanism of energy homeostasis within the hypothalamus. PVN, paraventricular nucleus; ARC, arcuate nucleus; MCR4, melanocortin 4

receptor; α-MSH, α- melanocortin-stimulating hormone; MCR3, melanocortin 3 receptor; Y1r, neuropeptide Y receptor type 1; POMC, pro-opiomelanocortin; CART,

cocaine- and amphetamine-regulated transcript; NPY, neuropeptide Y; AgRP, agouti-related protein.

Suzuki et al., 2012). These hypothalamic areas are unified by
circuits that regulate energy homeostasis. However, the majority
of studies have focused on the ARC and its role in relation to
energy homeostasis (Suzuki et al., 2012; Buhmann et al., 2014).
Hence, further studies are required to explore the exact role that
the residual hypothalamic regions convey in relation to feeding
behaviour and energy homeostasis. Nonetheless, it is clear that
nutrient-sensing occurs in the gut and triggers an array of neural
and/or humoral pathways that contribute to the bi-directional
communication system referred to as the gut-brain axis, which
subsequently regulates energy balance.

The ARC responds to peripheral and central appetite
signals via tightly-regulated neurotransmitter release from two
separate neuronal populations, POMC and agouti-related protein
(AgRP) neurons. AgRP neurons, located in the medial ARC,
release the inhibitory neurotransmitters AgRP and neuropeptide
Y (NPY) (Cone et al., 2001; Suzuki et al., 2012). These
neurotransmitters act to stimulate hunger and appetite, as well
as decrease energy expenditure, thus contributing to excessive
food consumption andweight-gain (Dryden et al., 1995; Ollmann
et al., 1997; Enriori et al., 2007). POMC neurons in the
lateral ARC release POMC, which stimulates the release of α-
melanocortin-stimulating hormone (α-MSH) and cocaine-and-
amphetamine-regulated transcript (Suzuki et al., 2012). These
neurotransmitters are antagonistic of AgRP and NPY and act
by decreasing appetite and hunger, thus inhibiting food intake,
as well as increasing energy expenditure, thus contributing to
weight-loss (Cowley et al., 2001; Nakhate et al., 2011). Therefore,

energy homeostasis involves a delicate balance between these two
neuronal populations.

Adding to the complexity of hypothalamic function is that
gut hormones, which increase in concentration post-prandial,
have direct access to the ARC (van der Kooy, 1984). The
ARC and the NTS are proximally located in an area of the
brain that possesses an incomplete barrier, thus contributing
to a leaky blood-brain-barrier (Bauer et al., 2016). This area
is referred to as the area postrema (AP). Lesioning the AP
and vagotomy diminish the effects of multiple gut hormones,
thus indicating that gut hormones directly influence these brain
regions once released systemically (van der Kooy, 1984; Date
et al., 2002). Batterham et al. (2002) demonstrated an example of
this by peripheral injection of PYY into the general circulation.
PYY binds to Y2 receptor, which Batterham et al. (2002)
localised to the ARC by demonstrating an increase in c-FOS
immunoreactivity. Additionally, Seeley et al. (1994) established
that chronic decerebrate rats, who only had the brainstem intact,
had suppressed food intake and increased energy expenditure
in response to intestinal nutrient infusion. This early 1990s
study provides support for latter findings that the NTS may
receive gut-derived signals systemically due to a leaky blood-
brain-barrier (Bauer et al., 2016). It is also interesting that these
rats had increased energy expenditure, given their decerebrate
state (Seeley et al., 1994). This may implicate the brainstem
in regulating energy expenditure through its role as a motor
output cortex. More elaborate studies combining motor output
with intestinal sampling are warranted. Additionally, this may
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assist in providing a link to dietary intake and exercise and
the role that each of these factors play in relation to energy
homeostasis.

GUT HORMONES AND THE ROLE OF THE
GUT-BRAIN AXIS IN ENERGY
HOMEOSTASIS

Whilst neural connection has been explored, it is also
imperative to mention the stomach’s role in nutrient intake.
The stomach is one of the first organs to generate a feedback
signal to the melanocortin system. When food enters the
GIT, as a bolus, the stomach becomes stretched, triggering
a feedback-loop to the brain to cease eating. The gastric
emptying of foodstuffs into the duodenum occurs once the
pyloric sphincter is summoned to relax. Once the nutrients
enter the duodenum, the rate of emptying decreases, thus
augmenting gastric distension and limiting the amount of food
consumed.

The rate of gastric emptying is decreased by vagal activation
and the release of gut hormones, such as CCK, PYY, and
GLP1 (Cooke and Clark, 1976; Talsania et al., 2005; Suzuki
et al., 2012). This negative feedback signal was demonstrated
by Davis and Smith (1990), who established that food intake
diminishes within 6min of feeding in fasting re-fed rats, thus
preventing excessive food consumption. Phillips and Powley
(Phillips and Powley, 1996) demonstrated in a rat model that
stomach distension induces a feedback signal to cease excessive
ingestion in less than 3min rather than the content of the
food by occluding the pyloric sphincter to prevent gastric
emptying and by using saline in lieu of foodstuffs. These
studies indicate that neurons supplying the stomach express
mechanoreceptors, which are activated by stomach distension
(stretch), contribute to relaying a limited information to the brain
and provide limited assistance in nutrient-sensing and long-
term energy homeostasis (Bauer et al., 2016). Emerging evidence
reveals that taste receptors are found in the stomach and may
contradict previous studies with regard to the type of sensory
information relayed to the CNS and how the CNS integrates
this information and conveys it to the rest of the gut (Young
et al., 2009; Depoortere, 2014). In contrast, historical studies
demonstrating that sham feeding—a process where foodstuffs
that enter the stomach do not reach the small intestine and
are bypassed directly to the colon or removed directly from the
stomach—is inhibited through intestinal nutrient infusion, thus
demonstrating that nutrients in the intestine can suppress food
intake irrespective of gastric emptying and relay information
to the gut-brain axis via neurohormoral mechanisms (Gibbs
et al., 1981; Reidelberger et al., 1983). Hence, the role of gut
hormones in relation to the control of food intake with regard
to energy homeostasis will be explored. Since the effects of
glucagon, insulin, leptin and ghrelin are extensive and well
documented elsewhere, they will not be revised in this review
and their functions are summarised in Table 2 (Sakata and Sakai,
2010; Dimitriadis et al., 2011; Jones et al., 2012; Pan et al.,
2014).

