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Abstract 

Metabolic syndrome is a precursor to non-communicable diseases including type 2 

diabetes and cardiovascular disease. Diet and lifestyle choices are major contributors 

to the development and progression of metabolic syndrome. Adding functional foods 

and functional compounds into the diet of those at risk of developing metabolic 

syndrome will improve metabolic status and, in the long term, minimise the incidence 

of the disease. This research aims to identify and quantify the impacts that sorghum 

and phloretin have on diet-induced metabolic syndrome.   

Methods: A 16 week rat model of diet-induced metabolic syndrome was used to 

determine responses to 5% whole red sorghum, 20% red sorghum flour, 20% black 

sorghum flour, 20% wet cake sorghum, or phloretin at 50mg/kg/day or 200mg/kg/day. 

Cardiovascular, physiological, and metabolic variables were measured. Studies were 

conducted to determine whether there were changes in intestinal permeability caused 

by alterations in colonic tight junction proteins which would lead to reduced serum 

LPS concentrations and TLR4-mediated inflammation which is known to contribute 

to metabolic syndrome.  

Results: Phloretin, a glucose transporter 2 inhibitor, normalised post-prandial blood 

glucose responses when consumed at 200mg/kg/day showing potential for the pre-

diabetes aspect of metabolic syndrome. On the contrary this dose increased total 

plasma cholesterol which is considered to be a risk factor for increased cardiovascular 

events in metabolic syndrome.  

Whole sorghum reduced total cholesterol concentrations in a rat model of diet-induced 

metabolic syndrome, showing potential for reducing risk of cardiovascular events. 

Black and red sorghum flour showed remarkably few changes in a high fat-high 

carbohydrate diet, and the implications for metabolic syndrome are low. 

Improvements were observed in the liver and gastrointestinal tract, with reduced 

steatosis and a modest reduction in small intestinal permeability.  

Wet cake sorghum, the waste product of ethanol fermentation, showed the greatest 

changes of all the sorghum products with normalisation of post-prandial glucose, 

improved liver morphology, reduction in left ventricular collagen, and a modest 
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reduction in small intestinal permeability. A number of changes were seen when 

adding sorghum into the control diet which did not develop metabolic syndrome. The 

outstanding change was a distinct increase in lean mass. 

There was little evidence to suggest that changes in the gastrointestinal tract were 

major contributors to improving metabolic syndrome through reducing metabolic 

endotoxaemia.  

Conclusions: Overall both phloretin and sorghum products show benefits to their 

consumption for attenuation of metabolic syndrome, which can be used as leverage for 

further clinical studies and for promotion of sorghum as a health food.  
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Chapter 1 - Introduction 

Chapter 1.1 – Sorghum Literature Review - An ancient grain with modern 

potential 

1.1.1 Sorghum in traditional diets 

Sorghum is a grass of the Poaceae genus, producing round, edible grains with between 

12000 and 16000 seeds per pound (1). Modern cultivated sorghum compared with its 

traditional, undomesticated counterpart is shown in Figure 1.2.1.  

 

Figure 1.2.1:Wild type sorghum originating in Africa (left) (2), and modern 

domesticated sorghum grown on the Darling Downs (Photo courtesy of Patricia 

Balzer).  

Sorghum is not considered one of the major cereal grains for human consumption, 

outcompeted by wheat, maize, oats and rice. Only approximately 50% of the 60MMT 

(million metric tonnes) of the sorghum produced worldwide is used for human 

consumption, while around 70% of the 650MMT of wheat is consumed by humans 

(3). Despite this, sorghum remains a staple food for 500 million people in 30 countries 

(4), partly due to its tolerance to environmental conditions and the diverse ways it can 

be prepared as food.  

Prior to agricultural domestication, sorghum is believed to have been consumed by 

humans as early as 8000BC in its wild form, with domestication following somewhere 

between 4000BC and 3000BC (5). The original domestication of sorghum occurred in 

Africa, which then spread throughout the world, and became part of the diets of India 



and Asia (6). Traditional dishes made from sorghum include fermented beverages such 

as Mahewu (7), fermented porridges in South Africa (8), ground sorghum boiled 

porridges in Sudan (9), baking of Dduk cake in Korea (10) and boiled sorghum ‘on the 

cob’ in Botswana (11).  

Sorghum, on the scale of breeding, was described as having more underdeveloped 

genetic potential than any other major food crop in the world (4). This suggests that 

the current genetic status of sorghum will allow breeding for specific human 

consumption. Sorghum’s potential as a nutraceutical or health food is still in its 

infancy.  

1.1.2 Sorghum significance 

Almost all sorghum grown in Australia is produced in the Northern Grains Region of 

Queensland and New South Wales, with less than 1% estimated to be produced in 

other states (12). Sorghum is one of the major crops of Queensland, with value of 

agricultural production being an average of $340 million per year over a 5-year period 

to 2017. This was the second highest value cereal crop following wheat ($401 million) 

for the same period (13). Sorghum represents a high value commodity crop in the 

region and is important to the local economy, with 2200 producers in Queensland and 

3200 Australia-wide as of 2010-2011, as reported in the GRDC (Grain Research & 

Development Corporation) Australian Grains Focus 2010-2012 (14). Sorghum and 

wheat are both volatile in price due to overseas demand, production and local weather 

patterns. Production in the Queensland and northern New South Wales regions is 

shown in Figure 1.2.2 (15). 

Sorghum is primarily used in Australia for livestock feed, rather than human 

consumption. According to calculations based on FAO (Food and Agriculture 

Organization) statistics, domestic sorghum usage in Australia (including both imports 

and exports) has stabilised since 1994 with over 96% used as animal feed (16). Grain 

sorghum markets also exist for biofuel production. Any grains containing starches can 

be used for ethanol production, and sorghum is ideal for this purpose as it has one of 

the highest starch contents of grains (17). Ethanol from grain sorghum is produced 

locally by Dalby Bio-Refinery Limited (18), although current capacity is low (19).   
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The difficulties for sorghum to break into the human food consumption market in 

Australia come from traditional or cultural attitudes, in addition to market competition 

against stock feed and biofuel dominance. The conventional use of sorghum 

exclusively as stock feed means that promoting it for human consumption is likely to 

be difficult, especially when competing against more traditional cereals such as wheat. 

Traditionally, sorghum has been used by some communities as a staple cereal for 

human consumption, primarily Africa and India (20). The predominant regions for 

human consumption of sorghum are still Asia and Africa at around 97%, however 

Central and South America account for a small proportion (21).  

 

 

Figure 1.2.2: Long-term sorghum predicted average yields over a 115 year period in 

Queensland and northern New South Wales (15)  



1.1.3 Sorghum varieties and types 

Sorghum is considered to have an untapped genetic potential by many plant breeders 

and researchers (4). There is still significant variation in the types of sorghum that fall 

under the Sorghum biocolor species that are of commercial interest, all of which have 

their origins in Africa. Sorghum varieties which are commercially grown are typically 

classed by the colour of grain that they produce, although nomenclature is not 

standardised. The typical classes of grain colour are red, bronze or tan, and white. 

Although not commercially grown in Australia, black sorghum is also gaining traction 

as a niche crop overseas (22). Despite the “colour classes”, there are at least 10 genes 

which dictate the colour of the pericarp and glume (23). Further genes alter the 

appearance including pericarp thickness (8-160µm) and the presence or absence of 

testa (24). Due to the large number of possible combinations, there is an almost 

continuous range of colours (25). 

Other type-classes of sorghum are waxy and non-waxy sorghum which are defined by 

the presence or absence of amylopectin in the endosperm, respectively (26). The waxy 

trait in sorghum is controlled by a single gene where two recessive alleles will result 

in a “waxy” phenotype (26). High tannin sorghum is also controlled by one known 

gene, Tan1 (27). High levels of tannins are considered to be detrimental in most 

breeding cases, as high tannin content reduces protein digestibility, a detriment for 

stockfeed production (27). Reduced starch digestion due to tannins also occurs through 

interaction with amylase (28). However, tannins have been implicated as beneficial for 

human health (29). There are a number of Sorghum species that are native to Australia 

(30) and will act as a source of breeding material, or as a potential health-food source.  

For the purposes of this research, I have focussed on red and black sorghum as they 

have been used in the researched literature. White sorghum is also mentioned in this 

review as it is the type commonly used in the production of sorghum-based gluten-free 

flours, although not studied in the ensuing research.  
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Figure 1.2.3: A selection of the sorghum grain colours that can be produced (31). 

1.1.4 Sorghum proteins 

Sorghum is comparable in protein content to most other common cereal crops. White 

sorghum flour has a protein content of approximately 12.5% (32), with the sorghum 

wholegrain of around 12.1% protein (33). For comparison, corn, wheat and rice 

contain approximately 9-12%, 8-15% and 7-9% protein, respectively (34). Variation 

in sorghum proteins are significant being from 10% up to 15% (35), and 8.6% up to 

above 18% (36) depending on the variety and growing conditions. The storage protein 

fraction of grains are prolamins, called kafirins in sorghum. These account for up to 

50% of the total protein (37). Characteristically, prolamins are high in proline and 

glutamine, with low solubility (38). 

Other proteins include albumins, globulins and glutelins (36, 37). The non-kafirin 

proteins participate in formation of the endosperm matrix which contains starch, 

protein bodies, and functional proteins (39). Little research has been done on the 

potential health effects of kafirins, especially outside feedstock models however recent 

research is emerging (40-43). Sorghum is gluten-free, in that it does not contain the 

proteins glutenin or gliadin (44), which are unique glutelins, meaning that sorghum is 

suitable for patients with gluten intolerance or coeliac disease (45).  

The amino acid profile of sorghum varies depending on the cultivar and growth 

conditions, particularly those which change the protein content. As shown in Table 

1.2.1, sorghum is generally high in both leucine and glutamate (36, 46, 47). This 



content is higher than barley, wheat and rice which contain below 9g/kg leucine (48). 

Sorghum is considered as deficient in lysine, hence other dietary sources are required 

(49).  

Table 1.2.1: Amino acid composition of white sorghum (Liberty) and red sorghum 

(Buster)(47), and predicted amino acid requirements for adults (50),(51). Table 

adapted from Liu et al (47) and FAO (52). 

 

When compared with brown rice, wheat and maize, sorghum shows the highest 

content of leucine, phenylalanine and glutamic acid (Table 1.2.2). Both leucine and 

phenylalanine are essential amino acids.  

 

 

 

 

White Red White Red mg/kg requirement

Amino Acid g/kg g/kg
g/kg 

protein
g/kg 

protein (Adult, per day)
Arginine 2.5 3.2 28.7 27.1 -

Histidine* 1.7 2.5 19.5 21.2 8-12
Isoleucine* 3 4.1 34.5 34.7 10

Leucine* 10 14.6 114.9 123.7 12
Lysine* 1.7 2 19.5 16.9 12

Methionine* 0.9 1.1 10.3 9.3 13 (combined with cysteine)
Phenylalanine* 4 5.7 46 48.3 14 (combined with tyrosine)

Thrreonine* 2.4 3.2 27.6 27.1 7
Valine* 3.8 5.3 43.7 44.9 10
Alanine 6.3 9.2 72.4 78 -

Aspartate 4.8 6.7 55.2 56.8 -
Glutamine 15.7 23.4 180.5 198.3 -
Glycine 2.1 2.7 24.1 22.9 -
Proline 6.2 8.6 71.3 72.9 -
Serine 3.4 4.7 39.1 39.8 -

Tyrosine 1 1.4 11.5 11.9
Tryptophan* - - - - 3.5
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Table 1.2.2: Comparison of sorghum, brown rice, maize and wheat amino acid 

composition in proteins. Essential amino acids are indicated by as asterisk (53). 

 

1.1.4.1 Protein digestibility 

Protein digestibility of sorghum has been extensively studied using both in vivo and ex 

vivo models. Typically, the digestibility of proteins indicates how quickly and to what 

extent a protein will undergo proteolysis in the gastrointestinal system, and therefore 

bioavailability of amino acids (54). Sorghum has a low digestibility compared to other 

cereal proteins (55) (54). Estimated digestibility ranges from 75% (56) to as low as 

59% (55); however this changes with variety and preparation (56). In comparison, 

wheat, maize and rice have digestibility of over 85%, 85% and 83%, respectively (55). 

One of the causes of poor digestibility is the high degree of disulphide linkages in 

kafirin proteins (57). Some non-kafirin proteins of sorghum are indigestible, or have 

low digestibility by pepsin (35, 57). Research in animals models can only be 

considered indicative of human digestibility, as rats are more efficient at digesting 

proteins than humans (58).  

Brown Rice Wheat Maize Sorghum

% in protein % in protein % in protein % in protein
Tryptophan* 1.08 1.24 0.61 1.12
Threonine* 3.92 2.88 3.98 3.58
Isoleucine* 4.69 4.34 4.62 5.44
Leucine* 8.61 6.71 12.96 16.06
Lysine* 3.95 2.82 2.88 2.72
Methionine* 1.8 1.29 1.86 1.73
Cysteine 1.36 2.19 1.3 1.66
Phenylalanine* 5.03 4.94 4.54 4.97
Tyrosine 4.57 3.74 6.11 2.75
Valine* 6.99 4.63 5.1 5.71
Arginine 5.76 4.79 3.52 3.79
Histidine* 1.68 2.04 2.06 1.92
Alanine 3.56 3.5 9.95
Aspartic Acid 4.72 5.46 12.42
Glutamic Acid 13.69 31.25 17.65 21.92
Glycine 6.84 6.11 3.39
Proline 4.84 10.44 8.35
Serine 5.08 4.61 5.65 5.05



Methods to improve protein digestibility have been widely studied for sorghum use in 

stock-feeds. The process of fermentation improved the digestibility (32) and reduced 

the concentrations of phytates and tannins which may reduce digestibility (56). The 

protein digestibility was reduced with cooking (59-62) making sorghum unique when 

compared to other cereals (54) which do not have large decreases in digestibility with 

cooking such as maize (48, 62), rice (62, 63), legumes (64), barley and wheat (62). 

This is an important consideration when determining whether humans are likely to 

consume sorghum, and how processing or the preparation will affect protein 

digestibility and availability of other nutrients.  

The low digestibility may be benefical as there will be gastrointestinal effects of 

undigested proteins, and interactions with gut microflora. Although literature is 

currently scarce, some animal models have been studied. Pre-digesting samples with 

α-amylases increased digestibility of protein by improving enzymatic access which is 

more akin to an in vivo system (61). The interactions with starch granules can affect 

protein digestion; however, these interactions have not been fully elucidated (35). 

Decorticating to remove the bran layer (pericarp and germ layer) leaving only 

endosperm increases the percentage of digestible protein (61).  

1.1.4.2 Prolamins - kafirin 

Prolamin size is one reason sorghum protein has a such a low digestibility when 

compared to other cereal crops (61). Kafirin is the major prolamin in sorghum, and has 

4 subgroups defined as α- γ- β- and δ-kafirin (59). Kafirin accounts for a high 

proportion of the sorghum protein, so it is important to note the features of each group 

and how this affects their biological activity. The structures of kafirins are tightly 

connected to their role in the sorghum grain. The highly cross-linked β- and γ- kafirins 

encase the α-kafirin inside the protein body (65). α-Kafirin is the predominant kafirin 

and typically makes up the majority of kafirin protein bodies (59). Prolamin structure 

is indicated in Figure 1.2.4.  
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Figure 1.2.4 : Stylised indication of the structure of sorghum protein bodies (66) 

Cross-linking is important in kafirins, as it relates to their digestibility (59). The degree 

of cross-linking varies for each kafirin; with the relative proportions of uncross-

linked:cross-linked protein following the general trend α- > β- > γ-kafirin (35, 59).  

 

Figure 1.2.5: Predicted structure of α-prolamin structures indicating many α-helices  

(67, 68). 

The highly cross-linked β- and γ-kafirins encase the less cross-linked α-kafirins. α-

Kafirin is comprised primarily of alpha sheets, shown in Figure 1.2.5, and is typically 

the most digestible isolated kafirin (59). Due to its positioning in the protein body, α-

kafirin digestion is impaired by the β- and γ-kafirin coating. The surface proteins are 

the physically restricting factor for access to the chemically least resistant protein (59). 

β-Kafirin is high in methionine and cysteine, being 9.3 and 5.8% molar percentages of 

the molecule (69). This allows for moderate disulphide crosslinking and low solubility 

which impair digestion. The structure of the protein is a combination of α-helices and 

β-sheets. γ-Kafirin is primarily a mix of random coil structures and many β-sheets, and 

is high in cysteine which contributes to its high level of disulphide crosslinking (70). 



As with other kafirins, solubility is low which impairs digestion. The sizes of the 

kafirins also varies, with α-, β-, γ-, and δ- having molecular weights of 26000-27000Da 

(Daltons), 18745Da, 20278Da and 12961Da respectively (68).  

Kafirin digestion is further complicated by the presence of phenolics in the sorghum. 

Condensed tannins and tannic acid, which are present in certain non-white varieties, 

are able to bind to kafirins in vitro (71). This decreased digestibility, primarily through 

binding to granule surface γ-kafirins (72), and subsequently decreased digestion of the 

encased α-kafirin.  

As sorghum has a unique protein profile so peptidomics and proteomics may become 

of increasing interest, although little literature is currently available. In addition to 

kafirin proteins, sorghum also contains globulins, albumins and glutelins; these 

concentrations can vary but are consistently lower than the kafirins (73, 74). Little 

research exists on these proteins in their isolated forms.  

The interest in gluten-free flours has been spurred by the rise in diagnosis of coeliac 

disease, the somewhat questionable evidence for “gluten sensitivity” in the non-coeliac 

population, and the scapegoating of gluten as a driver in a number of metabolic 

conditions (75). Sorghum is considered a gluten-free grain. Gluten is comprised of two 

major prolamin proteins, glutenin and gliadin, neither of which exist in sorghum (76). 

1.1.5 Sorghum carbohydrates and fibres  

1.1.5.1 Starches – amylose, amylopectin, resistant and digestible starches, and 

glycaemic properties 

Starches in cereal grains are comprised of amylose and amylopectin, in differing ratios. 

Both are comprised of glucose units. Amylose is glucose units with α 1-4 glycosidic 

linkages in a helical structure. Amylopectin is glucose units which contain α 1-4 

glycosidic linkages, however has branching units from α 1-6 glycosidic linkages. 

Resistant starches have some chemical or physical property that results in resistance 

to this digestion. They are partially digested by the human gastrointestinal system, 

however final digestion occurs in the colon by microbial populations. 
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Figure 1.2.6: Structure of amylose and amylopectin (77). 

The waxy and non-waxy sorghums are two distinct classes of sorghum that differ 

considerably in starch composition. Waxy sorghum endosperm contains only 

amylopectin, whereas non-waxy sorghums contain a mixture of amylose and 

amylopectin (78). High amylose starches typically have a lower hydrolysis rate, and 

higher resistance to small intestinal digestion (79); this is important in human 

gastrointestinal function. Amylose content of non-waxy sorghum is usually around 

20% depending on the variety (80), with ranges between 18-30% (81). Amylose 

content typically shows an inverse relationship with digestibility (82).  

Amylose and amylopectin are chemically digestible by the human body by both 

salivary and pancreatic amylases. However, the physical structure of amylose can lead 

to a lack of digestion in the upper gastrointestinal tract which results in undigested  

amylose entering the colon where bacterial fermentation can occur (83). Sorghum is 

quite high in slowly digestible starch, at around 60-70% for waxy, heterowaxy and 

non-waxy sorghum. The percentage of resistant starch, however, differs greatly. 

Heterowaxy sorghum has 23.7% resistant starch on a dry weight basis, normal 

sorghum has 17.9%, and waxy sorghum less than 10% (78). Estimates in raw sorghum 

have been up to 43.7% of total starch in some studies (84). Among cereals, sorghum 

has a relatively high resistant starch as a proportion of its total starch, with estimates 



of above 40%, although this can be markedly decreased during preparation of 

foodstuffs (84).   

Digestibility is also affected by both branching and chain length of amylopectin (85). 

In sorghum the degree of polymerisation is variable with genotype and conditions. 

Polymerisation degree is heavily in favour of the regions 6-15, and 16-36 glucose units 

per branch, comprising approximately 90% of the amylopectin chains (78). Digestion 

by α-amylase increases with degree of polymerisation of up to a certain point, 

approximately 10 units, however decreases once this is surpassed (85).  

Resistant starches are important in colonic health and might influence metabolic 

syndrome and obesity. Resistant starch (RS) is divided into four classes RS1, RS2, 

RS3 and RS4. RS1 is physically inaccessible starch, which may be caused by 

inhibition to digestion by a non-digestible matrix (86). RS2 is found in raw starch 

granules and resistance is caused by the tightly packed nature of the amylopectin and 

amylose chains in the granules (86). RS3 is typically formed after cooking and 

dehydration to produce a crystalline amylose structure (87) and RS4 is chemically 

modified. In the case of sorghum, RS1 and RS2 are the most important for unprocessed 

grains. Typically, wholegrains will have higher concentrations of RS1 than flours, due 

to the intact nature of the starch granules (88). Sorghum also has a large starch granule 

size compared to other ceral grains (89). Both the amylose content and the starch 

granule size contribute to the resistance of starch polysaccharides to digestion (90, 91). 

A large portion of sorghum resistant starch is likely be RS1 as the starch granules are 

typically encased by a matrix of proteins with low digestibility. Milling and reduction 

of starch particle size in sorghum will improve digestion (92), such as is done in flour 

production which is important for the digestibility of RS2. Resistant starch type 3 may 

be relevant for cooking and preparation purposes. It has been shown that cooking of 

sorghum increases the amount of resistant starch (93). Resistant starch increased with 

soaking while resistant starch  decreased with autoclaving (94) which is akin to 

cooking. Raw non-waxy sorghum contained around 6g resistant starch per 100g 

wholegrain on a dry weight basis (94). Soaking allows permeation of water into starch 

granules to induce swelling, then subsequent re-association of starch into a crystalline 

form after dehydration, which is then resistant to enzymatic digestion (95). Cooking 
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disrupts native, crystalline starch structure which increases susceptibility to digestion 

(95).  

As with all cereals, methods of preparation affect the resistance of amylose and hence 

the level of resistant starch. Sorghum is unique in its starch granule structure which 

makes it of particular interest to resistant starch. In sorghum, proteins including 

albumins, globulins and glutelins attach a matrix of kafirins to the outside of starch 

granules (96). This protein matrix results in reduced digestibility of the granules (96). 

Processing will inevitably lead to alterations in the structure of these granules and must 

be considered when using sorghum as a functional food, with focus on starch and 

digestion. The effect of digestion on starch granules is shown in Figure 1.2.7. Even 

within the sorghum grain itself, there is differing structure and digestibility of different 

endosperm fragments. The whole food matrix is an important consideration when 

determining its functional properties.  

 

 

 



 

Figure 1.2.7 : Scanning electron micrograph of sorghum starch granules throughout 

the digestion process, A) undigested x 1000, B) undigested x 2500, C) 30 minute 

digestion x 1000, D) 30 minute digestion x 2500, E) 60 minute digestion x 1000, and 

F) 60 minute digestion x 2500. Bar equals 1000µm (97).   

The carbohydrate and fibre composition of cereals is important in relation to the 

glycaemic index (GI) and glycaemic load (GL), in addition to their rate of hydrolysis 

by digestive enzymes. The glycaemic index is proportional to the concentration of 

rapidly available glucose (98). Glycaemic load is a representation of the effect of 

consumption determined by multiplying the glycaemic index by the quantity of 

carbohydrate in a meal (99). Non-waxy varieties of sorghum, having high 

concentrations of slowly digestible starch, are likely to fall into low glycaemic 

category. Interactions with tannins and phenolics of sorghum inhibit starch 

digestibility and can reduce the glycaemic index of starches (100). Additionally, the 

presence of phytic acids correlated negatively with starch digestibility and glycaemic 

index (101), with sorghum having concentrations of phytic acid above 300mg/kg (56). 

Similarly, sorghum has a-amylase inhibitory properties (56). This has been shown in 

other trials to be a plausible mechanism for the reduction of glycaemic index and 
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slowing digestion (102). Addition of brown sorghum bran to a food matrix reduced 

rapidly digestible starch content and increased the proportion of slowly digestible 

starch (103). 

Preparation affects the glycaemic values; for example, sorghum bread has a glycaemic 

load of approximately 10 (104). When compared with wheat counterparts, sorghum 

showed a lower glycaemic load when prepared as coarse or fine semolina, flakes or 

pasta (105). The glycaemic load of sorghum was also lower in a biscuit preparation, 

however higher when prepared as roti (105). The low glycaemic load and index of 

sorghum can be attributed to its slow digestibility.  

Colonic digestion has not been fully characterised and may add another level of 

complexity to the process of digestion of sorghum, and therefore its role in metabolic 

processes in the body. Interactions of sorghum components with starches from other 

ingested foods will be altered in the presence of tannins and proteins (103). These 

concentrations are important, as the sorghum grain is predominantly carbohydrates. 

The majority of metabolisable energy will be derived from carbohydrates when 

integrated into the diet. Some have noted that it is the interaction of the other 

components such as proteins, fats and phenols which may lead to the health benefits 

of sorghum, rather than the carbohydrate components (106). 

1.1.5.2 Fibre - Non-starch polysaccharides, soluble fibre, insoluble fibre  

Polysaccharides that contain sugars other than glucose are considered as non-starch 

polysaccharides. They can be comprised of all other sugar monosaccharides, in 

differing sequences, with differing glycosidic linkages, with or without branching and 

are typically not digested fully by human enzymes (107). Soluble and insoluble fibre 

are both non-starch polysaccharides. Insoluble fibre includes cellulose, hemicellulose, 

chitin, lignin and xanthan. Soluble fibre includes arabinoxylans, fructans, pectins, 

polyuronides, alginates, raffinose, xylose and polydextrose.   

In sorghums, there can be important variations in the concentrations of carbohydrates, 

both digestible and indigestible. This can be due to varietal differences or 

environmental conditions. Different gentoypes of sorghum cultivated under the same 



conditions show arabinoxylan content from 0.95-1.35%, with environmental 

conditions responsible for between 5-14% of this variation, and genotype 69-74% 

(108). Similarly, genetics and environment affect total starch content (108), amylose 

content (109) and fibre content (110). Most of the fibre is concentrated in the bran 

fraction of the grain, so removal of this layer in processing will remove a major 

proportion of these compounds. In sorghum brans, the apparent range is 20-40% 

hemicellulose, 10-20% cellulose and <10% lignin on a dry basis (111).  In sorghum, 

the predominant form of fibre is insoluble as opposed to soluble at a ratio of around 

90:10 (112).  

Non-starch polysaccharides are not able to be cleaved by human enzymes. The 

enzymes required to break down the sugar linkages are lacking in the human digestive 

tract although these polysaccharides are comprised of monosaccharides that are a 

normal part of the human diet including glucose, fructose, arabinose, xylose, mannose, 

rhamnose and galactose (113). The most typical way for these non-starch 

polysaccharides to be assessed is by their differing sugar content, with the ability to 

characterise sequential linkages and structural characteristics having taken major steps 

forward in recent years. The primary sugars in these fractions are xylose, arabinose 

and glucose with much lower percentages of the other sugars (113, 114). In sorghum, 

the composition can vary depending on the method of extraction and processing. 

However, in all cases with sorghum arabinoxylans, the ratio of arabinose to xylose is 

generally high (113, 115). These can also contain glucose (116). Mannose and 

galactose are uncommon (117, 118). In total, sorghum contains 2.6-6.5% pentosans or 

non-starch polysaccharides on a dry weight basis. Arabinoxylans from sorghum have 

a xylan backbone with β 1-4 linkages, as shown in Figure 1.2.8, with substitutions to 

the xylan backbone at the O-3 position (113, 114). 
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Figure 1.2.8: An example of the anticipated structure of sorghum non-starch 

polysaccharides (113).  

Sorghum contains β-glucans but the concentration of 0.12g/100g dry weight (94) is 

much lower compared with 4.0% in wholegrain oat flour on a dry weight basis (14).  

Structural characteristics are important with relation to fermentation. Ethanol 

extractable arabinoxylans from sorghum have rapid faecal fermentation when 

compared with endoxylanase-hydrolyzates of corn, wheat arabinoxylan, and corn 

arabinoxylans (119). As with most arabinoxylans, there is preferential production of 

acetate, over propionate, and even more so butyrate (119). There is a suggestion that 

slow-fermenting arabinoxylans have a higher degree of terminal xylose units (119), 

such as is found in sorghum at around 70% compared with wheat at around 56% (117).  

Glucuronoarabinoxylans from sorghum varieties are not necessarily fermented by the 

same species as arabinoxylans from other cereals (120), an indication that structural 

differences may produce different biological effects.  

1.1.6 Lipids & lipid soluble sterols & alcohols   

Although grain sorghum is low in fat, the composition of the lipid-soluble fraction may 

still have relevance to health. The fat content of wholegrain sorghum was around 3% 

(121), and approximately 10% (122, 123) to 14% in sorghum dry distillers grain (124). 

