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ABSTRACT

Context. Solar-like oscillations have been observed by Kepler and CoRoT in many solar-type stars, thereby providing a way to probe
stars using asteroseismology.
Aims. The derivation of stellar parameters has usually been done with single stars. The aim of the paper is to derive the stellar
parameters of a double-star system (HIP 93511), for which an interferometric orbit has been observed along with asteroseismic
measurements.
Methods. We used a time series of nearly two years of data for the double star to detect the two oscillation-mode envelopes that appear
in the power spectrum. Using a new scaling relation based on luminosity, we derived the radius and mass of each star. We derived
the age of each star using two proxies: one based upon the large frequency separation and a new one based upon the small frequency
separation. Using stellar modelling, the mode frequencies allowed us to derive the radius, the mass, and the age of each component.
In addition, speckle interferometry performed since 2006 has enabled us to recover the orbit of the system and the total mass of the
system.
Results. From the determination of the orbit, the total mass of the system is 2.34+0.45

−0.33 M�. The total seismic mass using scaling
relations is 2.47 ± 0.07 M�. The seismic age derived using the new proxy based upon the small frequency separation is 3.5± 0.3 Gyr.
Based on stellar modelling, the mean common age of the system is 2.7–3.9 Gyr. The mean total seismic mass of the system is
2.34–2.53 M� consistent with what we determined independently with the orbit. The stellar models provide the mean radius, mass,
and age of the stars as RA = 1.82−1.87 R�, MA = 1.25−1.39 M�, AgeA = 2.6–3.5 Gyr; RB = 1.22−1.25 R�, MB = 1.08−1.14 M�,
AgeB = 3.35–4.21 Gyr. The models provide two sets of values for Star A: [1.25–1.27] M� and [1.34–1.39] M�. We detect a convective
core in Star A, while Star B does not have any. For the metallicity of the binary system of Z ≈ 0.02, we set the limit between stars
having a convective core in the range [1.14–1.25] M�.
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1. Introduction

Stellar physics is undergoing a revolution thanks to the wealth
of asteroseismic data that have been made available by space
missions, such as CoRoT (Baglin 2006) and Kepler (Gilliland
et al. 2010). With the seismic analyses of these stars providing
the frequencies of the stellar eigenmodes, asteroseismology has
become an essential tool for understanding stellar physics.

Solar-type stars have been observed over periods exceed-
ing six months using CoRoT and Kepler, thus providing many
lists of mode frequencies required for seismic analysis (See
Appourchaux et al. 2012, and references therein). Additional in-
valuable information about the evolution of stars is provided by
the study of the internal structure of red giants (Bedding et al.
2011; Beck et al. 2011, 2012; Mosser et al. 2012a,b) and of
sub-giants (Deheuvels et al. 2012; Benomar et al. 2013). The
large asteroseismic database of Kepler allowed us to estimate the
properties of an ensemble of solar-type stars that is large enough
to perform statistical studies (Chaplin et al. 2014).

The availability of several mode-frequency sets provided by
Appourchaux et al. (2012) allowed Metcalfe et al. (2014) to infer
the radius, mass, and the age of 42 stars: model-dependent stellar
parameters that all require a proper calibration. Knowing the ef-
fective temperature, the measurements of the frequency of maxi-
mum mode power and of the large frequency separation provide
a proxy of the stellar radius and masses using scaling relations
(Chaplin et al. 2014). These scaling relations also require inde-
pendent calibration for being applied to other stars.

The proper calibration of stellar radii can be performed by
using stellar radii derived using interferometric measurements
(Creevey et al. 2007; Bigot et al. 2011; Bazot et al. 2011; Huber
et al. 2012; White et al. 2013). With these interferometric stel-
lar radii, one can also derive a proxy of the stellar masses using
scaling relations as in Huber et al. (2012), stellar masses that also
need an independent calibration. The best way to measure stellar
masses is to use binary systems for which the orbital motion can
be observed either by spectroscopy or by imagery. Many eclips-
ing binaries having an oscillating red giant component have been
discovered by Hekker et al. (2010) and Gaulme et al. (2013).
These eclipsing binaries have a rather short orbital period that
allows an efficient measurement of radial velocity, thereby pro-
viding an orbital solution of the system (Beck et al. 2014).

If the binary system can be imaged, we can then derive the
mass of the binary system from the semi-major axis and the pe-
riod of the system from Kepler’s third law (Kepler 1619). The
seismic detection of such binaries would then provide an inde-
pendent determination of the total mass of the system, as well
as calibrating their common stellar age. Miglio et al. (2014) pre-
dicts that about a handful of solar-like stars are detectable as seis-
mic binaries in the Kepler data set. There have been three pairs
of binary stars that were observed by Kepler. The pair 16 Cyg
A and 16 Cyg B is a pair for which solar-like p modes were ob-
served (Metcalfe et al. 2012). Although these two stars are grav-
itationally bound, the orbital period is unfortunately estimated
to be longer than 30 000 years (Hauser & Marcy 1999); in this
case, the seismic determination of the system mass would con-
strain the orbit. KIC9139151 and KIC9139163 stars also pro-
vided seismic radii, masses, and ages (Metcalfe et al. 2014). This
pair appears to also be gravitationally bound since they have the
same parallax and proper motion (van Leeuwen 2007), but their
relative motion observed between 1850 and 2007 does not al-
low one to derive a meaningful orbit. These binary systems are
clearly resolved such that the time series of each component can
be separately observed. When the two components are too close

Table 1. Main stellar and seismic parameters of HIP 93511.

Stellar parameter Binary Reference
mV 7.86 ± 0.01 Høg et al. (2000)
ΔmV

a 0.88 ± 0.05 Derived from Table A.5
Teff (in K) 6231 ± 80 Casagrande et al. (2011)

[Fe/H] (dex) −0.08 ± 0.1 Casagrande et al. (2011)
log g 3.91 Casagrande et al. (2011)

Parallax (in mas)b 9.98 ± 0.47 van Leeuwen (2007)
v sin i (in km s−1) 5.4 Bruntt et al. (2012)
vR (in km s−1) −30.2 ± 1.9 Gontcharov (2006)

Seismic parameter Star A Star B
νmax (in μHz) 1158 ± 9 2223 ± 30
Δν (in μHz) 63.80 ± 0.06 104.2 ± 0.7

Notes. (a) Magnitude difference between the binary components, (b) mas
is milli arcsec.

to be separated, the fluctuations of each star is merged into a sin-
gle time series. Such seismic binaries have been discovered with
Kepler data such as HD 176465 discovered by White in 2011
(priv. comm.). This binary system has been observed from 1975
until today (Heintz 1975; Scardia et al. 2008). Unfortunately
given the separation angles measured, the orbital period is likely
to be longer than 600 years which makes the determination of
the orbit rather unlikely in the near term.

Fortunately, another seismic binary, HIP 93511, was discov-
ered in the Kepler data at the beginning of 2012, which happened
to be a binary system already observed with speckle interferom-
etry providing an estimate of the orbital period of the system
(Horch et al. 2012). This paper details the analysis of the seismic
signals of the two stars of HIP 93511 together with a new deter-
mination of the orbital system. The first section details the funda-
mental parameters of the stars. The second section provides the
seismic analysis leading to the inference of the oscillation mode
parameters. The third section provides the orbital analysis which
is detailed in several appendices. The fourth section provides the
stellar modelling of the two stars, and then we conclude with a
discussion of the stellar parameters of the system.

2. Fundamental parameters of the binary

2.1. From the literature

HIP 93511 (or HD 177412) is a Main Sequence F8 V star which
the main stellar parameters are given in Table 1. The effective
temperature and metallicity constraints used in the modelling
were chosen according to the values obtained from colour cal-
ibrations by Casagrande et al. (2011). All values in the table are
derived from photometry and spectroscopy but not from astero-
seismology. The effective temperature is consistent with that of
Pinsonneault et al. (2012) but higher than that of Bruntt et al.
(2012) by 1-σ.

We derived the apparent, global, Johnson magnitude, VJ of
the system from the Tycho VT and BT magnitudes, VT = 7.938±
0.009 and BT = 8.482 ± 0.011 mag, using the transformation
from Mamajek et al. (2002) and taking interstellar extinction
from Bruntt et al. (2012) into account as E(B−V) = 0.01±0.02.
It yields VJ = 7.880±0.013 mag consistent with that of Table 1.

The absolute visual magnitude is related to the luminosity
of a binary system which was discovered by the Yale-Southern
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Connecticut speckle program at the WIYN1 3.5-m Telescope
(named YSC 13). This binary was then first observed in speckle
interferometry by (Horch et al. 2008) and many times after
that; Table A.5 provides the astrometric observation as well as
the magnitude difference between the two components which
is ΔmV = 0.88 ± 0.05. This difference corresponds to a vi-
sual brightness ratio EB/EA = 0.4446 ± 0.0205. We calculated
the apparent visual magnitude of the A component VA,J from
VA,J = VJ + 2.5 × log(1 + EB

EA
). For the B component, VB,J reads

VB,J = VA,J + ΔmV . We derived the bolometric correction of
the A component BCV,A = −0.04 ± 0.01 from its Teff, log g,
and [Fe/H] using the tools developed by VandenBerg & Clem
(2003) and updated in 2008. Then we derived the luminosity of
the A component, LA/L� = 4.15 ± 0.47 from VA, BCV,A, and
the Hipparcos parallax. The bolometric correction of the B com-
ponent was obtained iteratively starting from the A-component
parameters log g and Teff and then adjusting to log g and Teff of
the best model of the B star. The corresponding luminosity is
LB/L� = 1.85 ± 0.222.