Cholecystokinin
CCK was the initial gut hormone to be implicated in appetite
control and was shown to be secreted post-prandial from EECs
within the duodenum and jejunum (Gibbs et al., 1973). Its release
is stimulated by fat and protein ingestion and its concentration
augments within 15min post-prandial (Lieverse et al., 1995;
Buhmann et al., 2014). CCK possesses a short half-life of few
minutes and consequently has limited time to induce its effects
by acting upon CCK-1 and CCK-2 receptors located throughout
tissues of GIT and the CNS, including the vagal nerve, NTS
and hypothalamus (Buhmann et al., 2014; Lo et al., 2014). CCK
increases gallbladder and gastrointestinal motility and secretion,
in addition to playing a significant role in initiating the gut-
brain axis to control food intake, energy expenditure and glucose
utilisation (Cheung et al., 2009; Suzuki et al., 2012). Peripheral
administration of CCK in animal studies regulates food intake
in a dose-dependent manner and administration of CCK-1
receptor antagonists in conjunction with fatty-acid and protein
consumption impedes the stimulation of vagal afferents lining the
small intestine as well as the regulatory effects of CCK on food
ingestion (Calingasan et al., 1992; Cox et al., 1996; Duca and Yue,
2014). Hence, these studies implicate CCK as a specific mediator
of fat and protein satiation. Additionally, repeated doses of CCK
into the systemic circulation and sporadic CCK infusion during
feeding, initially decreases the amount of foodstuffs ingested, but
over time, a tolerance to CCK develops and the quantity and
frequency of ingestion increases (Kopin et al., 1999; Buhmann
et al., 2014). This desensitising effect may explain the failed
attempts to utilise CCK-derivatives, such as GI 181771X, as an
effective weight-loss treatment (Castillo et al., 2004; Kim et al.,
2011).

CCK administration conveys glucose-regulating effects, via
increased vagal firing, which in turn induces the NDMA
neurons of the NTS to increase hepatic vagal firing to signal
the liver to decrease gluconeogenesis (Rasmussen et al., 2012).
When rats are placed on a high-fat, high-carbohydrate diet,
they develop CCK-resistance in response to the increased
levels (Daly et al., 2011). The exact mechanisms how CCK
administers its glucoregulatory effects and how CCK resistance
develops remain unclear. However, these findings may provide
an explanation as to why CCK-derivatives induce pancreatitis
and contribute to developing an impaired utilisation of glucose.
Further studies outlining the molecular physiology that CCK
conveys on other organs, such as the liver requires further
research.

Glucagon-Like Peptide 1 (GLP1)
GLP1 is a neuropeptide released predominantly from EECs of the
ileum and colon in response to carbohydrate, lipid and/or protein
ingestion (Elliott et al., 1993; Adam and Westerterp-Plantenga,
2005). It is synthesised by post-translational processing of the
preproglucagon gene in the CNS and the GIT, exerting its effects
via activating the GLP1 receptor, which is a type of GPCR
expressed extensively throughout the CNS, GIT, and pancreas
(Larsen et al., 1997; Yamato et al., 1997). Systemic and central
GLP1 administration stimulates satiety centres in the brain, in
particular, the ARC, paraventricular, NTS and AP to decrease
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hunger (Larsen et al., 1997; Abbott et al., 2005). Hence GLP1
is considered to be a pivotal factor leading to satiation. It is
synthesised and released within 15min post-prandial, which is
intriguing given that intestinal L-cells are located distally in
the ileum (Elliott et al., 1993; Bauer et al., 2016). Therefore,
GLP1 release may be a reflex response involving vagal fibres
located within the duodenum, given that these fibres are involved
in early nutrient-sensing. Whilst this hypothesis has yet to
be validated, recent studies have demonstrated the presence
of GLP1-secreting EECs within the duodenum, indicating that
GLP1 release may occur in two stages or in response to the
hypothesised reflex (Svendsen et al., 2015).Whilst more elaborate
studies involving nutrient infusion into sections of the small
intestine are needed in order to determine the exact site/s GLP1
is secreted from, what is clear is that its release is relative to
the energy intake and to all types of macromolecules to induce
satiety.

GLP1 is a powerful incretin (a blood glucose-regulating
peptide) that stimulates the GLP1 receptor of pancreatic β-
cells to release insulin (Buhmann et al., 2014). Additionally,
enhanced levels of GLP1 upregulate pancreatic β-cell gene
expression of insulin promoter factor 1, thus promoting their
development and impeding their apoptosis, which in turn
contributes to improved glucose utilisation within the body
(Villanueva-Peñacarrillo et al., 2001; Suzuki et al., 2012). Finally,
GLP1 decreases the rate of gastric emptying into the duodenum
and hinders gastric acid secretion, which in turn increases gastric
distension, limits excessive food consumption, enhances satiety
and positively contributes to energy homeostasis (Edwards et al.,
1999).

Whilst the effects conveyed by GLP1 are potent, they
are often brief as GLP1 is vulnerable to rapid degradation
and inactivation through the catalytic function of dipeptidyl
peptidase IV (DPPIV) (Deacon et al., 1995; Holst, 2007).
Only 10% of intestinal-derived GLP1 reach the systemic
circulation, indicating that it conveys its effects in a paracrine
manner (Vilsbøll et al., 2003; Holst, 2007; Kuhre et al., 2015).
Additionally, peripheral administration of GLP1 in conjunction
with the removal of the vagus nerve impedes the effects of GLP1,
whilst intravascular infusion of GLP1 continues to convey its
effects in the presence of vagotomy and/or high doses of the
neurotoxin capsaicin (Rüttimann et al., 2009; Zhang and Ritter,
2012). This indicates that the GLP1 receptor is located within
the brain and that GLP1 may elicit higher-order functions, as a
neurotransmitter, which are yet to be determined. Whilst GLP1
stimulates specific regions of the brain, such as the brainstem,
to enhance motor output and/or thermogenesis, further studies
are needed to determine the mechanism/s involving GLP1 and
higher-order neural function with regard to energy homeostasis
and food behaviour patterns (Li et al., 2009; Graaf et al., 2016).
Additionally, Ohlsson et al. (Ohlsson et al., 2014) demonstrated
that GLP1 concentrations rise rapidly post-prandial within the
lymph and that these concentrations are sustained for longer
intervals, as DPPIV is expressed at lower concentrations within
the lymph than the general circulation. Hence, this may provide
another pathway as to how GLP1 exerts its effects centrally and
peripherally, as well as the role it may possess with respect to

immune-signalling and the inflammatory state associated with
obesity. Either way, future studies that aim to extend GLP1
function and/or mimic its function through the use of GLP1
receptor agonists, such as exenatide, may offer promise in relation
to increasing satiety and regulating energy homeostasis and,
therefore, treating obesity.

Peptide YY3−36 (PYY)
PYY is a small peptide belonging to the pancreatic-peptide
family and, like GLP1, is secreted by intestinal L-cells post-
prandial (Batterham et al., 2002, 2006). It is released in response
to intestinal nutrient-sensing and in volumes that reflect the
amount of energy consumed (Oesch et al., 2006). PYY is
secreted with 15min post-prandial, in a manner emulating GLP1
with regard to duodenal nutrient-sensing, increased vagal-firing
and/or chemically-derived reactions (Fu-Cheng et al., 1997).
Unlike CCK and GLP1 whose concentrations diminish rapidly,
PYY concentrations remain elevated for several hours post-
prandial (Batterham et al., 2003a). Hence, PYY effects may
be prolonged and exhibited in a more endocrine fashion in
comparison to CCK and GLP1.