Sorghum lipids are comprised of triacylglycerides, diglycerides, policosanols, sterols, 

free fatty acids, tocopherols and fatty aldehydes (125, 126). 



1.1.6.1 Phytosterols 

Phytosterols are present in sorghum wholegrains, where they can account for around 

50mg/100g grain weight, however these values can increase approximately four-fold 

after distillation (123). This is similar to the median value associated with cereal flours, 

grains and germs (127). Total sterols as a percent of dry distiller grain lipid extract 

have been calculated at 9.9mg/g (126). These may prove to be an economical source 

of these compounds. In sorghum, the specific sterols found are campesterol, 

stigmasterol and sitosterol (123, 126), with structures indicated in Figure 1.2.9. 

Genotype and growing conditions alter the composition of the phytosterols in sorghum 

(128). Sigmasterol and sitosterol are found in quantities typically around twice that of 

campesterol (126). Although sorghum contains these compounds, it contains 72-93% 

less than maize (129).  

   

 

Figure 1.2.9: Structures of sorghum sterols (130). 

1.1.6.2 Policosanols 

Policosanols are long-chain alcohols found in many plants. Policosanols differ based 

on their chain length which may affect their biological activity. Policosanols are 

particularly high in sorghum dry distillers grain when compared with maize dry 

distillers grain and wholegrains, with up to 100mg/g of dry material (123). The ratio 

of chain lengths shifts during the fermentation process to produce DDGS (dry distillers 

grain with solubles) (123, 131). In dry distillers grain, 3.9% of the lipid fraction may 

be policosanols (126). In sorghum, the chain lengths of policosanols are predominantly 

28:0 and 30:0, which are present at over 40% each (131).   
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1.1.6.3 Tocochromanols 

Tocochromanols encompass tocopherol and tocotrienol compounds, or “Vitamin E” 

(132). Tocopherols are a group of compounds found in many plants with a basic 

structure as shown in Figure 1.2.10. The α-, δ-, β-, and γ- tocopherols differ in their 

methylation patterns at positions R1 and R2. 

 
Figure 1.2.10: Structure of tocopherols & tocotrienols (133) 

Some tocopherols are in quite high abundance in the lipid fraction of red and white 

sorghums. γ-Tocopherol, δ-tocopherol, α-tocopherol and β-tocopherol are present in 

sorghum but concentrations vary (122, 128). These tocopherols can be present at 

concentrations up to several hundred µg/g dry distillers grain weight (122, 128) and 

476.5-2515.5 µg/100g of grain (134). Growing conditions alter the composition, based 

on geography, however distinct effects of climate and location have not been defined 

(128).  

Tocotrienols resemble the structure of tocopherol but the hydrophobic tail is 

unsaturated at three positions (Figure 1.2.10). Raw, red sorghum had an a-tocotrienol 

content of 241.7 µg/100g and d-tocotrienol content of 37.6µg/100g (135). The 

concentration of tocotrienol is affected by processing (135), and genotype (132). 

Ranges for different genotypes were 37.2 µg/100g to 160.9 µg/100g a-tocotrienol, 

undetectable to 135.3 µg/100g b-tocotrienol, 4.2 to 32.8 µg/100g g-tocotrienol and 

undetectable to 43.2 µg/100g d-tocotrienol (132).  



1.1.6.4 Fatty acids  

Fatty acid composition of the lipid fraction from sorghum differs between white and 

red varieties. In both varieties, the percentage of unsaturated fatty acids is around 80-

90% (122). The predominant fatty acids are C18:1 and C18:2 unsaturated fatty acids, 

and C16:0 saturated fatty acid (122, 126, 136). Total saturated fatty acids vary between 

12.82-22.46%, polyunsaturated fatty acids between 27.9-53.7% and monounsaturated 

fatty acids between 31.63-49.52% of total fatty acids (137). A high proportion of 

linoleic acid (C18:2) is present, with one study suggesting up to 42-56% of the oil 

fraction (138).  

1.1.7 Other bioactive compounds 

1.1.7.1 Phenolics 

Phenolic compounds are any compounds which contain a phenol ring, either single or 

multiple. These have varying constitutive moieties at different positions on the 

phenolic rings, as indicated in Figure 1.2.11. Many metabolites fall into this class of 

compound. These are mostly secondary plant metabolites and many also elicit a 

biological response (139). Plant polyphenols are chemically classed into subgroups of 

flavonoids, phenolic acids, esters, stilbenes and tannins. Interest in these compounds 

has been due to the large variety and noted antioxidant, antimicrobial and anti-

inflammatory properties (140-142).  

 

Figure 1.2.11: Basic structures of phenolic acids and flavonoids (143) 

Sorghum is high in total phenolics compared to many other cereal grains. Reported 

values vary markedly depending on the extraction and analysis methods, as shown in  
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Table 1.2.3: Total phenolic content of sorghum types, and FRAP (ferric reducing 

ability of plasma) value, an indicator of “antioxidant” capacity (144).  

 

1.1.7.1.1 Phenolic acids and phenolic esters 

Phenolic acids present in red sorghum are ferulic (145, 146), vanillic (145), p-coumaric 

(145, 146), caffeic (146, 147), protocatechuic (146) and 4-hydroxybenzoic (146) acids 

(Table 1.2.4). Phenolic acids are descrbed as being present either as their “free” or 

“bound” forms (145). Bound phenolic acids may be bound to cell walls and non-starch 

polysaccharides. Although bound to these large compounds, they may still elicit a 

biological effect, particularly if released on ingestion by hydrolysis. Their 

quantification and detection is improving with better methods of release and 

assessment. In sorghum, the concentration of free and bound acids, and the phenolic 

acid composition can also vary with genotype, environment and processing (145, 148). 

They also vary depending on the specific phenolic acid, and how they respond to 

processing. For example, vanillic acid exists almost exclusively in the unbound form, 

whereas caffeic acid exists almost exclusively in the bound form (145). Phenolic acids 

tend to be in lower concentrations than many of the flavonoids.  

  



 

Table 1.2.4: Phenolic acids content of various sorghum products.  

 Reference  Phenolic acids detected 
Free 

(µg/g) 

Bound 

(µg/g) 

Total 

(µg/g) 

Hahn, et al. [115] 

Gallic, protocatechuic, r-hydroxybenzoate, 

vanillic, caffeic, p-coumaric, ferulic, cinnamic 

54.1-

230.4  

276.7-

598.3 
  

Chiremba, et al. 

[116] 

caffeic, r-coumaric, ferulic, sinapic   
2711-

4395 

Chiremba, et al. 

[112] 

r-coumaric, ferulic   
107-383 

(flour) 

Salazar-Lopez, et 

al. (149) 
Caffeic, r-coumaric, ferulic, sinapic 784.3 2107.9  

 

The major phenolic ester associated with sorghum is coumaroyl-glycerol. The newly 

identified phenolic esters of caffeoyl-glycerol (147, 150), dicaffeoyl-glycerol (147, 

150), coumaryl-caffeoyl glycerol (147, 150), ferruloyl-caffeoyl (147, 150) and 

coumaroyl-feruloylglycerol (150) are present in some red and white sorghum varieties. 

These phenolic esters are much lower in black sorghum (147) varieties however 

present at varying concentrations in red and white sorghums. As more powerful 

chemical analysis techniques become available, the identification of the more complex 

and lower concentration compounds is improving the knowledge of the cereal’s 

chemistry.  

The phenolic acid aldehyde, p-hydroxybenzoic acid aldehyde, present in sorghum is 

now joined by a list of others including protocatechuic acid aldehyde (150). Whether 

these exist in high enough concentrations to elicit a biological effect is still yet to be 

studied. However, in extracts, there is an indication that they may have involvement 

in apoptosis (147). 
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1.1.7.1.2 Flavonoid-based polyphenols 

Sorghum is very rich in bioactive phytochemicals, particularly the coloured bran layer 

that gives the characteristic colours of red, brown and black sorghums (151). White 

sorghum typically has lower concentrations of polyphenols (152) but still contains 

many other potentially bioactive compounds. The profiles vary significantly 

depending on the type (22, 153), variety (154), growing conditions (22, 151, 153, 155), 

processing and age of samples (156). There are several major recurring components 

that may have health effects. Processing impacts the concentration and bioavailability 

of these compounds. Typically, soaking decreases the concentrations of polyphenols 

and their in vitro antioxidant capacity (148), hence these processes will need to be 

taken into account when discussing the biological activities of sorghum and how 

human altering and processing can enhance or reduce potential health effects.  

Flavonoid-based polyphenols have structures as indicated in Figure 1.2.12.  

 

Figure 1.2.12: Structure of flavonoids. Different classes contain substituents at 

differing positions of the molecule (139). Hydroxyl groups are present at one or more 

positions 1 through 6’.  

Flavonoids consist of several different subclasses. In sorghum, the predominant 

classes are flavonols, catechins, proanthocyanidins, 3-deoxyanthocyanidins and 

flavones.   

1.1.7.1.2.1 Flavanols/catechins/proanthocyanins 

Flavanols, or catechins, are built from the same backbone as noted above but with a 

hydroxyl moiety located at carbon 3 of benzene ring C (Figure 1.2.13). Substituent 



groups at other positions lead to a wide array of molecules in this class. 

Stereochemistry can affect their biological activity (157).  

 

Figure 1.2.13: Catechin (left) and epicatechin (right) (158), indicating hydroxyl 

substituents on carbon 3, changing their stereochemistry. Methylated derivatives have 

methoxy moieties at positions 3’ and 4’.  

In sorghum, there are many flavanols, which will vary depending on the sorghum type. 

Catechin (146, 159) and epicatechin (159) were present in addition to their methylated 

derivatives. 3’-O-methylcatechin, 4’-O-methylcatechin, 3’-O-methylepicatechin and 

4’-O-methylepicatechin have been identified in many varieties of coloured sorghums 

(159). Proathocyanidins are oligomers of flavanols. Typically, in sorghum, the degree 

of polymerisation ranged from 2 to >10 (160), with many having degree of 

polymerisation over 10. Catechins and epicatechins were close to absent in white 

sorghum, when compared with red varieties (152, 159). Extrusion of sumac and bran 

combinations reduced proanthocyanidin content but increased their bioavailability, as 

indicated by plasma concentration after ingestion (159). Table 1.2.5 indicates the 

expected ranges of flavanols/procyanidins in sorghum varieties. Oligomeric 

procyanidins are considered to be tannins, and are generally referred to as condensed 

tannins.  
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Table 1.2.5: Indicative flavanol/proanthocyanidin concentrations in sorghum and 

sorghum fractions. 

Sorghum Product Reference Concentration  
Red sorghum Gu, et al. (161) 447.3-1919.5 mg/100g wholegrain    
Hi Tannin Bran Gu, et al. (162) 23.3mg/g   
    
Hi-tannin sorghum 
grain 

Awika, et al. (160) 
20.5 mg/g   

Sumac sorghum Awika, et al. (160) 21.97 mg/kg  
White sorghum  Gu, et al. (159) Not detected  
Sumac sorghum  Gu, et al. (159) 36.2mg/kg  

 

1.1.7.1.2.2 Flavanones  

Flavanones are classed based on their ketone substituent on position 4. They are 

distinct from flavones as they lack planarity and do not contain a double bond between 

carbons 2 and 3, shown in Figure 1.2.14.   

 

Figure 1.2.14:  Structures of naringenin (left) (163) and eriodictyol (right) (164). 

In sorghum, the predominant flavanones include naringenin (146), eriodictyol (146, 

153) and eriodictyol glycosides (146). Concentrations can range from undetectable, to 

combined total flavanone concentration of over 48µg/g (153). At present, there does 

not appear a correlation with colour and concentration so this may be a factor of 

growing conditions, as most polyphenols are secondary plant metabolites.  

  



Table 1.2.6: Concentration ranges of naringenin and eriodictyol in sorghum 

Reference Concentration Range 

Dykes, et al. (153) 0-48.4 µg/g 

Dykes, et al. (154) 0-1779.6 µg/g 

Taleon, et al. (22) 96-164 µg/g 

Dykes, et al. (165) 88.6-119.1 µg/g 

Cardoso, et al. (134) 51.2-267.3 µg/100g dry basis 

 

1.1.7.1.2.3 Flavones – apigenin and luteolin 

Flavones have structures which include a ketone substituent at position 4, and varying 

hydroxyl additions at other positions. In addition, they are planar molecules, resulting 

from the double bond between carbons 2 and 3 on the 2-phenylchromen-4-one 

backbone, Figure 1.2.15.  

 

Figure 1.2.15: Structures of apigenin and luteolin (166), indicating keto-substituents 

at position 4, and hydroxyl-substituents at the 3’ and 4’ carbons.   

In sorghum, apigenin (146) and luteolin (146) are two common flavones. These can 

vary from undetectable to up to 385µg/g in certain red-appearing varieties (153), while 

they appear to be completely absent in some other red varieties (147). Red sorghums 

are typically free of isoflavones, which are structurally distinct from flavones based on 

the positioning of the phenyl group being at C4 as opposed to C2 (146). Indicative 

contents of flavones in sorghum types are shown in Table 1.2.7. 
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Table 1.2.7: Indicative content of the flavones luteolin and apigenin in sorghum. 

Values show combined concentrations of apigenin and luteolin.   

Reference Concentration Colours/varieties 

Dykes, et al. (153) 0-385.9 µg/g Red, tan, black 

Dykes, et al. (154) 0-362.2 µg/g Lemon yellow varieties 

Taleon, et al. (22) 14-48 µg/g Black varieties 

Dykes, et al. (165) 18.2-56.1 µg/g Black varieties 

Cardoso, et al. (134) 13.9-44.9µg/100g Red varieties 

 

1.1.7.1. 3-deoxyanthocyanidins  

3-deoxyanthocyanidins are unique due to their stability in the environment. They can 

exist in their non-glycosylated form unlike their oxygenated counterparts, the 

anthocyanins which will exist as anthocyanidins. Luteolinidin and apigeniniden are 

the major 3-deoxyanthocyanidins present in red sorghum (147, 153) and black 

sorghum (22, 147, 165) varieties. Tan or white varieties contained very low 

concentrations of this class of compound (147, 153), while total concentrations can 

reach over 600µg/g in varieties with a black kernel appearance (153). In contrast, the 

concentrations of flavones luteolin and apigenin were lower in black than white/tan 

and red varieties (153). Typically 3-deoxyanthocyanidins are at the highest 

concentrations in the black varieties of sorghum (147, 153). Some varieties of black 

sorghum contained over 1mg of total 3-deoxyanthocyanidins per gram of grain weight 

(165). Their relationship to their flavone counterparts lutelin and apigenin is the loss 

of the ketone at position 4, and they typically exist as a salt with a positive charge on 

the oxygen at position 1 (Figure 1.2.16).  



 

Figure 1.2.16: Structure of 3-deoxyanthocyanidins (167).  

As discussed further in this review, the biological activities of 3-deoxyanthocyanidins 
have huge potential. Black sorghum represented a more economically accessible 
source of these compounds compared to other highly promoted sources such as 
blueberries (168). Two of the major deoxyanthocyanins, luteolinidin (orange pigment) 
and apigeniniden (yellow pigment), exist in non-glycosylated forms and represent a 
major component of the phytochemical profile of black sorghum (151),  
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Table 1.2.8.  

 

 

 

 

 

 

 

 

 

 

 

Table 1.2.8: Concentrations of 3-deoxyanthocyanidins in different sorghum grain 

types.  

Reference Predominant Compounds Concentration 

Dykes, et al. 

(153) 

Luteolinidin, apigeninidin, 5-

methoxyluteolinidin, 7-methoxyapigenidin 

0-679.7 ug/g 

Dykes, et al. 

(154) 

Luteolinidin, apigeninidin, 5-

methoxyluteolinidin, 7-methoxyapigenidin 

0-186.9 ug/g 

Taleon, et al. 

(22) 

Luteolinidin, apigeninidin, 5-

methoxyluteolinidin, 7-methoxyapigenidin 

251-804 ug/g 

Dykes, et al. 

(165) 

Luteolinidin, apigeninidin, 5-

methoxyluteolinidin, 7-methoxyapigenidin 

329.1-1053.9 ug/g 



Cardoso, et 

al. (134) 

Luteolinidin, apigeninidin, 5-

methoxyluteolinidin, 7-methoxyapigenidin 

50.6-342.4 ug/100g 

(dry basis) 

 

Anthocyanins can exist in either polymerised or un-polymerised forms (151), which 

may alter their bioavailability and activity, and their in vivo effects. Similarly, de-

glycosylated procyanidins in sorghum have varying degrees of polymerisation (169). 

However, it has been difficult to characterise the individual combinations of 

anthocyanins in these compounds.  

1.1.7.2 Other compounds – stilbenoids, anthraquinones, terpenoids, alkaloids 

Stilbenoids have also been identified in sorghums at very low concentrations, for 

example 1 mg/kg concentrations of trans-piceid and up to 0.2 mg/kg trans-resveratrol 

(170). 

Sorghum varieties also contain anthraquinones, terpenoids, carotenoids and alkaloids 

(171). Carotenoids are higher in red varieties when compared to white, and 

anthraquinones are absent in white sorghums from the few lines tested (171). The 

major carotenoids found in sorghum are lutein, zeaxanthin and β-carotene. These occur 

in quantities of approximately 0.112-0.309 mg/kg in coloured varieties, with yellow 

endosperm types being the most concentrated, and white endosperm types being the 

lowest containing 0.010-0.016 mg/kg (172). Anthraquinones and terpenoids in 

sorghum have not been well-studied. 

1.1.8 Potential for metabolic syndrome and health 

1.1.8.1 Metabolic syndrome  

Metabolic syndrome is caused by a cluster of pathologies that lead to increased risk of 

type 2 diabetes mellitus and cardiovascular disease. The diagnosis is based on the 

presence of central adiposity and dyslipidaemia, hypertension and raised fasting 

glucose concentrations (173, 174). Additional measurements which are of importance 

include dysregulated adipose tissue biomarkers or hormones (such as adiponectin and 

leptin), fatty liver, insulin resistance, elevated free fatty acids in plasma, vascular 

dysregulation, endothelial dysfunction, pro-inflammatory state indicated by high 
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concentrations of inflammatory cytokines, pro-thrombotic state, fibrinolytic factors 

and clotting factor dysregulation, and hormonal characteristics (173). It has been 

suggested that there are links between gastrointestinal health and the development of 

metabolic syndrome (175-179) which are also discussed.  

1.1.8.2 Normalisation of blood lipids 

1.1.8.2.1 Clinical and animal trials 

Dyslipidaemia is a key pathology of metabolic syndrome and has been linked to high 

cardiovascular risk (180). Sorghum, its fractions and extracts of sorghum can improve 

the blood lipid profile. Ethyl acetate extracts of Sorghum bicolor reduced serum 

triglycerides and total cholesterol in rats with diet-induced obesity (181). Similar 

results have been found in hamster models of atherosclerosis using hexane-extractable 

lipids, where plasma non-HDL (high-density lipoprotein) cholesterol was reduced, in 

addition to reduced esterified cholesterol in the liver. This was found to be due to 

reduction in cholesterol reabsorption (182). These results appear consistent with the 

reductions caused by sorghum distillers dried grain lipids (183) and non-wax lipids 

(184). Methanol extracts have similar effects on serum triglycerides in mouse models 

(185). Isolated kafirin fractions of white sorghum improved serum cholesterol profiles 

in rat models, however equivalent sorghum flour-based studies increased total 

cholesterol, primarily HDL cholesterol (186). Unrefined sorghum consumed at a rate 

of 100g per day in human studies improved serum lipid profiles (187). Extruded 

Sorghum bicolor reduced degree of steatosis and liver cellular fat by 30% in a diet 

induced obesity model of rat (188).   

1.1.8.2.2 Mechanism and potential  

The most likely mechanism by which sorghum reduced serum triglycerides and 

cholesterol was by alteration of the reabsorption of bile and bound fats. The major 

effect is likely to be the prevention of reabsorption of cholesterol. Sorghum contains 

sterols which have been shown to prevent the reabsorption of cholesterols. 

Policosanols, also found in sorghum (131), reduced plasma cholesterol concentrations 

by inhibition of the absorption of bile acids (189). In addition, the presence of 

policosanols reduced endogenous cholesterol synthesis, although this has been proven 



only in in vitro studies (190). Although it is not completely clear, it is believed that the 

mechanism lies in changes to either the synthesis or degradation of HMG CoA (3-

hydroxy-3-methyl-glutaryl-coenzyme A) reductase (190), the rate-limiting step in 

cholesterol biosynthesis. It has been further suggested that policosanols increase the 

phosphorylation of AMP (adenosine monophosphate) (191), by the activation of AMP 

kinase (192). The effects of policosanols are restricted to serum, rather than to 

particular tissues (189). The favourable policosanol profile of sorghum containing a 

high ratio of C24-C38 chains (193) may have beneficial effects for cardiovascular 

health. Policosanols improved serum cholesterol profiles in human studies (194, 195) 

although this has been disputed by some studies (196, 197). These results indicate that 

the lipid fraction of sorghum could be responsible for the reduction in triglycerides 

and normalisation of blood lipids. 

Further, catechins and tannins have been implicated in the regulation of blood lipids. 

Although direct studies of sorghum tannins on cholesterol regulation have not been 

carried out, several other tannins have been studied, with promising results. Structural 

similarities indicate that there is potential for the sorghum tannins to have similar 

effects. High molecular weight persimmon tannin improved lipid profiles by 

increasing the activity of key enzymes required for the synthesis and transport of 

cholesterol and its esters (198). These promising results in vivo suggest that high tannin 

foods such as sorghum may help improve serum lipid profiles, one of the key 

diagnostic criteria for metabolic syndrome.   

Oxidation of LDL (low-density lipoprotein) cholesterols has been implicated in the 

development of atherosclerosis. This is initiated by a lipoprotein, followed by 

adherence and penetration of monocytes which mature into macrophages. Oxidised 

cholesterols then lead to development of plaques (199). Macrophage-mediated 

oxidation of LDL cholesterols were reduced both in vitro (200-202) and in vivo (202, 

203) by flavonoids. Although these studies were not conducted with sorghum 

flavonoids, this may be one mechanism by which sorghum reduces cardiovascular risk.  
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1.1.8.3 Anti-diabetic effects 

1.1.8.3.1 Clinical and animal trials/current evidence 

Sorghum has similarly been linked to hypoglycaemic effects (204) and is a low 

glycaemic index food with slow digestion. The development of pathologies of 

metabolic syndrome is increased with high glycaemic index and load foods in the 

overweight population (205). Ingestion of whole sorghum flour muffins lowered 

insulin fluxes more than a wheat-based counterpart and marginally reduced 

fluctuations in glucose (206) as a mechanism for the management and prevention of 

development of type 2 diabetes mellitus, associated with metabolic syndrome.  

Whole sorghum food consumption caused a lower rise in plasma glucose than the 

dehulled version and similar rice and wheat foodstuffs (204). Methanol extracts of 

sorghum in models of insulin resistance in mice reduced fasting glucose and insulin 

concentrations when administered in a high lipid diet designed to induce dysfunction 

of glucose regulation (185). This was correlated with increased PPAR-γ (peroxisome 

proliferator-activated receptor gamma) expression in adipose tissue (185). Ethanol 

extracts showed insulin-independent normalisation of glucose responses in diabetic 

rats (207). In addition, there were minor improvements in plasma glucose 

concentrations, which were similar to that of glibenclamide, when sorghum extract 

was administered (208). Fermented and dried whole-grain red sorghum flour reduced 

severity of alloxan-induced diabetes, with blood glucose as low as half that of diabetic 

controls (209). Human trials showed that consumption of extruded sorghum beverage 

containing proanthocyanidins and 3-deoxyanthocyanidins reduced peak postprandial 

glucose and total insulin release of a subsequent meal by up to a half (210). 

Diabetic complications such as reduced endothelial reactivity can arise from glycation 

of proteins (211). Sorghums high in phenolics, such as red or black varieties, reduced 

the glycation of these proteins in vitro (144).  

1.1.8.3.2 Mechanisms and potential 

The reversal of type 2 diabetes is possible with the primary requirement being re-

establishment of pancreatic b-cell function. In the progression of type 2 diabetes, there 



are distinct changes in the release and activity of insulin (212). These are caused by 

the dysfunction of many factors with b-cell dysfunction being one of the earliest 

changes (213). Apoptosis of pancreatic b-cells has been implicated in the impaired 

insulin release associated with type 2 diabetes mellitus. The presence of proteins 

associated with apoptosis and histological assessment of apoptotic pancreatic cells was 

markedly reduced by treatment with anthocyanins extracted from black soybeans 

(214). This may be one mechanism by which flavonoids, especially the 

deoxyanthocyanidins found in sorghum, result in reduced progression or potential 

reversal of the disease with long-term consumption.  

Inflammation of the pancreatic cells, mediated by several pathways, can lead to cell 

death. Inflammatory responses have been implicated in the development of type 2 

diabetes mellitus. In instances where dietary or genetic susceptibility has led to 

development of type 2 diabetes mellitus, inflammation has been implicated as one of 

the mechanisms at play. In vivo, flavonoids such as apigenin and luteolin reduced 

NFκB (nuclear factor kappa-B) activation and subsequently reduced b-cell damage, 

albeit in an in vitro setting (141). These results are promising, especially given that 

apigenin is absorbed from the gastrointestinal tract (215). Hydrolysed kafirin proteins 

similarly show in vitro oxygen radical scavenging properties, suggested to be due to 

the release of bound compounds within the protein matrix (42).  

Ethyl acetate extracts of rice bran containing over 50% phenolic acids, dosed at 

0.2g/kg per day, reduced fasting blood glucose concentrations in diabetic rats, linked 

to the presence of ferulic acid (216). Rice bran extract contains similar phenolic acids 

to sorghum such as m-hydroxybenzoic acid, benzoic acid, p-coumaric acid, ferulic acid 

and sinapic acid. 

Further to this, inflammation may be regulated, at least to some degree, by the colonic 

microflora, the colonic environment and the interaction with the host (217, 218). 

Faecal lipopolysaccharide concentrations were increased with high fat feeding, in 

addition to the concentrations of pro-inflammatory cytokines in faecal lysates (219). 

The consumption of wheat-derived arabinoxylans has the potential to reduce 

circulating endotoxins (220). Sorghum, containing galacturoarabinoxylans, may result 

in similar effects. These studies, however, were unable to determine whether these 
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changes were due to reduced production, increased degradation, or reduced 

permeation. 

1.1.8.4 Effect on central adiposity and obesity  

Whole sorghum has not been correlated with weight reduction or improvements in 

body composition (186). In a rat model of diet induced obesity, extruded sorghum flour 

consumption reduced the weight of epididymal adipose tissue and adipocyte diameter 

(221). Long-term consumption has been linked to improvements in hormonal 

regulation of satiety and food consumption (222).  

Sorghum resistant starch, however, decreased body weight and abdominal fat pads 

(223). With this change, there was an altered gastrointestinal microflora with a 

decrease in Bifidobacterium and Lactobacillus and an increase in Enterobaceriaceae 

(223). Although food intake did not change, there were decreased leptin and increased 

adiponectin responses with sorghum resistant starch administration (223), which may 

help to regulate food intake.  

Due to the high proportion of leucine, interest in sorghum may grow due to the 

increasing evidence of the “leucine threshold” required for muscle growth that has 

been implicated as a potential way of managing obesity (224). The provision of 2.5g 

of leucine is sufficient to initiate this response when ingested in a single meal (224).  

1.1.8.5 Effects on cardiovascular disease and hypertension 

1.1.8.5.1 Clinical trials  

The effects of sorghum and its extracts on hypertension have not been extensively 

studied. A review of literature has found no evidence to date of sorghum being 

specifically linked to improvements in blood pressure. There have, however, been 

studies which link several of the chemical compounds in sorghum to improved blood 

pressure. Sorghum vinegar extracts which contain phenolic acids protected from 

pulmonary thrombosis in animal models through anticoagulation and platelet activities 

(225). Thrombosis has a higher risk factor in those with metabolic syndrome (226). 

The process behind this is thought to be the induction of hypercoagulability, 



potentially through increased activity of PAI-1 (plasminogen activator inhibitor-1) 

which is associated with higher visceral fat, and insulin release (227). 

1.1.8.5.2 Mechanisms and Potential 

Angiotensin converting enzyme (ACE) inhibition is a well-known mechanism by 

which compounds may improve hypertension. Apigenin and luteolin have shown 50% 

inhibition of ACE activity at 280 and 290µM concentrations in vitro, respectively 

(228). Further, endothelial dysfunction, which precedes the vascular dysfunction 

leading to hypertension (229), may be changed. Flavonoids reduced blood pressure in 

rat models and ex vivo vascular reactivity to acetylcholine (230).  

The development of hypertension in obesity is thought to be caused by the interaction 

of several pathways, as shown in Figure 1.2.17 (231). 