Casagrande et al. (2011) provided an age of 3.19+0.64
−1.10 Gyr

and a primary mass of 1.35+0.13
−0.07 M� using the BaSTI3 stellar

models. They also gave an age of 2.93+1.15
−0.38 Gyr and a primary

mass of 1.41+0.07
−0.13 M� using the PADOVA4 stellar models. These

values should be taken with caution since the analysis did not
take the binarity of HIP 93511 into account.

2.2. From observations

We retrieved from the Canada-France-Hawaii Telescope
(CFHT) archive5 the spectrum of HIP 93511, obtained with the
ESPaDOnS spectrograph on 2010, May 28 in spectroscopic
mode. The spectrum, reduced with the Libre-ESpRIT package6

(Donati et al. 1997), covers the 3700–10 400 Å spectral range
with a resolving power of about 80 000.

We looked for the presence of the secondary star in the
ESPaDOnS spectrum by comparing the least-squared deconvo-
lution (LSD) profile (Fig. 2, bottom panel Donati et al. 1997;
Kochukhov et al. 2010) with that of a Gaussian concluding that
the LSD profile is symmetric with no visible presence of the sec-
ondary star, therefore HIP 93511 is a single-line spectroscopic
binary (SB1). The line bisector as well did not show the pres-
ence of the secondary star.

From the stellar parameters of the two stars (in particu-
lar temperature, gravity, and radius) recovered by photomet-
ric means, we were able to conclude that the lines of the sec-
ondary star should be present in the spectrum and therefore
they blend completely with the spectral lines of the primary
star. To estimate the metallicity of the two stars, we computed
synthetic spectra with the atmospheric parameters of the two
stars, combined them according to their luminosity ratio and
compared to the observed spectrum. We calculated synthetic
spectra with SYNTH3 (Kochukhov 2007) on the basis of line
lists extracted from the Vienna Atomic Line Database (VALD)

1 The WIYN Observatory is a joint facility of the University
of Wisconsin-Madison, Indiana University, the National Optical
Astronomy Observatory and the University of Missouri.
2 Both luminosity values are lower by 0.2σ compared to the values
computed using (B − V) as a constraint (Roxburgh, priv. comm.).
3 www.oa-teramo.inaf.it/BASTI (Pietrinferni et al. 2004).
4 stev.oapd.inaf.it/YZVAR/cgi-bin/form (Bertelli et al.
2008).
5 www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/cfht
6 www.ast.obs-mip.fr/projets/espadons/espadons.html

archive (Piskunov et al. 1995; Ryabchikova et al. 1999; Kupka
et al. 1999) and of the model atmospheres calculated with the
LLmodels stellar model atmosphere code (Shulyak et al. 2004).
For all calculations we assumed a microturbulence velocity of
0.85 km s−1 (Valenti & Fischer 2005).

As the spectral lines of the two stars blend completely, we
had to assume that the two stars share the same chemical compo-
sition, which is likely to some extent, given the common origin.
The projected rotational velocity (υ sin i) of the two stars cannot
be directly measured from the spectral lines, but the Gaussian
shape of the LSD profile allows us to conclude that the two stars
should have a similar (υ sin i) between 5 and 6 km s−1, depend-
ing whether a macroturbulence velocity component of the order
of 4 km s−1 is taken into account or not.

Under these assumptions, we compared the profile of single
unblended spectral lines in the observed spectrum with synthetic
spectral lines, combined in such a way to simulate the spectrum
of the binary system as a whole. We derived an iron abundance,
relative to the Sun (Asplund et al. 2009), of −0.20 ± 0.15 dex.
Given the uncertainties on the stellar parameters and the large
degeneracy in the line fitting, the uncertainty has to be taken
more as an abundance range, rather than an actual error bar. The
top panel of Fig. 2 shows the observed spectrum in comparison
to the synthetic ones calculated for each of the two components
and for the binary as a whole.

In the same way, we derived the abundances of a further
14 elements: C, Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Cu,
Y, Ba. Their abundances follow the same trend as iron, with the
exception of an overabundance of C and Ba (+0.3 dex), although
the carbon overabundance is likely to be due to non-LTE effects.
These effects are supposed to be positive for Ba (Mashonkina &
Zhao 2006), therefore the overabundance is likely to be real.

3. Seismic data analysis

3.1. Time series and power spectra

Kepler observations were obtained in two different operating
modes: long cadence (LC) and short cadence (SC; Gilliland et al.
2010; Jenkins et al. 2010). This work is based on SC data. For the
brightest stars (down to Kepler magnitude K p ≈ 12), SC obser-
vations could be obtained for a limited number of stars (up to 512
at any given time) with sampling cadence of 58.84876 s (Nyquist
frequency of ∼8.5 mHz), which permits a more precise exo-
planet transit timing and improves the performance of asteroseis-
mology for main sequence and sub-giants stars. Kepler observa-
tions are divided into three-month-long quarters (Q). The binary
system was observed during quarters Q7 to Q15. Therefore, the
length of data gives a frequency resolution of about 14.3 nHz.
The light curves were concatenated and high-pass filtered using
a triangular smoothing with full-width-at-half-maximum of one
day, to minimise the effects of long-period instrumental drifts.
The amount of data missing from the time series is about 5%.
The single-sided power spectrum was produced using the Lomb-
Scargle periodogram (Scargle 1982), properly calibrated to com-
ply with Parseval’s theorem (see Appourchaux 2014). Figure 1
shows the power spectrum of the binary with a zoom-in on the
envelope of mode power at 2200 μHz. With a Point Spread
Function of about 7 pixels (95% encircled energy), the two stars
are not separated and the flux of the two stars is measured, hence
providing a truly seismic binary.
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Fig. 1. Power spectrum of the intensity fluctuations as a function of frequency smoothed with a 1-μHz boxcar, showing the mode power peak at
1200 μHz for Star A and at 2200 μHz for Star B (left), and a zoom in on that secondary spectrum (right).

Fig. 2. Top panel: comparison between the observed spectrum (black
solid line) and best fitting synthetic spectrum (red dashed line) cal-
culated by combining the spectra of the two components (blue dash-
dotted lines). The elements corresponding to the main spectral features
are given on the top of the panel. For visualisation purposes, the legend
has been put in the bottom panel. Bottom panel: LSD profile obtained
from the observed ESPaDOnS spectrum.

3.2. Mode parameter extraction

3.2.1. Power spectrum model

The power spectrum was fitted in two steps: one for each group
of mode power.
Step 1. The power spectrum was modelled over a frequency
range covering 20 large frequency separations (Δν) between
successive radial orders in the range 580–1620 μHz. The stel-
lar background was modelled using a single component Harvey
model (Harvey 1985) with two parameters and a white noise
component. The stellar background was fitted prior to the ex-
traction of the mode parameters and then held at a fixed value.
For each radial order, the model parameters were mode fre-
quencies (one for each degree, l = 0, 1, 2, 3), a single mode
height (with assumed ratios between degrees as 1.00, 1.50, 0.50,
0.03), and a single mode linewidth for all degrees; a total of
6 parameters per order. The relative heights h(l,m) (where m is

the azimuthal order) of the rotationally split components of the
modes depend on the stellar inclination angle, as given by Gizon
& Solanki (2003). The rotational splitting and stellar inclination
angle were chosen to be common for all of the modes; it adds 2
additional free parameters. The mode profile was assumed to be
Lorentzian. In total, the number of free parameters for 20 orders
was 6 × 20 + 2 = 122. The model was used to fit the power
spectrum using maximum likelihood estimators (MLE). For the
MLE, formal uncertainties in each parameter were derived from
the inverse of the Hessian matrix (for more details on MLE, sig-
nificance, and formal errors, see Appourchaux 2014).
Step 2. The corrected power spectrum from the previous fit was
then used for fitting the mode power around 2200 μHz in the
range 1700–3050 μHz. The power spectrum was modelled over
a frequency range covering 13 large frequency separations. The
background was modelled using a single white noise component,
fitted prior to the extraction of the mode parameters and then
held at a fixed value. For each radial order, the model parame-
ters were the same as for Step 1 resulting in a total of 6 param-
eters per order, and with the rotational splitting and the stellar
inclination angle common for all the modes.

In total, the number of free parameters for 13 orders was
6 × 13 + 2 = 80. The model was used to fit the power spectrum
using maximum likelihood estimators (MLE).

3.2.2. Guess parameter, fitting procedures, and quality
assurance

The procedure for the initial guess of the parameters is described
in Appourchaux et al. (2012), in which the steps of the fitting
procedure are also described. These steps are repeated here for
completeness:

1. We fit the power spectrum as the sum of a stellar back-
ground made up of a combination of a Lorentzian profile
and white noise, as well as a Gaussian oscillation mode en-
velope with three parameters (the frequency of the maximum
mode power, the maximum power, and the width of the mode
power).

2. We fit the power spectrum with n orders using the mode pro-
file model described above, with no rotational splitting and
the stellar background fixed as determined in step 1.