PYY is present throughout the entire GIT, from the
oesophagus through to the rectum (Adrian et al., 1985).
PYY binds to the Y2 receptor and, in turn, decreases food
intake, as studies using rodents lacking this receptor and PYY
knockout mice become polyphagic and, consequently, gain
weight (Batterham et al., 2006; le Roux et al., 2006). Additionally,
PYY elicits activation of the NTS and POMC neurons in the
ARC, via peripheral and central administration, indicating the
presence of Y2 receptors on the vagus nerve, within the NTS
and in the ARC (Batterham et al., 2002, 2006; Koda et al.,
2005; le Roux et al., 2006). PYY exerts its effects by inhibiting
NPY neurons, as Y2 receptors are expressed abundantly by these
neurons in the ARC and their activation consequently impedes
the orexigenic effects of NPY (Dryden et al., 1995; Broberger
et al., 1997). Therefore, PYY may possess a pivotal role in energy
homeostasis by regulating food intake and suppressing excessive
consumption in an endocrine fashion, via activation of the
POMC neurons and inhibition of NPY within the melanocortin
system (Bauer et al., 2016). Additionally, studies indicate that
obese subjects possess lower post-prandial PYY concentrations,
whilst other studies suggested that there are vast differences
between healthy and obese individuals with regard to fasting
PYY concentrations (Batterham et al., 2003a; Korner et al.,
2005; Stock et al., 2005). Augmented PYY concentrations are
associated with gastrointestinal diseases such as inflammatory
bowel disease and chronic destructive pancreatitis, in addition
to prolonged appetite loss (El-Salhy et al., 2013). Additionally,
sustained concentrations of PYY and CCK in the elderly
are concomitant with delayed gastric emptying and reduced
cholecystic contractility (Di Francesco et al., 2005; Buhmann
et al., 2014). The mechanism as to why this occurs remains
elusive. However, increased concentrations, which assist in long-
term satiety and therefore a reduced energy-intake, may be
linked to malnutrition in the elderly (Di Francesco et al., 2005;
Buhmann et al., 2014). Hence, further studies are needed to
determine the long-term effects of raised PYY concentrations
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before Y2 receptor agonist and/or PYY derivatives can be utilised
as effective anti-obesogenic treatment.

Pancreatic Polypeptide
Pancreatic polypeptide (PP) belongs to the pancreatic-peptide
family and is secreted by specialised F-cells within the pancreatic
islets of Langerhans (Khandekar et al., 2015). Its release, like
PYY, is proportional to caloric intake, where foods high in fat
trigger an increased response (Guyenet and Schwartz, 2012).
It is released systemically during the preabsorptive and post-
prandial state, suggesting that its secretion emulates GLP1
and PYY with regard to duodenal nutrient-sensing, increased
vagal-firing and/or chemically-derived reactions (Schwartz et al.,
1978; Khandekar et al., 2015). Its concentration has been
demonstrated to be sustained and elevated for up to 6 h post-
prandial, thus suggesting an endocrine action (Adrian et al.,
1976). Furthermore, PP is released in the colon and rectum of the
bovine gut, where it acts as an exocrine hormone (Pyarokhil et al.,
2012). This function has not been validated in human studies,
hence it is unknown if it exerts an exocrine function within the
human.

PP acts upon the Y4 receptor within the AP, NTS, and the ARC
and concurrently induces gallbladder relaxation and inhibits
pancreatic secretion, as it acts as a CCK antagonist, in addition
to delaying gastric emptying, which leads to a rapidity of satiety
and a decreased food consumption (Parker and Herzog, 1999;
Balasubramaniam et al., 2006; Lin et al., 2009). The role PP
plays with respect to appetite suppression is enhanced by studies
demonstrating a difference in PP concentrations in anorexic
and obesogenic states, where it is increased and diminished
respectively (Batterham et al., 2003b). Whilst PP is a potent
appetite suppressant, a seminal study conducted by Clark et al.
(1984) demonstrated that central administration of PP stimulated
appetite and led to an enhanced food intake. Whilst there is
conflicting evidence that does not support these findings, the
findings by Clark et al. (1984) have yet to be refuted and
further studies are needed to determine if central-acting PP
appeases or stimulates appetite. Moreover, studies in Prader-Willi
syndrome and obese patients established a diminished level of
PP post-prandial in comparison to healthy individuals and that
intravenous PP injection in these patients led to a significant
decline in food consumption (Lassmann et al., 1980; Berntson
et al., 1993). PP-overexpressing mice have an increased incidence
of mortality, which is resultant of a reduction in maternal
milk consumption (Kohno and Yada, 2012). Whilst this can be
portrayed as extreme, it validates the potential potency of PP
with respect to satiation. Further, Obinepitide (7TM Pharma),
a potent synthetic analogue of PP and a Y4 receptor agonist,
has demonstrated decreases in both food intake and weight
loss (Davenport and Wright, 2014). Although its use has been
reported to be well tolerated with minimal adverse side effects,
trials have only been conducted for 28 days (Davenport and
Wright, 2014). Hence further studies are needed to establish the
chronic effects that PP may possess before Y4 receptor agonists
and PP-derived agents are utilised as potential anti-obesogenic
treatments.

Oxyntomodulin
Oxyntomodulin is a peptide hormone secreted in response
to nutrient ingestion. It is synthesised, like GLP1, by post-
translational processing of the preproglucagon peptide within
EECs of the gut and the CNS (Cohen et al., 2003; Baggio
et al., 2004; Habib et al., 2012). Its secretion occurs concurrently
with GLP1 and PYY and reaches its peak concentration within
30min post-prandial before it is rapidly degraded by DPPIV
(Anini et al., 1999; Druce et al., 2009). Oxyntomodulin binds to
GLP1 receptors within the GIT, the pancreas and the ARC, to
induce a decrease in gastric acid secretion and food consumption,
as outlined previously in the GLP1 section of this review
(Baggio et al., 2004; Dakin et al., 2004; Pocai et al., 2009).
Central and peripheral oxyntomodulin administration enhances
satiety and therefore decreases food consumption in rodent
and human models, as well as increasing energy expenditure
(Dakin et al., 2002, 2004; Cohen et al., 2003; Baggio et al.,
2004; Wynne et al., 2005). Additionally, oxyntomodulin binds
to glucagon receptors within the pancreas, lowers blood glucose
concentrations and improves glucose utilisation (Maida et al.,
2008). Whilst oxyntomodulin binds to the GLP1 receptor and
is released concurrently with GLP1, the exact mechanism as to
how oxyntomodulin functions as a potent incretin by binding
to the glucagon receptor is largely unknown (Pocai et al., 2009;
Pocai, 2014). It may act antagonistically to glucagon and induce
an insulinotropic effect through a local, paracrine effect and/or
it may activate higher centres of the brain via the hypothalamus.
Since it has been reported to augment energy expenditure, it may
also activate catecholaminergic and/or POMC neurons, as well as
increase vagal activity at the site of brown fat, leading to increased
thermogenesis (Dakin et al., 2002; Wynne et al., 2006; Pocai,
2014). Whilst these hypotheses are plausible, further studies are
required to elucidate themechanism/s involved in its incretin and
thermogenic abilities before analogues are used in the treatment
of obesity.