 

 

Figure 1.2.17: Development process of hypertension in metabolic syndrome (231) 

Reduction in the concentrations of inflammatory markers may be mediated by 

sorghum supplementation. Certain sorghum genotypes when integrated into diets of 
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rats reduced the transcription of TNF-α (tumour necrosis factor-alpha), IL-10 

(interleukin-10) and IL-8 (interleukin-8) (232). TNF-α protein expression was reduced 

with sorghum extract administration in high fat diets (185). Sorghum kafirin fractions 

extracted in ethanol reduced lipopolysaccharide-induced macrophage inflammation of 

TNF-a by up to 81.4% (41).  

1.1.8.6 Gastrointestinal health  

1.1.8.6.1 Clinical trials  

Very little information exists so far that sorghum, as a whole food supplement, 

moderates the endotoxaemic state. However, many studies suggest that sorghum has 

the potential, based on its composition, to improve metabolic syndrome via modulation 

of endotoxaemia (217, 233, 234).   

Sorghum lipid extracts are capable of increasing the Bifidobacteria genera in the colon 

(233). These micro-organisms are gram-positive, non-LPS (lipopolysaccharide) 

producing bacteria that increase short chain fatty acid production. They also ameliorate 

LPS-induced inflammation (234) which is associated with metabolic syndrome 

factors.  

Providing sufficient substrates for these beneficial bacteria is one way to enrich their 

population. Resistant starches and non-starch polysaccharides, such as those in 

sorghum and other wholegrain cereals, will improve gastrointestinal health (107, 235, 

236). Although not a controlled study, investigations into populations which consume 

large amounts of sorghum, such as the Mossi people of Africa, have shown a 

favourable gut microbial profile with large proportions of Bacteroidetes and higher 

concentrations of faecal short chain fatty acids (217). 

1.1.8.6.2 Potential mechanisms 

Recently, it has been suggested that intestinal microflora have an important role to play 

in the development of insulin resistance (237) by the initiation of inflammatory 

pathways caused by an endotoxaemic state (238). The term “low-grade endotoxaemia” 

is associated with metabolic syndrome (238), and management of this state markedly 



improved insulin resistance (239). Modulation of gastrointestinal dysfunction is one 

way by which prevention or reversal of aspects of metabolic syndrome is plausible. 

Inflammation of the gastrointestinal tract itself is mediated by flora in a high fat diet, 

and precedes many of the pathologies of metabolic syndrome (240).  

There are multiple pathways this state can be altered. One approach is the modulation 

of the gut bacteria to reduce the production of LPS. The “optimal” gut flora balance 

has not been characterised, and indeed may be different on an individual basis. It is 

generally accepted that the balance of Bacteriodetes:Firmicutes may be of importance, 

where a greater proportion of Bacteroidetes is desirable (217). Although this is an 

initial starting point, there are approximately 823 known species of bacteria that 

inhabit the human gastrointestinal tract (241). The composition varies greatly with 

geographical location, age, lifestyle and diet (242, 243). It will take a significant 

amount of time to determine what the “ideal” microbiome is and how to manipulate it 

for full health. Certain species and smaller groups of bacteria have been linked to 

improvements in pathologies of metabolic syndrome, including Akkermansia 

muciniphila, a mucin-degrading bacteria that is present at around 3-5% of the total 

community (244).  

Several studies have defined the alterations in the microbiome composition with high 

fat feeding. This typically leads to an unfavourable decrease in Bifidobacteria (239) 

and an increase in Firmicutes and Proteobacteria (245). This finding has been 

questioned, with some suggesting that obese individuals have a higher ratio of 

Bacteriodetes (246). Additionally, there has been interest in the role of Mollicutes, 

which show a significant increase in high fat, Western-style diets (247).  

Increasing the breakdown of LPS by intestinal alkaline phosphatase has also been 

suggested as a mechanism as intestinal alkaline phosphatase is responsible for 

detoxification of LPS (248). Concentrations of intestinal alkaline phosphatase are 

negatively correlated with obesity and high fat diets (175). Restricting the movement 

of LPS through the gastrointestinal barrier, by reduction of intestinal permeability, and 

improvement in tight junctions reduced the circulating LPS concentrations (237). The 

development of inflammation cascades initiated by compounds such as LPS can then 
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lead to atherosclerosis, insulin resistance and impaired glucose tolerance (249). A high 

fat diet increased intestinal permeability and reduced tight junction proteins (175).  

Several purified non-starch polysaccharides improved the endotoxaemic state (220, 

250, 251), some of which may be derived from sorghum. Increased consumption of 

resistant starches is linked to increased short chain fatty acid production, and increased 

Bifidobacteria (252). The increased short chain fatty acids lead to increased hepatic 

adipogenesis and subsequently control of satiety and feeding hormones. Sorghum does 

not appear to damage intestinal morphology, and assists in maintaining changes 

associated with a high fat diet (232, 253). 

1.1.9 Sorghum integration into diets 

Sorghum is being investigated as a potential replacement for wheat in many food 

products. The popularity of “gluten-free” diets has been increasing in recent years 

(254, 255). This movement has helped sorghum gain traction as a grain for human 

consumption (256). The use of sorghum in products such as Gluten Free WeetBix™ 

is potentially the beginning of the evolution of sorghum from “feed” to “food”. Studies 

have indicated that it is an appropriate substitute, or partial substitute, in wheat-based 

products including breads, cakes, biscuits and cereal flakes (257). Bobs Red Mill™ 

sorghum flour, commercially available in Australia, contains 33.5% resistant starch 

and can be used in the preparation of muffins and other products (206).  

1.1.10 Cautions 

Sorghum has the potential to act as a chelating agent for trace minerals and contains 

“anti-nutritive compounds”, but this is likely only when consumed in excessive 

amounts (258, 259). Sorghum is prone to ergot infections, but, with appropriate 

management and processing, products will be free of toxic compounds, of particular 

concern are fumonisins and other mycotoxins (260). Processing of sorghum will alter 

its composition and potentially change the concentration and total contents of 

beneficial compounds. This is also especially true for glycaemic responses after 

ingestion. The preparation method can change the insulin and glucose responses (261). 

Consumers should be aware that any increase in processing of flours will likely reduce 

the benefits, similar to the case of white wheat flour, compared to whole wheat grains 



(262). Concentration of phytochemicals and sorghum extracts are likely to enhance 

certain aspects of sorghums functionality in the context of metabolic syndrome 

parameters.  

1.1.11 Processing, growth, and breeding 

Sorghum is a wide-scale, commercially produced crop, with multiple varieties 

available for use, so this variability needs to be addressed when promoting sorghum 

for health. Sorghum grown in different locations, and under different environmental 

conditions, can vary drastically in the concentrations of flavonoids. Environmental 

variability can account for almost 60% of the variance component of total flavanones, 

21% for flavones and approximately 16% of 3-deoxyanthocyanidins (22). These 

differences are not trivial, with one study showing that environmental conditions can 

consistently result in less than half the comparable flavone, flavanone or 3-

deoxyanthocyanidin concentrations when the same genotype is grown under less 

favourable conditions (22). Since the concentrations in the bran fraction of sorghum 

are highest for flavonoids, phenolics and tannins (263), any process which removes 

the bran layer will reduce the potential health effects associated with these compounds. 

The research into processing methods has become increasingly of interest over recent 

years, as knowledge of how these methods change the nutritional and nutraceutical 

profile have been recognised (91, 264-267). With the increased consumption of pre-

prepared and packaged foods, this knowledge is required for promotional purposes and 

education of consumers. 

Sorghum is often fermented for the purpose of ethanol production (268), gluten-free 

beer production (170), for spirit production (269), and for gluten-free sourdough 

production (150). Improved bioavailability of phenolics has been found after 

fermentation in oat and millet (270), and fermentation with strains of Lactobacilli can 

both increase and decrease availability of catechin, quercetin and gallic acid depending 

on the strain (271). The fermentation process will also alter the existing profile of 

phenolics (160, 272, 273).  

Sorghum tea is also noted to be a traditional way for sorghum to be prepared, while 

the preparation can also alter the chemical profile of sorghums (145). Cooking 

typically reduces flavonoid concentrations as shown during the preparation of 
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“porridges” (146) and alters the profile by increasing certain flavonoids and decreasing 

others (146). The cooking process also decreased phenolic acid concentrations (146).   

Conscious efforts have been made to breed for higher flavonoid sorghums with the 

potential use as a functional food or for nutraceutical supplements. This is in stark 

contrast to previous efforts to reduce these compounds for use in the stockfeed 

industry, where they are often considered “anti-nutritive”, and are associated with 

impaired weight gain in cattle, pigs and poultry (274-276).  
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1.3 Phloretin Literature Review 

Dietary-induced glucose dysregulation is one of the key parameters of metabolic 

syndrome, an affliction which results in a significant burden to the health care industry. 

Sugar transport inhibitors have been tested as a potential treatment target for pre-

diabetes and type 2 diabetes mellitus (277, 278). Phloretin, a flavonoid isolated from 

apples, is an inhibitor of solute carrier family 2 (facilitated glucose transporter), 

member 2 (SCLA2) also called GLUT2 (glucose transporter 2). It is a weaker inhibitor 

of the sodium/glucose co-transporter 1 (SGLT1). Its glycoside, phlorizin, inhibited 

sodium/glucose co-transporter 1 and 2 (SGLT1 and SGLT2).  

 

Figure 1.3.18: Structure of phloretin and phlorizin (279) 

As functional glucose transporters are present in almost all living cells in the body, the 

administration of phloretin, and other sugar transport inhibitors, has the potential to 

inhibit several pathways to diabetes and metabolic syndrome. In vivo effects have not 

been fully studied and the beneficial and detrimental effects on the symptoms of 

metabolic syndrome have not been elucidated.  

Sugar transporters have substrate selectivity. SGLT1 is an active transporter capable 

of transporting glucose and galactose, present in the intestine tract, kidney, heart, brain, 

testis and prostate. SGLT2 is also responsible for glucose and galactose transport, 

however in the kidney, brain, liver, thyroid, muscle and heart (280). SGLT1 is non-

mobile and is sodium-dependent (Figure 1.3.19).  



 

Figure 1.3.19: Function of SGLT1 in glucose transport (280) 

GLUT2 is a mobile sugar transport element, which is non-sodium dependent (Figure 

1.3.20). It is present in the gastrointestinal tract, pancreas, liver, brain and other parts 

of the nervous system (281). It is not only responsible for sugar transport of glucose, 

galactose and fructose (282), but hepatoportal glucose sensing, pancreatic sensing, 

taste preference and thermoregulation (281).  

 

Figure 1.3.20: The role of GLUT2 is gastrointestinal glucose uptake as a mobile 

element (283) 
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Flavonoids including quercetin, isoquercetin and myricetin have been implicated in 

the inhibition of sugar transporters (284). Catechins (flavonols/proanthocyanidins) 

competitively inhibit SGLT1-mediated transport (285) and are found in sorghum, 

barley, blueberries, cranberry, chokeberry, apples, peaches, nectarines, pinto beans, 

chocolate, red wine, and walnuts among others (161). Flavanones also show sugar 

uptake inhibiting properties. Naringenin inhibits gastrointestinal uptake of glucose 

(286-288), however eriodictyol can improve glucose uptake in hepatocytes (289) 

which show benefits for both glucose uptake regulation and peripheral clearance. 

Flavanones are found in food such as sorghum (153), lemon juice (290), orange juice 

and grapefruit (291). The flavone apigenin inhibits GLUT1-mediated sugar uptake 

(292, 293), while luteolin inhibits GLUT2-mediated sugar transport (284). Apigenin 

and luteolin can be found in sorghum (153), parsley, celery and capsicum (290).  

1.3.2 Sugar transporter expression in metabolic dysfunction 

1.3.2.1 Gastrointestinal lumen 

Phloretin is an inhibitor of GLUT2-mediated glucose uptake, while phloridzin is an 

inhibitor of SGLT1-mediated uptake in the gastrointestinal lumen (294). SGLT1 and 

GLUT2 work in conjunction to absorb glucose from the gastrointestinal lumen. 

SGLT1, unlike GLUT2, is a non-mobile membrane element responsible in part for the 

apical uptake of glucose and other hexoses from the lumen (295). GLUT2 is primarily 

responsible for the basolateral flux of glucose and fructose (296). GLUT2 is a mobile 

element of the sugar transport system, which is present in the apex of brush border 

cells in response to food ingestion (283). Expression of GLUT2 in the gastrointestinal 

lumen is typical, however location of the protein is altered under certain metabolic 

conditions. Translocation of GLUT2 is stimulated by the ingestion of meals and the 

concentration of glucose in the lumen (282).  

Obesity and insulin resistance result in apical presence of GLUT2 in gastrointestinal 

enterocytes, whereas in lean phenotypes, the primary location is the basolateral 

membrane, with transient localisation in the apex upon ingestion of foods (297). In 

diabetic rat models, SGLT2 expression was increased with presence in the brush 

border membrane of jejunal epithelial cells (298).  



1.3.2.2 Pancreas 

GLUT2 is the primary glucose sensor of pancreatic β-cells in rats (299). Preceding 

pancreatic β-cell death, there is an indication of dysregulation of sugar transporter 

function. Transcription and expression of GLUT2 was decreased in animal models of 

streptozotocin-induced diabetes (300). GLUT2 had a reduced expression in pancreatic 

β-cells of diabetic mice, however was reversible at least to some extent (301, 302). 

Serum non-esterified fatty acids also reduced GLUT2 expression in the pancreas (303). 

Similarly a high fat diet resulted in reduced pancreatic GLUT2 expression in rats and 

suggested that a high fat diet, rather than a high-carbohydrate diet, resulted in impaired 

insulin secretion (304, 305). The loss of GLUT2 appeared to be reversible (306) (301, 

302). This reduction was prevented by the administration of a known GLUT2 inhibitor, 

5-thio-D-glucose (300). 5-thio-d-glucose acts via competitive inhibition (307) while 

phloretin acted to inhibit glucose transport by preventing translocation of the GLUT2 

from vesicle to the apical and basolateral cell membranes (308). Although the 

mechanisms differ, the potential for improvement must be investigated.  

Rat models indicated that GLUT2 is the primary sugar glucose transporter in 

pancreatic β-cells, however conflicting evidence exists in human models where 

GLUT2 does not appear altered with diabetes (309, 310). GLUT1 and 3 are present in 

higher concentrations and may be the primary glucose transporters or sensing 

molecules in human islet cells (311). This may have implications for transfer to human 

models.  

1.3.2.3 Liver 

GLUT2 is expressed in the liver and, in a normal physiological model, its role is to 

control blood glucose concentrations (312). The role of GLUT2 in peripheral glucose 

clearance was primarily in liver tissue (313, 314). Expression of GLUT2 was variable, 

where expression was dose-dependent with respect to glucose, which suggests a role 

in glucose metabolism (315). On the contrary, insulin presence had an inhibitory short-

term effect on GLUT2 expression in the liver (316). In the liver, it appears that GLUT2 

has a role in regulating blood sugar, by releasing glucose into the bloodstream (317) 

but also for uptake (312). 
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The expression of GLUT2 in the liver with diabetes and pre-diabetes has not been 

unequivocally defined. Many researchers suggest that GLUT2 is not affected by the 

pre-diabetic state (301, 318). However, the expression may fluctuate depending on the 

insulin and glucose status of the rat (319). Research has suggested that increased 

PPAR-γ,  responsible for adipogenesis, was able to bind the GLUT2 promoter region 

and upregulate expression, linking the adipogenic state and glucose uptake (320). 

GLUT2 expression in the liver of streptozotocin-induced diabetic rats was almost 

doubled, yet was reduced by the presence of phlorizin (313). Similar increases have 

been seen in Wistar diabetic rats and Zucker fatty rats (321), models of oleic-induced 

fatty liver (322). While normal fluctuations occur with glucose and insulin in a 

“healthy” liver, the increases seen in obese and diabetic rats occur independently of 

these controls, contributing to the dysregulation of glucose control (321). A number of 

treatments for diabetes correct or improve the elevated liver GLUT2. These have 

included ginseng (323) and vanadate (324), while other treatments failed to correct the 

upregulation including pioglitazone (325).  

1.3.2.4 Kidney 

SGLT1 is present at low levels in the late part of the proximal renal tubule, and SGLT2 

is highly expressed in the early proximal renal tubules (326). The primary roles of 

SGLT1 and SGLT2 in the renal tubules are the re-uptake of glucose with 

approximately 90% reabsorbed by SGLT2 (327). GLUT2 was significantly 

upregulated in proximal tubular epithelial cells from patients with type 2 diabetes, 

when hyperglycaemia was present (328), and in Zucker diabetic rats (329).  Similar 

studies have suggested that this facilitates glucose reuptake under high glucose load in 

the kidney brush border, which is transient in the diabetic state (330).  

Renal uptake inhibitors such as dapaglifozin, a synthetic dihydrochalcone, are 

effective as inhibitors of renal SGLT2 uptake and in the treatment of diabetes (331).  

1.3.3 Phloretin biological activity 

Early studies indicated that phloretin was an extremely effective glucose and fructose 

transport inhibitor in isolated hepatocytes (332). Phloretin inhibited glucose uptake in 



erythrocytes with concentrations as low as 1µM inhibiting approximately 20% of 

glucose uptake, where 72 and 100 percent inhibition were achieved at 10µM and 100 

µM (333). Inhibition of glucose transport by 50% at 20µM phloretin has been recorded 

in adipocytes, however transport can be increased with exposure to insulin (334). 

Comparative studies indicated that phloretin is a better hexose transport inhibitor than 

phlorizin in models of hepatocyte transport, where 1mM concentration of phloretin 

reduced uptake to a greater extent than phlorizin (332). This may be due to the 

expression or efficiency of the respective transporters the two compounds interact with 

(283). GLUT2 is the major glucose transporter in the liver, and GLUT2 is inhibited by 

phloretin (308).  

Phloretin ingested in meals typically resulted in circulating conjugated forms of 

phloretin. Urinary excretion after an acute dose in the form of a meal is estimated to 

be approximately 10.4% (294). In vivo studies indicated that absorption of phloretin 

occurs primarily in the small intestine, with approximately 25% being absorbed (335). 

Phloretin is generally considered as a safe food flavouring ingredient by the Flavour 

Extract Manufacturers Panel (Flavouring Substances 23), number 4390, therefore its 

ingestion should be of limited concern.  

The systemic effects of phloretin with relation to metabolic syndrome have not been 

fully characterised. Oral ingestion with food is one mechanism by which phloretin may 

ameliorate the progression of type 2 diabetes mellitus, or alter the manifestation of 

some of the associated pathologies of metabolic syndrome.  

1.3.3.1 Anti-diabetic potential for phloretin 

The vast majority of research has focused on the anti-diabetic effects of phloretin due 

to its sugar transport inhibiting properties.  

In vivo, SGLT inhibitors lowered post-prandial blood glucose concentrations in 

diabetic rats (331, 333). In streptozotozin-induced diabetic rats, phloretin at 

25mg/kg/day corrected blood glucose and insulin concentrations to the same extent of 

glibenclamide (336). The effects on diabetes in streptozotozin-induced rats appeared 

to be dose dependent, even at low concentrations between 5 and 40mg/kg/day (337).  
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Some ingested phloretin was converted to its glycoside within the lumen, and prior to 

absorption into the blood stream (335). Dietary ingestion of phlorizin at 0.05% of the 

diet reduced fasting glucose concentrations by 23%, and showed that approximately 

88% of the dihydrochalcone ingested circulated as the aglycone, phloretin (338). Other 

studies where phloretin was ingested at 75mg/kg/day resulted in normalised fasting 

glucose, and greatly reduced glycation of proteins in the kidney and heart, which is a 

major cause of oxidative stress and diabetic complications (339).  

It has been shown that inhibition of GLUT2 can assist in ameliorating loss of its 

expression in pancreatic β-cells in rat models of streptozotocin-induced diabetes, 

exhibiting potential for phloretin (300).  

1.3.3.2 Anti-lipidaemic potential for phloretin 

Dyslipidaemia is one of the pathologies of metabolic syndrome. In  a mouse model of 

dietary induced metabolic syndrome, there was no improvement on blood lipid profiles 

despite improvements in fat infiltration in the liver (340). In diets of choline-induced 

hepatic damage and vascular changes that mimic the changes in metabolic syndrome, 

phloretin at a dose of 200mg/kg reduced triglyceride concentrations and alanine 

transferase activity. At 400mg/kg/day, phloretin reduced total cholesterol 

concentrations and liver non-esterified fatty acids, and at 100mg/kg/day, it reduced 

plasma aspartate transferase activity (341).  

1.3.3.3. Cardio-protective potential of phloretin 

In vitro, phloretin corrected impaired arterial vaso-relaxation that is caused by human 

immune-virus protein (342). The cause may differ, however this shows potential in a 

metabolic syndrome context. Phloretin ingestion has been shown to maintain vascular 

tone and nitric oxide release (341). Phloretin reduced expression of pro-inflammatory 

cytokines, in addition to adhesion molecules intercellular adhesion molecule-1 

(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte 

adhesion molecule-1 (E-selectin) involved in the progression of atherosclerotic lesions  

(343).  Although the study was done in tissue culture, it may be transferrable to in vivo 

applications.  



1.3.3.4 Anti-inflammatory potential of phloretin 

Inflammation is one of the causes of the progressive decline in pancreatic b-cell mass 

that leads to type 2 diabetes. Further to this, chronic low-grade inflammation was been 

linked to multiple pathologies of metabolic syndrome. Inflammation caused 

progression of the diabetes and apoptosis/necrosis of insulin producing cells (344). 

Inflammation also caused vascular dysfunction (345), development of liver steatosis 

markers (346), and progressed atherosclerosis (347). Intestinal barrier function has 

been linked to the development of metabolic syndrome and systemic inflammation. 

Studies of colonic epithelial cell lines have shown that exposure to apple polyphenol 

phloretin results in increased expression of occludin mRNA (348).  

There is significant evidence that phloretin has anti-inflammatory activities in in vitro 

studies of LPS-stimulated mouse macrophages as indicated by reduced production of 

the pro-inflammatory cytokines, IL-6 (interleukin-6), TNFα and prostaglandin E2 

(349). Lu, et al. (350) indicated suppression of nitric oxide production in T-

lymphocytes stimulated by LPS and interferon. Production of pro-inflammatory 

cytokines was suppressed in cell lines exposed to phloretin (351).  
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Chapter 2 – Materials and Methods 

2.1 Ethics 

All animal handling and experimentation was approved by the Animal Ethics 

Committee (AEC) of the University of Southern Queensland. Experiments were 

carried out under the AEC approval numbers 13REA005 (10/9/2013-10/9/2015), 

15REA001 (11/3/2015-11/3/2017) and 15REA005 (20/7/2015-20/7/2018). All rats 

were treated and housed as per the NHMRC (National Health and Medical Research 

Council) 2014 guidelines for the ethical treatment of animals (352). All rats were 

individually housed in temperature-controlled, 12hr light-dark conditions and 

provided ad libitum access to food and water, except for periods of specific 

experimentation as indicated in procedural details. Food and water consumption, and 

body weight were assessed daily. 

2.2 Rat Diet and Experimental Structure 

Male Wistar rats weighing between 330 and 340g were sourced from the Animal 

Research Centre (Perth, Australia) and were divided randomly into experimental 

groups. CS and HCHF diets were as described by Panchal et al (353). The CS diet was 

composed of 570 g of corn starch (Agri Food Ingredients, Kew East, Victoria 

Australia), 155 g of powdered rat food (Specialty Feeds, Glen Forest, Western 

Australia, Australia), 25 g of Hubble, Mendel, and Wakeman salt mixture (MP 

Biomedicals LLC, Illkirch, France), and 250 g of water per kilogram of diet. HCHF 

diet consisted of 175 g of fructose (Tate & Lyle ANZ Pty Ltd, Wacol, Qld, Australia), 

395 g of sweetened condensed milk (Coles, Australia), 200 g of beef tallow (Carey 

Brothers Butchers, Warwick), 155 g of powdered rat food (Specialty Feeds, Glen 

Forest, Western Australia, Australia), 25 g of Hubble, Mendel and Wakeman salt 

mixture (MP Biomedicals LLC, Illkirch, France) and 50 g of water per kilogram of 

diet. The energy of the diets were 11.2 kJ/g food for the CS diet and 17.8 kJ/g for the 

HCHF diet (353). An additional 3.85kJ/mL energy was added to energy calculations 

for the HCHF diet to account for fructose water intake.  

The total metabolisable energy of the mCS diet was determined to be 9.94 kJ/g, and 

the mHCHF diet was 14.65 kJ/g. An additional 3.85 kJ/mL energy for water intake 

was added to any energy intake for rats consuming the mHCHF diet or mHCHF with 



added interventions. The mCS diet was composed of 570g corn starch (Agri Food 

Ingredients, Kew East, Victoria Australia), 25g Hubbel, Mendel & Wakemen Salt 

Mixture (MP Biomedicals LLC, Illkirch, France), 45g skim milk powder (Coles, 

Australia), 5g Vitamin Diet Fortification Mixture (MP Biomedicals LLC, Illkirch, 

France), 5g canola oil (Coles, Australia) and 350mL of water per kilogram. mHCHF 

diets were composed of 395g sweetened condensed milk (Coles, Australia), 175g 

fructose (Tate & Lyle ANZ Pty Ltd, Wacol, Qld, Australia), 25g Hubbel, Mendel & 

Wakemen Salt Mixture (MP Biomedicals LLC, Illkirch, France), 45g skim milk 

powder (Coles, Australia), 5g Vitamin Diet Fortification Mixture (MP Biomedicals 

LLC, Illkirch, France), 5g canola oil (Coles, Australia) and 200mL of water per 

kilogram. 

Individual dietary inclusions and interventions are described in Chapters 3 through 6. 

Interventions replaced the water portion of the diet, while all other components 

remained the same.  

Rats were in the protocol for 16 weeks in total, with control rats ingesting the same 

diet for the duration, and intervention rats ingesting the intervention or supplement in 

food for weeks 8-16, Figure 2.21.  

Figure 2.21: Experimental diet groups.  

 

2.3 Oral Glucose Tolerance 

Rats were fasted for 12 hours and all groups were given ad libitum access to normal 

water with no fructose. Blood glucose concentrations were assessed prior to glucose 

administration and at 30 minute intervals after administration for a period of two hours. 

Glucose was administered by oral gavage (USQ AEC SWP (University of Southern 

Queensland Animal Ethic Committee Standard Work Procedure) HP006) at a dose of 

2.0g/kg body weight as a 40% D-glucose (Sigma Aldrich, St Louis, USA) solution. 

Blood glucose concentrations were determined in blood drawn by tail prick (USQ AEC 

SWP HP001) and analysed using a Medisense Precision Q.I.D glucose meter (Abbott 

Weeks 0 8 16
CS Diet

CS Diet CS Diet + intervention
HCHF Diet

HCHF Diet HCHF Diet + intervention
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Laboratories, Bedford, MA). Fasting glucose concentrations and total area under the 

curve were analysed by one-way and two-way ANOVA (GraphPad Prism 6.0, 

GraphPad Software, La Jolla, California USA). 

2.4 Body Composition (Dual Energy X-Ray Absorptiometry) 

Body composition was determined by Dual Energy X-ray Absorptiometry using a 

Norland XR36 Densitometer (Norland Corporation, Ft. Atkinson, Wisconsin, USA) 

and Illuminatus 4.2.4a software. Rats were anaesthetised by intra-peritoneal injection 

of tiletamine HCl 15mg/kg and zolazepam HCl 15mg/kg (Zoletil®; Virbac, Milperra, 

New South Wales), and xylazine 10mg/kg (Ileum Xylazil-100®, Troy Laboratories) 

prior to scanning. Rats were scanned at a resolution of 1.5 x 1.5mm at a rate of 30mm/s 

to determine bone mineral density, bone mineral content, body area, lean mass and fat 

mass. Outcomes were analysed by one-way and two-way ANOVA (GraphPad Prism 

6.0, GraphPad Software, La Jolla, California USA). 

2.5 Systolic Blood Pressure 

Sedation was achieved by intra-peritoneal injection of 0.1-0.13mL Zoletil® (Virbac, 

Carros, France) equivalent to tiletamine HCl 10mg/kg and zolazepam HCl 10mg/kg 

(USQ AEC SWP HP003). Systolic blood pressure was recorded using a MLT1010 

Piezoelectric Pulse Transducer connected to an MLT844 Physiological Pressure 

Transducer and PowerLab data acquisition unit (ADInstruments, Sydney, New South 

Wales, Australia). An inflatable tail cuff was placed at the base of the tail, adjacent and 

proximal to the pulse transducer until a steady pulse rate was identified. The tail cuff 

was inflated to 200mmHg and slowly deflated, to identify the pressure (mmHg) of 

steady systolic flow return (USQ AEC SWP DP003). Outcomes were analysed by one-

way and two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, 

California USA). 

2.6 Termination Process 

2.6.1 Euthanasia 

Rats were euthanised by intra-peritoneal injection of pentobarbital sodium 325mg/mL 

(Virbac, Carros, France) at a dose of 100mg/kg body weight. Rats were placed in a 

soft, dark box to minimise stress of euthanasia. Adequate anaesthesia was determined 



by assessment of pedal reflex, tail reflex and palpebral reflex. Immediately following 

determination of anaesthesia, 200IU ammonium heparin of porcine origin 

(1.87mg/mL) (Sigma-Aldrich St Louis, USA) was injected through the femoral vein 

to prevent clotting. 