3. We repeat step 2 but leave the rotational splitting and the
stellar inclination angle as free parameters, and then apply
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Fig. 3. Large frequency separation as a function of frequency for both stars (left Star A, right Star B): (plus) l = 0 modes, (black star) l = 1 modes,
(green star) l = 2 modes.

Fig. 4. Left: mode amplitude as a function of the order of the maximum mode power for Star A (black open diamond) and Star B (green open
diamond). Right: mode linewidth as a function of the order of the maximum mode power for Star A (black open diamond) and Star B (green open
diamond).

a likelihood ratio test to assess the significance of the fitted
splitting and inclination angle.

The steps above were used for the main mode power at
1200 μHz, and repeated for the mode power at 2200 μHz but
with no Lorentzian profile for the stellar background. The pro-
cedure for the quality assurance of the frequencies obtained for
both stars is described in Appourchaux et al. (2012) with a slight
modification. In Appourchaux et al. (2012) when an order is not
accepted by the statistical test, then each degree within an order
is tested for rejection resulting in the acceptance of the full order
when at least one degree is accepted, which leads to the inclusion
of spurious modes at very low signal-to-noise ratio. We modified
the procedure by testing all degrees for any order, resulting in a
systematic search for spurious modes. The new procedure ex-
cluded several l = 2 modes at either end of the mode envelope
spectrum.

3.2.3. Results

The tables of frequencies are given in Appendix A, while the
tables of mode height, linewidth, and amplitude are given in
Appendix B. Note that the frequencies need to be corrected tak-
ing the radial velocity of the binary system into account, that is
needed to convert the observed frequencies at the heliocentric

location to those of the source. The correction is −10−4ν as de-
rived by Davies et al. (2014) which is about 1-σ for the best
modes. Figure 3 shows the large and small frequency separa-
tions obtained for both stars. For Star A, one can clearly see the
seismic signature of the second Helium ionisation zone being
an oscillatory variation of the large separation with a periodic-
ity of νHeII = 300 μHz or τHeII = 1600 s, similar to what has
already been detected in other solar-like stars (Mazumdar et al.
2014). Figure 4 gives the comparison of the mode amplitude and
linewidth for both stars.

3.2.4. Masses and radii from scaling relations

We can derive the mass and the radius of the two stars from scal-
ing relations using the large frequency separation (Δν) and the
frequency of maximum power (νmax). For this we used the defi-
nition of the large frequency separation as the asymptotic large
frequency separation (Δνas) as given by Eq. (6) of Mosser et al.
(2013). For finding νmax, we fitted a parabola over 5 monopole
modes around the maximum of mode height.

Since we do not have independent measurements of the ef-
fective temperature of either star, we derived a scaling rela-
tion using the luminosity of the two stars determined from the
Hipparcos distance and the ratio of luminosities derived from
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Fig. 5. Correlation maps of the posterior probability following the Bayesian analysis of the orbit of HIP 93511: (top, left) The argument of the
periastron (ω) vs. the longitude of the ascending nodes (Ω), (top, right) the semi-major axis a vs. the eccentricity e, (bottom, left) the orbital period
T0 vs. the semi-major axis a, (bottom, right) the orbital period T0 vs. the periastron passage T1.

speckle interferometry. These scaling relations were indepen-
dently found from Miglio et al. (2012). The scaling relations are
then written as:

R
R�
=

(
νmax

νref

)4/5 (
Δνas

Δνref

)−8/5 (
L
L�

)1/10

(1)

and

M
M�
=

(
νmax

νref

)12/5 (
Δνas

Δνref

)−14/5 (
L

L�

)3/10

(2)

where the reference values are taken from Mosser et al. (2013)
as νref = 3104 μHz and Δνref = 138.8 μHz. Using these two
relations, for Star A, having Δνas = 63.80 ± 0.06 μHz and
νmax = 1157 ± 9 μHz, we derive MA = 1.27 ± 0.04 M� and
RA = 1.82± 0.02 R�; for Star B, having Δνas = 104.2± 0.7 μHz
and νmax = 2223 ± 30 μHz, we derive MB = 1.20 ± 0.06 M�
and RB = 1.29 ± 0.02 R�. The total seismic mass of the system
is then 2.43 ± 0.07 M�. We point out that the error bars result
from the straight propagation from the seismic and luminosity
observations; any additional errors due to physics are not taken
into account.

We can also deduce the effective temperature of the two stars
from the luminosities and seismic radii as Teff,A = 6080± 155 K
and Teff,B = 5900± 159 K. This value for Star A is in agreement
with the measurements of Casagrande et al. (2011).

3.2.5. Stellar ages from a proxy

Using large frequency separation. Lundkvist et al. (2014)
showed that a stellar age can be derived from the measurement
of Δν and of the stellar mass: this is asteroseismology made easy
or AME. The relation they derived is based upon a grid of stellar
evolutionary models that cover masses ranging from 0.7 M� to
1.6 M�, and metallicities from −0.3 dex to +0.3 dex. For de-
riving the stellar age for our two stars, we used the data made
available on the AME web site7. Using data from Fig. A.10 and
Fig. A.11 of Lundkvist et al. (2014), we derived the age of the
stars from the measured large frequency separations and the seis-
mic masses: AgeA = 4.0 ± 0.7 Gyr and AgeB = 2.2 ± 0.9 Gyr.
The error bars were derived from a Monte-Carlo simulation tak-
ing the errors quoted above into account for Δν and the seismic
mass for a fixed metallicity of −0.1 dex and a mass for each star
of 1.3 M� and 1.2 M�. By taking the weighted mean, the age of
the binary is then 3.3 ± 0.6 Gyr.
Using small frequency separation. Lebreton & Montalbán
(2009) showed that the ratio r02 (the ratio of the small frequency
separation δ02 to the large frequency separation Δν) was very
sensitive to the age of the star. Using the data corresponding to
the right hand side of their Fig. 5, we derived a simple relation
between the age of a star and the small frequency separation as:

Age Mβ = a1rα02 + a0 (3)

where the Age is expressed in Gyr, M is the mass of the star
in solar mass, r02 is the ratio, a1 is the linear coefficient and a0

7 sac.au.dk/our-research/scientific-data/ame/
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Table 2. Parameters of the orbit using speckle interferometric observa-
tions of HIP 93511.

Parameter Median 84% interval 16% interval
Ω (degrees) 113 +46 −55
i (degrees) 14 +11 −10
e 0.5828 +0.0163 −0.0248
ω (degrees) 196 +52 −53
a (mas) 75.5 +2.4 −1.2
Periastron (years) 2001.3 +0.5 −0.6
Period (years) 13.8 +0.6 −0.5

the offset. For a model without overshoot, we have from a fit of
the relation for stellar masses ranging from 1.10 M� to 1.25 M�:
α = 0.54, β = 2.37, a1 = −97.7 Gyr, a0 = 29.6 Gyr. Using the
measured ratio r02,A = 0.072±0.001 and r02,B = 0.0714±0.0025
and the seismic masses, we derived the ages of the stars: AgeA =
3.4 ± 0.3 Gyr and AgeB = 4.0 ± 0.6 Gyr. The error bars were
derived from Monte-Carlo simulations taking the errors for r02
and the seismic mass into account. The mean age of the binary is
then 3.7 ± 0.3 Gyr. One can see that this method provides more
consistent and more precise stellar ages for the two stars than the
one using the large frequency separation.

Of course values derived above are sensitive to other phys-
ical parameters such as overshoot and chemical composition.
The goal of these proxies are to provide an estimate of the stel-
lar age without having to do more advanced stellar modelling,
thereby also providing an input guess for the stellar modelling.
The use of these proxies as guess will be validated by the stellar
modelling.

4. Orbit data analysis

4.1. Observations

Speckle interferometry for getting the relative position of close
binaries has been in use since the 1970’s (Labeyrie et al. 1974).
This technique has been widely used in recent years for observ-
ing binary stars at a variety of telescopes such as SOAR (e.g.
Tokovinin et al. 2014), the US Naval Observatory (Mason et al.
2013), Gemini North (Horch et al. 2012), WIYN (e.g. Horch
et al. 2011) and the Brera Astronomical Observatory in Merate
(Prieur et al. 2014). This binary was already observed in speckle
interferometry and its orbital elements were published by (Horch
et al. 2012) and references therein. The observations were per-
formed from 2006 to 2014 using different instruments allowing
the authors to get the position of the two stars to better than a
few mas. Table A.5 provides the result of the observations.

4.2. Orbit parameter extraction

The methodology for the derivation of the orbit is provided in
Appendices B and C. The results of the procedure give the cor-
relation between the different orbital parameters as in Fig. 5. The
result of the Bayesian analysis is provided in Table 2. The total
mass of the system in unit of the solar mass is derived from the
following equation:

Msyst =

(a
π

)3 1

T 2
0

(4)

where a is the semi-major axis in mas, T0 is the orbital pe-
riod in years and π is the parallax. The mass of the system is

Fig. 6. Orbit calculated with data shown with open diamonds. All points
are drawn with line segments from the data point to the location of the
ephemeris prediction on the orbital path. North is down and east is to
the right.

then Msyst = 2.34+0.45
−0.33 M�. The error bars were derived us-

ing Monte Carlo simulation as described in Appendix D. About
50% of the uncertainty is due to the uncertainty in the parallax.
With new data from the Gaia ESA8 mission available in 2017,
we can expect to reduce the parallax error by a factor 10. Within
4 years, new orbital measurements will provide error bars on the
semi-major axis and the orbital period of the system about twice
smaller. With more time and more data points, the error bar on
the mass of the system will be brought to about 0.17 M�.