Serotonin
Enterochromaffin cells, which are specialised EECs, produce
and secrete gut-derived serotonin in response to food intake
(Bertrand and Bertrand, 2010). Serotonin induces its effects
by acting locally and systemically on various 5-HT receptors
such as the 5-HT2 receptor family and the 5-HT4 receptor
expressed on vagal afferent fibres and other neurons within
the CNS, as well as cells within the GIT, heart, and adrenal
glands (Halford and Harrold, 2012; Li et al., 2015; Stiedl
et al., 2015). Serotonin analogues, such as lorcaserin, suppress
appetite and decrease body weight, whilst serotonin receptor
antagonists induce the contrary and increase appetite and
therefore body weight (Halford et al., 1997; Savastano et al.,
2007; Lam et al., 2008; Smith et al., 2010). Whilst serotonin
diminishes appetite through effects on the CNS and assists
in weight-loss, the contrary has been demonstrated, where
animals fed a westernised diet that in turn became obese,
possess increased concentrations of serotonin (Crane et al.,
2015). Additionally, Crane et al. (2015) demonstrated that the
inhibition of peripheral serotonin synthesis reduced obesity
and metabolic dysfunction, as serotonin blunted the effects of
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β-adrenergic neurons supplying brown adipose tissue, which
decreased thermogenesis. Furthermore, serotonin analogues
have been recently withdrawn from the market due to many
undesirable and severe side-effects, such as psychiatric disorders,
cardiotoxicity, drug addiction and death (Onakpoya et al., 2016).
Hence the effects that serotonin may convey with respect to
energy homeostasis and food behaviours are complex, require
substantial further investigation and are outside the scope of this
review.

Endocannabinoid System
Bioactive lipids belonging to the endocannabinoid system,
such as anandamide, have been demonstrated to play a
role in the gut-brain axis. These molecules are synthesised
and secreted within the GIT and act upon endocannabinoid
receptors, mainly cannabinoid receptors 1 and 2 (CB1/CB2),
which are GPCRs within the endocannabinoid system (Moran
and Shanahan, 2014; Bauer et al., 2016). CB1 is distributed
abundantly throughout the CNS and the peripheral nervous
system and expressed in the liver, pancreas and adipose tissue,
whilst CB2 is predominantly expressed by immune cells, in
addition to the brain, pancreas, and adipose tissue (Mackie,
2008). The endocannabinoid regulates various physiological
functions, such as regulating gut motility and appetite, which
is interesting given that the administration of exogenous
cannabinoids, suchmarijuana, convey orexigenic effects (Mackie,
2008; Moran and Shanahan, 2014). Hence, the development of
CB1 antagonists, such as rimonabant and tarabant, were utilised
to induce weight-loss in obese individuals, thus demonstrating
the role the endocannabinoid system plays in increasing appetite
(Christensen et al., 2007; Aronne et al., 2010; Cluny et al.,
2011). However, these products were withdrawn from the
market, as they conveyed severe psychological side-effects such
as chronic depression (Aronne et al., 2010; Moran and Shanahan,
2014).

Obesity is concomitant with enhanced endocannabinoid tone,
CB1 expression, and endocannabinoid concentrations within
the plasma and adipose tissues (Izzo et al., 2009; Moran
and Shanahan, 2014). These findings are supported by studies
demonstrating that CB1 deficient mice are resistant to diet-
induced obesity and possess enhanced leptin sensitivity, which
acts to inhibit hunger and increase satiety (Ravinet Trillou
et al., 2004; Cluny et al., 2011). Finally, anandamide is increased
during food deprivation and induces hunger by inhibiting CB1-
expressing vagal afferents, which consequently blockade vagal-
firing to the CNS and, therefore, may lead to a diminished
effect conveyed by other gut hormones (Gómez et al., 2002;
Kentish and Page, 2015). Whilst this hypothesis is yet to be
confirmed, the role endocannabinoids play in relation to appetite
and energy homeostasis needs to be explored, particularly since
the endocannabinoid system is intricately associated with stress,
memory, immune function and mood (Mackie, 2008). Hence,
factors affecting these physiological and psychological functions
may be associated with various food behaviours, which may
be amplified in obesity. Interestingly, there is new evidence
that endocannabinoids, such as anandamide, bind to Transient
Receptor Potential Vanilloid 1 (TRPV1), which is located

abundantly throughout most cell types in the body (Puente
et al., 2011; Abdel-Salam, 2014). This is of interest as TRPV1
activation, with the use of low-dose dietary capsaicin, increases
thermogenesis, suppresses appetite, improves gastrointestinal
function and enhances weight-loss (Kawabata et al., 2009; Ludy
et al., 2011; Ono et al., 2011; Abdel-Salam, 2014; Janssens et al.,
2014). Therefore, it is evident that there is a knowledge gap
with respect to the endocannabinoids and association with other
physiological receptors that need to be explored and that the
association of the endocannabinoids and other physiological
systems are intricate and complex.

ENERGY EXPENDITURE

As outlined above, obesity is a consequence of enhanced energy
consumption and a decline in energy expenditure. A sedentary
lifestyle and diminished energy expenditure augments weight-
gain (Grima and Dixon, 2013). Energy expenditure does not
just involve physical activity, it also involves thermogenesis and
basal metabolic rate, even though physical activity can increase
both parameters (Melanson, 2017). There are various studies
demonstrating that fat-loss can occur without an increase in
physical activity, indicating that energy expenditure can occur
without regimented exercise and by administration of a particular
intervention (Panchal et al., 2012, 2013; Owen Bryn et al.,
2014). These studies retrospectively challenge previous dogma
that held exercise as the “gold-standard” in terms of regulating
energy and therefore fat-loss (Melanson, 2017). Additionally,
the evident rise in health and fitness centres throughout many
westernised-countries, such as Australia, and use of these
centres, further suggests that physical activity may not lead
to enhanced fat-loss without being used in conjunction with
an appropriate calorie-controlled diet (Australia, 2009). Hence,
gut-derived neurohumoral signals within the gut-brain axis
can activate energy-regulating cortices in response to nutrient
consumption to influence energy expenditure, in addition to
energy consumption, thus contributing to a favourable energy
balance (Bauer et al., 2016).

Peripheral and central administration of GLP1,
oxyntomodulin and PYY leads to enhanced energy expenditure
by increasing thermogenesis and basal metabolic rate (Dakin
et al., 2002; Blouet and Schwartz, 2012). Blouet and Schwartz
(2012) demonstrated that intestinal lipid-sensing activates
vagal afferent fibres to enhance brown adipose tissue (BAT)
thermogenesis through a CCK-dependent pathway. This
suggests that a gut-brain-BAT axis may exist and is further
enhanced by studies that incorporate an intervention as a
treatment to induce weight-loss (Blouet and Schwartz, 2012;
Panchal et al., 2012, 2013; Brown et al., 2015). An example of this
is low-dose dietary capsaicin, which increases gut-derived vagal
firing, augments hormone secretions, enhances sympathetic
tone, and activates BAT, leading to an increased basal metabolic
rate and thermogenesis, which culminates in weight-loss
(Kawabata et al., 2009; Ludy et al., 2011; Ono et al., 2011;
Abdel-Salam, 2014; Janssens et al., 2014). Hence, exploration of
this potential axis may assist in treating obesity and its associated
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comorbidities, via focusing on the thermogenic properties a
treatment or dietary intervention may convey.