2.6.2 Serum collection 

The abdominal cavity was opened and upon exposure of the abdominal aorta, 

approximately 2mL of blood was drawn using a 5mL endotoxin free syringe (Terumo, 

Somerset, New Jersey USA) and a 30 gauge x ½ inch endotoxin-free needle (Terumo, 

Somerset, New Jersey USA). Blood was placed in a 10mL endotoxin-free tube and 

(Sarstedt Numbrecht, Germany) and held on ice for 20 minutes until clotting had 

occurred, followed by centrifugation at 5000g for 10 minutes. Endotoxin-free tips 

(Eppendorff, Hamburg, Germany) were used to aliquot 50µL samples of serum in to 

endotoxin-free tubes (Astral Scientific, New South Wales, Australia). Samples were 

stored at -20°C. 

2.6.3 Plasma Collection 

Upon exposure of the abdominal aorta, approximately 4mL of blood was drawn as 

noted in method 2.6.2 Serum collection and placed into heparinised tubes (16 I.U/mL 

lithium heparin) (Sarstedt, Numbrecht, Germany). Plasma was collected following 

centrifugation at 5000g for 10 minutes and stored at -20ºC. 

2.6.4 Left ventricular diastolic stiffness 

Left ventricular function was determined at termination by isolated heart preparation 

(USQ AEC SWP DP006). Prior to termination, the system was equilibrated such that 

the balloon catheter under normal atmospheric pressure with 500µL of fluid was equal 

to zero (0) mmHg (millimetres of Mercury). 

Hearts were removed with approximately 5-10mm of aorta attached and intact. Hearts 

were perfused (Figure 2.21) in modified Krebs-Henseleit bicarbonate buffer 

containing 119.1mM NaCl, 4.75mM KCl, 1.19mM MgSO4, 1.19mM KH2PO4, 

25.0mM NaHCO3, 11.0mM glucose and 2.16mM CaCl2. The buffer was oxygenated 
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by steady infusion with 95% O2 and 5% CO2 carbogen gas (BOC Australia, North 

Ryde, New South Wales) maintained at a temperature of 37ºC. 

 

Figure 2.22: Isolated heart perfusion schematic (354). 

Iso-volumetric ventricular function was determined by a Capto SP844 MLT844 

physiological pressure transducer and LabChart software on a MacLab system (AD 

instruments, Castle Hill Australia), connected to a latex balloon catheter inserted into 

the left ventricle of the isolated heart (Figure 2.22). All measurements were performed 

at an induced heart rate of 250 beats per minute. Pressure-volume relationships were 

determined at increments from 0 to 30mmHg by injection of water into the latex 

balloon catheter and determination of the resultant pressure. The end-diastolic stiffness 

function (κ, unitless) was calculated as described by Brown, Duce, Miric and Sernia 

(355).   

Pressure-volume data were used to generate stress and strain values. Stress was 

determined assuming sphericity and the hydrostatic pressure exerted on the left 

ventricle at each volume interval. Outcomes were generated in dynes/cm2. The 

differential of the curve generated at each pressure-volume point indicated the stress 

exerted by the fluid. 

Strain was calculated as described by Mirsky and Parmley (356). A line of the formula 

y=aebx was generated by the stress-strain relationship, such that the values of a and b 

were used to determine the differential equation and plot the tangent of the line at each 

point. This tangential line is equal to the elastic modulus of the heart at any given 



volume. The linear equation of the stress-strain relationship was determined of the 

formula y= mx + c, where m is equal to the diastolic stiffness constant.  Diastolic 

stiffness values were analysed by one-way and two-way ANOVA (GraphPad Prism 

6.0, GraphPad Software, La Jolla, California USA). 

2.6.5 Vascular reactivity 

Prior to experimentation, all pressure transducers were calibrated to a 15mN weight. 

A section of descending aorta was collected immediately after removal of the heart 

and placed in cold Tyrode’s buffer (136.9mM NaCl, 5.4mM KCl, 1.05mM MgCl2, 

0.42mM NaH2PO4, 22.6mM NaHCO3, 1.8mM CaCl2, 5.5mM D-glucose, 0.28mM 

ascorbic acid and 0.1mM Na2EDTA) with a steady flow of carbogen gas (BOC, 5% 

CO2, 95% O2). 3-4 mm sections of aorta were suspended in organ baths (schematic, 

Figure 2.23) equilibrated to 37°C, and rinsed twice in equilibrated Tyrode’s buffer. The 

force generated by contraction or relaxation was measured by a Chart MacLab System 

(ADInstruments, Castle Hill Australia). Aortic contraction or relaxation responses to 

sodium nitroprusside and acetylcholine were pre-contracted with a single addition of 

noradrenaline resulting in a 2 micromolar noradrenaline concentration in the organ 

bath; and allowed to stabilise to >95% maximum contraction. Cumulative 

concentration-response curves were generated for noradrenaline, sodium nitroprusside 

or acetylcholine at half-log units from 1x10-9mol/L to 3x10-5mol/L or until no further 

contractions were observed. Outcomes were analysed by one-way and two-way 

ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, California USA). 
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 Figure 2.23: Schematic of organ baths used for assessment of aortic vascular reactivity 

(357).  

2.6.6 Ileum and colon reactivity 

Approximately 10mm sections of ileum and proximal colon were collected from 

euthanised rats and washed gently in cold Tyrode’s buffer. Ileal sections were taken 

leaving approximately 10mm proximal to the ileocecal valve, and colon sections were 

collected approximately 10mm distal to the cecocolic valve. Remaining chyme and 

faeces were removed using cold buffer and syringe with gentle washing. Sections were 

strung to a tension of ~10mN in Tyrode’s buffer in 25mL organ baths, equilibrated to 

37°C, oxygenated by carbogen gas (BOC, 5% CO2, 95% O2). Force of contraction was 

measured by a Chart MacLab System (ADInstruments, Castle Hill Australia). 

Maximal force of contraction (mN tension) was measured at half-log increases in 

acetylcholine from 1x10-9mol/L to 3x10-5mol/L in a concentration-response manner or 

until no further increases in contraction force occurred. Tissues were washed twice in 

equilibrated Tyrode’s buffer between each addition and allowed to equilibrate at 

approximately 10mN tension. Outcomes were analysed by one-way and two-way 

ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, California USA). 



2.6.7 Organ weights (normalised to tibial length) and tissue collection 

The wet weights of organs (kidneys, liver, spleen, epididymal fat, omental fat, 

retroperitoneal fat, left ventricle plus septum and right ventricle) were determined and 

normalised against the tibial length of the individual rat. Tibial length was measured 

to the nearest 10th of a millimetre using vernier callipers. Outcomes were analysed by 

one-way and two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, 

California USA). 

All samples were washed in cold (4°C) Tyrode’s buffer and placed in a sterile 1.5mL 

screw cap tube and placed on ice immediately. Samples were stored at -80°C long 

term. Sections of colon were taken from the distal colon containing the 3 terminal 

faecal pellets, rinsed in Tyrode’s buffer and stored similarly.   

2.7 Plasma Biochemistry 

2.7.1 Plasma ALT and AST activity 

Plasma was analysed for aspartate transaminase (AST) and alanine transaminase 

(ALT) activity using an Olympus AU400/AU480 analyser (Olympus, Tokyo, Japan) 

at The University of Queensland Veterinary School, Gatton with commercial kits and 

controls (Olympus OSR6107 kinetic UV test & Olympus OSR6109 kinetic UV test). 

Creatine kinase and lactate dehydrogenase were assessed using kinetic UV tests 

OSR6179 and OSR6128. All tests were carried out as per manufacturer’s instructions. 

Outcomes were analysed by one-way and two-way ANOVA (GraphPad Prism 6.0, 

GraphPad Software, La Jolla, California USA). 

 

2.8 Plasma Lipid Profile 

Plasma was collected as described in method 2.6.3. Lipid concentrations were 

determined using an Olympus AU400 analyser. Plasma concentrations of total 

cholesterol were determined using an Olympus OSR6216 enzymatic colour test and 

triglycerides were determined using an Olympus OSR6133 enzymatic colour test. 

Plasma NEFA (non-esterified fatty acids) were determined by a Wako Diagnostics HR 

Series NEFA-HR enzymatic kit (Wako, Osaka, Japan). Outcomes were analysed by 

one-way and two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, 

California USA). 
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2.9 Histology analyses 

2.9.1 Tissue Collection 

Colon sections were taken immediately proximal to the cecocolic junction and were 

approximately 10mm in length. Ileum samples were collected immediately anterior to 

the ileocecal junction and were approximately 10mm in length. Samples of kidney, 

liver, spleen, pancreas, retroperitoneal fat, ileum and colon were washed in cold 

Tyrode’s buffer and placed immediately in 10% neutral buffered formalin, pH 7.0. 

Samples were stored in formalin for 72-96 hours prior to processing. 

Prior to processing, either automated or manual, sections were removed from the 

formalin solution and sectioned to no greater than 1.0 x 0.5cm sections. Samples were 

placed in labelled tissue cassettes and stored in 100% ethanol until processing. 

2.9.2 Manual Tissue Processing 

Manual tissue processing was carried out by removing residual formalin in running tap 

water for 20 minutes. The following sequence was carried out to fix sections: 45 

minutes in 70% ethanol; 45 minutes in 90% ethanol; 45 minutes in 100% ethanol, 45 

minutes in 100% ethanol, 45 minutes 100% in xylene and 45 minutes in 100% xylene. 

After removal from xylene, sections were placed in wax at 60°C overnight. Sections 

were embedded in paraffin wax at 60°C and allowed to cool completely prior to 

sectioning.    

2.9.3 Automated Tissue Processing 

Automated processing was carried out using a Thermo Scientific™ Shandon™ 

Pathcentre™ Tissue Processor (ThermoFisher Waltham, MA, USA). The following 

sequence was carried out: 1 hour each 70%, 90%, 95%, 100% x 3 washes of ethanol, 

followed by re-hydration with xylene 3 times. Samples were then soaked in four sets 

of wax (Tissue Embedding Medium (Paraplast® Regular, melting point 56°C) under 

vacuum for 1 hour each. 

Sections were allowed to remain in water at 60°C under a vacuum of 1000 millibar 

overnight before embedding into wax blocks (Paraplast® Regular, melting point 56°C). 



2.9.4 Tissue Sectioning 

Paraffin sections were sectioned to 5µm using a Leica Microtome (Wetzlar, Germany). 

3-5 concurrent sections were placed in a 60°C water bath and were collected on to a 

Superfrost™Plus (ThermoFischer Waltham, MA, USA) slide and allowed to dry at 

room temperature prior to storage.   

2.9.5 Staining 

Prior to staining, sections were dewaxed and rehydrated by pre-heating sectioned 

slides to 60°C for 15 minutes. Dewaxing was carried by 3 subsequent washes in 100% 

xylene. Rehydration was carried out by 2 consecutive washes in 100% ethanol, single 

washes in 90% ethanol, 70% ethanol and running tap water. All washes were carried 

out for 2 minutes. 

2.9.5.1 Hematoxylin and Eosin Staining 

Liver, left ventricle, ileum, colon, kidney, skeletal muscle, and pancreas were stained. 

Hematoxylin (Sigma Aldrich, Darmstadt, Germany) was prepared at a concentration 

of 6.4g/L in a solution of 20% ethanol, 16% glycerol and 0.6% aluminium persulfate, 

and allowed to stand for 6 weeks in the dark prior to use. Eosin Y (Sigma Aldrich, 

Darmstadt, Germany) was prepared at a concentration of 10g/L in 90% ethanol. Prior 

to use, the solution was diluted 1:1 in 90% ethanol. 

After dehydration, samples underwent the following sequence: hematoxylin (6 

minutes), running water (2 minutes), 70% ethanol (2 minutes), eosin Y (7 minutes), 

95% ethanol (2 minutes), 100% ethanol (2 minutes, 3 times), 100% xylene (2 minutes, 

3 times).  After removal of excess xylene, slides were fixed with a cover-slip using 

DPX Mountant for histology (Sigma Aldrich, St Louis, USA). 

2.9.5.2 Picrosirius red staining 

Only left ventricular sections were stained for collagen. Picrosirius red stain (specific 

for type I and III collagen) was prepared at a concentration of 1.0g/L Sirius Red (Sigma 

Aldrich, St Louis, USA) in saturated picric acid. 

After dehydration, samples underwent the following sequence: 0.5% 

phosphomolybdic acid (5 minutes), running water (2 minutes), 0.1% picrosirius red 
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(90 minutes), 0.1M hydrochloric acid (2 minutes), 95% ethanol (2 minutes), 100% 

ethanol (2 minutes, 3 times) and 100% xylene (2 minutes, 3 times).  After removal of 

excess xylene, slides were fixed with a cover-slip using DPX Mountant for histology 

(Sigma Aldrich, St Louis, USA).  

2.9.6 Microscopy and histological analysis 

2.9.6.1 Liver Histology Imaging 

Liver sections were imaged at 20x magnification using a standard white light for 

inflammatory cell presence and steatohepatitis indicators of ballooning, and fat 

deposition (steatosis).  

2.9.6.2 Picrosirius left ventricular histology imaging 

Picrosirius red slides were imaged using a UV light source and narrow band emission 

filter, to allow green light of the wavelengths 510-560nm to pass. Two non-overlapping 

fields per section were imaged. ImageJ (National Institute for Health, United States of 

America) software was used to determine the percent collagen deposition. Outcomes 

were analysed by one-way and two-way ANOVA (GraphPad Prism 6.0, GraphPad 

Software, La Jolla, California USA). 

2.9.6.3 Pancreatic islet imaging 

Pancreatic α and β cell density was determined by counting the number of nuclei in an 

islet, stained with hematoxylin and eosin. Counts were carried out using ImageJ 

(National Institute for Health, United States of America) by selecting the periphery of 

the islet and counting nuclei in an 8 bit image. Outcomes were analysed by one-way 

and two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, California 

USA). 

2.9.6.4 Gastrointestinal histology imaging 

All gastrointestinal images were taken at a 10x magnification. A representative section 

was chosen to visualise any differences. Due to the highly variable nature of sectional 

morphology and microscale differences, no statistical analyses were performed on 

these sections. 



2.10 Endotoxin analysis 

Plasma endotoxin concentrations were assessed using the Lonza QCL1000 Limulus 

Amebocyte Lysate (LAL) kit (Lonza Basel, Switzerland) as per manufacturer’s 

instructions. All reagents were allowed to equilibrate to room temperature prior to 

preparation. Reference endotoxin was prepared by diluting endotoxin stock solution 

with supplied LAL endotoxin-free reagent water to produce a concentration of 

1.0EU/mL. A serial dilution was carried out to produce standard EU (endotoxin unit) 

concentrations of 1.0, 0.5, 0.25 and 0.1 EU/mL. 96 well endotoxin-free (Techno Plastic 

Products, Trasadingen, Switzerland) plates were pre-equilibrated to 37ºC. In each well, 

50µL of limulus amoebal lysate and 50µL of sample (plasma 1:10 dilution), blank 

(LAL reagent water) or standard (1.0, 0.5, 0.25, 0.1 EU/mL) was added. Each well was 

mixed by pipetting. Samples were prepared in duplicate. Plates were allowed to 

incubate at 37ºC for 10minutes. 100µL of chromogenic substrate solution (p-

nitroalanine, 2mM) was added to each well and allowed to incubate at 37ºC for 6 

minutes. The reaction was then stopped by the addition of 100µL of concentrated 

acetic acid in pyrogen-free water. Absorbance was read at 405nm using a FLUOStar 

Omega (BMG Labtech Offenburg, Germany). 

Absorbance was assessed against reactions of a standard curve of E. coli between 0.1 

and 1.0EU/mL endotoxin concentration. Outcomes were analysed by one-way and 

two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, California 

USA). 

2.11 Intestinal permeability 

2.11.1 Urine collection 

For consistency, all starvation periods were initiated at approximately 6am each day. 

During intestinal permeability, rats were housed in individual metabolic cages and 

urine collected with separation from faeces. Initially rats were food-deprived for 4 

hours, during which time all rats had ad libitum access to normal tap water. At 4 hours, 

rats were dosed with 2.0 mL of probe containing 0.5 g/mL sucrose, 0.04 g/mL 

mannitol, 0.06 g/mL lactulose and 0.03 g/mL sucralose by oral gavage (USQ AEC 

SWP HP006). Following probe administration, water was withdrawn for 3 hours. 

Collection tubes were replaced at 3 hour, 8 hour and 20 hour intervals post-probe 
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administration. Collection was done in to 15mL tubes (Sarstedt Numbrecht, Germany) 

containing 100µL of 50mg/mL thymol in 1-propanol to retard bacterial growth. Food 

and water were returned ad libitum at 3 hours post-gavage, however all rats received 

normal water regardless of treatment group. Samples were stored at -20ºC until further 

analysis. 

2.11.2 Urine sample preparation and analysis 

Samples were thawed on ice. Volumes of urine were recorded to the nearest 100µL. A 

2.0mL sample was removed for further analysis and centrifuged at 12000rpm for 20 

minutes at 4°C. Samples were the filtered through a 0.45µm polytetrafluoroethylene 

(PTFE) (Grace Davidson Discovery Sciences, Maryland USA) into a 2.0mL glass 

screw-cap vial (ThermoScientific Massachusetts, USA), closed with a 0.25mm PTFE 

septum. Samples were analysed by HPLC-RID (high-performance liquid 

chromatography-refractive index detection). 

The system comprised a Shimadzu (Kyoto, Japan) DGU-20ASR degassing unit, LC-

20AT solvent delivery unit, SIL-20A Autosampler, CBM-20A communication bus 

module, CTO-20A column oven, RID-10A refractive index detector. The 

chromatography conditions were as follows: isocratic elution using 100% Milli-Q 

water, 10µL injection volume, 0.300mL/minute flow rate, 50°C column oven. 

Detection was by RID (refractive index detection). Percent recovery of each sugar for 

each rat was determined and used in analysis. Concentration of urine was assessed 

against an external curve generated for each compound. Concentration was multiplied 

by the total urine volume collected for each time period and determined as the percent 

recovery of the total amount of administered sugar. Outcomes were analysed by one-

way and two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, 

California USA). 

2.11.3 Urine chromatography and analysis 

Each component was run individually to determine retention times. Retention times 

are shown in Table 2.9. 

  



 

Table 2.9: Retention times of lactulose, sucrose, D-mannitol, and sucralose. 

Compound Retention time (minutes) 

Lactulose 18.341 

Sucrose 20.452 

D-Mannitol 22.41 

Sucralose 27.349 

 

Linearity was determined by preparation of solutions at 5 concentrations between 

0.02mg/mL and 2mg/mL. This curve was also used as the external curve for 

determination of sugar concentration. A contaminant of urine origin, determined by 

running blank urine samples, was found at elution time of 12 minutes however did not 

interfere with peaks identification of quantitation (Figure 2.24). 

 

Figure 2.24: Urine sample example chromatogram. Initially, a mixture of the gavage 

compounds was diluted to 1:100 in distilled water. This was used for optimisation of 

separation. 
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2.12 Semi-quantitative ELISA (enzyme-linked immunosorbent assay) 

2.12.1 Protein Extraction 

100mg of tissue samples were homogenised in RIPA buffer (150 mM sodium chloride, 

1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM 

Tris, pH 8.0) in 1% HaltTM EDTA-Free Protease Inhibitor (ThermoScientific 

Massachusetts, USA). Samples were homogenised for 2 minutes with a GentleMacs 

dissociator (Miltenyi Biotech, Bergisch Gladbach, Germany), and mixed for 2 hours 

on ice. Supernatants were retained after centrifugation at 12000g for 20 minutes (4°C), 

then stored at -80°C. Protein concentration was determined using a BCA 

(bicinchoninic acid) assay kit (ThermoScientific Massachusetts, USA). 

 

2.12.2 Protein Quantification 

Protein quantification was carried out using a ThermoScientific Pierce BCA protein 

Assay. Colon samples were diluted 1/10, and liver samples were diluted 1/20 for 

analysis. A BSA (bovine serum albumin) standard were prepared to manufacturer’s 

instruction at 2000, 1500, 1000, 750, 500, 250, 125, 25 and 0 µg/mL. Working reagents 

A (sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium tartrate in 

0.1M sodium hydroxide) and B (containing 4% cupric sulfate) were combined at a 

ratio of 50:1. 

25µL of diluted sample or standard were added to each well of a 96 well TPP (Techno 

Plastic Products, Trasadingen, Switzerland) plate in duplicate. 200µL of working 

reagent was added to each well and incubated for 20 minutes at 37°C. Cooled plates 

were read using a FLUOStar Omega (BMG Labtech Offenburg, Germany) plate reader 

at 562nm. The sample’s protein concentration was determined from the standard curve. 

2.12.3 GLUT2 and TLR4 determination 

To determine relative GLUT2 and TLR4 (toll-like receptor-4) expression in liver, 

0.2µg/mL rabbit polyclonal antibody (Santa Cruz Biotechnology, Dallas Texas, USA) 

was prepared in coating buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) and 100µL 

added to each well of a TPP 96 well cell culture plate (Techno Plastic Products, 

Trasadingen, Switzerland). Plates were coated overnight at 25°C in a ShelLab 



incubator (Sheldon Manufacturing Inc. Cornelius, USA). Each well was washed 3 

times with 200µL of Tris-buffered saline (TBS) (25mM Tris-HCl; 0.13M NaCl; 

2.7mM KCl; pH 7.0). Liver protein extracts were diluted to a concentration of 

100µg/mL in sterile distilled water based on the BCA assay. 10µg in 100µL was loaded 

per well. Positive control was a combined liver sample and the negative control was 

10µg/100µL BSA in sterile water. Plates were coated for 2 hours at 25°C for two hours, 

then washed 3 times per well with TBS. 0.2µg/mL primary antibody in sterile distilled 

water was loaded per well (100µL) and allowed to bind for 2 hours at 25°C. Each well 

was then washed 3 times with TBS. Goat anti-rabbit IgG-HRP (immunoglobulin-G 

horseradish peroxidase) conjugated secondary antibody was diluted to 0.1µg/mL and 

100uL added to each well and allowed to incubate at 25°C for two hours. Each well 

was washed 3 times with TBS. Substrate solution was prepared by diluting 10mg/mL 

OPD (o-phenylenediamine dihydrochloride) (Sigma Aldrich, Darmstadt, Germany), 

in 10x Stable Peroxide Buffer (ThermoScientific Massachusetts, USA) diluted 10x in 

distilled water. 100uL per well was added and allowed to mix at room temperature for 

15 minutes on an orbital shaker. Plates were then read using a FLUOStar Omega 

(BMG Labtech, Offenburg, Germany) plate reader to measure absorbance at 450nm. 

Analysis was based on the AU reading after deduction of the negative control value 

for each plate. Outcomes were analysed by one-way and two-way ANOVA (GraphPad 

Prism 6.0, GraphPad Software, La Jolla, California USA). 

The detection of the protein was determined to be linear across the range of 0-

1000ug/mL as indicated in Table 2.10. Percent relative standard deviation (%RSD) 

was determined using three replicates at each of the concentrations across the linear 

curve range. 

Table 2.10: Linearity and % relative standard deviation of a serial dilution of protein, 

assessed for GLUT2 and TLR4 protein expression. 

  

Linear range  

0-1000µg/mL Regression value % RSD range 

GLUT2 y = 5.8975x + 0.181  0.9588 5.92-11.90% 

TLR4 y = 8.9176x + 0.1604  0.9537 4.63-11.7% 
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2.12.4 Occludin and claudin-1 determination 

To determine relative occludin expression in colon, 0.2µg/mL rabbit polyclonal 

antibody (Santa Cruz Biotechnology, Dallas Texas, USA) was prepared in coating 

buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) and 100µL added to each well of a 

clear, Greiner Bio-one (Kremstunster, Austria) 96 well polystyrene plate.  Claudin-1 

was treated similarly using a mouse monoclonal antibody (Santa Cruz Biotechnology, 

Dallas Texas, USA). 

Plates were coated overnight at 25°C in a ShelLab incubator (Sheldon Manufacturing 

Inc. Cornelius, USA). Each well was washed 3 times with 200µL of Tris-buffered 

saline (TBS) (25mM Tris-HCl; 0.13M NaCl; 2.7mM KCl; pH 7.0). Colon protein 

extracts were diluted to a concentration of 100µg/mL in sterile distilled water based 

on the BCA assay. 10µg in 100µL was loaded per well. Positive control was a 

combined liver sample and the negative control was 10µg/100µL BSA in sterile water. 

Plates were coated for 2 hours at 25°C for two hours, then washed 3 times per well 

with TBS. 0.2µg/mL primary antibody in sterile distilled water was loaded per well 

(100µL) and allowed to bind for 2 hours at 25°C. Each well was then washed 3 times 

with TBS. Goat anti-rabbit IgG-HRP conjugated secondary antibody was used for 

detection of occludin, diluted to 0.1µg/mL and 100uL added to each well and allowed 

to incubate at 25°C for two hours. Mouse anti-rabbit IgG-HRP was similarly used for 

claudin-1 detection. Each well was washed 3 times with TBS. Substrate solution was 

prepared by diluting 10mg/mL OPD (o-phenylenediamine dihydrochloride) (Sigma 

Aldrich, Darmstadt, Germany) in 10x Stable Peroxide Buffer (ThermoScientific 

Massachusetts, USA) diluted 10x in distilled water. 100uL per well was added and 

allowed to mix at room temperature for 15 minutes on an orbital shaker. Plates were 

then read using a FLUOStar Omega (BMG Labtech Offenburg, Germany) plate reader 

to measure absorbance at 450nm. Analysis was based on the AU (atomic unit) reading 

after deduction of the negative control value for each plate. Outcomes were analysed 

by one-way and two-way ANOVA (GraphPad Prism 6.0, GraphPad Software, La Jolla, 

California USA). 

The detection of the protein was determined to be linear across the range of 0-

1000ug/mL as indicated in Table 2.11. Percent relative standard deviation was 



determined using three replicates at each of the concentrations across the linear curve 

range. 

Table 2.11: Linearity and % relative standard deviation (precision) of a serial dilution 

of protein, assessed for occludin and claudin-1 protein expression. 

  

Linear range 0-

1000µg/mL Regression value % RSD range 

Occludin y = 40.097x + 0.6529  0.9900 10.40-21.71% 

Claudin-1 y = 48.598x + 0.286  0.9797 4.22-20.27% 

 

2.13 Sorghum extract analysis 

2.13.1 Sorghum phenolic extraction 

5.0g of whole sorghum, red sorghum flour, black sorghum flour or wet cake sorghum 

was weighed into 50mL Falcon tubes (Sarstedt Numbrecht, Germany). Samples were 

prepared in triplicate. Sorghum was extracted by addition of 10.0mL of 1% acetic acid 

in 100% methanol. Sorghum was mixed on a platform shaker for 2 hours and allowed 

to stand with intermittent mixing for 4 hours. Samples were centrifuged for 10 minutes 

at 3000g and supernatants retained. Extraction was repeated three times and 

supernatants pooled. Samples were evaporated to dryness and stored at room 

temperature until analysis.   

2.13.2 Sorghum phenolic analysis 

Samples were analysed by HPLC-DAD (high performance liquid chromatography – 

diode array detector) at 210nm, 330nm and 510nm. Approximately 1mg of sample was 

re-suspended in 1% acidified methanol. Samples were analysed by Southern Cross 

University Plant Science Analytical Research Laboratory (Lismore, New South 

Wales).   
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Chapter 3 – 5% Wholegrain sorghum in a rat model of diet-induced metabolic 

syndrome  

3.1 Introduction 

Poor diet and lack of physical activity are the major contributors to the development 

of the non-communicable disease of metabolic syndrome (358). Prevention and 

reversal of the disease rely heavily on changing dietary habits (359). Changes in 

metabolic function have been noted with dietary changes sych as switching to a 

Mediterranean diet (360, 361) or Nordic diet (362). A wholegrain-based diet improved 

metabolic disease with reduced insulin fluctuations, improved glucose regulation and 

lowered triglyceride concentrations (363-365). Changing diet is effective in reversing 

metabolic syndrome, and understanding the benefits of certain foods will allow better 

education of the public.  

The improved changes noted with wholegrain consumption have led to a wider variety 

of cereal products becoming popular for human consumption. Sorghum products have 

entered the Australian marketplace for human consumption in products like 

GlutenFree WeetBix (Sanitarium), Gluten Free Flour (Bobs Red Mill), Pearled 

Sorghum (SorgPlus) and Red Sorghum Puffs (Friendship Foods), and its inclusion into 

rice mixes, breakfast cereals and muesli bars.  