5. Stellar model comparisons

Detailed modelling using stellar structure evolution models was
performed to determine more precise but model-dependent stel-
lar quantities for each component. Table 3 shows the main char-
acteristics of the 4 set of models used for inferring the stellar
parameters of the binary system. Other details departing from
this table are added in the corresponding sections.

All of the approaches used rely on a merit function for find-
ing the optimal stellar parameters. The best model is obtained by
minimising the merit function χ2 where

χ2 =
(
(ymod − yobs)

T C−1(ymod − yobs)
)
+

⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

(
Yi−Yi,mod

σYi

)2⎞⎟⎟⎟⎟⎟⎠ (5)

yobs denote the observations (e.g. frequency ratios, frequencies,
luminosity, etc.) and ymod denote the predicted values from the
model, T denotes the transposed matrix, and C is the covariance
matrix associated with the observations; and Yi denotes a stel-
lar parameter having regularisation parameters Yi,mod with some
weight factor as σYi . The first term in parenthesis is the regular
least squares taking the potential correlation between the obser-
vations into account. If there is no correlation, this classically
reduces to the sum of squares. The second term in parenthesis is
a regularisation term used to constraint the merit function, it is
similar to an optimisation with Maximum A Priori (or MAP).

8 European Space Agency.
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Table 4. Stellar parameters of the two stars for all the models.

Parameters Verma Lebreton Ball Creevey Scaling relationsa

MA 1.34 ± 0.04 1.25 ± 0.04 1.39 ± 0.02 1.27 ± 0.02 1.27 ± 0.04
MB 1.11 ± 0.07 1.09 ± 0.02 1.14 ± 0.05 1.08 ± 0.02 1.20 ± 0.06
MT 2.45 ± 0.08 2.34 ± 0.05 2.53 ± 0.05 2.35 ± 0.03 2.47 ± 0.07
RA 1.85 ± 0.02 1.82 ± 0.03 1.87 ± 0.01 1.82 ± 0.02 1.82 ± 0.02
RB 1.24 ± 0.03 1.22 ± 0.02 1.25 ± 0.02 1.23 ± 0.02 1.29 ± 0.02

AgeA (Gyr) 3.50 ± 0.60 3.50 ± 0.20 2.60 ± 0.16 − 3.40 ± 0.30
AgeB (Gyr) 4.10 ± 0.60 4.21 ± 0.29 4.04 ± 0.56 − 4.00 ± 0.60
AgeT (Gyr) 3.80 ± 0.40 3.86 ± 0.35 2.70 ± 0.15 3.35 ± 0.08 3.50 ± 0.30

LA 4.07 ± 0.20 4.11 ± 0.47 5.50 ± 0.32 4.07 ± 0.13 4.19 ± 0.42
LB 1.88 ± 0.30 1.98± 0.22 1.99 ± 0.24 1.78 ± 0.10 1.86 ± 0.19

Teff,A (K) 6020 ± 100 6107 6463 ± 92 6083 ± 13 −
Teff,B (K) 6070 ± 150 6181 6141 ± 175 6021 ± 50 −

log gA 4.03 4.02 4.03 4.02 ± 0.007 4.02
log gB 4.30 4.30 4.32 4.29 ± 0.007 4.30

(Z/X)0,A 0.026 0.024 ± 0.001 0.022 ± 0.001 0.020 −
(Z/X)0,B 0.024 0.024 ± 0.003 0.026 ± 0.012 0.020 −

Y0,A 0.259 0.294 ± 0.014 0.272 ± 0.001 0.271 −
Y0,B 0.264 0.279 ± 0.007 0.261 ± 0.025 0.271 −

[Fe/H]A −0.093 −0.10 −0.16 ± 0.06 −0.13 ± 0.01 −
[Fe/H]B −0.082 −0.10 −0.09 ± 0.21 −0.13 ± 0.02 −
αCONV,A 1.60 (MLT) 0.63 ± 0.02 (CGM) 2.22 ± 0.15 (MLT) 1.91 ± 0.02 (MLT) −
αCONV,B 1.72 (MLT) 0.70 ± 0.05 (CGM) 1.84 ± 0.22 (MLT) 1.70 ± 0.17 (MLT) −
αOV,A 0.013 0.15 0.014 ± 0.0022 0.10 ± 0.01 −
αOV,B 0 0 0.005 0 −

Rcc,A (R�) 0.093 0.102 0.108 0.102 −
Mcc,A (M�) 0.079 0.103 0.111 0.101 −
χ2

red,A(r01)b 2.88 3.37 1.82 2.30 −
χ2

red,B(r01)b 1.43 1.32 1.37 1.39 −
χ2

red,A(r02) 1.82 2.66 1.79 1.89 −
χ2

red,B(r02) 1.61 1.88 1.61 2.91 −

Notes. (a) The age is derived from the small frequency separation and the luminosity is from photometry. (b) For getting the number of d.o.f., we
computed an SVD decomposition of the covariance matrix C and counted the number of eigenvalues greater than 10−2 of the largest eigenvalue.

5.1. Grid model, mode frequencies, and empirical surface
correction (Verma)

In addition to the NACRE reaction rates, we used those of
Imbriani et al. (2005) for 14N(p,γ)15O.

We constructed models independently for each star on a grid
of stellar parameters – the mass M, initial helium abundance
Yi, initial metallicity [Fe/H]i, mixing-length αMLT, and the over-
shoot parameter αOV. We generate 1500 random grid points for
each star in a reasonable subspace of the parameter space (M:
[1.15, 1.40] M�, Yi: [0.22, 0.32], [Fe/H]i: [−0.15, 0.15], αMLT:
[1.5, 2.0], αOV: [0.00, 0.05] for Star A; and M: [1.00, 1.20] M�,
Yi: [0.22, 0.32], [Fe/H]i: [−0.15, 0.15], αMLT: [1.5, 2.0], αOV =
0.00 for Star B). The initial metallicity range was shifted to
higher value to compensate for diffusion.

We corrected the model frequencies using the prescription of
Kjeldsen et al. (2008), and fitted it to the observed frequencies
to get the representative models for the stars. We accepted only
those models that had a χ2 per mode less than 200 and the lu-
minosity, effective temperature, and metallicity within 5σ of the
observation. In this way, we got two ensembles of models, one
for each star, with different mass, helium abundance, metallic-
ity, mixing-length, and age (and overshoot parameter in case of
Star A).

To test the consistency of some of the unreliable observables
and determine the mass and radius of the stars, we defined a χ2

as in Eq. (5) with the regularisation term. To test the consistency
of the observed effective temperature and luminosity with the

models, we estimated them independently using 5 observables y;
the metallicity, average separations (〈Δ0〉n and 〈δ02〉n), and av-
erage ratios (〈r02〉n and 〈r01〉n), and the regularisation terms Y
included Teff and L. The covariance matrix C is assumed to be
diagonal. The effective temperature and luminosity determined
in this manner are consistent with the observation for both stars
(see Col. 2 of Table 4).

To determine the mass and radius of the two stars, we re-
peated the exercise we did for effective temperature and lumi-
nosity but the regularisation terms Y included were M and R. We
used two additional constraints in this case, the effective temper-
ature and the luminosity. The values obtained of mass and radius
are listed in Col. 2 of Table 4 for both the stars.

We found the individual ages for Star A and Star B to be
3.5 ± 0.6 Gyr and 4.1 ± 0.6 Gyr, respectively. The common age
of the binary system was found to be 3.8 ± 0.4 Gyr. They are
all consistent within the error bars. The full results are given in
Table 4.

5.2. Free model, mode frequencies, and empirical surface
correction (Lebreton)

To model the stars we proceeded as explained in Lebreton &
Goupil (2014).

A Levenberg-Marquardt minimisation was used to adjust
the free parameters in the modelling in order to minimise the
merit functions per Eq. (5) (see Miglio & Montalbán 2005),
with no regularisation term and assuming that the covariance
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matrix C is diagonal. For the optimisation of the model of Star
A, we chose as observables y, the surface metallicity ([Fe/H]s =
−0.08± 0.10), the luminosity (L = 4.15± 0.47 L�) and the indi-
vidual seismic frequencies. For Star B, we chose as constraints
the luminosity (L = 1.85 ± 0.22 L�), the surface metallicity as-
sumed to be similar to that of Star A, and the individual seismic
frequencies. We corrected for near-surface effects on the the-
oretical frequencies taking the mode inertia into account as in
Kjeldsen et al. (2008). In the modelling, the free model param-
eters are the age of the star, the mass, the initial helium content
and initial (Z/X)0 ratio, and the free parameter αCGM entering
the description of convection. For Star A, we also considered
overshooting of the convective core.

The results obtained are listed in Table 4. The sum
of the masses of the two components is MA + MB =
2.34 ± 0.05 M� which agrees very well with the determination
from the orbit. The luminosities LA and LB, surface metallicity
[Fe/H]s, and effective temperature Teff,A are in agreement with
observed values. The optimisation provides an effective temper-
ature of Star B slightly warmer than that of Star A. We point out
that the optimised model of Star A includes a moderate over-
shooting of the convective core, while for Star B, the optimised
model is less massive and has no convective core.