THE GUT MICROBIOTA

There is increasing evidence that the gut microbiota may
influence adiposity and weight-gain through several inter-
dependent pathways, including energy harvest and subsequent
generation of metabolites, such as short-chain fatty-acids (SCFA),
modification of host behaviour, satiety through the gut-brain axis
and effects on inflammatory responses within the host (Moran
and Shanahan, 2014).

There are in excess of 3.8–3.9× 1013 bacterial cells colonising
a healthy human body, a majority of which reside within the
GIT and comprise the complex ecosystem referred to as the
gut microbiota (Sender et al., 2016a,b). The microbial to human
cell ratio has recently been revised to approximately 1.3:1 from
the historical 10:1 ratio (Sender et al., 2016a,b). Nonetheless,
these microbes form an intricate symbiotic relationship with the
host, where the host provides a nutrient-dense environment for
the microbiota and the microbiota, in turn, provides metabolic,
protective and structural functions, which are not encoded for
by the host’s genome (Qin et al., 2010; Wang and Wang, 2016).
The microbiota is thought to be comprised of more than 1000
different bacterial species (Figure 3) and this composition alters
throughout the lifespan due to factors such as diet, antibiotic
use, disease states, delivery method at birth and most elements
that a modern lifestyle incorporates (Qin et al., 2010). Hence,
its composition is not static and the changes to its structure are
dynamic.

The gut microbiota conveys a vast impact on the host’s
metabolism and was first outlined in a seminal study
conducted by Wostmann et al. (1983). Wostmann et al.
(1983) demonstrated that mice lacking a microbiota (germ-free)
possessed reduced adiposity, energy intake, and energy extraction
from a standard rodent diet compared to conventionally-raised

FIGURE 3 | The 6 major phyla of the human gut microbiota and their

predominant species.

mice. Additionally, Wostmann et al. (1983) collated a series
of studies outlining the developmental anomalies associated
with germ-free rearing compared to a conventionally-raised
upbringing (Table 3), which has been validated by recent studies
(Heijtz et al., 2011; Cho et al., 2012; Al-Asmakh and Zadjali,
2015). This highlights the extent of the symbiotic relationship
between the host and the microbiota and how microbiota
modification can impact an individual’s health status. Hence,
manipulation of the microbiota with regard to studying the
effects related to host physiology would be more meaningful
than the use of germ-free rodents (Bauer et al., 2016). This is
particularly valid with respect to metabolic studies, as high-fat
high-carbohydrate feeding alters the microbiota’s composition
and diversity within a short period of time (David et al.,
2014).

De Filippo et al. (2010) compared and characterised the
differences between healthy children from either a westernised-
diet or a rural-diet and demonstrated distinct differences between
the microbiota and consumed foodstuffs. Whilst De Filippo et al.
(2010) examined children from Italy who were presumed to eat a
westernised-diet, it did not consider that these children may have
been reared on the “Mediterranean-diet,” which is considered as
the “gold-standard” diet with respect to healthy eating (Sánchez-
Villegas et al., 2016). What was clear were the differences between
to the two cultures, the food consumed and, therefore, the
microbiota composition. This study, as well as others, suggested
that the westernised-diet and obesity, are associated with an
increased ratio of bacteria belonging to the Firmicutes phylum
compared to the Bacteroidetes phylum, which is reversed upon
surgical and dietary interventions (Ley et al., 2006; Turnbaugh
et al., 2009; De Filippo et al., 2010; Furet et al., 2010). Controversy
exists with the Firmicute-to-Bacertoidetes ratio as a guide for
determining the obese phenotype, as more recent studies have
failed to validate this hypothesis (Zhang et al., 2009; Schwiertz
et al., 2010; Finucane et al., 2014). Hence, differences at the
genus and species level compared to the phyla level may be
associated with changes in metabolic function (Bauer et al.,
2016).

Duca et al. (2014) demonstrated distinct genera differences in
germ-free rats when they were transplanted with the microbiota
of either obese-prone or obese-resistant rats. Duca et al. (2014)
observed 25 operational taxonomic units (OTUs) in the obese
donors and recipients that were lacking entirely in the obese-
resistant donors and recipients, and that these additional 25
OTUs possessed the ability to harvest extra energy from the
diet. This study confirms the findings of earlier studies that
suggested a possible link between obesity and a microbiome rich
in genes responsible for the production of enzymes involved in
energy harvesting from indigestible carbohydrates (Turnbaugh
et al., 2009; Duca et al., 2014). The relationship between the
microbiota composition, energy harvest and obesity is more
complex than suggested, as studies have demonstrated that
energy harvest and metabolite production, in the form of
SCFA, are not correlated with increased weight-gain and that
some SCFA may possess a beneficial role with respect to host
metabolism and energy regulation (Tims et al., 2013; Bauer et al.,
2016).
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TABLE 3 | Anatomical and physiological differences in germ-free mice compared to wild-type mice (Al-Asmakh and Zadjali, 2015).

Characteristic Difference

Nutrition Requirement for vitamins K and B in diet

Decreased percentage body fat

Normal or increased food intake

Fluid balance Increased water intake

Metabolism Decreased basal metabolic rate

Increased secretion of amino acids and urea and little excretion of acetic acid

More urea and little ammonia in intestinal contents

More nitrogen in the caecal contents and faeces

Elevated oxidation-reduction potential in caecal contents

Altered response to anaesthetics

Circulation Reduced total blood volume

Decreased blood flow to skin, liver, lungs and GIT

Increased cholesterol concentration, numbers of red blood cells and haematocrit

Liver Reduced size

Increased ferritin and cholesterol concentrations

Lungs Thinner alveolar and capsular walls and fewer reticuloendothelial elements

Intestinal morphology Reduction in total intestinal mass

Decrease in the total surface area of the small intestine

Shorter ileal villi and longer duodenal villi

Shorter crypts of the small intestine

Lamina propria of the small intestine thinner, with fewer cells and slower cell renewal

Larger caecum with a thinner wall

Intestinal motility Increased muscle tissue, with elongated and hypertrophied myocytes in caecum

Longer transit time

Intestinal function Enhanced absorption of vitamins and minerals, altered absorption of other macromolecules

Altered enzyme content, elevated faecal concentrations of trypsin, chymotrypsin, invertase and mucin

Less fatty-acids and no cyclic or branched-chain fatty acids in the intestinal content, excretion of primarily unsaturated fatty-acids

Endocrine function Less uptake of iodine in the thyroid

Decreased motor activity and hyper-responsiveness to adrenaline, noradrenaline and vasopressin