Consumption of sorghum in Australia has previously been limited to livestock animals 

(16). Overseas, the use of sorghum differs. According to FAO (16), in 2011, only 

41,000 tonnes of the domestic supply of sorghum in Australia of 1,959,000 tonnes was 

used in food manufacturing, representing 2.11%, and none as a direct food source for 

human consumption. Comparatively, in countries such as Nigeria, approximately 75% 

of sorghum is used as a direct food source with an additional 2.36% used in food 

manufacturing (16). The prevalence of metabolic syndrome between these countries 

vastly differs, as do their overall diets. The rural Nigerian community which consumes 

a more traditional diet has an estimated metabolic syndrome rate of 5% in females and 

8% in males by the IDF (International Diabetes Federation) criteria in 2015 (366), 

while in Australia the rates were 29.1% by these IDF criteria in 2015 (359). 



The physiological effects of sorghum consumption have been investigated 

predominantly in chickens and beef cattle (243-245). In livestock, the aim is to 

maximise weight gain and feed efficiency for profitability. However, in mono-gastric 

animals, such as pigs and broilers, sorghum is detrimental for maximising weight gain 

(243-245). The factors inhibiting the conversion of ingested sorghum to body weight 

include the large starch granules, inhibitory proteins around starch granules, and the 

presence of phytochemicals such as tannins and phenolic acids. Studies on mono-

gastric nutrition of livestock discuss the anti-nutritive properties of sorghum (103, 274, 

367). Although the term “anti-nutritive” may be a deterrent toward consumption in 

humans, these components may improve the physiological status of individuals 

following sorghum consumption. 

These components, although detrimental in commercial livestock production, may be 

useful in humans to circumvent the increasing obesity and metabolic syndrome 

epidemic in Western societies. The coloured compounds in sorghum have anti-

inflammatory actions (168, 253). In obesity and metabolic syndrome, alleviation of the 

inflammation can minimise long-term pathologies associated with being overweight 

including impaired glucose tolerance, dyslipidaemia, liver steatosis, high blood 

pressure and poor cardiovascular function (219, 240, 368-371). 

Sorghum contains compounds which may reduce the digestion of proteins and 

carbohydrates in vitro including flavonoids, phenolic acids, tannins and kafirin 

proteins (43, 54, 55, 59). These compounds have differing bio-accessibilities and bio-

availabilities, however many of the bioactive compounds appear in the plasma after 

dietary supplementation. Phenolic acids are bioavailable, however larger procyanidins 

(flavonoids, condensed tannins) and catechins undergo bacterial degradation in the 

colon prior to absorption (162). 3-deoxyanthocyanidins, one of the most effective 

antioxidant components of sorghum, and related anthocyanins are bioavailable and 

appear in plasma after ingestion (372). 

A diet high in fat increases metabolic endotoxaemia, leading to a cascade of 

inflammatory responses which progress to metabolic syndrome (373, 374). These diets 

have been linked to both dysbiosis in the gut and increased permeability of the colon 

to  lipopolysaccharides (373). Consumption of resistant starches and non-starch 
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polysaccharides reduced diet-induced endotoxaemia (375). Consumption of wheat-

derived arabinoxylans improved metabolic endotoxaemia and improved the reductions 

in colonic tight junction mRNA in animal models (220). The effects on endotoxaemia 

with consumption of wholegrain cereals containing these carbohydrates have not been 

widely studied. Reviews speculate that protection from type 2 diabetes with 

wholegrain consumption is mediated by the large intestine (218, 376, 377). LPS is a 

known cause of metabolic syndrome (238), and activator of TLR4, one of the innate 

immune receptors (219). Some evidence suggests that components of sorghum reduce 

LPS mediated inflammation (168, 378), yet little information is available on whether 

sorghum reduces the total plasma concentration of LPS.  

Components of wholegrain sorghum have theoretical potential to alleviate the 

pathologies of metabolic syndrome. This chapter investigates whether a supplement of 

5% sorghum into an obesogenic diet alters the pathology of metabolic syndrome in a 

rat model of diet-induced metabolic syndrome.  

3.1.1 Hypothesis 

My hypothesis is that consumption of 5% sorghum in the diet will correct 

dyslipidaemia, improve liver structure and function, improve cardiovascular health, 

and improve glucose tolerance.  

One of the mechanisms for this improvement is the reduction of circulating 

lipopolysaccharides concentration. This will result in changes to TLR4 expression in 

the colon and liver. There will be a reduction in gastrointestinal permeability with 

sorghum consumption and that will be linked to an increased expression of colonic 

tight junction proteins.  

3.2 Materials and Methods 

3.2.1 Ethics  

Approval for experimentation with 5% sorghum was granted under AEC approval 

number 13REA005 (10/9/2013-10/9/2015) by the Animal Ethics Committee of the 

University of Southern Queensland. Please refer to chapter 2.1 for further information.  



 

3.2.2 Rat Diet and Experimental Structure  

Forty-eight male Wistar rats were divided into 4 experimental groups of n=12. Control 

diets were comprised as outlined in method 2.2. Experimental groups were CS (corn 

starch diet), HCHF (high carbohydrate, high fat diet), CSb (corn starch diet + 5% w/w 

Sorghum bicolor), HSb (high carbohydrate, high fat diet + 5% w/w Sorghum bicolor). 

For the first 8 weeks of the protocol, all CS and CSb rats received the CS diet and all 

HCHF and HSb rats received the HCHF diet as described by Panchal et al (353), 

detailed in Chapter 2. Energy contents of the diets were 11.2 kJ/g food for the CS diet, 

17.8 kJ/g for the HCHF  diet (353), 11.98 kJ/g for CSb diet and 18.58 kJ/g for HSb 

diet, based on an energy density for sorghum of 361 kJ/100g. An additional 3.85 kJ/mL 

was added to calculations for the HCHF and HSb diets for the fructose in the drinking 

water. 

At eight weeks, CSb rats were transferred to the treatment diet which included 

supplementation with 5% raw red sorghum, and similarly HSb treatment rats were 

placed on the HCHF diet supplemented with 5% raw red sorghum. Red sorghum was 

sourced from Crest Seeds (Toowoomba, Queensland) and is a commercially available 

stock feed supplement.  

After eight weeks, systolic blood pressure and oral glucose tolerance were determined 

prior to dietary intervention, and again after 8 weeks (at 16 weeks after start of 

protocol) on continuous supplementation.  

At 16 weeks, rats were assessed for the following parameters, with corresponding 

methods indicated in parentheses; oral glucose tolerance (method 2.3), dual x-ray 

absorptiometry (method 2.4), systolic blood pressure (method 2.4) and intestinal 

permeability urine collection (method 2.10.1). All rats were food-deprived for 2 hours 

prior to termination. Rats were euthanised as per method 2.6.1. At termination, rats 

underwent serum collection (method 2.6.2) plasma collection (method 2.6.3), vascular 

reactivity (method 2.6.5), ileum and colon contractility (method 2.6.6), measurement 

of organ weights (method 2.6.7) and histological tissue collection (method 2.8.1). A 

minimum of 8 rats per group underwent isolated heart perfusion (method 2.6.4), with 

the remaining two hearts preserved in formalin for histological analysis as per method 
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2.8.1. Plasma biochemistry was assessed on 8 rats per group for liver enzyme activity 

(method 2.7.1) and plasma lipid profile (method 2.7.2). Collected serum was analysed 

for presence of endotoxins as per method 2.9. Liver sections were assessed for 

expression of GLUT2 and TLR4 (method 2.11.3). Distal colon sections were also 

assessed for occludin and claudin expression using the method in method 2.11.4, and 

TLR4. Urine samples collected prior to termination were prepared (method 2.10.2) 

and analysed as per method outlined in method 2.10.3. 

Sorghum phenolics were extracted from 5.0g of whole sorghum (method 2.12.1) and 

analysed as in method 2.12.2.     

Histological tissue samples were processed manually (method 2.8.2) and sectioned 

(method 2.8.3). Liver, ileum, colon, pancreas and left ventricle were stained with 

haematoxylin and eosin (method 2.8.5.1). Separate sections of left ventricle were 

stained with picrosirius red (method 2.8.5.2). Microscopy and imaging were 

performed as per methods 2.8.6.1, 2.8.6.2, 2.8.6.3 and 2.8.6.4.   

3.2.3 Statistics 

Statistics were performed using GraphPad Prism (GraphPad Software, La Jolla, 

California USA). Individual groups were compared using a one-way ANOVA. Where 

data were normally distributed, a normal one-way ANOVA was used. Where data were 

not normally distributed, a non-parametric one-way ANOVA was used. Tests for 

normality were done using the D’agostino-Pearson normality test. Two-way ANOVA 

was carried out, where indicated, to determine the influence of the two categorical 

variables of “diet” (CS or HCHF), or “intervention” (5% sorghum, no sorghum).  

Multiple comparisons were carried out comparing all groups to test the following null 

hypotheses: 

There is no difference in the outcome of metabolic syndrome parameters between the 

CS, CSb, HCHF and HSb-fed groups at a given time point for a given parameter. 

For two-way ANOVA, we tested the following null hypotheses: 

There is no effect of diet on metabolic syndrome parameters, 



There is no effect of sorghum on the metabolic syndrome parameters, and 

There is no interaction between diet and sorghum, in affecting metabolic syndrome 

parameters.  

3.3 Results  

3.3.1 Sorghum extraction 

Whole sorghum extracts showed a range of compounds extracted by 1% acidified 

methanol.  

Detection of flavonoids can be carried out using a 210nm diode array absorbance 

(379). Furthermore, it will also detect compounds containing carboxylic acid, 

propylamide or ester fucntional groups (380). Acidified methanol extracts of whole 

red sorghum flour detected at 210nm (Figure 3.25) showed that there were 3 major 

compounds present at 2 minutes, 20.3 minutes and 20.8 minutes. The peak present at 

1.1 minute represents acetic acid in all 3 chromatograms of Figure 3.25, 3.26, 3.27.   

 

Figure 3.25:210nm UV detection of HPLC of acidified methanol extracts of whole red 

sorghum. 210nm detection detects primarily hydrophilic compounds. 

The 330nm profile (Figure 3.26) primarily indicates phenolic acids which are present 

(381). This wavelength is also suitable for detection of flavones (153) and flavonols 

(379).  
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Figure 3.26: 330nm UV detection of HPLC separated acidified methanol extracts of 

whole red sorghum. 330nm detection primarily indicates presence of phenolic acids.  

Detection of anthocyanins can be carried out by diode array absorbance at 510nm 

(379). Very few anthocyanin compounds appeared to be present in the extracts, with a 

minor peak at 7.5 minutes.  

 

Figure 3.27: 510nm UV detection of HPLC extracts of whole red sorghum. 510nm 

detection primarily indicates anthocyanin presence. 

3.3.2 Physiological and metabolic parameters 

After 8 weeks of the protocol, there were no differences in tested parameters between 

the HCHF and HSb groups, nor the CS and CSb groups, Table 3.12. The HCHF diet 

groups had higher body weight, increased basal blood glucose, impaired glucose 

tolerance, higher energy intake, lower food weight intake, and higher feed efficiency.  

 



Table 3.12: Physiological and metabolic variables of CS, CSb, HCHF and HSb fed rats.  

 

Results are expressed as mean±SEM. Values with the same superscript letter do not differ statistically at p<0.05 determined by one-way 

ANOVA.   Effect of diet, intervention or interaction at p<0.05, determined by two-way ANOVA. 

Parameter Diet Sorghum Interaction

Average weight gain week 8-16(g) 30.8 ± 3.0 a 42.08 ± 5.0 a 80.42 ± 7.2 a 62.55 ± 9.5 ab <0.0001 0.6183 0.0306

Body weight week 8 (g) 349.9 ± 5.45 a 355.8 ± 4.58 a 449.5 ± 8.46 b 450.7 ± 7.6 b <0.0001 0.6044 0.7296

Final body weight week 16 (g) 380.8 ± 6.8 a 397.8 ± 6.6 a 529.9 ± 12.1 b 508 ± 11.4 b <0.0001 0.8017 0.0475

Food intake week 1-8 (g/day) 36.6 ± 1.1 a 37.1 ± 0.8 a 25.4 ± 0.5 b 24.5 ± 0.7 b <0.0001 0.8507 0.377

Food intake week 8-16 (g/day) 36.3 ± 1.0 a 35.3 ± 1.0 a 24.3 ± 0.6 b 21.5 ± 0.6 b <0.0001 0.0266 0.2681

Energy intake week 1-8 (kJ/day) 410.4 ± 12.4 a 416.9 ± 9.1 a 540.6 ± 12.3 b 509.3 ± 13.2 b <0.0001 0.2992 0.1184

Energy intake week 8-16 (kJ/day 407.4 ± 10.7 a 423.2 ± 11.9 a 524.7 ± 13.3 b 483.6 ± 11.7 b <0.0001 0.2969 0.0218

BMI (g/cm2) 0.59 ± 0.01 a 0.62 ± 0.02 ab 0.75 ± 0.03 c 0.67 ± 0.02 bc <0.0001 0.2649 0.0155

Feed efficiency week 8-16 (g gained/kJ) 1.4 ± 0.1 a 1.8 ± 0.2 ab 2.7 ± 0.2 c 2.3 ± 0.3 bc <0.0001 0.9495 0.0777

Epididymal fat (mg/mm tibial length) 172.0 ± 11.8 a 183.0 ± 16.5 a 483.0 ± 53.6 b 435.0 ± 35.6 b <0.0001 0.5954 0.3855

Retroperitoneal fat (mg/mm tibial length) 96.4 ± 8.8 a 105.0 ± 7.5 a 231.0 ± 24.7 b 219.0 ± 14.8 b <0.0001 0.9364 0.5183

Omental fat (mg/mm tibial length) 123.0 ± 6.2 a 145.0 ± 11.7 a 251.0 ± 23.2 b 248.0 ± 15.6 b <0.0001 0.528 0.4147

Abdominal fat pad mass (mg/mm tibial length) 390.5 ± 22.8 a 433.6 ± 34.0 a 964.2 ± 98.9 b 902.4 ± 60.7 b <0.0001 0.8802 0.3997

Bone mineral density (g/cm2) 0.179 ± 3.E-03 ab 0.17 ± 2.E-03 a 0.187 ± 1.E-03 b 0.184 ± 2.E-03 b 0.0001 0.027 0.2928

Bone mineral content (g) 11.75 ± 0.28 a 11.71 ± 0.35 a 16.53 ± 0.51 b 15.69 ± 0.61 b <0.0001 0.3423 0.3873

Lean Mass (g) 276.8 ± 6.71 a 276.9 ± 8.28 a 269.3 ± 14.29 a 278.1 ± 13.7 a 0.7814 0.6952 0.7017

Fat Mass (g) 111.2 ± 6.4 a 114.0 ± 12.6 a 252.2 ± 29.8 b 223.9 ± 25.0 b <0.0001 0.5427 0.4586

CS Csb HCHF HSb
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Sorghum supplementation did not alter final body weight or body weight gain in either 

the CS or HCHF model determined by one-way ANOVA. There was a significant 

interaction of diet and 5% sorghum supplementation, whereby the direction that body 

weight in the two diet models were opposing. These results appear consistent with the 

significant interaction effect noted in body mass index (BMI) associated with sorghum 

supplementation. The lean body mass was maintained in all groups. Food intake by 

weight was not altered with sorghum supplementation, nor was energy intake by one-

way ANOVA. Two-way ANOVA showed a significant effect of sorghum and diet on 

week 8-16 feed intake, and interaction between diet and sorghum for energy intake, 

Table 3.12.  

3.3.3 Blood lipids, and glucose control  

At 8 weeks, the HCHF and HSb groups showed increased basal blood glucose 

concentrations and increased glucose TAUC. At 16 weeks, basal blood glucose 

concentrations were increased in the CSb group, above the value of the CS control.  

Sorghum normalised TAUC to the CS control in the HSb group (Table 3.13). No 

changes in fasting blood glucose concentrations were found with consumption of 

whole red sorghum. 

 

 

 

 

 

 

 

 



Pancreatic islet density, islet size and β-cell count did not differ between groups, 

Figure 3.28.  
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Figure 3.28: Pancreatic islet 

alpha and b-cell density, cell 

number per islet, and islet area. 

No significant differences were 

noted using one-way ANOVA 

and p<0.05.  
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Table 3.13: Blood glucose and lipid profiles with sorghum supplementation in a HCHF and CS diet.  

 

Letters on each row with differing superscript lower-case letters were statistically different at p<0.05 by one-way ANOVA. Significant 

effects of diet, intervention and interaction determined by two-way ANOVA. TAUC – total area under curve, LPS – lipopolysaccharide, 

NEFA – non-esterified fatty acids.  

  CS CSb HCHF HSb Diet Sorghum Interaction 

Basal blood glucose 8 week (mM) 3.6 ± 0.3 a 3.5 ± 0.10 a 5.4 ± 0.08 b 4.6 ± 0.19 ab <0.0001 0.0197 0.0651 

TAUC 8 week 615.2 ± 17.05 a 688.4 ± 34.97 a 805.2 ± 23.70 b 775.6 ± 14.17 b <0.0001 0.4618 0.0888 

Basal blood glucose 16 week (mM) 3.6 ± 0.18 a 4.3 ± 0.21 ab 4.8 ± 0.21 b 4.6 ± 0.19 b 0.0004 0.2575 0.0304 

TAUC 16 week  660.8 ± 11.76 a 681.5 ± 17.23 a 847.8 ± 35.1 b 736.3 ± 14.12 a <0.0001 0.2544 0.0504 

Plasma total cholesterol (mM) 1.46 ± 0.04 a 1.54 ± 0.05 a 1.79 ± 0.08 b 1.51 ± 0.06 a 0.0191 0.1085 0.0702 

Plasma triglycerides (mM) 0.45 ± 0.03 a 0.44 ± 0.04 a 1.6 ± 0.33 b 1.96 ± 0.16 b <0.0001 0.3551 0.3223 

Plasma NEFA (mM) 1.84 ± 0.20 a 2.16 ± 0.17 a 5.02 ± 0.61 b 5.49 ± 0.36 b <0.0001 0.3041 0.8408 

Serum LPS (EU/mL) 1.63 ± 0.84 a 2.26 ± 0.58 a 0.93 ± 0.23 a 1.61 ± 0.47 a 0.2069 0.1970 0.9651 



Plasma triglycerides and NEFA (non-esterified fatty acid) concentrations were 

increased in the HCHF diet from the CS control. The addition of 5% raw sorghum to 

the HCHF diet normalised plasma total cholesterol concentrations to the CS control, 

as shown in Table 3.13, however did not affect NEFA or triglycerides.  

3.3.4 Cardiovascular and liver parameters  

Liver weight was 50-60% higher in the HCHF and HSb groups than the CS control 

(Table 3.14). Liver weight was unchanged by sorghum consumption. There was a 

decrease in the indicators of liver steatohepatitis with the administration of 5% raw 

sorghum into the HCHF diet, determined by histology. This primarily came from a 

reduction in the steatosis of liver cells (Figure 3.29), reduced cell size, and apparent 

lack of fatty deposits. In HCHF rats, steatosis was typically macro-vesicular and very 

pronounced. There was no reduction in inflammatory cells with 5% sorghum 

supplementation, shown in Figure 3.29. Plasma ALT and AST activities were not 

different between any groups (Table 3.13).  

 

 

 

 

 

 

 



91 

 

  

  

Figure 3.29: CS (A), HCHF (B), CSb (C), HSb (D). Examples of haematoxylin and 

eosin-positive inflammatory cells are indicated by “INF”, and examples of fat vacuoles 

are indicated by “FV”.  

Log-transformed TLR4 expression in the liver was lower in the CS and CSb groups. 

Expression of TLR4 was increased in the HSb groups compared to HCHF, Figure 3.30. 

two-way ANOVA indicated a significant effect of diet (<0.0001), 5% whole sorghum 

(0.0167), and no interaction effect (0.3947).  
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Figure 3.30: TLR4 Expression in 

the liver determined by semi-

quantitative ELISA. Differing 

lower-case superscript letters 

indicate significant difference at 

p<0.05, determined by one-way 

ANOVA.  
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GLUT2 liver values were tested for outliers. One value was removed from the CS 

group, while two each were removed from the HCHF, CSb and HSb groups. Log-

transformed data showed that only the HSb group had increased GLUT2 expression, 

higher than the two control groups (Figure 3.31). Two-way ANOVA indicated that 

only intervention was a significant main effect (p=0.008). 

 

Left ventricle and septum, and right ventricle wet weights were increased in the high 

fat feeding model, but were not corrected by the 5% sorghum supplement (Table 3.14). 

Systolic blood pressure was increased by HCHF feeding, and not changed by sorghum. 

Collagen deposition in the heart did not differ between any groups. These changes are 

consistent with there being no difference in diastolic stiffness with 5% raw sorghum 

consumption, although correlation between the diastolic stiffness and collagen 

deposition was not significant (r2=0.3293, p=0.4261), as shown in Figure 3.32 and 

Figure 3.33.  

 

Figure 3.32: Diastolic stiffness constant (κ, unitless), and picrosirius red area %, 

ventricular sections of CS, HCHF, CSb and HSb. Different lower-case letters indicate 

a significant difference at p<0.05 by one-way ANOVA.  
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Figure 3.31: GLUT2 expression 

in the liver determined by semi-

quantitative ELISA. Differing 

lower-case superscript letters 

indicate significant difference at 

p<0.05, by one-way ANOVA.  
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Figure 3.33: Left ventricular sections of CS (A), HCHF (B), CSb (C) and HSb (D) 

stained with picrosirius red and illuminated under polarised light at 510-560nm at 20x 

magnification.   

A B 

C D 



Table 3.14: Hepatic and cardiovascular parameters of CS, CSb, HCHF and HSb-fed rats at 16 weeks of protocol.  

 

Differing superscript, lower-case letters indicate a significant difference at p<0.05 determined by one-way ANOVA. Significant sources 

of variation are indicated in the far left three columns determined by two-way ANOVA.  

 

Diet Sorghum Interaction
Liver wet weight (mg/mm tibial length) 215 ± 5 a 222 ± 7 a 339 ± 23 b 298 ± 8 b <0.0001 0.1965 0.068
Plasma ALT (U/L) 27.0 ± 2.0 a 25.4 ± 2.2 a 26.4 ± 1.4 a 23.1 ± 1.3 a 0.4173 0.1734 0.6458
Plasma AST (U/L) 70.4 ± 5.0 a 61.9 ± 2.1 a 67.8 ± 7.1 a 60.1 ± 4.0 a 0.6593 0.1117 0.9296
Systolic blood pressure (mmHg) 136 ± 2.0 ab 131 ± 1.0 a 140 ± 1.8 b 142 ± 1.5 b 0.0006 0.2648 0.0642
Left ventricle + septum (mg/mm tibial length) 20.1 ± 0.9 a 20.9 ± 1.0 ab 23.8 ± 0.5 b 22.4 ± 0.6 ab 0.0018 0.7269 0.1483
Right ventricle (mg/mm tibial length) 4.2 ± 0.3 a 4.6 ± 0.3 ab 5.32 ± 0.2 b 5.42 ± 0.2 b 0.0005 0.339 0.5469

CS CSb HCHF HSb
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Aortic relaxation in response to acetylcholine was impaired in the HCHF model 

compared to the CS. This was improved with the addition of 5% raw sorghum in the 

HCHF model, with no detrimental effects when sorghum was added to the CS diet 

(Figure 3.34). Diet and sorghum were major sources of variation in the noradrenaline 

curve based on a two-way ANOVA, however statistical significance was not reached 

between the HCHF and CS model responses. Maximal force of contraction in response 

to noradrenaline was increased in the HSb from HCHF. No difference was found for 

the potency or maximal responses between any groups for responses to noradrenaline, 

sodium nitroprusside or acetylcholine.   

 

3.3.5 Gastrointestinal structure and function  

No effects of diet were evident in ileal reactivity to acetylcholine (Figure 3.35). A 

HCHF diet increased maximum contraction force in the colon, and the presence of 

sorghum in the CS diet reduced the colonic reactivity to acetylcholine (Figure 3.35). 

Potency did not differ between any diet groups for either gastrointestinal section.  

Figure 3.34: Thoracic aortic contractions 

in response to noradrenaline, sodium 

nitroprusside and acetylcholine. Values 

with different lower-case letters had 

different maximal force of contraction at 

p<0.05, by one-way ANOVA.  

 



 

Figure 3.35: Left; ex vivo proximal colon contractility in response to acetylcholine 

stimulation. Right; ex vivo ileal contractility in response to acetylcholine stimulation.  

 

Results shown are mean ±SEM, lines showing differing lower-case letters had a 

significantly different maximal force of contraction, by one-way ANOVA p<0.05. 

Sucrose acted as a representative test for permeability of the stomach, with lactulose 

and mannitol as tests for the permeability of the stomach and small intestine, and 

sucralose as a measure for the entire gastrointestinal tract. Recovery of sugars in the 

urine was higher in the HCHF model for lactulose, sucralose, mannitol and sucrose for 

the 8-20 hour time period, Figure 3.36. Only lactulose recovery differed between the 

HCHF and HSb groups, where recovery in the 8-20 hour bracket was higher in the 

HSb group. Intervention with 5% sorghum in the CS diet did not affect the urinary 

recovery of any sugar (Figure 3.36 and Figure 3.37). 
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Figure 3.36: Percent recovery of sugars in urine over time. Differing lower-case letters 

indicate significant difference at p<0.05, determined by two-way ANOVA.  

 

Identification of outliers for occludin expression resulted in removal of two values for 

the CS, CSb, and HSb groups, and one from the HCHF group. Expression of occludin 

was increased in CSb from CS control. CS and HCHF did not differ and no effect of 

sorghum on occludin expression occurred in the high fat diet.   
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mannitol recovery. No differences 

were found between any groups.  

 



 

 Two outlier values were removed from the CSb group data of claudin-1 expression. 

Claudin-1 expression was unchanged by diet or intervention with sorghum.   

 

One outlier was removed from the HCHF data, and two from the HSb TLR4 data. 

TLR4 expression did not differ between the CS and HCHF diets. Addition of sorghum 

showed no significant change in either diet.   

 

Occludin and colon expression changes did not correlate with the changes in sugar 

recovery from the intestinal permeability analysis, as shown in Table 3.15. 
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Figure 3.38: Occludin expression 

in the colon determined by semi-

quantitative ELISA. Differing 

lower-case superscript letters 

indicate significant difference at 

p<0.05, by one-way ANOVA.  

 

Figure 3.39: Claudin-1 expression in 

the colon determined by semi-

quantitative ELISA. Differing lower-

case superscript letters indicate 

significant difference at p<0.05.  

 

Figure 3.40: TLR4 expression in 

the colon determined by semi-

quantitative ELISA. Differing 

lower-case superscript letters 

indicate significant difference at 

p<0.05 by one-way ANOVA.  
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Table 3.15: Pearson’s correlation P-values indicating no significant correlation 

between urinary sugar recovery and expression of proteins in the colon.   

    Expression 

    TLR4 Claudin-1 Occludin 

%
 u

rin
ar

y 
re

co
ve

ry
 Lactulose 0.634 0.930 0.341 

Mannitol 0.481 0.982 0.369 

Sucralose 0.726 0.748 0.200 

Sucrose 0.557 0.925 0.320 

 



3.4 Discussion 

Supplementation of sorghum into an obesogenic diet showed modest changes in 

several parameters of metabolic syndrome. Cholesterol reduction, improved liver 

physiology and improved glucose tolerance were the major findings, while average 

weight gain, final body weight, energy intake and body mass index were the 

physiological changes noted. Biochemical changes included increased liver TLR4 

liver expression and increased GLUT2 liver expression. Sorghum had no impact on 

gastrointestinal permeability or serum lipopolysaccharide concentrations.  

Scaling equations from rat to human models based on body surface area (382) or body 

weight (383) show that 5% sorghum in food equates to a daily dose of approximately 

28g or 34g sorghum in humans. These calculations are based on an estimated rat 

dietary intake of ~25g of food per day containing 5% sorghum, for a 500g rat, scaled 

to a 70kg human. 

Dyslipidaemia  

The most significant changes in metabolic parameters was normalised total plasma 

cholesterol with 5% sorghum in the HCHF model. This has significant ramifications 

for promotion of sorghum as a health food, placing it in similar realms to oats for 

marketing purposes. Other literature has shown that the lipid fraction of sorghum can 

contribute by inhibiting cholesterol absorption from the gastrointestinal lumen (182, 

184). Although the lipid fraction in whole sorghum is low, this indicates that the 

wholegrain has similar effects, as this is generally how human consumption would 

occur. 5-20mg of long-chain fatty alcohols, sourced from wholegrain, can increase 

HDL and decrease LDL concentrations (384). Wholegrain sorghum contains around 

0.23% long chain lipids, of which 37-40% are policosanols (on a dry matter w/w basis) 

(131). Equivalent human consumption in this model is around 30g per day, which 

would equate to approximately 25.5mg of policosanol ingestion, well above the 5-

20mg requirement.   