5.3. Free model, mode frequencies and analytical surface
correction (Ball)

For Star A, we used the frequency data, photometric observa-
tions from Casagrande et al. (2011) and luminosity derived in
Sect. 2.1. For Star B, we used the frequencies and just the same
metallicity as Star A, plus luminosity derived in Sect. 2.1.

Best fit models are determined by first computing an initial
fit to the stellar parameters from a grid of models. The merit
function used as per Eq. (5) includes observables y as Teff (when
available), log L, [Fe/H], average Δν, and νmax, with no regu-
larisation term and assuming the covariance matrix is diagonal.
The models cover the mass range 0.60 M� to 1.60 M� in steps
of 0.02 M�, and initial metal abundances Z in the range 0.001
to 0.040 in steps of 0.001. The helium abundance is presumed
to follow the enrichment law Y = 0.245 + 1.450Z (Pietrinferni
et al. 2004). The mixing length parameter was fixed at its solar-
calibrated value of 1.908, with the same physics. Initial ranges
for the mass and metallicity of the star were estimated using
the SEEK method (Quirion et al. 2010), assuming that all the
observables are normally-distributed and all priors on the pa-
rameters are uniform. We then generated 10 random, uniformly-
distributed realisations of the parameters, with mass and metal-
licity in the ranges above, α between 1.2 and 2.4, and Yi between
0.20 and 0.36. To this sample, we also added an initial guess
at the median values reported by the initial grid-based fit (with
α = 1.8 and Y = 0.28). These 11 initial guesses were then op-
timised using a downhill simplex optimisation (Nelder & Mead
1965), with all models with a χ2 < 1000 being recorded. In this
latter case, we optimised the merit function without Δν and νmax,
instead using the individual oscillation frequencies, corrected ac-
cording to the cubic correction given by Ball & Gizon (2014).

We estimated the best-fit parameters and uncertainties for the
underlying stellar model parameters computing the ellipses that
bound specific values of the 2 samples determined during the
optimisation. Rather than just using the 1-σ boundary, we used
larger regions because they were better sampled, and divided the
parameters by the appropriate fraction to provide 1-σ uncertain-
ties. For the derived parameters (e.g. luminosity and radius) we
linearised about the best-fit model parameters and propagated

the uncertainties derived from the 2 contours, above. The full
results are given in Table 4.

5.4. Grid model and frequency ratios (Creevey)

To determine the fundamental parameters for Stars A and B us-
ing stellar evolution models, we compared the observed astero-
seismic data along with the luminosity ratio (LA/LB) or the in-
dividual luminosities (L) to the theoretical values predicted by
stellar evolution models.

We adopted three different approaches for determining the
parameters for both stars. The first approach consisted in study-
ing the stars individually to obtain an estimate of the parame-
ters of the stars independent of the results given in Sect. 3 and
the second approach used the combined information from both
stars. In the final approach we began with the best results from
the second approach and proceeded with a local minimisation
algorithm to refine the parameters. In this last stage there were
no grid points, models were evaluated on the fly and thus there is
no resolution issue associated with a grid. The advantage of the
latter two approaches is that we assume that the age and initial
composition is identical for both stars.

First approach. We constructed grids of stellar models and
evaluated the χ2 function at each point in the grid. The merit
function as per Eq. (5) includes the r01 and r02 frequency ra-
tios and the luminosity for each star. The merit function does
not include any regularisation terms but includes the covariance
matrix which is not diagonal in this case since we use the ra-
tios for the optimisation. When a grid has many dimensions,
the number of models to evaluate becomes very large. Thus
we created several grids with some fixed parameters. The ref-
erence grid fixed the initial composition and αov at values of
(Zi, Yi, αov) = (0.014, 0.271, 0.200). Subsequent grids adopted
different Zi = 0.011 and 0.018, thus the three values of the
metallicity are [M/H] = –0.25, –0.10, and +0.02 approximately.
The choice for Yi = 0.271 is somewhat arbitrary but motivated
to adopt a value consistent with that for the Sun as given by
Serenelli & Basu (2010) of 0.273 ± 0.007 (when extra mixing
is considered). We did also explore the impact of changing this
value to Yi = 0.281. For each grid of models we adopted two val-
ues of αCONV = 1.75 and 2.10, and the range of masses explored
varied from M = 1.00 to 1.38 M� in steps ranging between 0.01
and 0.02 M�. Pulsation frequencies were calculated for a range
of ages for each stellar model between 1 Gyr and 6 Gyr, only for
those models that haven’t begun climbing the red giant branch.
The metallicity is not well constrained and for this reason we do
not include it as a constraint, but restrict our models to grids with
a large range of surface metallicity. This approach was used to
narrow the search range for the optimal model.

Second approach. It consisted in specifying two masses, two
values of αCONV, along with a common value of Yi, Zi. For each
of the two models, the age of the corresponding model is opti-
mised along the model track by direct comparison just with the
frequency data. For those models whose optimised age is within
0.10 Gyr for the two models, we selected the optimal parameters
by calculating their χ2 values.

Final approach. From the second approach we selected the
models with the lowest χ2 values and then performed a local
minimisation to refine the final optimal parameters. We did this
for each of the chemical composition combinations Zi, Yi =
(0.011, 0.271), (0.014, 0.271), (0.014, 0.281). We ignore the re-
sults from the solar-metallicity models as their χ2 values are
much larger than those from the other grids. In this last step, the
merit function as per Eq. (5) includes the r01 and r02 frequency
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ratios, the lowest l = 0 radial order mode with a tolerance level
of 2 μHz, one large frequency spacing for Star A; we included
the same for Star B. The merit function does not include any
regularisation terms but includes the covariance matrix which is
again not diagonal.

The optimal stellar parameters are given in Table 4. The er-
ror bars were calculated by performing Monte Carlo simulations
on the best-fit parameters. By assuming that these parameters ex-
actly describe the real stars, the observations can be described by
the model observables (e.g. the frequencies and luminosity from
the model). We created simulated data by adding errors to the
(model) observations. These errors were given by scaling the real
observational error by a random number drawn from a Gaussian
distribution, such as yi,sim = yi,true + N(0, εi,real), where εi,real are
the real observational errors for the observed data (frequencies,
luminosity ratio etc.), and yi,true are what the real observables
are from our best model. The yi,sim are thus the simulated set of
observed data.

We assume that the model behaves linearly locally, and so
we can use a simple inversion method to calculate the parameter
changes (dP) to make to an initial guess of the parameters P0 in
order to bring the model observables into line with the simulated
observations, see Creevey et al. (2011). (This involves calculat-
ing the Jacobian matrix dF/dP evaluated at the solution, where
F are the observables, such as luminosity ratio and frequency ra-
tios.) This was repeated 10 000 times. To calculate the uncertain-
ties we fitted Gaussian functions to the distributions of dP + P0
(=fitted parameters) for each parameter, and the uncertainty is
given as the 1-σ width. The covariance matrix of the stellar pa-
rameters can be easily calculated using the distributions of stellar
parameters (dP+P0), and thus we can compute the 1-σ models
at the edge of the error ellipses in order to evaluate the model
observables (radius, luminosity etc.) and their uncertainties.

5.5. Inversion for the hydrostatic structure of Star A

The p-mode spectrum of Star A is rich and accurate enough to
yield the hydrostatic structure of the stellar core with direct in-
version of the oscillation frequencies. Here, we implement the
technique described in Roxburgh & Vorontsov (2003a) and ref-
erences therein.

A distinctive feature of this approach is that a proxy model
(the initial guess) is truncated well below the upper turning
points of the acoustic modes, to eliminate from the analysis the
uncertain effects operating in the near-surface layers. The phases
of partial waves (which are solutions to the linear adiabatic oscil-
lation equations, which satisfy regularity conditions at the stellar
centre) at the truncation boundary are calculated with the mea-
sured oscillation frequencies. The proxy model is then adjusted
for these phases, which are calculated with modes of different
degree, to fall on a single slowly varying function of frequency
alone.

The proxy model, which may differ significantly from the
target, is improved iteratively in linearised steps using an ap-
propriate form of the variational principle, described in detail
in Vorontsov et al. (2013). In this iterative process, we address
“seismic” models – the models which can be represented by two
functions of radial coordinate, the representation which is suffi-
cient for the normal-mode analysis. Explicitly, we describe the
model by a cubic B-spline for the running mean density m(r)/r3;
we discard the effects of a small uncertainty in the adiabatic
exponent in the deep stellar interior (i.e. we make no attempt
of inverting for two functions of radial coordinate). After the

linearised descent is completed, we end up with a new seismic
model to be used in the next iteration.

Each linearised descent in the parameter-space (the coeffi-
cients of the B-spline representation) is performed with conju-
gate gradients; a limited number of the inner descents (amount
of conjugate gradients in use) plays a role of the regularisation
parameter (i.e. the regularisation which we implement is the so-
called iterative regularisation).