Electrolyte status More alkaline caecal contents

High concentrations of calcium and citrate and little phosphate in the urine

Somewhat less sodium and low concentrations of chloride in intestinal content

SHORT-CHAIN FATTY-ACIDS, ENERGY
HARVEST AND NUTRIENT-SENSING

Approximately 60 g of dietary carbohydrates consumed daily
part of the typical western diet are indigestible. The gut
microbiota possesses specific glycoside hydrolases, enabling
them to ferment and hydrolyse indigestible polysaccharides
and produce SCFA as a metabolite within the distal colon
(Moran and Shanahan, 2014). This function and subsequent
generation of SCFA provides approximately 10% of the host’s
daily energy requirements (Schwiertz et al., 2010). Butyrate,
propionate and acetate account for 95% of the biologically
significant SCFA produced (Bauer et al., 2016). Colonocytes
utilise butyrate as their primary energy source, the liver
utilises propionate in gluconeogenesis after it has entered
the portal circulation and acetate is circulated systemically
to various peripheral tissues (Gao et al., 2009; Bauer et al.,
2016). Butyrate production is typically attributed to Firmicutes,
whilst propionate synthesis is generally associated with
Bacteroidetes (Moran and Shanahan, 2014). In the obesogenic
state, faeces contain an increased quantity of SCFA, in particular,
propionate (Schwiertz et al., 2010). This increase in faecal

SCFA content is proposed to be due to a change in microbiota
composition, rather than differences in diet and/or SCFA
absorption within the colon (Schwiertz et al., 2010; Rahat-
Rozenbloom et al., 2014). Interestingly, Rahat-Rozenbloom
et al. (2014) reported a higher proportion of Firmicutes than
Bacteroidetes in the overweight cohort, which would correlate
with an increase in butyrate production rather than propionate
production. Hence, further studies are required to determine
the differences between obese and lean individuals and why
there is an increase in faecal SCFA content. Furthermore,
it is interesting that SCFA, which have been demonstrated
to possess anti-carcinogen properties, are increased in the
obesogenic state, given that a high-fat high-carbohydrate diet
is one predisposing factor attributed to the development of
colorectal cancer (Bindels et al., 2012; Grima and Dixon,
2013; Irrazábal et al., 2014). Hence, further studies are
required to determine the role SCFA play with respect to
the development of colorectal cancer in obesity, as it could be
argued that possessing a profile mirroring a slightly overweight
state, where SCFA production is slightly increased, could be
gastroprotective and that increased weight leading to obesity,
may be detrimental.
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SCFA also assist in regulating body weight, as administration
of prebiotics, indigestible polysaccharides and oral and intestinal
SCFA infusion lead to an enhanced metabolic state, a reduction
in food consumption and a decrease in body weight (Pan
et al., 2009; Bomhof et al., 2014). This occurs as prebiotics
and supplements promote the growth and activity of favourable
microbial species, whilst SCFA administration activates signalling
pathways, resulting in an increase in gut hormone synthesis
(Pan et al., 2009; Lin et al., 2012; Bomhof et al., 2014).
Hence, SCFA can be considered as pivotal endogenous signalling
molecules. SCFA bind and activate free fatty-acid receptors 2
and 3 (FFAR2/FFAR3), which are GPCRs located throughout the
GIT, immune cells, liver and adipose tissue (Kasubuchi et al.,
2015). Within the GIT, the expression of these receptors has
been localised to EECs, in particular, L-cells (Kasubuchi et al.,
2015). Once bound to these receptors, L-cells are signalled to
synthesise and release gut hormones, such as GLP1 and PYY
(Table 2). These findings are further enhanced by in vivo and
in vitro studies, which have demonstrated that cell cultures and
mice lacking FFAR2 and FFAR3 have impaired GLP1 and PYY
release, even in the presence of SCFA infusion (Tolhurst et al.,
2012). Additionally, FFAR3 is predominantly expressed within
the peripheral nervous system, in particular, the ENS and ANS
(Nøhr et al., 2015). Activation of these receptors within the
sympathetic branch of the ANS regulate storage mechanisms
within adipose tissue and influence energy expenditure via
stimulating muscle and liver tissues to regulate glucose utilisation
(Moran and Shanahan, 2014; Nøhr et al., 2015). Whilst the
exact mechanisms involved are yet to be elucidated, it can be
appreciated that the evidence conveyed thus far implicates SCFA
synthesis by the microbiota to signal and stimulate the gut-brain
axis.

Intestinal epithelial cells and their absorptive and secretory
ability may be influenced by the gut microbiota by acting
through the gut-brain axis (Bauer et al., 2016). Studies
have demonstrated diminished concentrations of FFAR2 and
FFAR3, increased expression of glucose transporters and
sweet-taste receptors, increased sucrose consumption and
absorption, and a diminished expression of the long-chain
fatty-acid receptor GPCR 120 (GPR120) in germ-free mice
(Duca et al., 2012; Swartz et al., 2012). GPR120 activation
conveys the anti-inflammatory and insulin-sensitising effects
of omega-3 fatty-acids, whilst its absence in GPR120 knock-
out mice decreases fat metabolism and, therefore, increases
the occurrence of obesity (Oh et al., 2010; Ichimura et al.,
2012). Hence, germ-free mice possess diminished concentrations
of CCK, GLP1 and PYY, which decreases the ability of
germ-free mice to sense nutrients within the gut and send
regulatory feedback signals through the gut-brain axis and,
therefore, leads to enhanced food-intake (Duca et al., 2012;
Swartz et al., 2012). Additionally, Fredborg et al. (2012)
demonstrated that GPR120 can be upregulated and that GLP1
expression can decrease in the presence of specific bacterial
strains in vitro. This suggests that changes in microbiota
composition may alter intestinal nutrient-sensing and gut-
hormone synthesis. While this hypothesis is yet to be established,
further studies are needed to validate this and the role of

receptors such as GPR120 and the mechanisms that their
activation initiates.

Prebiotics, such as oligofructose, improve gut-barrier
function, induce weight-loss and reduce food intake, by
improving gut nutrient-sensing mechanisms that initiate these
effects (Bauer et al., 2016). It has been suggested that these effects
are driven by alterations in the gut microbiota composition.
Studies have demonstrated diminished levels of specific types
of bacteria and gut-derived peptides in the obesogenic state
and used this premise in an attempt to restore these bacteria,
in addition to increasing the circulating concentrations of gut
hormones (Bauer et al., 2016). Prebiotic administration increases
Akkermansia muciniphilia, Faecalibacterium prausnitzii,
Bifidobacterium, and Lactobacilli, which in turn, have been
linked to improvements in the gut-barrier function through
a glucose-like peptide 2 (GLP2) mediated pathway and an
increase in endocannabinoid signalling (Cani et al., 2009;
Dewulf et al., 2012). GLP2 is co-secreted with GLP1 from EECs
and its release has been positively associated with intestinal
growth and function by increasing villus height, crypt-cell
depth and proliferation and decreasing enterocyte cell-death
(Rowland et al., 2011). Additionally, prebiotic treatment
has been associated with improved EEC differentiation and
concentrations of GLP1, GIP and PYY, which increase satiety,
decrease food consumption, and decrease adiposity (Cani et al.,
2005; Neyrinck et al., 2012). Whilst more studies are required
to confirm the linkage between manipulation of gut microbiota
composition and gut hormone production, there is evidence
that the microbiota may influence nutrient-sensing by the GIT,
production of gut hormones and stimulation of the gut-brain
axis.