There have been links established with resistant starch supplementation and the 

normalisation of plasma cholesterol (385). One way in which sorghum and other 

sources of resistant starches cause this is by reduction of intestinal cholesterol and bile 
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absorption (385). Comprehensive reviews of phytochemicals including anthocyanins, 

phenolics and flavonoids indicated that digestion is required for their release from the 

matrix (386, 387) and therefore will they will exert some of their effects in the colon 

(388, 389). Anthocyanin degradation products, specifically protocatechuic acid from 

cyanidin 3-glucoside, promoted cholesterol efflux by increased expression of two 

cholesterol efflux regulatory proteins (390). Cyanidin 3-glucoside is present in 

sorghum at low concentrations (146), and would rely on interaction with the 

appropriate microbial community. Protocatechuic acid is present in red sorghum as a 

free phenolic acid (391). Not all studies agreed that sorghum consumption alters 

cholesterol in a rat model as some cited no changes (232). Sorghum consumption led 

to increased total plasma cholesterol concentration in a rat model of obesity in one 

study (392). The lack of changes in triglyceride and NEFA concentration indicated 

that sorghum cannot fully correct the dyslipidaemia associated with metabolic 

syndrome. 

This study was unable to determine the changes in LDL and HDL cholesterol. Rat 

models are not ideal for cholesterol-based studies, with a low similarity to lipid profiles 

seen in humans. Zucker diabetic fatty rats on a high fat diet showed low similarity 

(393). However, studies in humans showed no improvement in plasma cholesterol in 

overweight subjects caused by sorghum consumption (394). 

Pre-diabetes 

Addition of 5% sorghum to this high fat, high simple carbohydrate diet normalised 

post-prandial glucose tolerance. This outcome is very promising for application to 

humans for improvement of pre-diabetes; however, in a human study, sorghum did not 

improve glucose tolerance with 45 grams of flaked sorghum consumption per day 

(394). Extracts of sorghum showed antidiabetic effects (185, 207, 208). Sorghum 

consumption reduced glucose concentrations and insulin secretion in overweight cats 

when compared to a wheat-based diet, which reduces progression of pre-diabetes 

(395). Wholegrain consumption in general has been associated with reduced diabetes 

development (396, 397).  

There was no change in the pancreas that was associated with sorghum consumption. 

It was expected that there would be changes associated with the improved glucose 



tolerance in HSb and the poor glucose tolerance in HCHF. Impaired insulin release is 

a major cause of the increased peak blood glucose concentration in a high-fat model, 

caused by destruction of pancreatic β-cells once disease has progressed (398). 

Apoptosis of pancreatic β-cells is increased in both lean and obese type 2 diabetic 

groups, and is generally accompanied by decreased β-cell mass (399). Regeneration 

of β-cells can restore glucose tolerance (400). In this study, islet cell density was not 

altered, and no statistical changes in cell count or islet size occurred due to diet or 

sorghum. It would suggest that a mechanism other than restoration or preservation of 

b-cell mass is responsible for sorghum’s role in improving glucose tolerance. The 

changes are more likely related to the function of β-cells. Future studies should 

evaluate this.  

Fasting hyperglycaemia was not improved by sorghum, which suggests a lack of 

change in the pulsatile insulin release, or lack of improvement in sensitivity to pulsatile 

insulin release (401). Reduced peak glucose concentrations could be affected by 

improved peripheral sensitivity to insulin, improved release of insulin, or conversion 

from pro-insulin to insulin (402). The cause of the glucose tolerance improvement 

have not been elucidated in this study but do not appear to be related to β-cell mass.  

The dysfunction of the pancreas in metabolic syndrome is contributed to by 

inflammation (403). Most recently, the Whitehall Study linked increased pro-

inflammatory IL-6 (interleukin-6) and CRP (C-reactive protein) with increased fasting 

glucose and poor insulin response (368). Interleukin-1 (IL-1) and interferon-γ as pro-

inflammatory cytokines are implicated in the dysfunction of β-cells by initiation of 

nitric oxide production in islets (404). Consumption of anti-inflammatory compounds 

may reduce the metabolic problems caused by sub-clinical inflammation, however the 

mechanisms appear complex (405). The addition of multiple components of sorghum 

might reduce the inflammatory state. Sorghum methanol extracts reduced 

inflammation by up-regulation of anti-inflammatory PPAR-γ and reduced TNF-α 

(185), and improved glucose tolerance through reduced hepatic gluconeogenesis 

(406). Peripheral glucose clearance and hepatic function should be noted as a possible 

driver in reduced TAUC after glucose challenge in this study, with changes occurring 

in HSb liver GLUT2 expression. Increased GLUT2 is typically associated with 

impaired glucose tolerance due to its ability to release glucose into the bloodstream. 
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This is paradoxical to the improved glucose tolerance seen in the HSb group and the 

increased GLUT2 expression. In other studies, reduced GLUT2 expression occurred 

with improvement in diabetes (305, 310, 319, 325) and in diet-induced fatty liver 

disease (322).  

Cardiovascular and liver changes 

Few cardiovascular changes occurred due to sorghum consumption. There was 

reduced hypersensitivity to noradrenaline and acetylcholine with sorghum 

consumption in aorta from this high fat model. This may be due to a reduction in 

oxidative stress and a reduction in inflammation, as components of sorghum are widely 

shown to reduce oxidative stress and inflammation. In diabetes, there have been links 

correlating high plasma markers of chronic inflammation with macrovascular 

endothelial dysfunction (407). In obesity and insulin resistance, similar associations 

with CRP (C-reactive protein) have been demonstrated, which closely correlated with 

concentrations of pro-inflammatory cytokines, interleukin-6 and TNF-α (408). 

Consumption of other cereals such as millet reduced CRP concentrations in 

hyperlipidaemic states (392). Sorghum has not yet been directly linked to this and this 

study did not study inflammatory cytokine concentrations. Future research assessing 

the plasma inflammation makers will add weight to this knowledge. 

As noted previously, increased PPAR-γ may play a role in improving insulin 

sensitivity, however this receptor has also been implicated in reducing inflammation, 

particularly in endothelial cells (409). Studies in mice have shown increased PPAR 

expression with sorghum extract consumption (185). Future studies would benefit 

from determining expression and activation of PPAR. Anthocyanin-rich foods in 

general appear to have beneficial effects on the heart (410, 411), with sorghum being 

relatively unique as a widely grown commercial cereal crop which contains high 

concentrations of 3-deoxyanthocyanidins. Sorghum fed to rats showed a better in vivo 

anti-oxidative effect than purple rice or rhubarb rice (412).    

Liver function is impaired in metabolic syndrome with deposits of fat, alteration of 

enzyme activity, and increased glucose release. Sorghum did not change liver weights 

or amino acid transfer enzyme activities. Liver histology indicated that there was 

reduced steatosis, ballooning and fat deposits with sorghum consumption in the high 



fat diet. Sorghum extracts reduced cholesterol concentrations in the liver of rats (183) 

and mice (406), and in a hamster model improvements in liver were associated with 

the lipid fraction of sorghum extract (182). Aqueous sorghum extracts showed no 

adverse effects in healthy rats and were haematopoeitic at doses of up to 1600mg/kg 

per day (413). Wholegrain sorghum increased liver weight in overfed ducks more than 

a maize equivalent (414). Sorghum flour fed to rats on a hyperlipidaemic diet did not 

change liver enzyme activity (253).  

Liver TLR4 expression increased on the HSb diet. Typically, increased expression of 

TLR4 would result in an increased inflammatory response. Reduced TLR4 expression 

reduced inflammation and metabolic changes associated with metabolic syndrome 

(415). However, the effects of sorghum on TLR4 have not been studied. The reason 

for the increase in this study is unclear, and the lack of difference between the high 

and low fat diet controls does not shed any light on the cause.  

Gastrointestinal function 

Gastrointestinal contraction, as assayed by acetylcholine responsiveness, did not 

produce a clear indication of how sorghum or diet affects colonic reactivity. If 

anything, there were increased responsiveness in high-fat fed models which were not 

anticipated. Some data suggest that, in situations such as distal colitis, there was an 

increased colonic contractility in the proximal colon, and reduced contractility in the 

distal colon (416). Inflammation upregulated the α7 nicotinic acetylcholine receptor in 

mouse colon (417) which may explain the increased responses to acetylcholine 

stimulation. This may be similar to the changes seen in obesity. Studies in humans 

have suggested that in obese subjects there was a faster colonic transit time (178), and 

that high force contractions in the colon may be caused by inflammation (418) while 

others suggest that obesity decreased contraction (419). Compounds isolated by 70% 

methanol from Sorghum bicolor leaf caused relaxation of the isolated ileum of guinea 

pigs (420) and a reduced intestinal propulsion (421).  

One hypothesis was that increased gastrointestinal permeability would occur in a high-

fat high-carbohydrate model of obesity, which appeared to be the case. This is 

consistent with other studies of obesogenic diets (373, 422). Supplementing with 

sorghum did not improve the gastrointestinal permeability, and therefore the 
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gastrointestinal benefits at this level of supplementation are not evident. Mannitol is 

considered an indicator of absorption, while lactulose is an indicator of permeability, 

being a large molecule not taken up by villi. The increased lactulose recovery in the 

HSb rats indicated possible poorer gastrointestinal integrity, specifically in the 

stomach and small intestine.  

There may be a decreased expression of tight junction proteins caused by a high fat 

diet in obese animal models (177, 375, 423, 424). Claudin expression did not alter in 

any diet or intervention, although these were only studied these in the colon with intent 

to investigate links between LPS and colonic permeability. Occludin was increased 

from the CS control with sorghum, with no change in intestinal permeability. This 

result was not consistent with the intestinal permeability measurements and therefore 

another mechanism may be influencing the intestinal permeability. The lack of 

differences in tight junction expression between HCHF and HSb were consistent with 

the intestinal permeability study. Sorghum can contain mycotoxins which reduce 

claudin expression (425). In sensitive individuals, prolamin protein may reduce 

zonulin expression in the gastrointestinal tract (426), while sorghum arabinoxylans 

restored intestinal barrier function through improving tight junction proteins, mediated 

by the production of short chain fatty acids (427).  

The tight junction protein, zonula occludin-1 (ZO-1), expression was reduced in 

patients with irritable bowel syndrome, which corresponded to increased permeability 

(428). ZO-1 is the soluble anchor protein, while occludin and claudin are both 

transmembrane proteins. The responses between claudin-1 and occludin differed. 

Occludin appears more susceptible to changes than claudin. Some studies suggest that 

the changes do not occur in the large intestine with a high fat diet (424), which is where 

expression was studied in this research. LPS, among other TLR activators, are 

generated in the large intestine where the vast majority of the microbial population 

resides. It may be that it is primarily the diet itself, rather than the microbial factors 

influenced by diet, that caused the changes in a HCHF model (424). As this study was 

focussed on the interaction of LPS and TLR4, and their influences on intestinal 

permeability leading in metabolic syndrome, small intestinal changes in tight junctions 

were not tested, however future research should incorporate this.  



 

 

Metabolic endotoxaemia 

Serum LPS concentrations did not differ between any groups, and therefore its changes 

could not be linked to intestinal permeability or inflammation which lead to metabolic 

syndrome. There appears to be no influence of sorghum on the circulating 

concentrations of LPS.  

Studies which implicated LPS in metabolic syndrome development such as that used 

by Cani, et al. (238) used an aggressive approach whereby intraperitoneal injections 

of LPS induced metabolic changes. Whether this is the case in a “normal” diet-induced 

development of metabolic syndrome was unclear. This study was unable to find a 

sound correlation between LPS concentrations and the glucose tolerance, or even an 

effect of diet on serum concentrations of LPS. TLR4-mediated inflammation is a 

known mediator of inflammation induced by LPS, and is expressed by β-cells (429). 

TLR4 mediated insulin resistance in knockout mice populations (430). The complexity 

of the inflammatory pathways that have been associated with β-cell dysfunction and 

impaired glucose tolerance is the likely reason that no direct correlation was found. 

All inflammatory triggers, not only LPS, are important in addition to TLR4-mediated 

inflammation (431). Lipids can trigger inflammatory mediators including protein 

kinase C, protein kinase R and TLR4. Many stressors in obesity can imitate the JNK 

pathway (431). The presence of macrophages, and their inflammatory responses which 

include TLR2, TLR6 and TLR4 also contribute (432). All mechanisms are at play and 

addressing a single inflammatory indicator is insufficient to explain the changes in 

glucose tolerance, particularly where no significant effect of diet was noted. In future, 

metabolomics will aid to assess all facets of the process simultaneously and will give 

a much clearer understanding of how sorghum affects glucose tolerance and 

inflammation. While the expression of TLR4 was studied, and concentrations of LPS 

were assessed, the study lacked by not addressing TLR4 activation, initiated by 

circulating free fatty acids which mimic LPS (433, 434). 
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I hypothesised that LPS concentrations would be altered with both diet and sorghum 

consumption. LPS is an inflammatory mediator in the gastrointestinal tract, where 

significant amounts of LPS are excised from Gram-negative bacteria. TLR4-deficient 

mice appeared resistant to changes is colonic occludin and claudin that occur in a high 

fat diet (219), implicating its role in the process. It is well known that in inflammatory 

bowel disease, intestinal permeability increases. In studies, ulcerative colitis and 

Crohn’s disease showed increased TLR4 in epithelial cells of both the colon and ileum 

(435). Sorghum had no influence on the outcome, therefore is unlikely to influence the 

status of colonic TLR4 expression when consumed by humans, nor alter serum LPS. 

Lappi, et al. (218) hypothesised the changes in the large intestine were partly 

responsible for improved type 2 diabetes mellitus with wholegrain consumption. In 

this study, the two could not be directly associated.  

Body composition 

Sorghum did not reverse obesity. There were indications that sorghum affects energy 

intake and body weight gain indicated by two-way ANOVA. In rats, the protein 

content of the sorghum added to rat diets was a significant source of variance in body 

weight gain (436). The diet-intervention interactions are of interest, where the 

indication is that adding small amounts of sorghum into a low-fat diet may increase 

food intake and feed efficiency, where the opposite is true for supplementing into a 

high fat, high simple carbohydrate diet. These interactions suggest that the 

composition of the entire diet is important, even when low amounts of sorghum were 

consumed. Although the changes were minor, the supplement level is relatively low, 

equivalent to approximately 30g per day for a 70kg adult human. Recent studies by 

Stefoska-Needham, et al. (394) using 45g of flaked sorghum per day showed no 

change in weight loss on a restricted diet when comparing with 45g of white wheat 

flakes. The results we achieved in an animal model were comparable to this and 

overall, low amounts of sorghum are unlikely to have a significant change on body 

weight in humans as the key driver of body weight is calorie intake (437). Wholegrain 

millet (Sorghum vulgare), which has a similar composition to sorghum, did not affect 

body weight in hyperlipidaemic rats (392).  



The low digestibility of sorghum compared to other cereal grains is a concern with the 

use of sorghum in production animal diets where the goal is to maximise weight gain 

(91, 438). This led to a reduced weight gain in a high sorghum diet (367). Lean mass 

and organ weight are two major drivers of metabolic rate. Sorghum supplements in 

rats did not reduce lean mass or organ weights, which would suggest that it is unlikely 

to have a detrimental effect on overall metabolic rate and energy expenditure. This 

could be confirmed in the future with the use of metabolic cages such as OxyMax.  

The composition of the two diets is likely to impact the nutrient availability in vivo. 

Red sorghum contains tannins which may inhibit amylase activity which will reduce 

the breakdown of starch and therefore its energy availability (28, 259), although in a 

rat model it does not appear to be the case. The effects on amylase activity have been 

well characterised however there may also be effects on lipases and proteases. The 

formation of tannin-enzyme complexes may have reduced the digestion, as has been 

shown in other animal models (439), and therefore availability of both fats and proteins 

to the animal. During the 8 weeks of sorghum addition, there was no loss of lean mass 

in either group which would suggest that there is minimal risk of reduced amino acid 

absorption which would affect lean body composition. Bone mineral density showed 

a diet-sorghum interaction. Chelating properties of tannins reduce biological 

availability of minerals necessary for bone health, particularly during stages of growth 

(258, 259). The outcomes are unlikely to be clinically significant.  

Other considerations 

Sorghum contains components which may affect the digestibility of other components 

of the diet, and the protein and carbohydrates of sorghum itself (103). There is a strong 

indication that the effect of sorghum in the diet differs depending on the diet as a 

whole, indicated by the differing effects in the CS and HCHF diets. The food matrix 

components contribute to the bioavailability (440). Again, this is a complex response 

that requires more investigation. The matrix itself, the enzymes induced by the matrix, 

gut pH, microbial presence, fermentation status and transit time can all influence the 

uptake of compounds (290) in sorghum with the potential to improve metabolic 

syndrome and other health parameters. The digestion process altered bioavailability of 
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hydroxycinnamic acids (441) and the differing digestion from a rat model to human 

model will result in different outcomes.  

Identification and quantification of the bioactive compounds present in the whole grain 

sorghum used in this study would add considerable weight to the study. Knowledge of 

the individual components would provide a link between these compounds and the 

research outcomes. Given the vast differences in sorghum composition due to genetic 

and environmental factors, this would provide a baseline for further research. In the 

absence of this information, the effects cannot be well correlated with these 

components.  

High carbohydrate commercial cereal made of wheat, barley, maize and oats, eaten in 

conjunction with grape seed extract, reduced post-prandial plasma concentrations of 

dimeric and trimeric procyanidins; however, the concentrations of the monomeric 

forms, catechin and epicatechin, were increased when compared with sole 

consumption of grape seed extract (442). The high corn starch diet used in this study 

might have a similar effect, reducing uptake of bioactive compounds present in 

sorghum, particularly complex procyanidins however increasing the uptake of 

monomeric forms. Flavanols had higher post-prandial concentrations when consumed 

in the presence of both complex and simple carbohydrates (443). 

Presence of milk proteins as in the condensed milk of the HCHF diet may also change 

bioavailability. Milk proteins do not alter uptake of catechins or epicatechins (444, 

445). However, the presence of milk can affect the excretion profile over time of 

epicatechin and its conjugates, in addition to altering the position of conjugates 

moieties, particularly sulphates (446). This study used whole milk so the interaction 

of fat and carbohydrates may also play a role. Protein-rich foods did not improve or 

hinder catechin or epicatechin flavanol uptake (443). The development of a well-

designed meal with a combination of foods may optimise uptake of sorghum 

components, specifically the procyanidin groups.  

Increasing the percent of sorghum supplemented may have a more pronounced effect, 

and this is explored in subsequent chapters.   



Longitudinal changes in attitudes and culture toward food have become more 

important in a society where food is cheap, accessible and choice is relatively 

unlimited. Examples of changing positive attitudes to cereal foods include chia, 

quinoa, teff and spelt. Sorghum may follow the same path with the correct evidence to 

back its health benefits, as has been shown here, particularly for reduction of 

cholesterol concentrations.   

Addition of 5% in the diet in rats, equivalent to approximately 30g intake per day in 

humans, may not be sufficient to produce changes in some aspects of metabolic 

syndrome. The average wheat consumption in Australia is 87.7kg per annum per 

person, equating to approximately 240g per day (447). Replacement of refined wheat 

products with unrefined sorghum may result in greater benefits than the low level of 

supplementation in this study. This may be achieved by replacing wheat-based cereals, 

pasta, breads and bakery products with sorghum substitutes. Higher sorghum doses are 

studied in Chapter 4.  

3.5 Conclusion  

Supplementation of sorghum to diet at a level of 5% may be a very simple way to 

reduce the metabolic syndrome risk especially for correction of cholesterol 

concentrations, improved liver structure and glucose tolerance. These impacts could 

be translated to humans. It should be noted that there are multiple varieties of sorghum 

which differ in tannin, flavonoid and polyphenol content which are some of the 

functional components of sorghum. Overall, sorghum consumption showed very few 

negative effects, and had a positive impact on plasma lipid status, glucose tolerance 

and liver physiology. Furthering these trials to humans will give a more applicable 

understanding on the possible role of sorghum in human nutrition and as a functional 

food.  
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Chapter 4 - 20% Red and black sorghum flour in a rat model of metabolic 

syndrome 

4.1 Introduction 

Sorghum and its components have garnered interest for health promotion, due to the 

composition of both their macro- and micronutrients. Cereal grain products are a large 

part of the diet, and intakes are expected to remain relatively constant over the next 10 

years (447). Calorie consumption globally is increasing (447), which leads to 

metabolic sydrome (448). There is significant resistance to changing dietary habits that 

lead to obesity and metabolic syndrome, due to price, time and desire (449). On 

average, Australians consume approximately 240g of wheat per person per day (447). 

Can incorporating sorghum flour into the diet as a replacement for wheat flour present 

an easy and manageable way to alter the risk of metabolic sydrome? 

Sorghum contains multiple components which show potential to reduce the risk of, or 

improve, the symptoms of metabolic syndrome. This is partly due to its phenolic 

composition (272, 450, 451) and the potential of consumption of the unique sorghum 

polysaccharides (106). Most studies have investigated isolated components of 

sorghum, but a few have supported the theory of sorghum as a wholegrain to improve 

paramenters of metabolic syndrome.  

Studies in overweight cats showed that sorghum-based diets reduced post-prandial 

glucose concentrations, and may be preventative for type 2 diabetes (452). A portion 

of this may be attributed to the methanol-extractable portion (185) or ethanol-

extractable portion which include phenolic acids, 3-deoxyanthocyanidins, flavones, 

flavanones, catechins and tannins (207). Wholegrain sorghum flour muffins resulted 

in lower post-prandial glucose fluctuations than wheat muffins, attributed to high 

concentrations of resistant starches (206).  

Decreased cholesterol concentrations in a rat model of diet-induced metabolic 

syndrome were shown in Chapter 3 of this thesis. Improved serum lipid status is 

supported by other animal studies, however only with conusmption of sorghum 

extracts (181-185). Sorghum improved lipid status in human trials with the 

consumption of 100g per day (187). Effects on central adiposity are expected to be 



minimal (186), however long term sorghum consumption improved satiety responses 

(222) which may reduce calorie consumption. Little research exists on the 

cardiovascular effects of sorghum consumption, but wholegrain cereal consumption 

was inversely correlated with cardiovascular disease (397).  

The interactions between sorghum and the gastrointestinal tract and the effects of 

sorghum on metabolic syndrome have not been widely studied and need to be 

investigated. The addition of sorghum, which includes resistant starches, unique 

proteins and a combination of bioactive compounds could have similar beneficial 

effects to other cereal grains such as oats (450). Despite this, some evidence suggests 

that sorghum may cause problems. Dextran sodium sulphate-induced colitis injury in 

rat models was exacerbated in black and Sumac sorghum bran-supplemented studies 

compared with those supplemented with cellulose (453). The same study also showed 

lower gut microbial population diversity in animals consuming sorghum brans which 

contained high concentrations of tannins (453). Sorghum cereal consumption altered 

colonic microflora and improved biomarkers associated with cardiovascular disease 

such as gamma-glutamyl transferase (454). Circulating endotoxins such as 

lipopolysaccharides, which originate in the gut, have been linked to the development 

of metabolic syndrome (237, 455, 456). Improvements in metabolic syndrome with 

wholegrain intake may be due to reduced gastrointestinal permeability and reduced 

TLR4 (toll-like receptor 4) mediated inflammation (218). Wholegrains improve colon-

mediated inflammation and reduce post-prandial glucose concentrations (457). 

Wholegrain barley improves inflammation and markers of metabolic syndrome by 

changes in the colon (458).  

Red and black sorghum flours are two types which are commercially available for use. 

Although both are from the species Sorghum bicolor, they differ in colour and also in 

the composition of polyphenols. The unque combination of phenolics and their 

concentrations has led to the speculation that sorghum has nutraceutical properties. 

The 3-deoxyanthocyanidin pigments which result in the colours in sorghum are 

luteolinidin (orange to brown) and apigeninidin (orange to dark red). Other pigments 

include 5-methoxyapigeninidin (dark red), 7-methoxyapigeninidin, apigeniniden 5-

glycoside, 7-methoxyapigeniniden 5-glucoside, 5-methoxyluteolinidin, 7-

methoxyluteolinidin, and 5-methoxyluteolinidin 7-glucoside, apigenin, luteolin, 
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eriodictyol, eriodictyol 5-glycoside, kaempferol 3-rutinoside-7-glucuronide, 

naringenin (white), taxifolin (pale yellow (459)), taxifolin 7-glucoside, apiforol, 

luteoforol, catechin and procyanidin B1 (451). Black sorghum colour is due to higher 

concentrations of 3-deoxyanthocyanidins in the pericarp than red or tan lines, but also 

higher concentrations of flavanols and flavones (165). Colours can be affected by light, 

oxygen, solvent, present of oxidants and pH (460). Condensed tannins also contribute 

to the red or brown colouring in sorghum, and these are higher in red varieties (165).  

Sorghum flour is the most likely way for sorghum to be incorporated into the diet, due 

to increased reliance on packaged and processed food products (461). While 

wholegrains are beneficial for health, processing wholegrains alter the bioaccessibility 

and bioavailability, and therefore biological responses to the grain (88, 160, 272). The 

macronutrient composition in wholegrain sorghum and sorghum flour may appear 

similar at the outset but the milling process changes the structure of starch granules. 

Longer milling times generally result in reduced starches which are resistant to 

hydrolysis, and higher starch granule damage (462). Both of these properties increase 

digestibility of starch (463) by reducing the amount of resistant starches. Phenolic 

compounds are bound to starch granules and proteins, both covalently and by adhesive 

forces. The milling makes these components more available (159, 160) and as starches 

and proteins are digested they can release not only differing amounts of the complexed 

compounds, but also cause their release in different parts of the gastrointestinal tract 

(272).  

In this chapter, two different types of sorghum flour were tested in a rat model of diet-

induced metabolic syndrome to determine whether sorghum flour has benficial or 

detrimental effects on  physiology with specific reference to parameters of metabolic 

syndrome. I propose that the unique combination of phenolics in red and black 

sorghum will improve metabolic syndrome. I also suggest that part of the mechanism 

will be alteration of the colon environment which will influence circulating 

lipoplysachharides, which are known activators of TLR4-mediated inflammation 

which contributes to metabolic syndrome (Figure 4.41).    



 

Figure 4.41: Sorghum’s potential for improving metabolic syndrome.  

4.2 Materials & Methods 

4.2.1 Ethics  

Approval for experimentation with 20% sorghum was granted under AEC approval 

number 15REA005 valid from 20th June 2015 to the 20th June 2018 by the Animal 

Ethics Committee of the University of Southern Queensland. All rats were treated and 

housed as per the NHMRC (National Health and Medical Research Council) 2014 

guidelines for the ethical treatment of animals. 

4.2.2 Rat Diet and Experimental Structure  

Seventy-two Male Wistar rats were randomly divided into 6 experimental groups of 

n=12. The groups were mCS (modified corn starch diet), mHCHF (modified high 

carbohydrate, high fat diet), mCRed (modified corn starch diet + 20% w/w red 

sorghum flour), mHRed (modified high carbohydrate, high fat diet + 20% w/w red 

sorghum flour), mCBlack (modified corn starch diet + 20% w/w black sorghum flour) 

and mHBlack (modified high carbohydrate, high fat diet + 20% w/w black sorghum 

flour). Partially de-branned red sorghum flour was donated by Maralong Milling Co 

(Toowoomba, Qld, Australia), and wholegrain black sorghum flour was purchased 

from Nu Life™ Market (Scott City, Kansas, USA).  
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For the first 8 weeks of the protocol, all mCS, mCRed and mCBlack rats received the 

control mCS diet and all mHCHF, mHRed and mHBlack rats received the control 

mHCHF diet as described in method 2.2. At eight weeks, the mCRed, mHRed, 

mCBlack and mHBlack groups were transferred to the treatment diet as indicated and 

remained on these diets until protocol completion.   

An additional 3.85 kJ/mL energy was added to calculations for the mHCHF, mHRed 

and mHBlack diets in fructose water.  

At 16 weeks, prior to termination, oral glucose tolerance (method 2.3), body 

composition (method 2.4) and systolic blood pressure (method 2.5) were determined. 

Rats had urine collected as per chapter 2.10.1. All rats were starved for 2 hours prior 

to termination. Rats were euthanised as per method 2.6.1. At termination, rats 

underwent serum collection (method 2.6.2), plasma collection (method 2.6.3), vascular 

reactivity (method 2.6.5), ileum and colon contractility (method 2.6.6), organ weights 

(method 2.6.7) and histological tissue collection (method 2.8.1). 10 rats per group 

underwent isolated heart perfusion (method 2.6.4), with the remaining two hearts 

preserved in formalin for histological analysis as per method 2.8.1. Plasma 

biochemistry was assessed on 8 rats per group for liver enzyme activity (method 2.7.1), 

and plasma lipid profile (method 2.7.2.). Collected serum was analysed for presence 

of endotoxins as per method 2.9. Liver and distal colon sections were assessed for 

expression of TLR4 (method 2.11.3). Distal colon sections were also assessed for 

occludin and claudin expression using methods 2.11.4. Urine samples collected prior 

to termination were prepared (method 2.10.2) and analysed as per method 2.10.3. 

Histological tissue samples were processed automatically (method 2.8.3) and 

sectioned (method 2.8.3). Liver, ileum, colon, pancreas and left ventricle were stained 

with haematoxylin and eosin (method 2.8.5.1). Separate sections of left ventricle were 

stained with picrosirius red (method 2.8.5.2). Microscopy and imaging were 

performed as per method 2.8.6.1, 2.8.6.2, 2.8.6.3 and 2.8.6.4. 