To make use of the well-known degeneracy of the seismic
models with respect to their oscillation frequencies, we imple-
ment a homology re-scaling of both the model and the input
frequencies. When represented in dimensionless variables, one
particular seismic model describes a two-parameter family of
physical models, where the density profile ρ(r) scales as M/R3,
squared sound speed c2(r) scales as M/R, squared buoyancy fre-
quency N2 and squared oscillation frequencies ω2 both scale as
M/R3. We bring an initial proxy model to its dimensionless rep-
resentation: the resulted dimensionless model now describes a
two-parametric family of physical models which differ in M and
R. We bring the measured frequencies to their dimensionless val-
ues without imposing any à priori constraints on the stellar mass
and radius: instead, we adjust M/R3 in this scaling such as to
achieve the best performance of the inversion (the best likeli-
hood of the result obtained when iterations converge). In this
way, the inversion provides a best-fit value for M/R3 (i.e. for the
mean density). The inverted dimensionless model now describes
a one-parameter family of physical models, all the models in the
family satisfy the input data. Each model in this family can be
rescaled to different values of M and R, but with keeping M/R3

unchanged. In this re-scaling, which does not change the oscil-
lation frequencies, ρ(r) and N2(r) remain unchanged, but c2(r)
re-scales in proportion to M2/3.

The results obtained with an evolved model of a 1.1 M� star
(central hydrogen abundance Xc = 0.05) taken as an initial guess
are shown in Fig. 7. The steep decrease in the sound-speed to-
wards the centre (Fig. 7a), together with big density contrast
(Fig. 7b) indicate that the star is at a very late stage of the main-
sequence evolution. The resulting steep gradient in the molec-
ular weight is responsible for the sharp variation of the buoy-
ancy frequency (Fig. 7c). Note that the prominent wiggles in the
N2-curves below 0.1R are due to model discretisation (the cubic
spline for m(r)/r3 is continuous together with two derivatives,
but provides N2(r) with discontinuities in its first derivative).

We do not see any signature of a convective core in the re-
sults of this inversion. It does not mean, however, that the star
does not have a convective core. The inversion starts with a
smooth initial guess, and any rapid variations in the solution are
only developed during iterative descents to fit the data. The sig-
natures of a convective core can thus be smeared away by the
inversion when the data quality is not high enough to resolve the
core boundary. Resolving the core is especially hard, and needs
data of exceptionally high accuracy, when the spatial variation
of seismic parameters occurs on a scale short compared with the
radial wavelength of observable p modes.

6. Discussion

Figures 8 and 9 show the comparison of the best-model ratios
r01/10 and r02 with the observations. We chose to show only these
ratios because they are nearly insensitive to the impact of surface
effect frequency corrections. From Table 4 we can see the com-
monalities and differences of the models of the binary system.

For Star A, the models provide two masses: 1.25–
1.27 M� and 1.34–1.39 M�, two radii of 1.82 R� and 1.86 R�;
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Fig. 7. Structural inversion for Star A: the sound speed a), density
b), and buoyancy frequency c). Dashed green lines show a (re-scaled)
model taken as an initial guess; solid green lines display the inverted re-
sult. Thin blue lines result from adding the measured frequencies with
Gaussian noise, of variance corresponding to the reported uncertainties,
in 10 realisations, to address the sensitivity of the inversion to random
errors in the input data.

for the age all the models but that of Ball give a value consis-
tent with 3.4 Gyr. For Star B, all models provide a mass close
to 1.10 M�, a median radius of 1.23 R�; for the age all the mod-
els gives a value consistent with 4.1 Gyr (Creevey providing a
common age). The total mass of the system is in the range 2.34–
2.53 M� consistent with that derived by astrometry. For 3 mod-
els, the age of the binary system is in the range 3.4–3.9 Gyr
while for Ball the age is about 2.7 Gyr. All models return a very
consistent log g for either star; this is the result of the very tight
correlation between M and R as shown by (Gai et al. 2011).

The models of Verma/Ball, of Lebreton and of Creevey are
all based on 3 different evolution codes. The models with MESA
return consistent mass and radius for either star, while the age is
different for Star A. The model of Ball provides a higher effec-
tive temperature and a higher luminosity for Star A compared
with the other models. Verma and Lebreton use a different evo-
lution code but still return the same age for Star A and B while
Creevey with a different evolution code returns a different age.

All models require an overshoot for Star A, while no model
needs overshoot for Star B on the main sequence stage. The
models of Verma/Ball also have an overshoot which is coded

differently compared to that of Lebreton and Creevey. While the
mass and age for Star A may differ depending on the model,
the presence of a convective core is indeed required by all mod-
els to explain the measured ratio r01. The convective core is not
detected by inversion because the method presented here is not
sensitive enough for such purpose. The mass boundary between
stars having a convective core or not depends upon the metal-
licity (see for instance Bressan et al. 2012). For a metallicity
of Z ≈ 0.02, the limit is about 1.125 M�. The presence of a
convective core has already been found by seismic analysis in
other stars such as HD 49933 (Benomar et al. 2010; Roxburgh
2015), HD 203608 (Deheuvels et al. 2010), and KIC12009504
(Silva Aguirre et al. 2013) while ruled out for KIC 6106415
(Silva Aguirre et al. 2013) and α Cen A (de Meulenaer et al.
2010), both with mass around 1.1 M�. In the case of our binary
with a common metallicity of about Z = 0.02, we then have two
stars lying on either side of the limit which may be then in the
range [1.14–1.25] M�. We also outline that the value of the over-
shoot for Star A given by the models of Lebreton and Creevey is
also consistent with the correlation with the stellar mass as found
by Deheuvels (2015).

6.1. Analysis of model differences

The major discrepancies are related to the mass and radius of
Star A and the common age of the stars. It is not easy to un-
derstand and disentangle the differences because, aside from the
fact that teams used different stellar codes, methods and input
physics, there are many degeneracies in the parameters govern-
ing stellar evolution.

There are several possible causes for the discrepancy of the
mass and radius of Star A as given by Verma/Ball compared to
the other models. First, MESA, used by Verma and Ball, is a re-
cent evolution code. Some results of the MESA code have been
compared with those of another code in Paxton et al. (2011).
However the comparisons of the MESA interior structures have
not been shown with many details. On the other hand, the re-
sults of the ASTEC and CESAM codes have been validated
by thorough comparisons performed in the framework of the
ESTA/CoRoT stellar model comparison project9 in the collab-
orative work of Lebreton et al. (2008) and of Monteiro et al.
(2006). Second, the surface frequency correction is a known
source of discrepancy between the models and the observa-
tions as originally shown for the Sun by Christensen-Dalsgaard
& Thompson (1997); this could be an explanation since the
methodology used by Lebreton is different from that of Ball.
Third, the optimisation parameters used by Verma is different
to that of Lebreton and Ball which could explain together with
the use of regularisation terms the difference for the mass of
Star A. Fourth, the different assumptions on the physics (opaci-
ties, convection, nuclear rates, atmospheric boundary conditions,
etc.) could also explain the different results.

The age provided by Ball is clearly different from the other
models. In light of the previous discrepancy list, could there be
a common source of discrepancy? First, since the MESA code is
used both by Verma and Ball, that code should not be the source
of the difference. Second, the surface frequency correction used
by Ball is different from that of Verma/Lebreton. Third, the opti-
misation parameters differ between Ball/Lebreton and the other
modellers.

We also note that the higher mass of Star A derived by Ball
is correlated with a lower age for Star A since main-sequence

9 www.astro.up.pt/helas/ntools/esta_apss
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Fig. 8. Seismic properties of the optimised models of Star A. Left panel : comparison of the observed frequency separation ratios r01/10(n) (models
are the coloured lines). Right panel : comparison of the observed frequency separation ratios r02(n) (models are the coloured lines).

Fig. 9. Seismic properties of the optimised model of Star B. Left panel : comparison of the observed frequency separation ratios r01/10(n) (models
are the coloured lines). Right panel : comparison of the observed frequency separation ratios r02(n) (models are the coloured lines).

lifetime roughly scales as M−2.5. A higher mass of 10% corre-
sponds to a lower age by –25%, which is consistent when com-
paring the age of Ball with that of Lebreton. This is not consis-
tent when comparing Ball and Verma. For models having similar
helium and [Fe/H] (Ball/Creevey), a higher mass is also related
to a higher luminosity, hence resulting in a higher effective tem-
perature. It seems that a better fit to frequencies provided by Ball
results in a difficulty to reproduce the observed luminosity.

What are the likely reasons for the discrepancies? From the
above, since the MESA code has not been thoroughly tested with
respect to the other evolution codes, we might not exclude that
code from the list of culprit. Since Ball and Lebreton both use
model frequencies for the optimisation parameters, the resulting
χ2 is very sensitive to the surface frequency correction. On the
other hand Creevey and to some extent Verma are less sensitive
to the surface frequency correction because of the use of fre-
quency separations and ratios. For these latter, the lack of sensi-
tivity was explained by Roxburgh & Vorontsov (2003b). The ad-
ditional regularisation parameters of Verma may also contribute
to a different χ2. Finally, the assumption regarding the physics
of the stars may be related to initial helium abundance, the

convective parameter α or the overshoot prescription. Metcalfe
et al. (2009, their Fig. 5) performed a sensitivity analysis con-
sidering seismic data for the Sun and showed the theoretical cor-
relations that exist between initial helium abundance and mass.
Baudin et al. (2012) found a similar result in a red giant star
observed by CoRoT. Lebreton & Goupil (2014) examined in
detail the correlation between model input parameters of the
CoRoT target HD 52265. They quantified the anti-correlation of
the mass with the initial helium abundance to be ΔY0

ΔM = −0.58
and also suggested a correlation of the age with the mixing
length parameter of ΔAge

Δα
= +0.13. The ΔY0

ΔM anti-correlation can
account for the mass difference between Verma and Lebreton but
not for the mass difference between Ball and Creevey since their
initial helium abundance is the same. The ΔAge

Δα correlation can-
not account for the lower age obtained by Ball since the mixing
length parameter is higher.