The gut microbiota may also communicate to adipose tissue
via the endocannabinoid system. Various mouse models have
demonstrated that the peripheral endocannabinoid system in the
intestinal and adipose tissues, which possesses roles in regulating
gut-barrier function and adipogenesis, are regulated by the gut
microbiota (Muccioli et al., 2010). Prebiotic administration to
select for an increase in Bifidobacterium within obese mice
induce a decline in colonic CB1 expression and anandamide
concentrations, in addition to increased colonic fatty-acid
amide hydrolase (FAAH) expression (Muccioli et al., 2010;
Moran and Shanahan, 2014). FAAH is the primary enzyme
responsible for the degradation of anandamide. Decreases in
these factors within the colon, as well as an increase in FAAH
expression, suggests that the gut microbiota may selectively
modulate colonic CB1 receptors, which subsequently moderates
endocannabinoid tone (Muccioli et al., 2010). More studies are
required to replicate these findings and subsequently elucidate
how the microbiota may affect the endocannabinoid system and
the increased tone associated with the obesogenic state. The
increase in these colonic factors may be resultant of enhanced
concentrations of gut-derived hormones rather than the direct
composition of the microbiota or the microbiota may induce
increased signalling of gut hormones to alter changes within
the endocannabinoid system via vagal afferent stimulation.
Determining the mechanism/s involved may convey additional
insights on how the gut-brain axis and the microbiota are linked
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in relation to energy regulation and therefore can be targeted for
the treatment of obesity.

LIPOPOLYSACCHARIDE, INFLAMMATION
AND MICROBIOTA INTEGRATION INTO
THE GUT-BRAIN AXIS

Obesity is considered to be an inflammatory state, as it is
characterised by the presence of chronic low-grade inflammation.
It has been recently discovered that the westernised-diet, which
is high in calories and can lead to obesity and various other
obesity-related diseases (Table 1) is associated with elevated
systemic lipopolysaccharide (LPS) concentrations (Cani et al.,
2007; de La Serre et al., 2010). LPS is the pro-inflammatory
component within the cell wall of gram-negative bacteria. LPS is
thought to enter the systemic circulation through compromised
intestinal epithelial functioning associated with high-fat diets
and obesity. This process is termed metabolic endotoxaemia
and is hypothesised to occur due to an unfavourable change in
the gut microbiota composition, which induces the intestinal
epithelium to increase the gap between the junctions formed by
each cell, thus increasing gut permeability and permitting the
translocation of macronutrients and other molecules, such as
LPS (Figure 4) (Cani et al., 2007; de La Serre et al., 2010). The
leakage of LPS into the circulation initiates a cascade of pro-
inflammatory events throughout the host, especially within white
adipose tissue.

LPS is a potent activator of toll-like receptor 4 (TLR4),
whose activation results in the synthesis of inflammatory
cytokines and subsequent activation of the innate immune
system (Vaure and Liu, 2014). Caesar et al. (2015) reported
increased systemic LPS concentration, TLR4 activation and white
adipose tissue inflammation, as well as reduced insulin-sensitivity
and alterations in the gut microbiota composition in mice fed a
westernised-diet.

Increased LPS concentrations are concurrent with increased
gut concentrations of TLR4 in obese-prone rats (DIO-P),
whilst obese-resistant rats (DIO-R) do not express TLR4 within
the gut (de La Serre et al., 2010, 2015). The DIO-P rats
possessed increases in Clostridiales orders and a decrease in
Bifidobacterium, which led to an increase in LPS concentration
(de La Serre et al., 2010). de La Serre et al. (2015) reported
decreased concentrations of intestinal alkaline phosphatase (IAP)
within DIO-P rats, whilst the contrary was observed in the
DIO-R rats. This is of significance as IAP is an enzyme native
to the gut and responsible for the detoxification of LPS, thus
suggesting that LPS may directly act on the gut. This hypothesis
is further enhanced by Everard et al. (2014) who demonstrated
that intestinal deletion of MyD88, a central adaptor molecule
for the majority of toll-like receptors, including TLR4, partially
protected obese-prone mice and germ-free mice who received a
faecal microbiota transplant from obese-prone mice from diet-
induced obesity and inflammation. Additionally, Everard et al.
(2014) suggest that deletion of MyD88 may improve nutritional
status and provide a therapeutic target for obesity. Further studies
are needed to confirm this hypothesis, as TLR4 is also expressed

FIGURE 4 | A mechanism outlining how high-fat feeding leads to obesity and

polyphagia.

by vagal afferents, thus indicating that LPS may initiate an
inflammatory cascade within the neuronal circuitry pertaining to
the gut-brain axis (de La Serre et al., 2015).

LPS conveys inhibitory effects on the interstitial cells of Cajal,
which function as a pacemaker, creating a slow-wave potential
leading to smooth muscle contraction in the gut (peristalsis)
and regulation of the ENS (Zuo et al., 2013; Bauer et al.,
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2016). Inhibition of these cells are associated with gastrointestinal
motility disorders, by altering the frequency of neurotransmitter
release of neurons within the ENS, whichmay affect the release of
gut hormones and, therefore, link the gut microbiota to impaired
gut-brain axis signalling mechanisms (Zuo et al., 2013). Further
studies are needed to confirm this hypothesis, as the mechanisms
linking this particular region of the peripheral nervous system
to the CNS and the gut-brain axis are unknown. Future studies
could, for example, explore the option of restoring function to the
interstitial cells of Cajal by possibly increasing IAP concentration
through intestinal infusion to degrade LPS formation, which may
assist in decreasing inflammatory bowel disorders associated with
obesity.

The gut microbiota may directly communicate and alter CNS
signalling mechanisms. Whilst it is still relatively unclear the
impact the gut microbiota may have on CNS signalling, with
respect to regulation of energy homeostasis, it is becoming
evident that the gut microbiota can influence CNS-mediated
stress and anxiety behaviours (Bauer et al., 2016). Studies have
established differences between germ-free mice and specific
pathogen-free mice, which include motor control, memory
formation and anxiety due to central neurochemical changes,
in particular, those involving brain-derived neurotrophic factor,
serotonin, dopamine, noradrenaline, and NMDA receptor
expression (Bercik et al., 2010; Heijtz et al., 2011; Neufeld
et al., 2011; Steenbergen et al., 2015; Wang and Wang,
2016). Additionally, probiotic treatment, in particular, treatment
selective for an increase in Bifidobacterium and Lactobacilli,
reduces anxiety in mice with inflammatory bowel disease,
enhances cognitive reactivity to depressed mood in humans
and reduces depression scores in patients with irritable bowel
syndrome, as well as improving hypothalamus-pituitary axis
responses to acute psychological trauma (Ait-Belgnaoui et al.,
2012; Steenbergen et al., 2015; Pinto-Sanchez et al., 2017).
These alterations in behaviour appear to be correlated with
vagal activity and diminished LPS-induced inflammation which
improves gut barrier function and prevents gut leakage
(Bercik et al., 2010). Whilst it can be proposed that specific-
pathogenic bacteria, which increase in number during stress
and high-fat feeding, release LPS which activates TLR4 on
vagal afferents, thus signalling the hypothalamus and other
higher-order centres of the brain to integrate and induce an
appropriate behaviour, further studies are needed to confirm
this hypothesis. Further, Lactobacillus rhamnosusCGMCC1.3724
supplementation amplified fat-loss in obese women, in addition
to decreasing systemic concentrations of leptin and the relative
abundance of Lachnospiraceae, which is a subfamily of the
Firmicutes phylum (Sanchez et al., 2014). These findings were
replicated in a later study using the same probiotic, in addition
to an increase in both satiety and body self-esteem scores, as
well as a decrease in both food cravings and depression (Sanchez
et al., 2017). Additionally, the vagus nerve can be activated by
non-pathogenic bacteria, such as Lactobacillus lactis, and this
activation enhances sympathetic nervous system activities, whilst
subdiaphragmatic vagotomy in the presence of Lactobacillus
lactis attenuates these effects (Tanida et al., 2005; Forsythe
and Kunze, 2013). A summary of these studies can be seen

FIGURE 5 | The influence of different bacterial species on the vagus nerve (A)

and its systemic impact (B).

in Figure 5. The mechanism/s elucidating how non-pathogens
activate the vagus nerve is yet to be determined and add further
complexity into how this gut-brain-microbiota interaction may
arise.