Statistical tests were performed with one-way ANOVA. Where a one-way ANOVA 

reported a significant difference between the means, these results are indicated as a 

significant difference at p<0.05, where lower-case letters differ. Further testing was 

carried out when a two-way ANOVA indicated a significant effect of sorghum or 

interaction. In this case, Student’s t-test was performed between the following 



comparisons: mCS-mHCHF, mCS-mCRed, mCS-mCBlack, mCS-mHRed, mCS-

mHBlack, mHCHF-mCRed, mHCHF-mCBlack, mHCHF-mHRed, and mHCHF-

mHBlack.  

The following null hypotheses were tested: 

1. There is no difference between the mCS and mHCHF diet on the parameter in 

question. 

2. There is no effect of sorghum addition to the base diet, i.e. the addition of 

sorghum to the mCS diet does not alter the outcome, or the addition of sorghum 

flour to the mHCHF diet does not alter the outcome.  

3. The addition of sorghum to the HCHF does not normalise an outcome to the 

CS control. 

4. The addition of sorghum to the CS diet does not change the outcome to be 

comparable to the HCHF control.   

4.3 Results  

4.3.1 Black and red sorghum flour composition 

Acidified methanol extracts of red and black sorghum flour show differing profiles. 

HPLC with detection at 210nm (Figure 4.42) indicated that the hydrophilic compounds 

were relatively similar between the two. However, red sorghum showed small peaks 

between 10.5 and 11.5 minutes which were not present in black sorghum flour extracts. 

Similarly, there were a number of peaks present between 13.5 and 14 minutes which 

were present in black sorghum flour extracts but not in red sorghum flour extracts.  
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Figure 4.42: 210nm UV detection of HPLC of acidified methanol extracts of red 

sorghum flour (top) and black sorghum flour (bottom). 210nm detection detects 

primarily hydrophilic compounds.  

Detection of anthocyanins were detected at 510nm. This wavelength will also detect 

3-deoxyanthocyanins and their glycosides. There was a marked difference in the 

compounds in red and black sorghum (Figure 4.43). The peaks at 7.5, 7.0, 6.1 and 5.8 

minutes were much higher in the red sorghum extract than that of the black sorghum. 

Several peaks were present between 13.0 and 15 minutes in black sorghum extract that 

were not detected in the red sorghum.  

 

Figure 4.43: 510nm UV detection of HPLC extracts of red sorghum flour (top) and 

black sorghum flour (bottom). 510nm detection primarily indicates anthocyanin 

presence.  

The 330nm profile (Figure 4.44) primarily indicates phenolic acids. This wavelength 

is also suitable for detection of flavones (153). These differ considerably between the 

red and black sorghum extracts. In black sorghum, the majority of phenolic acids 

eluted between 13.5 minutes and 14 minutes. These 3 peaks were absent, or present at 



very low amounts, in the red sorghum extract. There are two clusters of compounds in 

red sorghum extracts, four peaks between 10.5 and 11 minutes, and two between 12.3 

and 12.8 minutes, which are not present in the black sorghum extract.  

 

Figure 4.44: 330nm UV detection of HPLC separated acidified methanol extracts of 

red sorghum flour (top) and black sorghum flour (bottom). 330nm detection primarily 

indicates presence of phenolic acids.  

Despite both types of sorghum having compounds which are potentially bioactive, the 

composition of these extracts differs markedly and therefore their effect on the body 

may differ. Macronutrient profiles of the two flours are shown in Table 4.16.  

Table 4.16: Macronutrient profiles of red and black sorghum flour used in the dietary 

protocols.  

 

NR indicates not reported. 

Maralong Milling Red 
Sorghum Flour

NuLife Black Sorghum 
Flour

Energy (kJ)  1500 1463
Protein (g)  9.9 7.5
Fat, Total (g)  2.5 3.75
- Saturated (g)  0.4 0
 - Monounsaturated (g)  0.8 0
- Polyunsaturated (g)  1.2 NR
- Trans (g)  <0.01 NR
Fibre - Dietary (g)  5.8 5
Carbohydrates 70.7 (g)  70.7 77.5
- sugars (g)  <0.01 0
Sodium (mg)  <5mg 0
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4.3.2 Physiology and metabolism indicators  

The addition of red and black sorghum flour to the diet at 20% increased the caloric 

value of the mHCHF diet from 14.65 kJ/g to 17.65 kJ/g and 17.78 kJ/g, respectively. 

Addition to the mCS diet increased caloric value from 9.94 kJ/g to 12.94 kJ/g and 

13.08 kJ/g, respectively. At 8 weeks, all mCS groups showed a similar body weight, 

similarly in all mHCHF groups. The mHCHF, mHRed and mHBlack groups showed 

higher body weight than all other groups. At 16 weeks, the mCBlack and mCRed 

groups had higher body weight than mCS (Figure 4.45). The addition of 20% red 

sorghum flour did not affect body weight in the mHCHF diet, despite the increased 

calorie density of the food.  

 

 

Figure 4.45: Body weight changes over 16 weeks of the dietary protocol. ↑ indicates 

start of intervention with 20% red or black sorghum flours. Differing lower-case letters 

indicate a significant difference at 16 weeks (p<0.05) and differing upper case letters 

indicate a difference at 8 weeks (p<0.05).  
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Table 4.17: Physiological parameters of rats fed mCS, mCRed, mCBlack, mHCHF, mHRed, and mHBlack diets.  

 

Differing lower-case superscript letters indicate significant difference at p<0.05 determined by one-way ANOVA.  

 

Parameter Diet Intervention Interaction
Food intake (g/day) Week 0-8 36.6 ± 0.5 a 37.8 ± 1.0  a 37.0 ± 0.8 a 30.7 ± 1.1 b 27.5 ± 0.6  b 27.7 0.6 b 0.2391 0.0201 < 0.0001

Food Intake (g/day) Week 8-16 34.5 ± 0.7 a 26.8 ± 1.0  c 26.9 ± 0.5  c 31.7 ± 0.7 b 23.4 ± 0.6  c 22.7 ± 0.6  c < 0.0001 0.5844 < 0.0001

Water intake (g/day) Week 0-8 34.9 ± 2.7 a 24.3 ± 1.9  b 32.1 ± 1.5 a 21.6 ± 1.1 b 21.8 ± 1.3  b 21.4 ± 1.1 b 0.0568 0.6315 0.5989

Water Intake (g/day) Week 8-16 31.2 ± 3.4 a 21.1 ± 1.5  b 31.7 ± 2.3 a 22.3 ± 1.1 b 22.9 ± 1.3  b 25.7 ± 0.9 b 0.0052 0.0016 0.0142

Energy intake (kj/day) Week 0-8 363.9 ± 5.0 a 375.6 ± 9.7 a 368.0 ± 7.9  a 532.4 ± 16.9  c 486.6 ± 11.0  b 405.4 ± 8.9  ab < 0.0001 < 0.0001 < 0.0001

Energy intake (kj/day) Week 8-16 343.0 ± 7.2 a 346.3 ± 13.5  a 352.1 ± 6.6 a 550.4 ± 11.6 c 501.3 ± 9.1  b 404.7 ± 10.6  b < 0.0001 < 0.0001 < 0.0001

Feed efficiency (mg gained. kJ-1) Week 0-8 -2.0 ± 0.3 a -1.7 ± 0.3  a -1.6 ± 0.5  a 2.7 ± 0.3 b 2.2 ± 0.2  b 2.4 ± 0.2  b 0.917 0.454 < 0.0001

Feed efficiency (mg gained. kJ-1) Week 8-16 -0.2 ± 0.2 a 1.7 ± 0.2  b 3.8 ± 0.7  b 2.7 ± 0.2  b 3.1 ± 0.2  b 3.8 ± 0.3  b < 0.0001 0.0006 < 0.0001

Sorghum flour intake (g/day) 0.0 ± 0.0  a 5.4 ± 0.2 b 5.4 ± 0.1 b 0.0 ± 0.0  a 4.7 ± 0.1 c 4.5 ± 0.1 c < 0.0001 0.0022 < 0.0001

Bone mineral density (g/cm2) 0.17 ± 3E-3 a 0.18 ± 3E-3 a 0.16 ± 3E-3 a 0.18 ± 2E-3 b 0.18 ± 3E-3 b 0.18 ± 2E-3 ab 0.0003 0.7474 < 0.0001

Bone mineral content (g by DXA) 9.75 ± 0.31 c 11.39 ± 0.37  c 12.56 ± 0.54  b 15.28 ± 0.41  a 15.07 ± 0.74  a 15.87 ± 0.71  a 0.0027 0.1181 < 0.0001

Total body fat mass (g by DXA) 42.2 ± 6.5 a 59.1 ± 11.9 a 88.6 ± 14.6 a 170.2 ± 10.4 b 151.1 ± 18.2 b 168.8 ± 21.0 b 0.0188 0.3008 0.0065

Total body lean mass (g by DXA) 248.2 ± 3.9 a 274.0 ± 5.5 b 291.1 ± 14.6 c 308.4 ± 8.2 c 327.0 ± 8.5 c 315.6 ± 7.1 c 0.0015 0.0742 < 0.0001

Lean:Fat mass ratio 7.4 ± 1.0 a 5.6 ± 0.8 a 4.0 ± 0.7 b 1.9 ± 0.1 b 2.4 ± 0.4 b 2.2 ± 0.4 b 0.012 0.0037 < 0.0001

Retroperitoneal fat (mg/mm tibial length) 150.3 ± 12.3 a 163.3 ± 16.7 a 153.8 ± 21.2 a 394.2 ± 34.4 b 363.8 ± 23.7 b 352.2 ± 49.0 b 0.8035 0.6789 < 0.0001

Epididymal fat (mg/mm tibial length) 67.1 ± 6.8 a 88.0 ± 9.7 ab 91.0 ± 13.0 ab 143.3 ± 16.0 b 176.7 ± 13.2 b 197.3 ± 25.4 b 0.0411 0.6214 < 0.0001

Omental fat (mg/mm tibial length) 97.7 ± 6.6 a 111.2 ± 11.8 a 95.9 ± 10.3 a 209.9 ± 10.9 b 203.7 ± 15.0 b 186.9 ± 23.1 b 0.5045 0.7129 < 0.0001

Total abdominal fat pad (mg/mm tibial length) 315.1 ± 22.7 a 362.5 ± 35.8 a 340.7 ± 42.6 a 747.4 ± 58.3 b 744.2 ± 49.7 b 736.4 ± 94.3 b 0.9227 0.8974 < 0.0001

Total abdominal fat pad (mg/mm tibial length) 315.1 ± 22.7 a 340.7 ± 42.6 a 744.2 ± 49.7 b 362.5 ± 35.8 a 747.4 ± 58.3 b 736.4 ± 94.3 b 0.9227 0.8974 < 0.0001

mHBlackmCS mCRed mCBlack mHCHF mHRed



117 
 

Feed efficiency was higher in the mHCHF than mCS at 8 and 16 weeks. Sorghum did 

not affect feed efficiency in the HCHF diet. In the mCS diet, red and black sorghum 

increased feed efficiency (Table 4.17). Feed intake was lower in the mHCHF than 

mCS in the first 8 weeks. Food intake was decreased from controls in the mCRed, 

mCBlack, mHRed, and mHBlack. The addition of red or black sorghum flour to the 

mCS diet resulted in the largest decrease in food intake, with similar decreases between 

sorghum types. Energy intake was higher in the mHCHF than mCS in the first and 

second 8 week periods. Energy intake was not changed by adding sorghum flour to the 

mCS diet, but addition to the mHCHF diet reduced energy intake (Table 4.17).  

Despite the decrease of food volume intake with sorghum supplementation in both 

diets, energy intake did not necessarily reduce, due to increased calorie density of food. 

For the same energy intake, there was a higher feed efficiency in the mCRed and 

mCBlack groups (Table 4.17). mCRed group gained 33±5g over weeks 8-16, and 

mCBlack gained 67.8±7g. For the same energy intake, the mCS group lost an average 

of 3±3g. This change was from both lean and fat mass increase, as indicated by 

increased lean mass as shown in Table 4.17. Lean mass changes were not associated 

with changes in myofibril diameter (Figure 4.46). 

Fat mass was increased in the mHCHF group compared with the mCS group. 

Supplementation with sorghum flour did not affect fat mass in the mHCHF diet. Lean 

mass was increased with the addition of black and red sorghum flour to the mCS diet, 

but neither intervention had an effect in the mHCHF diet (Table 4.17).  

The ratio of lean:fat mass was higher in mCS than mHCHF groups. The mCBlack 

group showed a reduced lean:fat mass ratio from the mCS control. The addition of 

sorghum flour to the mHCHF diet did not alter lean:fat mass ratio from 1.89±0.11 

(Figure 4.46). 

 



 

Figure 4.46: Lean:fat mass ratio at 16 weeks (left) and skeletal muscle myofibril width 

(right). Differing lower-case letters indicate significant differences at p<0.05 

determined by one-way ANOVA.  

Total abdominal fat pad weights, normalised to tibial length did not differ between the 

mCS control and the mCRed and mCBlack groups. Fat pad mass was increased in all 

high fat, high carbohydrate diets from mCS. Addition of sorghum flour did not alter 

the total fat pad mass in either diet as indicated in Table 4.17.  

Bone mineral density was higher in the mHCHF group compared with the mCS group, 

as was bone mineral content. Bone mineral content was higher in all high 

carbohydrate, high fat based diets (mHCHF, mHRed, mHBlack) compared with the 

corn starch diets. This is likely a reflection of the elevated bone mineral density and 

higher overall body size and comparative bone content. Two-way ANOVA indicated 

that both diet and supplementation were factors contributing to bone mineral content, 

with p values of <0.0001 and 0.0027 respectively.  

4.3.3 Blood glucose regulation, dyslipidaemia and lipopolysaccharides 

After 8 weeks of feeding, the glucose TAUC was increased from the mCS control in 

the mHCHF and mHRed groups. Data shown in Table 4.18 indicate that the mHBlack 

group did not develop changes in TAUC expected for metabolic syndrome, with no 

difference from the mCS control. Additionally, the mCBlack group had lower fasting 

blood glucose concentrations than the mCS controls, and mHBlack showed fasting 

glucose concentrations similar to mCS. As this occurred prior to intervention, it cannot 

be attributed to sorghum and suggests an issue with the group of rats used for those 
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two interventions purchased from ARC, or another environmental problem. For this 

reason, changes from 8 weeks to 16 weeks were assessed, in addition to changes from 

the control groups. Red sorghum flour changes appear reliable, as these rats developed 

the expected metabolic changes, comparable to the control rats by 8 weeks. Changes 

in fasting glucose concentrations from 8 weeks to 16 weeks showed that mCS, 

mHCHF and mCBlack groups had an increased fasting glucose concentration at 16 

weeks compared with their 8 week tests (Figure 4.47). The mHBlack group showed 

more impaired glucose tolerance at 16 weeks, than at 8 weeks, while no others changed 

significantly from their 8 week values.    

 

Figure 4.47: Changes in glucose TAUC (area under curve), and fasting glucose blood 

concentrations between the 8-week test, and 16 week tests. Differing lower-case letters 

indicate significantly different change from control, determined by one-way ANOVA 

at p<0.05. * indicates significantly different change from 8-week glucose TAUC, at 

p<0.05 determined by non-parametric T-test.  

Average islet area did not differ between the mHCHF and mCS control groups. The 

only differences noted were between the mCS and the mHBlack or mHRed groups, 

which both had lower pancreatic islet size than the mCS control. The cell count did 

not differ between the mCS and mHCHF groups. mHRed group had lower cell counts 

per islet than both the mCS and mHCHF control groups. Islet density was higher in 

the mHCHF than mCS. Red or black sorghum flour increased density in the mCS diet. 

The only group which did not differ from the mCS control was the mHRed group, 

however it did not differ from mHCHF (Figure 4.48). 
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Figure 4.48: Pancreatic islet 

cell area, cells per islet and cell 

density. No differences were 

detected by one-way ANOVA. 

Differences detected by pair-

wise t-tests (Mann-Whitney) 

are indicated by capped lines.   
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Table 4.18: Blood glucose and plasma lipids of rats fed mCS, mCRed, mCBlack, mHCHF, mHRed, and mHBlack diets.  

Differing lower-case letters indicate significant differences at p<0.05 determined by one-way ANOVA. 

Parameter Intervention Diet Interaction

Fasting Blood glucose (mM) 8 week 3.3 ± 0.2 a 4.4 ± 0.2  b 3.5 ± 0.1  a 4.4 ± 0.1  b 5.3 ± 0.2  c 4.3 ± 0.1  b 0.5512 < 0.0001 < 0.0001

 TAUC Blood Glucose 8 week 695 ± 20 a 732 ± 29 a 640 ± 27 a 838 ± 19 b 863 ± 17 b 727 ± 14 a 0.4127 < 0.0001 < 0.0001

Fasting Blood glucose (mM) 16 week 4.0 ± 0.2 a 4.6 ± 0.2
 a

b
4.0 ± 0.2  a 4.9 ± 0.1  b 5.4 ± 0.1  b 4.6 ± 0.2  ab < 0.0001 < 0.0001 < 0.0001

 TAUC Blood Glucose 16 week 724 ± 20 a 740 ± 27 ab 676 ± 16 a 841 ± 28 b 866 ± 48 ab 785 ± 18 ab 0.9447 0.024 < 0.0001

Plasma total cholesterol (mM) 1.71 ± 0.11 a 1.71 ± 0.10 a 1.78 ± 0.118 a 1.66 ± 0.13 a 1.70 ± 0.06 a 1.65 ± 0.10 a 0.3099 0.7525 0.0596

Plasma triacylglycerides (mM) 0.48 ± 0.04 a 0.64 ± 0.06  a 1.09 ± 0.133  ab 1.80 ± 0.36 b 1.49 ± 0.42 ab 2.44 ± 0.44  b 0.0599 < 0.0001 < 0.0001

Plasma non-esterified fatty acids (mM) 1.75 ± 0.17 a 2.44 ± 0.16  a 2.81 ± 0.198 a 4.78 ± 0.17  b 3.68 ± 0.61  b 4.49 ± 0.44  b < 0.0001 0.0003 < 0.0001

mHRed mHBlackmCS mCBlackmCRed mHCHF



Cholesterol concentrations did not differ between the mCS and mHCHF groups, nor 

any other groups as indicated in Table 4.18. Plasma triglyceride concentrations were 

elevated in the mHCHF group from the mCS control. The addition of red sorghum 

flour to the mCS diet did not alter triglyceride concentrations, however the mCBlack 

group showed triglyceride concentrations comparable to both mCS and mHCHF. 

Triglyceride concentrations in the mHRed group were comparable to mCS and 

mHCHF. There was a large variability in the concentrations within the mHRed group 

ranging from 3.51 to 0.51 mM, therefore results should be interpreted with caution. 

Black sorghum flour did not reduce the triglycerides concentrations in the mHBlack 

group. Plasma NEFA concentrations were increased in mHCHF from the mCS. 

Addition of sorghum flour did not alter NEFA concentrations in either diet or group 

(Table 4.18).    
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Figure 4.49: Serum LPS 

concentrations. Top row indicates 

the division of rats into progeny or 

time groups. Bottom row indicates 

the combined results.  Differing 

lower-case letters indicate a 

significant difference at p<0.05 

determined by one-way ANOVA.  
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Serum LPS concentrations did not differ with addition of sorghum flour, red or black. 

It appears that there were differences between the red sorghum flour supplementation 

and black sorghum flour supplementation. As these interventions were carried out at 

different times, it is not clear whether changes were due to the sorghum itself or 

another time-based factor such as progeny differences in rats. The results shown in 

Figure 4.49 have been interpreted with caution. There were differences in control 

groups which were carried out at different times. For controls carried out at the same 

time as the red sorghum flour intervention, the mCS group had a serum LPS 

concentration 4 times higher than that of the mCS controls carried at the same time as 

the black sorghum flour intervention.  

4.3.4 Liver and cardiovascular structure and function  

Normalised liver wet weight was higher in the mHCHF, mHBlack and mHRed groups 

than the mCS, mCBlack and mCRed groups. Addition of sorghum did not affect liver 

weight. Histology indicated that there was ballooning and fat deposition in the 

mHCHF livers, shown in Figure 4.50. There was a reduction in the ballooning and fat 

deposition in the mHRed group, which appeared comparable to mCS. In the mHBlack 

group, there was a reduction in markers of steatosis but these were not normalised to 

mCS.   

 

 

 

 

 

 



  

  

  

Figure 4.50: Haematoxylin and eosin staining of liver sections (10µm) under 20x 

magnification. mCS (A), mHCHF (B), mCRed (C), mHRed (D), mCBlack (E), 

mHBlack (F). “INF” indicates inflammatory cell, “FV” indicates fat vacuole. 

Plasma AST activities were higher in the mCS group compared with the mHCHF 

group. Addition of sorghum to either diet only resulted in a change in the mCBlack 

group, where AST activity was comparable to mHCHF. Plasma ALT activities were 

not altered by diet or intervention. The AST/ALT ratio was lower in mHCHF than 

mCS. All other groups were statistically comparable to the mCS and mHCHF. This 

indicated a possible increase in mCS sorghum flour supplemented rats and a possible 
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reduction in the mHRed and mHBlack rats, supported by significant interaction effect. 

Creatine kinase activities did not change between groups. Lactate dehydrogenase 

activity was higher in the mCS group than all other groups, as indicated in Table 4.19.  

 

 



 

Table 4.19: Cardiovascular and liver structure and function parameters of rats fed mCS, mCRed, mCBlack, mHCHF, mHRed, and 

mHBlack diets.  

Differing lower-case letters indicate significant differences for a given parameter at p<0.05 determined by one-way ANOVA. 

Abbreviations are as follows: ALT (alanine transferase), AST (aspartate transferase), CK (creatine kinase), LD (lactate dehydrogenase). 

 

 

Parameter Intervention Diet Interaction

Systolic Blood Pressure 16 week (mmHg) 135 ± 0.5 a 140 ± 1.8 a 132 ± 1.7 a 139 ± 0.6 a 133 ± 2.3 a 143 ± 4.7 a 0.1329 0.5739 < 0.0001

Left ventricle + septum (mg/mm tibial length) 17.61 ± 0.91 a 18.21 ± 0.58 a 17.07 ± 1.65 a 23.89 ± 0.97 b 20.14 ± 0.62 ab 22.86 ± 1.26 b 0.087 0.3361 < 0.0001

Right ventricle (mg/mm tibial length) 4.64 ± 0.37 a 4.30 ± 0.22 a 3.77 ± 0.43 a 6.35 ± 0.36 b 4.90 ± 0.36 ab 5.24 ± 0.35 ab 0.3719 0.0096 0.001

Liver wet weight (mg/mm tibial length) 184.10 ± 6.65 a 216.30 ± 10.98  a 209.70 ± 20.01  a 340.60 ± 9.05 b 309.80 ± 8.61  b 300.70 ± 27.94 b 0.0851 0.8693 < 0.0001

Diastolic stiffness constant (κ)  24.9 ± 0.30  a 25.6 ± 0.30 ab 29.8 ± 1.0 c 27.50 ± 0.40  b 26.9 ± 0.30  ab 26.6 ± 0.20 ab 0.0014 0.6076 < 0.0001

Plasma ALT activity (U/L) 31.7 ± 2.2  a 30.1 ± 2.0  a 26.4 ± 1.8  a 32.4 ± 5.3  a 25.4 ± 1.1  a 25.8 ± 1.3 a 0.0116 < 0.0001 0.0414

Plasma AST activity (U'L) 93.3 ± 6.2  a 89.6 ± 8.4  a 64.5 ± 3.4 b 65.3 ± 4.3  b 70.6 ± 3.1  b 68.1 ± 3.5  b < 0.0001 < 0.0001 < 0.0001

Plasma ALT/AST Ratio 3.0 ± 0.4 a 3.0 ± 0.2 ab 2.5 ± 0.1 ab 2.1 ± 0.3 b 2.8 ± 0.1 ab 2.7 ± 0.2 ab < 0.0001 0.0004 0.0001

Plasma CK activity (U/L) 99.5 ± 11.6 a 104.1 ± 10.5 a 88.1 ± 12.2 a 117.8 ± 25.6 a 87.0 ± 17.9 a 121.0 ± 15.1 a 0.0005 0.09 0.0241

Plasma LD activity (U/L) 273.8 ± 29.2 a 188.4 ± 19.9 b 170.4 ± 16.0 b 218.0 ± 62.7 b 186.3 ± 15.3 b 166.4 ± 11.5 b 0.0195 < 0.0001 0.0188

mHBlackmCS mCRed mCBlack mHCHF mHRed
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GLUT2 expression did not differ between the mCS and mHCHF groups, nor any 

intervention groups, Figure 4.51.  

 

Figure 4.51: GLUT2 expression in liver determined by semi-quantitative ELISA. No 

significant differences were noted at p<0.05 determined by one-way ANOVA.  

Liver TLR4 expression did not differ between the mCS and mHCHF. Sorghum 

addition to the diet did not change expression in either diet.  

 

Figure 4.52: Liver TLR4 expression determined by semi-quantitative ELISA. No 

significant difference between CS and HCHF, using a one-way ANOVA, p<0. 05 

determined by one-way ANOVA. 
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Normalised left ventricle + septum weight was increased in the mHCHF group from 

the mCS control. Addition of sorghum partially reduced weight in the mHRed group 

to comparable to the mCS control (Table 4.19). Intervention had no effect in any other 

group. Right ventricle weight was higher in the mHCHF group than mCS. The mHRed 

and mHBlack groups showed a partial reduction in right ventricular weight with no 

difference from mCS, however not different from mHCHF. Diastolic stiffness was 

increased in the mHCHF from mCS. Diastolic stiffness of mHRed and mHBlack was 

comparable to both the mCS and mHCHF. The mCBlack group had a higher diastolic 

stiffness (κ) than all other groups (Table 4.19).  

 

 

Figure 4.53: Picrosirius red staining indicating the % type I and type III collagen 

deposition in the left ventricle. No significant difference was found at p<0.05 

determined by one-way ANOVA.  
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Figure 4. 54:  Picrosirius red stained left ventricle sections, 20x magnification. Bright 

red striations indicate deposition of collagen (Type I and Type III fibres). mCS (A), 

mHCHF (B), mCRed (C), mHRed (D), mCBlack (E), mHBlack (F).  
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Thoracic aortic force of contraction with exposure to noradrenaline was greater in the 

mHCHF group, than mCS. The mHBlack group had higher reactivity than all other 

groups. There was no significant difference between the mCS group and the mHRed 

or mHBlack group, yet there was also no significant change from the mHCHF group. 

Response to sodium nitroprusside did not differ between any group for any 

concentration as shown in Figure 4.55.  

Responses to acetylcholine did not differ between the mCS and mHCHF groups. All 

treatment groups had a reduced force of contraction.   
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letters determined by one-way 

ANOVA, p<0.05.  
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4.3.5 Gastrointestinal function 

No changes in maximum ileal force of contraction to acetylcholine were noted between 

any diets, as is indicated in Figure 4.56. The minimal concentration required for 

contraction did not differ between the mCS and mHCHF groups. The minimum 

concentration required to elicit a response was lower in the mHRed and mHBlack 

groups than in the mHCHF control. The TAUC of the curves indicated the overall 

responsiveness of the ileum. These values did not differ between any groups.  

 

            

There were no differences in maximal colonic contraction to acetylcholine in the mCS 

and mHCHF diets. No differences in minimum concentration of acetylcholine required 

for contraction, or total dose-response area under curve were found between groups. 

The overall p value for one-way ANOVA of minimum concentration of acetylcholine 
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Figure 4.56: Force of contraction of 

isolated ileum sections in response to 

acetylcholine exposure (a) total area 

under curve (b) and minimum 

concentration required for contraction 

(c). Significant differences by one-

way ANOVA are indicated by 

differing lower-case letters. 

Differences detected by pair-wise t-

tests are indicated by capped lines.   

 



required for response was 0.0464, therefore the null hypothesis cannot be rejected in 

this case.  

Further investigation using t-tests indicated that addition of black sorghum flour to the 

mHCHF diet lowered the minimum concentration required for a response, to a level 

that was comparable with the mCS group. Minimum acetylcholine concentration 

required for a response was reduced in mCRed from mCS (Figure 4.57).  

   

                 

Colon TLR4 expression did not differ between any experimental or control groups, 

Figure 4.58. 
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Figure 4.57: Dose-response curves 

of force of contraction of isolated 

proximal colon sections in response 

to acetylcholine exposure (left). 

Difference by one-way ANOVA 

(p<0.05) is shown by differing 

lower-case letters. Significant t-test 

differences are indicated by capped 

lines.   
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Figure 4.58: Colon TLR4 expression as determined by semi-quantitative ELISA. No 

significant differences were noted at p<0.05 determined by one-way ANOVA.  