6.2. What is needed for progress?

Clearly, the use of existing surface frequency corrections, espe-
cially for stars that are significantly different from the Sun, need
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to be properly compared such as in Schmitt & Basu (2015). In
their stellar-age dating, Otí Floranes et al. (2005) and Miglio
& Montalbán (2005) showed that the frequency difference ra-
tios where very powerful age indicators (See also the pioneering
works of Ulrich 1986; Christensen-Dalsgaard 1988). In the case
of HD 52265, Lebreton & Goupil (2014) examined different sets
of seismic constraints and showed that the use of frequency ra-
tios provide the best accuracy and precision for the age of the
star. Therefore the use of method not based upon surface fre-
quency correction should also be tested using the MESA evolu-
tion code (Verma and Ball). One can also notice that despite the
lack of use of the frequency ratios for optimisation, Ball provides
lower values for r01 of Star A. In order to go further, it would be
best if all modellers used the same optimisation parameters in-
cluding the frequency ratios.

The optimisation approach also needs to be assessed. The
raw χ2 contribution of the seismic parameters is roughly propor-
tional to the number of modes, i.e. greater than typically 50. On
the other hand, the raw χ2 contribution of the classical parame-
ters is about 2 to 3 depending on the number of parameters. It
is quite clear that while being correct from a statistical point of
view, it slants the optimisation towards the seismic parameters.
A Bayesian approach to this optimisation problem will take the
classical parameters into account in a more realistic way such as
in Bazot et al. (2012).

The differences in physics cannot be ruled out. A compar-
ison of the MESA evolution code and its associated physics is
also required. There are several differences with CESAM2K and
ASTEC such as atomic diffusion, convection, and overshoot pre-
scription that need to be assessed. In addition the modulation in
r01 observed in Fig. 9 can be explained by the impact of pene-
trative convection on mode frequencies (Monteiro et al. 1994).
Similar results have been obtained by Lebreton & Goupil (2012)
for HD 52265. Therefore by reducing the differences with r01,
the inclusion of penetrative convection in the model may im-
prove the physical description of the stars.

A deeper analysis of the impact of all the input and optimi-
sation parameters in a similar fashion as done by Lebreton &
Goupil (2014) is indeed required and is beyond the scope of this
article.

7. Conclusions

We use Kepler data for measuring the seismic mode parameters
of two spatially unresolved stars in a single time series. We pro-
vide the seismic mode frequencies, mode linewidths, and mode
heights of the two stars and derived using scaling relations the
mass, the radius, and the age of the two stars in a binary system.
We also derive the orbit characteristics using speckle interferom-
etry which gives an independent measurement of the total mass
of the system. We also model the stars using the mode frequen-
cies and four different stellar model pipelines. The seismic mass
of the binary system derived with the models is consistent with
that determined with astrometry. For 3 models, the age of the bi-
nary system is in the range 3.4–3.9 Gyr while for another model
the age is about 2.7 Gyr. There is a clear detection of a convec-
tive core in Star A, while Star B does not have any. The mass
of Star B provided by the models is consistent with a value of
[1.08–1.14] M�. On the other hand, the models provide two sets
of values for Star A: [1.25–1.27] M� and [1.34–1.39] M�. There
are still differences between the models that are related either to
the physics used, or the surface frequency correction, or to the
optimisation strategy.

The seismic and modelling analysis mimics what will be
done for the PLATO mission (Rauer et al. 2014). In particular,
the seismic calibration of absolute stellar age is in principle pos-
sible using binary stars or cluster systems which requires a de-
tailed study of systematic errors due to the physics used in the
different models. This kind of data will be extensively used for
validation of the PLATO pipeline.
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Appendix A: Seismic and orbital data

Table A.1. Frequencies for Star A.

Degree Frequency (μHz) 1-σ error (μHz)
0 638.93 0.29
0 700.26 0.42
0 759.89 0.17
0 819.80 0.18
0 881.40 0.12
0 943.77 0.14
0 1004.76 0.16
0 1065.58 0.10
0 1126.97 0.10
0 1189.58 0.11
0 1252.42 0.12
0 1315.03 0.15
0 1377.31 0.18
0 1440.32 0.30
0 1503.62 0.37
0 1565.40 0.46
0 1630.73 1.17
0 1696.59 3.05
1 666.55 0.34
1 726.63 0.11
1 785.95 0.16
1 846.42 0.12
1 908.57 0.12
1 970.48 0.11
1 1031.42 0.10
1 1091.95 0.09
1 1154.20 0.08
1 1217.04 0.09
1 1279.90 0.10
1 1342.63 0.13
1 1405.63 0.18
1 1468.32 0.22
1 1531.80 0.26
1 1593.92 0.51
1 1657.67 1.12
2 754.82 0.79
2 814.81 0.22
2 876.97 0.20
2 938.89 0.19
2 1000.13 0.23
2 1061.15 0.16
2 1122.75 0.10
2 1184.97 0.14
2 1247.96 0.19
2 1310.71 0.19
2 1372.86 0.34
2 1436.43 0.38
2 1497.94 0.42
2 1561.66 0.76

Notes. The first column is the spherical harmonic degree. The second column is the temporal frequency. The third column is the 1-σ uncertainty
quoted when the mode is fitted. All modes were correctly detected and fitted. Please note that in order to get the frequencies at the source, one
must add −10−4ν to the observed frequencies which takes into account the stellar radial velocity of the star.
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Table A.2. Frequencies for Star B.

Degree Frequency (μHz) 1-σ error (μHz)
0 1895.30 0.33
0 1998.14 0.33
0 2101.33 0.34
0 2206.00 0.19
0 2309.40 0.39
0 2412.25 0.51
0 2517.48 0.70
0 2620.37 0.82
1 1840.59 0.28
1 1942.22 0.34
1 2046.03 0.33
1 2149.80 0.19
1 2254.19 0.23
1 2358.27 0.32
1 2461.65 0.59
1 2565.83 0.56
1 2672.28 0.12
2 1888.50 0.48
2 1991.24 0.79
2 2094.36 0.48
2 2198.06 0.39
2 2301.19 0.56
2 2405.91 1.06
2 2509.17 3.41

Notes. The first column is the spherical harmonic degree. The second column is the temporal frequency. The third column is the 1-σ uncertainty
quoted when the mode is fitted. All modes were correctly detected and fitted. Please note that in order to get the frequencies at the source, one
must add –10−4ν to the observed frequencies which takes into account the stellar radial velocity of the star.

Table A.3. Mode linewidths, mode heights and mode amplitude for Star A.

Frequency Mode height Uncertainty Linewidth Uncertainty Amplitude Uncertainty
(μHz) (ppm2/μHz) (ppm2/μHz) (μHz) (μHz) (in ppm) (ppm)
638.93 2.11 +1.41/−0.84 0.12 +0.08/−0.05 0.64 +0.26/−0.13
700.26 1.23 +0.48/−0.35 0.42 +0.17/−0.12 0.90 +0.10/−0.09
759.89 0.97 +0.23/−0.19 0.88 +0.23/−0.18 1.16 +0.09/−0.08
819.81 1.01 +0.05/−0.05 1.85 +0.21/−0.19 1.72 +0.08/−0.08
881.40 1.43 +0.20/−0.17 1.52 +0.20/−0.18 1.85 +0.07/−0.07
943.77 1.80 +0.18/−0.17 2.23 +0.21/−0.19 2.52 +0.07/−0.07

1004.76 1.98 +0.18/−0.16 2.69 +0.22/−0.20 2.89 +0.07/−0.07
1065.58 3.08 +0.26/−0.24 2.25 +0.16/−0.15 3.30 +0.07/−0.07
1126.97 4.48 +0.36/−0.33 2.02 +0.12/−0.12 3.77 +0.07/−0.07
1189.58 3.79 +0.28/−0.26 2.34 +0.13/−0.13 3.74 +0.07/−0.07
1252.42 3.33 +0.24/−0.22 2.62 +0.15/−0.14 3.70 +0.06/−0.06
1315.03 2.64 +0.19/−0.18 2.94 +0.18/−0.17 3.49 +0.06/−0.06
1377.31 1.70 +0.12/−0.11 3.66 +0.23/−0.22 3.12 +0.06/−0.06
1440.32 1.04 +0.08/−0.08 4.71 +0.36/−0.33 2.77 +0.06/−0.06
1503.62 0.67 +0.06/−0.05 4.99 +0.42/−0.39 2.29 +0.06/−0.05
1565.40 0.41 +0.04/−0.04 5.07 +0.61/−0.54 1.80 +0.06/−0.06
1630.73 0.21 +0.03/−0.02 8.04 +1.17/−1.02 1.64 +0.07/−0.07
1696.59 0.10 +0.02/−0.02 14.94 +3.96/−3.13 1.54 +0.11/−0.10

Table A.4. Mode linewidths, mode heights and mode amplitude for Star B.