It is becoming more evident that the gut microbiota impacts
CNS functions related to the regulation of energy homeostasis.
Bäckhed et al. (2004) demonstrated a resistance to adiposity
despite an increased food intake in germ-free mice, thus
suggesting that the microbiota directly or indirectly influence
the CNS. This finding was the premise for a more elaborate
study conducted by Schéle et al. (2013), who compared the gene
expression of food intake-regulating peptides and hypothalamic
and brainstem feeding circuits between germ-free and normally-
rearedmice. Schéle et al. (2013) reported a diminished expression
of GCG which codes for preproglucagon, the precursor peptide
for GLP1, GLP2 and oxyntomodulin, within the brainstem
and hypothalamus. They also reported diminished leptin-
responsiveness in the conventionally-raised mice in comparison
to the germ-free mice (Schéle et al., 2013). Additionally, when
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FIGURE 6 | Summary of the effects of an altered microbiota on the gut-brain axis contributing to obesity. This figure summarises the different factors determinants,

which have been mentioned throughout this review, that link the gut microbiota with the gut-brain axis in the development of obesity. These include a change in the

microbiota composition, increased LPS concentrations culminating in an increase in gut permeability and chronic low-grade inflammation, as well as an increase in

energy intake and decrease in energy expenditure.

conventionally-raised mice were treated with leptin, they failed
to suppress gene expression of the orexigenic peptides NPY and
AgRP within the hypothalamus and brainstem, thus suggesting
that the gut-microbiota can directly reduce the expression of
anorexigenic peptides and subsequent pathways and affect energy
homeostasis, thus leading to an increase in adiposity (Schéle
et al., 2013, 2016). Future studies would benefit by determining
how specific manipulations of the gut microbiota phenotype can
influence the CNS and its role in regulating energy homeostasis
and the development of obesity. Additionally, since altered
concentrations of gut hormones have been linked to changes in
higher neural functions, such as sleep, arousal and anxiety, future
studies may be able to link the impact that the gut microbiota
conveys on local and central neural-signalling pathways and how
this pertains to energy regulation through amicrobiota-gut-brain
axis (Figure 6) (Forsythe and Kunze, 2013).

CONCLUSION

Obesity is a global epidemic that causes socioeconomic strain on
governments and public-healthcare systems. Current evidence
suggests that life-expectancy will decline as the obesity rate surges
and becomes uncontrolled (Olshansky et al., 2005; Grima and
Dixon, 2013). Currently, there are limited efficacious treatments
available to combat obesity, as current treatment options
include alterations in lifestyle and diets, as well as surgical and
pharmacological treatments with poorly understoodmechanisms
resulting in various side-effects (Bauer et al., 2016). Currently,
the most effective and sustained treatment option is surgical

intervention achieved through gastric bypass surgery, in which
the mechanisms leading to its success are poorly understood
(Grima and Dixon, 2013). However, analysing alterations in gut
hormone concentrations, neuronal circuitry and gut microbiota
composition (that is the components of the gut-brain-microbiota
axis) post-surgery and why these factors change may assist in
the development of new treatment strategies. Given that surgery
can increase the population of EECs, which leads to an increased
production of peptides and neuronal communication, as well
increased post-prandial gut hormone secretion, it is imperative
that the dimensions of the gut-brain axis are elucidated to
assist in developing future treatments (Mumphrey et al., 2013;
Bauer et al., 2016). Additionally, increasing energy expenditure,
through the activation of the sympathetic branches of ANS
and the possible gut-brain-BAT axis in addition to targeting
neurohormone production may be effective in regulating energy
balance. Furthermore, studies implicating the role of splanchnic
and other somatosensory pathways are needed to be conducted
so that it can be understood what role/s these fibres possess
within the gut-brain axis, especially given the large presence
of these afferents throughout the GIT. However, exploring the
exactmechanisms related to this potential axis, ancillary neuronal
pathways and fibres, and integrating the pathways involved in
relation to the knowledge already obtained regarding the gut-
brain axis may prove complex, but with persistence may provide
a promising strategy for combating obesity.

Manipulation of the gut microbiota may provide a novel
therapeutic strategy in combating obesity and its comorbidities
(Bauer et al., 2016). Rapid and persistent shifts in the gut
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microbiota have been reported to be concomitant with improved
metabolic parameters post-surgery (Liou et al., 2013; Osto et al.,
2013). Additionally, rodent studies involving the microbiota
transplant of post-surgery rodents to germ-free rodents have
demonstrated to possess diminished adiposity and increased
energy expenditure resulting from modified SCFA production
and/or diminished LPS concentrations (Liou et al., 2013;
Casselbrant et al., 2015). Whilst manipulating microbiota
composition may provide a promising lead in developing anti-
obesogenic treatments, more studies are required to elucidate
the “ideal” microbiota phenotype with respect to the “healthy”
state. Granted prebiotics and probiotics have provided promising
insights into the role the microbiota plays within the gut-brain
axis and the obesogenic state (Moran and Shanahan, 2014). It is
unknown how long the changes in a favourable phenotype may
take to occur. Given the “fast-pace” and “convenient” lifestyle
associated with modern-living, the compliance associated with
taking these supplements may be poor if an improvement is
not seen rapidly. Additionally, capsules comprised of what is
considered to be an ideal microbiota phenotype, and faecal
microbiota transplants have shown promising results in rats and
willing participants (Ley et al., 2006; Turnbaugh et al., 2009;
Smits et al., 2013). Again, this treatment option may be limited
in efficacy, solely due to the psychological aspects that may
not have been taken into consideration, such as the simplistic
viewpoint that this ultimately is the ingestion of faecal bacteria
harvested from a healthy individual. Hence, public education and
health promotion programmes would need to be implemented to
increase compliance and efficacy. Additionally, these programs

could assist in public education with respect to lifestyle choices
and the development of the microbiota throughout the lifespan.

Whilst, understanding of the complex interactions associated
with the gut-brain-microbiota axis and obesity are in their
infancy and understanding of this axis is increasing rapidly,
it provides a promising area for future treatments. These
advances in knowledge and possible treatment options should
complement rather than substitute research addressing the
lifestyle and psychological factors that are associated with
obesity. This will, therefore, optimistically provide an improved
outcome and compliance for future endeavours in alleviating this
epidemic.
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