Frequency Mode height Uncertainty Linewidth Uncertainty Amplitude Uncertainty
(μHz) (ppm2/μHz) (ppm2/μHz) (μHz) (μHz) (ppm) (ppm)

1895.30 0.50 +0.12/−0.10 1.81 +0.48/−0.38 1.20 +0.10/−0.10
1998.14 0.56 +0.10/−0.09 2.72 +0.51/−0.43 1.55 +0.10/−0.09
2101.33 0.69 +0.10/−0.09 3.38 +0.52/−0.45 1.92 +0.09/−0.09
2206.00 1.05 +0.14/−0.12 2.38 +0.33/−0.29 1.98 +0.09/−0.08
2309.40 0.80 +0.10/−0.09 3.49 +0.48/−0.42 2.09 +0.09/−0.08
2412.25 0.67 +0.09/−0.08 4.17 +0.59/−0.51 2.09 +0.09/−0.09
2517.48 0.38 +0.06/−0.05 5.68 +1.07/−0.90 1.85 +0.11/−0.10
2620.37 0.34 +0.07/−0.06 4.51 +1.00/−0.82 1.55 +0.11/−0.10
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Table A.5. Speckle interferometric data of the orbital position of the binary.

Date Angle Position Δ magnitude Wavelength Instrument Error on x or y Reference
Date (degrees) (arcsec) (nm) (marcsec)

2006.5170 112.6 0.1130 0.89 698 WIYN 2.5 Horch et al. (2008)
2006.5226 110.3 0.1160 0.94 754 WIYN 2.5 Horch et al. (2008)
2007.3224 117.8 0.1110 1.04 754 WIYN 2.5 Horch et al. (2010)
2008.4640 130.0 0.1180 0.88 698 WIYN 2.5 Horch et al. (2010)
2010.4736 147.2 0.1099 0.91 562 WIYN 1.1 Horch et al. (2011)
2012.0948 166.0 0.0905 0.93 692 Gemini 1.3 Horch et al. (2012)
2012.5707 174.5 0.0821 0.89 692 Gemini 1.3 Horch et al. (2012)
2012.5707 174.6 0.0826 0.89 880 Gemini 1.3 Horch et al. (2012)
2012.7426 176.2 0.0780 0.87 692 WIYN 1.5
2012.7426 177.0 0.0770 0.80 880 WIYN 1.5
2013.7336 206.6 0.0530 0.94 692 WIYN 1.5
2013.7336 209.4 0.0510 0.64 880 WIYN 1.5
2014.4598 238.2 0.0349 0.78 692 DCT 1.5
2014.4598 237.3 0.0359 0.87 880 DCT 1.5
2014.5640 247.9 0.0372 0.83 692 Gemini 1.3 Horch et al. (2015)
2014.5640 248.0 0.0382 0.90 880 Gemini 1.3 Horch et al. (2015)

Notes. WIYN is the observatory of the University of Wisconsin-Madison, Indiana University, and Yale University.

Appendix B: Astrometric orbit

The coordinates of the orbit on the plane of the sky (x, y) are
derived as follows:

x = AX + FY (B.1)

y = BX +GY (B.2)

where A, B, F,G are the Thiele-Innes elements, and (X, Y) are the
position of the object in the plane of the orbit. The Thieles-Innes
elements are related to the semi-major axis a, to the inclination
of the orbit i on the plane of sky and to the argument of the
periastron (ω) and the longitude of the ascending nodes (Ω) as:

A = a(cosΩ cosω − sinΩ sinω cos i) (B.3)

B = a(sinΩ cosω + cosΩ sinω cos i) (B.4)

F = −a(cosΩ sinω + sinΩ cosω cos i) (B.5)

G = −a(sinΩ sinω − cosΩ cosω cos i). (B.6)

The position of the orbit in the plane of the orbit is given by:

X = a cos E − e (B.7)

Y = a(
√

1 − e2 sin E) (B.8)

where E is the eccentric anomaly and e is the orbit eccentricity.
The eccentric anomaly can be found by solving the following
equation:

2π
T0

(t − T1) = E − e sin E (B.9)

where T0 is the orbit periodicity and T1 is the time of passage at
periastron.

Appendix C: Derivation of the orbit

For the derivation of the orbit, we computed the log
likelihood of the data D given the orbital parameters
(Porb=(Ω, ω, i, a, e, T1, T0)), P(D|Porb) as:

log P(D|Porb) =
i=N∑
i=1

−
⎛⎜⎜⎜⎜⎝ (xi(Porb) − xobs

i )2 + (yi(Porb) − yobs
i )2

2σ2
i

⎞⎟⎟⎟⎟⎠
(C.1)

where D are the data, xi(Porb) and yi(Porb) are the output of the

astrometric model of Appendix A at time ti, and xobs
i and yobs

i are
the observations at time ti, and the σi are the estimated errors of
the observations. There are two approaches used for deriving the
orbital parameters:

– Frequentist: minimisation of the log likelihood
– Bayesian: Monte Carlo Markov Chain using the Metropolis

Hasting algorithm.

The first approach is equivalent to the use of a non-linear least
square fit. The error bars are derived using the inverse of the
Hessian matrix. This is the classical way of estimating param-
eters from a model and observation. The error bars were also
verified using a Monte-Carlo simulation of the orbit. When the
estimated parameters are close to a minimum, the error bars from
the Hessian and the Monte-Carlo simulations are similar (See
Appourchaux 2014).

Unfortunately, the error bars returned by the two methods
gave inconsistent results which is why we implemented the sec-
ond approach which is based upon a Bayesian framework. In
that case, we derived the posterior probability (P(Porb|D)) of the
parameters using Bayes’ theorem as:

P(Porb|D) =
P(Porb)P(D|Porb)

P(D)
(C.2)

where P(Porb) is the a priori probability of the orbital pa-
rameters, and P(D) is the global normalisation likelihood.
The derivation of the posterior probabilities can be done us-
ing the Metropolis Hasting algorithm (See as a starting point,
Appourchaux 2014). We use a Markov Chain for exploring the
space to go from a set Pt

orb to another set Pt′
orb, assuming that ei-

ther set have the same probabilities, i.e. P(Pt
orb) = P(Pt′

orb). The
Metropolis-Hasting algorithm then requires that we accept the
new set Pt′

orb using the following ratio:

r =
P(Pt′

orb|D)

P(Pt
orb|D)

=
P(D|Pt′

orb)

P(D|Pt
orb)
· (C.3)

This is simply the ratio of the likelihood given in Eq. (B.1). The
new value is accepted if r < α with probability α (drawn from a
uniform distribution) otherwise it is rejected.
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We set 10 chains of 10 million points each, with the follow-
ing starting points taken randomly:

Ω(degrees) ≈ U(0, 180)

ω(degrees) ≈ U(0, 180)

i(degrees) ≈ U(0, 60)

a(mas) ≈ N(0.075, 0.003)

e ≈ U(0.4, 0.8)

T1(years) ≈ U(1995, 2005)

T0(years) ≈ N(14, 20). (C.4)

The new set of parameters is computed from a random walk from
the previous value as:

Pt′
orb = Pt

orb + ΔPorb (C.5)

where ΔPorb is given by a multinomial normal distribution with
independent parameters:

ΔPorb ≈ N(0; 11.5, 11.5, 5.75, 0.001, 0.01, 1, 1)αrate (C.6)

where αrate is an adjustable parameter that is reduced by
a factor 2 until the rate of acceptance of the new value t′
is above 25%. The proper convergence of the chains was
verified using the Gelman-Rubin R̂ test (Gelman & Rubin
1992) as implemented by Ford (2006). After rejecting the
initial burn-in phase (10% of the chain), all values of the R̂
test of the 7 sets of parameters were below 1.1. Then the
chains provide the posterior probability for each parameter.
For all chains of each parameter, we computed the median
and the credible intervals at 16% and 84%, corresponding to
a 1-σ interval for a normal distribution. The advantage of this

percentile definition over the mode (maximum of the posterior
distribution) or the mean (average of the distribution) is that it
is conservative with respect to any change of variable over these
parameters.

Appendix D: Derivation of the mass of the binary
system and the associated errors

Knowing the distance (via the parallax π), the semi-major axis a
and the period of the system T0, we can deduce from the Kepler’s
third law the total mass of the binary system in units of the solar
mass as

Msyst =

(a
π

)3 1

T 2
0

(D.1)

where π is in mas. The error bars can be computed assuming that
the semi-major axis, the orbital period, and parallax are indepen-
dent of each other as:

ΔMsyst

Msyst
=

√
9

(
Δa
a

)2

+ 9

(
Δπ

π

)2

+ 4

(
ΔT0

T0

)2

· (D.2)

In order to derive the corresponding credible intervals for the
mass of the system, we use a Monte-Carlo simulation using
the chains for the semi-major axis and the period from our
Bayesian analysis, and use a randomised parallax as inferred
from van Leeuwen (2007) for HIP 93511. The use of the MCMC
chains explicitly includes the correlation between the orbital pe-
riod and the semi-major axis for the final error propagation. The
three values were then injected in Eq. (D.1) for getting the me-
dian and the credible intervals.
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