Colon claudin expression did not differ between mHCHF and mCS model after 16 

weeks, Figure 4.59. No differences were evident after supplementing with either black 

or red sorghum flour.  

 

Figure 4.59: Claudin expression as determined by semi-quantitative ELISA. No 

significant differences were noted at p<0.05 determined by one-way ANOVA.    
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Colon occludin expression was higher in mCS compared with mHCHF group after 16 

weeks. 20% red sorghum flour in the mCS diet did not alter occludin expression from 

mCS. In both the mHRed and mHBlack groups, addition of sorghum did not result in 

a difference from mHCHF, nor did it differ from mCS. Results are shown in Figure 

4.60. 

 

Figure 4.60: Colon occludin expression. Differing lower-case letters indicate 

significant difference, determined by paired t-tests against the mCS and mHCHF 

control at p<0.05 determined by one-way ANOVA.  
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Figure 4.61: Lactulose:mannitol ratio of percent recovery. Differing lower-case letters 

indicate significant differences by one-way ANOVA at p<0.05.  

The lactulose:mannitol ratio based on total percent recovery or orally gavaged sugars 

was higher in the mHCHF group compared with the mCS group. Addition of sorghum 

flour to the mCS diet did not alter the ratio of recovered sugars. Addition of either 20% 

black or red sorghum flour to the mHCHF diet did not alter the ratio of recovery from 

the mHCHF group. It also did not differ from the mCS control.  

Percent recovery of individual sugars only differed between mCS and mHCHF for D-

mannitol and sucralose in the 8-20 hour time-period. For both compounds, the percent 

recovery was higher in mHCHF than mCS. Results discussed are for the 8-20 hour 

time period. Mannitol recovery was not affected by sorghum in the mCS diet. Both 

mHBlack and mHRed showed no statistical difference from mCS or mHCHF. 

Sucralose percent recovery in mCBlack, mHBlack and mHRed did not differ from 

either the mCS or mHCHF controls.  Results are shown in Table 4.20.  
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Table 4.20: Percent recovery of orally gavaged sugars from urine over a 20-hour period.  

 
Time (hours) mCS mHCHF mCRed mHRed mCBlack mHBlack 

Sucrose 0-3  0.05 ± 0.02 a 0.05 ± 0.01 a 0.17 ± 0.04 a 0.07 ± 0.02 a 0.05 ± 0.02 a 0.04 ± 0.02 a 

 
3-8 0.20 ± 0.07 a 0.18 ± 0.03 a 0.32 ± 0.07 a 0.11 ± 0.02 a 0.17 ± 0.02 a 0.19 ± 0.07 a 

 
8-20 0.26 ± 0.06 a 0.24 ± 0.09 ab 0.05 ± 0.02 b 0.34 ± 0.05 ab 0.42 ± 0.09 ab 0.32 ± 0.07 ab 

Lactulose 0-3  0.31 ± 0.14 a 0.21 ± 0.08 a 0.54 ± 0.16 a 0.61 ± 0.32 a 0.25 ± 0.10 a 0.10 ± 0.06 a 

 
3-8 1.29 ± 0.72 a 1.26 ± 0.32 a 0.80 ± 0.20 a 0.90 ± 0.14 a 0.88 ± 0.14 a 1.19 ± 0.20 a 

 
8-20 0.90 ± 0.30 a 1.20 ± 0.40 ab 0.20 ± 0.07 ab 1.53 ± 0.24 ab 2.66 ± 1.24 b 1.63 ± 0.16 ab 

Mannitol 0-3  0.44 ± 0.14 a 0.58 ± 0.16 a 1.26 ± 0.27 a 0.63 ± 0.34 a 0.33 ± 0.15 a 0.39 ± 0.25 a 

 
3-8 1.28 ± 0.32 a 2.51 ± 0.67 a 2.36 ± 0.63 a 1.06 ± 0.50 a 1.81 ± 0.28 a 2.65 ± 0.40 a 

 
8-20 1.51 ± 0.47 a 4.07 ± 0.87 b 0.53 ± 0.17 a 2.98 ± 0.34 ab 2.03 ± 0.62 a 2.70 ± 0.50 ab 

Sucralose 0-3  0.54 ± 0.22 a 0.70 ± 0.23 a 1.31 ± 0.40 a 0.80 ± 0.54 a 0.39 ± 0.26 a 0.29 ± 0.29 a 

 
3-8 3.08 ± 1.07 a 2.86 ± 0.59 a 2.36 ± 0.96 a 1.40 ± 0.45 a 1.80 ± 0.31 a 1.71 ± 0.46 a 

 
8-20 1.80 ± 0.56 a 4.27 ± 0.90 b 0.27 ± 0.17 a 2.08 ± 1.36 ab 3.39 ± 1.16 ab 3.73 ± 0.97 ab 

Differing superscript lower-case letters indicate a significant difference at p<0.05 determined by one-way ANOVA.
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4.4 Discussion 

This study quantified the responses following supplementation of 20% red or black 

sorghum flour into the diet of rats to alter metabolic syndrome. Overall, red and black 

sorghum altered metabolic syndrome minimally. There were different effects of red or 

black sorghum flour. More changes occurred with sorghum addition to the mCS diet, 

than to the mHCHF diet. These implications are also discussed. Red sorghum in a corn 

starch-based diet increased feed efficiency, increased lean mass, increased epididymal 

fat, increased body weight, reduced feed intake, increased pancreatic b-cell density, 

reduced vascular responses to acetylcholine ex vivo and decreased urinary recovery of 

sucrose given orally. Changes caused by black sorghum in a corn starch-based diet 

were increased feed efficiency, increased lean mass, increased epididymal fat, 

increased body weight, reduced feed intake, increased pancreatic b-cell density, 

increased cholesterol, increased left ventricular diastolic stiffness, reduced vascular 

responses to acetylcholine ex vivo and increased urinary recover of lactulose given 

orally. Red sorghum flour in the mHCHF diet improved liver morphology, reduced 

vascular responses to acetylcholine and noradrenaline, reduced minimum 

concentration of acetylcholine needed to induce ileum contraction. It also showed 

indications of reduced cholesterol, reduced right ventricular weight, reduced diastolic 

stiffness, increased colon occluding expression, and reduced mannitol and sucralose 

recovery in urine after an oral challenge. Black sorghum addition to the mHCHF diet 

resulted in reduced b-cell density in islets, improved liver structure, reduced vascular 

reactivity to acetylcholine and noradrenaline exposure, increased sensitivity to 

acetylcholine in the ileum and colon, and reduced mannitol recovery in urine after an 

oral challenge, indicating improved small intestinal integrity.  

Body composition and dietary intake   

The reduced food intake caused by adding sorghum flour to the mHCHF diet shows 

that there is a satiety effect of sorghum that is not simply caused by increased energy 

density. In humans, increased concentrations of post-prandial satiety hormones, GLP-

1 (glucagon like peptide-1), PYY (peptide YY/peptide-tyrosine-tyrosine) and GIP 

(gastric inhibitory peptide) occurred after consumption of sorghum-based foods (222). 

The same study suggested higher subjective satiety than with wheat consumption. 



Resistant starches present in sorghum increased satiety in other studies (464). This 

may be in part due to delayed gastric emptying (465). The increased protein, energy 

density and carbohydrates are all likely contributors to the change in food volume 

consumption. Further, the presence of tannins, 3-deoxyanthocyanidins and phenolic 

acids slow the digestion, primarily of starch (56, 103). Extruded whole white or red 

sorghum consumption by rats showed satiety effects (466).   

The reduced feed intake, improved feed efficiency and increased lean mass following 

sorghum consumption in the mCS diet suggests that the mCS diet may have been 

protein-deficient. “Low protein diets” in Wistar rats contain protein contents of 10% 

(467) or 9% (468-470), and some as low as 6% (471-473). The percent protein in the 

diet was only 1.58%; the supplemented diets had protein contents of approximately 

5%. In the mHCHF rats, the diet had a protein content of 4.31%, and the mHBlack and 

mHRed rats were consuming diets with 7.3% protein. Protein in the diet is the primary 

driver of food consumption (474). In this case, the increased energy and protein 

content of the mCS and mHCHF diets when sorghum flour was added is likely to have 

caused the reduction in food consumption.  

Low protein diets result in lower cross-sectional area of muscle fibres, and reduction 

in body weight (471). These results suggest that sorghum is a suitable nutritional 

source of protein and calories in protein-deficient diets. Furthermore, higher protein 

diets were more effective in reduction of bodyweight and correcting metabolic 

syndrome than low protein counterparts (224, 475-477).  

Changes in body composition can be explained, in part, by increased calorie intake 

and increased protein intake. Protein-deficient diets led to reduced muscle synthesis, 

and with the addition of protein to a suitable level, repair can occur. This is typically 

simultaneous with some fat gain, as was seen in this study. Rats given diets with 6.4% 

protein showed no body weight gain, and when changed to a diet of 18% after 28 days 

showed large increases in body weight and overall body protein content (lean mass) 

(478). Other studies showed similar results where switching from protein-

malnourished (8% protein diet) to a high-protein (22%) diet led to considerable weight 

gain (479). That study also reported that, if malnutrition occurs post-weaning, 

adipocyte differentiation is reduced and may not recover with refeeding (479). Others 
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note the importance of leucine intake in protein malnutrition recovery (480), and this 

has been suggested as a treatment of obesity and metabolic syndrome (475).  

The amino acid profile of sorghum is favourable for leucine intake. Leucine is the 

second highest amino acid by weight in sorghum, after glutamic acid (481). Although 

it can vary by type and treatment (482), the typical amount of leucine is 0.643g of 

leucine per 100g of raw flour (32). The amount of leucine required to stimulate muscle 

synthesis does not appear to be exceptionally high. There was a linear trend to 

increased protein synthesis in rat skeletal muscle with doses of leucine from 0.068g/kg 

to 1.35g/kg body weight (483). A 20% sorghum supplement in the diet is 

approximately equivalent to 0.045g leucine intake per day, based on 0.643g leucine 

per 100g of flour, and intake of 35g per day. For a rat of 300g, this is approximately 

0.15g of leucine per kilogram per day. From this data, it appears that leucine derived 

from sorghum may be a driver of increased lean mass, even though diets were still 

“low protein” in the mCS and sorghum-supplemented mCS models. The assessment 

of myofibril diameter showed no differences between rats, yet the DXA results showed 

increased muscle mass. The increase can thus be attributed to increased myofibril 

number rather than size. This outcome is particularly beneficial as there was an inverse 

correlation between skeletal muscle mass and metabolic syndrome in a Korean cohort 

(484, 485), and in the general population (486-488).   

Pre-diabetes 

An improvement in the glucose tolerance with the addition of sorghum was expected 

due to the increased concentration of phenolic acids, flavanols and anthocyanidins. In 

chapter 3, there was normalisation of glucose tolerance with 5% whole sorghum. The 

higher dose of sorghum was expected to improve glucose tolerance. No improvements 

in fasting glucose concentrations nor glucose tolerance tests were found in this study. 

These outcomes are comparable to what was seen in supplementing decorticated 

sorghum flour or sorghum bran into an obesogenic diet of rats (489). That study 

showed that only whole sorghum flour without decortication corrected glucose 

tolerance in a high-fat diet, despite having a lower phenolic content (489). This 

outcome suggests that the effects on glucose tolerance when consuming sorghum flour 

are due to another component, possibly the starch, lipid or protein. Short-term 



ingestion of whole sorghum flour muffins lowered insulin fluxes more than a wheat-

based counterpart and marginally reduced fluctuations in glucose (206), and whole 

sorghum resulted in a smaller increase in plasma glucose than with rice and wheat 

foodstuffs (204). Methanol extracts of sorghum reduced fasting glucose in a mouse 

model of diet-induced obesity (185). Ethanol extracts of sorghum showed insulin-

independent normalisation of glucose responses in diabetic rats (207). 

The different outcomes suggest that the matrix by which sorghum is delivered in the 

diet, not the amount, is important as supported by Moraes, et al. (489). Whole sorghum 

has a greater effect at a lower dose than sorghum flour. Particle size of flour does not 

affect glucose responses in wholemeal flours (490). Wholegrains and wholemeal 

flours, although similar in a macronutrient sense, have very different effects on blood 

sugar and post-prandial responses, whereby wholegrains are more slowly digested and 

show lower insulin responses (491). The structure and digestibility differ largely, 

although macronutrients do not generally differ markedly between the wholegrain and 

the wholemeal flour (492).  

Dyslipidaemia  

Blood lipid profiles were expected to differ between the mCS and mHCHF groups 

(353). For cholesterol, no difference was noted between any groups. This was 

unexpected as typically diets with high levels of beef tallow resulted in high circulating 

cholesterol concentrations (353). Diet-induced obesity in rats showed differences in 

HDL and LDL concentrations, even when total cholesterol did not differ, but sorghum 

flour had no effect (489). I could not link sorghum flour consumption to changes in 

serum cholesterol, however LDL and HDL were not assessed separately. Sorghum 

extracts decreased plasma cholesterol concentrations in hamster models (183, 184), 

while in hyperlipidaemic rats increased total cholesterol (392). Unrefined sorghum 

consumed at a rate of 100g per day in human studies improved serum lipid profiles 

(187). 

The outcomes with respect to triglycerides reflected the outcomes of another sorghum 

flour study, where no change in triglycerides was found (489). Sorghum extract 

reduced plasma triglycerides in mice (185) and rats (181). Resistant starches may 

reduce the concentrations of serum triglycerides in rat models (493). Phenolic 
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compounds including gallic acid, vanillic acid, coumaric acid, caffeic acid, ferulic 

acid, chlorogenic acid and naringenin reduced triglyceride synthesis in vitro, while 

protocatechuic acid, hydroxybenzoic acid and syringic acid were ineffective  (494).  

Cardiovascular changes 

Very few changes occurred with respect to cardiovascular parameters. The lack of 

differences between the two control diets was of concern. The raised systolic blood 

pressure, above the expected healthy 120mmHg, in all groups may be caused by the 

low protein in the mCS, mCBlack and mCRed groups. Rats maintained on a low 

protein (8%) diet after in utero protein restriction showed increased blood pressure 

(495). A few studies have linked undernutrition to hypertension in children and 

adolescent humans (496). Post-weaning protein malnutrition in male Wistar rats has 

been linked to increased systolic and diastolic blood pressure, with contributions from 

increased superoxide production, and increased nitric oxide release (497).  

As this model appears to have insufficient protein, the lack of change in systolic blood 

pressure cannot be directly related to metabolic syndrome. I cannot make reasonable 

assumptions about the effects of sorghum on hypertension in metabolic syndrome. Red 

or black sorghum flour at 20% supplemented to the diet did not correct hypertension, 

although the cause in this study remains unclear. Additionally, I observed no change 

in diastolic stiffness, which is consistent with the lack of changes in systolic blood 

pressure. Evidence of sorghum’s direct effect on blood pressure is scarce. Wholegrain 

consumption reduced blood pressure in adult individuals (498-500). 

It was expected that an obesogenic diet would impair endothelium-dependent 

vasoconstriction (353) and that overweight rats would have lower reactivity to 

acetylcholine. This has been shown on studies of high-fat diet-induced obesity in mice 

(501) and rats (353). In our model this did not occur. This is similar to the increased 

vasoconstriction sensitivity to noradrenaline in diabetic dogs (502), and diabetes has 

been linked to hypertension in rats (503). Therefore, the marked increase in response 

with black sorghum flour to noradrenaline is potentially detrimental, as sensitivity to 

vasoconstrictors may be a contributor to the development of hypertension, possibly 

caused by a diabetic state (504).  



The reduced vasodilation to acetylcholine in all sorghum-treated groups is of concern. 

Impaired vasodilation indicates vascular dysfunction and is associated with type 2 

diabetes (505, 506), hypercholesterolaemia (507) and hypertension (508). No research 

on the effects of sorghum flour on vasodilatation and vasoconstriction sensitivity have 

been published. Our outcomes suggest that sorghum flour does not improve these 

symptoms of metabolic syndrome.  

Impaired vasodilatation is associated with high concentrations of circulating free fatty 

acids, such as occurs in dyslipidaemia of metabolic syndrome (509), which is 

consistent with the lack of changes seen in plasma lipids. Wholegrain cereals can 

improve endothelial-dependent vasodilation (510). Flavonoids reduced blood pressure 

in rat models and ex vivo vascular reactivity to acetylcholine (230). As both sorghum 

flours were produced for human consumption and subject to quality testing, we assume 

that there was no effect of mycotoxins which commonly cause vasoconstriction (511).  

Liver changes 

Supplementing with sorghum flour showed that there are benefits to liver function and 

to structure. Plasma AST and ALT activities are increased in liver disease, as is LDH 

to a lesser extent. The increased AST in the “healthy diet” is concerning and makes 

interpretation of sorghum’s effects difficult. Median reference values for male Wistar 

rats are 33 U/l and 66 U/l for ALT and AST respectively (512). The “healthy” controls 

had AST activities in the upper range of normal, while the mHCHF had “healthier” 

activities comparable to the median reference range. Sorghum did not affect these 

enzymes in the obesogenic diet, but black sorghum flour reduced and likely improved 

AST activity in the corn starch diet. Similarly, lactate dehydrogenase activity appeared 

improved with sorghum consumption in the mCS diet. The elevated activities of lactate 

dehydrogenase and AST show higher liver damage in the mCS model, yet 

histopathology data indicates that steatosis was more pronounced in the mHCHF 

model.  

Low protein diets in Wistar rats can result in increased amino acid transferase activity, 

and increased lactate dehydrogenase activity (513). The suggested mechanism is an 

adaptive increase in nitrogen efficiency to minimise loss (513). Other studies of low 

protein diets also indicate that there may be increased AST with low protein intake, in 
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studies where protein was 4.13% of the total diet. Additionally, the raised ratio of 

AST:ALT can be indicative of hepatocellular damage. ALT is considered more 

specific to liver damage than AST, therefore this change may not simply be a reflection 

of the liver damage. 

 Values of approximately 204U/L lactate dehydrogenase indicate a healthy liver 

function in rat models (512). All sorghum-supplemented groups showed a lactate 

dehydrogenase activity comparable to the mHCHF group, which is comparable to the 

CS diet in other studies (353), which suggests poor liver function in the healthy control 

which is improved by sorghum consumption.  

Despite the apparently healthy liver enzymes, histological analyses indicated cellular 

ballooning and fat deposition in hepatocytes due to a high fat diet, which improved 

with sorghum flour, but the damage was not completely absent. Chronic consumption 

of diets high in fatty acids can lead to fat deposition and dysregulation of liver function 

as seen in metabolic syndrome (514). A low protein diet of 4.13% exacerbated 

development of fatty liver in high simple carbohydrate models (515). The improved 

liver structure was consistent with other studies using 51% sorghum in a high fat diet 

(412).  

Expression of TLR4 and GLUT2 in the liver were unchanged by diet or intervention 

in this study. The expression of GLUT2 in the liver was increased in metabolic 

syndrome and diabetes (310, 322, 516). In type 1 diabetes, there was increased TLR4 

expression in monocytes (517). Insulin-resistant individuals showed higher TLR4 

expression in muscle tissue (518). As the liver plays such a major role in peripheral 

glucose control, as does muscle tissue, similar changes might occur in the liver and be 

involved in progression or reversal of metabolic syndrome. This was not the case in 

our model.  

Gastrointestinal changes 

Effects on the gastrointestinal tract were variable. Most changes that were noted could 

be attributed to sorghum, rather than the type of diet it was added to. Very few 

differences were evident between the mCS and mHCHF controls in ileum and colon 

reactivity. The diet can affect different parts of the gastrointestinal tract in different 



ways. High fat diets lead to increased gastric emptying (176, 519), while some research 

showed slowed gastric emptying (520). Most studies suggest that high-fat diets 

resulted in increased upper gastrointestinal motility (179) and delayed transit in the 

colon (179, 521). Reduced cholinergic (acetylcholine-stimulated) contraction was 

associated with slow colonic transit (522).  

More research needs to be conducted as there are problems associated with both weak 

and strong contractions of the gastrointestinal tract. The optimal gastrointestinal 

contraction rate or force has not been fully studied. The controls in this research were 

subject to very low fibre intake. The increased contractions may have been due to the 

low fibre content. It was noted that the faecal pellets of the mCS and mHCHF rats 

were much harder and less prevalent in cages than those which received either type of 

sorghum flour. It is difficult to say whether the changes caused by sorghum were 

“good” or “bad”.   

Isolated sorghum compounds caused relaxation of pig ileum ex vivo (420). In mice, 

increasing sorghum leaf extract concentration in the diet increased transit time and 

reduced intestinal motility and doses of 200mg/kg or more showed anti-diarrhoeal 

activities (421). Sorghum extracts dose-dependently increased relaxation in the rabbit 

jejunum and rat stomach (421). Likewise, methanol extracts of red sorghum seeds 

showed anti-diarrhoeal activity and prolonged gastrointestinal transit time (523).  

The expression of occludin in the colon was altered by the diet, however no changes 

in TLR4 or claudin-1 expression were noted. Claudin and occludin were chosen 

because they share similar properties with respect to their cellular location but have 

very different roles (compared with other tight junction proteins), as shown in Figure 

4.62.  

Given that expression of claudin did not change, I can assume that structurally, the 

tight junctions are still intact. However, the key change is more likely to be the 

regulation of the function of these tight junctions. Depletion of occludin resulted in 

increased selective macromolecule movement across the epithelial barrier, without 

altering the overall permeability or epithelial resistance (524). One of the molecules 

studied was mannitol, which had increased flux where occludin was silenced (524). 
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This is consistent with the increased mannitol recovery in the intestinal permeability 

tests.  

The improvement (reduction) of intestinal permeability in the sorghum treated rats was 

promising for gastrointestinal health, although permeability was not completely 

normalised. The increased urinary mannitol recovery in the obesogenic diet indicates 

that malabsorption is occurring, and this is improved with the addition of sorghum. 

Because the sorghum consuming groups did not differ from either control for 

lactulose/mannitol ratio, we cannot reject the hypothesis that sorghum flour improved 

the GI tract integrity in the small intestine. Dextran sodium sulphate-induced colitis in 

a rat model was exacerbated by black and Sumac sorghum bran compared with 

cellulose (453), while sorghum lipids reduced intestinal stress and damage (525). 

  

 

Figure 4.62: Cellular location of tight-junction proteins (526).    

Other considerations 



While this study compared black and red sorghum flour, it should be noted that “black” 

and “red” varieties can show major differences within a group with respect to the 

content of phenolic acids, procyanidins, 3-deoxyanthocyanidins, anthocyanins, 

flavones and flavanones. Not all sources of “red” or “black” sorghum will give the 

same effects. While this research is a starting point to promote sorghum as a food 

source, this information must be taken into consideration. Even within “red” sorghum 

varieties, there can be marked differences in the composition. The 3-

deoxyanthocyanidins, luteolinidin, apigeniniden, 5-methoxyluteolinidin and 7-

methoxyluteolinidin, can vary from undetectable to 282.6, 166.2, 120.6 and 104.9µg/g 

(153). The concentrations of flavones such as luteolin and apigenin can also differ 

considerably from undetectable to 182.2 and 203.7µg/g similar to the flavanones such 

as eriodictyol and naringenin which can vary from undetectable to 12.9 and 48.4µg/g 

(153). The coloured compounds are often biologically active, hence changes in these 

compounds may confer different health benefits (527). Other compounds including 

tannins and phenolic acids also vary depending on whether the source is “red” or 

“black” and also markedly differ within the “red” group of sorghum types (528). In 

Australia, a number of “red” grain sorghum varieities are grown. Depending on 

seasonal conditions and the genotype, these will vary in their composition (529).  

When comparing black and red sorghum, the true genetic makeup of the plants and 

breeds that were used in the process is unclear. There are a number of known genes 

that affect the plant pericarp colour (153). At least two genes control pericarp colour, 

two affect the testa colour, and 2 affect secondary colour which includes the kernel, 

sheath and glume (153). These genes  may be present in a number of combinations, 

depending on the variety, and will affect the secondary plant metabolites that affect 

colour, phenolic contant and therefore biological activty.  

Identification and quantification of the bioactive compounds present in the sorghum 

flours used in this study would further the understanding of how sorghum composition 

affects health outcomes. This would also provide a baseline for future comparative 

studies.  

Additionally, even though macronutrient profiles of the two sorghums were similar, 

other studies have shown that the concentrations of resistant starches can differ in 
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addition to the way they interact in the rat (530), and their health effects (489). The 

preparation of sorghum will alter its ability to affect metabolic syndrome context, and 

for human consumption. Major differences in biological effects of products from a 

single grain source can be due to processing. Hydrolysable starch and glycaemic index 

vary considerably, since decortication increases hydrolysable starch, as does making a 

bread, and the hydrolysable starch is more easily digested (531). One of the most 

significant differences between the whole sorghum and the sorghum flour, although 

these are marketed as “wholemeal”, is that there is a large reduction in resistant starch, 

both soluble and insoluble fibre, and in phenolic compounds (531). Most of these 

components are present in the bran layer, and the degree of decortication will 

inevitably change their concentrations (531). Processing sorghum alters the starch 

granule structure, reducing resistant starch amounts.  

4.5 Conclusion 

There are differing effect of red and black sorghum flour on metabolic syndrome. Red 

sorghum flour improved appearance of the liver remarkably, while black sorghum 

flour showed moderate improvements. No changes were noted in blood lipids with 

either flour. Both red and black sorghum flour were efficient in helping gain lean mass 

and improve feed efficiency in a low protein, high complex carbohydrate diet. 

Occludin expression in the colon appeared more susceptible to changes with sorghum 

consumption than claudin, however this did not translate to reduced concentrations of 

circulating lipopolysaccharides.  

Red or black sorghum flour has shown benefits with its consumption, however there 

was indications that it may alter vascular reactivity in a way that could be detrimental. 

Following this project, human trials will provide more accurate information on its 

effects. Studying sorghum replacements for wheat flour-based diets should be 

considered, as incorporation into human diets will likely be by replacement rather than 

addition as in this study. Overall the changes were minimal, but should not be 

discounted as sorghum can be integrated into a whole diet approach to improving 

metabolic syndrome.  

  



Chapter 5 – 20% wet cake sorghum in a dietary model of metabolic syndrome 

5.1 Introduction 

Wet cake sorghum (WS), also called dry distillers grain sorghum, is the by-product of 

ethanol production. It is produced on a commercial scale and has typically been used 

for livestock feed. The interest in this sorghum product for human health and especially 

metabolic syndrome is due to concentrated compounds that have been identified as 

having nutraceutical benefits. As an example, the concentration of policosanols, long 

chain alcohols (CH3-(CH2)n-CH2OH n=24-34) derived from plant waxes, are 3 times 

higher in WS than in grain sorghum (123). The two major long chain policosanols in 

WS with approximately 90% of the total content are the C30:0 and C28:0 alcohols 

(131). Treatment of hamsters with WS lipid extracts resulted in reduced plasma and 

liver cholesterol concentrations (182, 183). Further, plant sterols are approximately 4 

times more concentrated in WS than in sorghum grains (123). Plant sterols reduced 

plasma concentrations of LDL cholesterol and triglycerides (532). Conversely, 

tocopherols are decreased in WS to 0.2mg/g of lipid (126) compared with 4mg/g of 

lipid from whole sorghum grains (182). 

The fermentation process concentrates phenolic acids to approximately 3 times higher 

than the raw grain equivalent (533), although some studies suggest phenolic acids are 

present at around half the amount in whole sorghum, and tannins are also lower at 

around 80% of that found in whole sorghum (534). Phenolic acids are recognised as 

having potential to reduce plasma lipids, weight (535) and inflammation (140), and are 

hypoglycaemic (216, 536). Sorghum distillery waste also contains increased 

concentrations of flavonoids and anthocyanins compared with the raw sorghum 

starting product (537). While flavonoid glycoside concentrations decrease, flavonoid 

aglycones increase, bound phenolic acids and flavonoids are released, and depending 

on the specific fermentation process, new metabolites are generated (150). Increased 

intake of dietary flavonoids is associated with reduced risk of developing type-2 

diabetes (538), reduced arterial stiffness (539) and reduced systemic inflammation 

(540) which are all pathologies of metabolic syndrome.  

Recent studies on the sorghum waste from biorefinery sources showed that the 

fermentation process resulted in peptides that have antimicrobial activity, and that the 

waste contains phenolics with anti-inflammatory properties including ferulic acid, 
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cinnamic acid, 4-hydroxybenzioc acid, taxifolin, protocatechuic acid and p-coumaric 

acid (541). Anti-microbial activity is also noted in other studies which has implications 

for gastrointestinal function (542).  

Sorghum contains a unique profile of proteins, most notably kafirin proteins. These 

have been studied as an oral delivery model for tannins (43), and catechins (543). Their 

resistance to digestion prevents the breakdown of encapsulated compounds within the 

kafirin micro-particles, allowing for effective delivery of nutraceuticals to the intestine 

(40, 43) (543). The proteins themselves have not been widely studied in relation to 

their potential health benefits, although kafirin fractions can inhibit ACE (angiotensin 

converting enzyme), which may reduce hypertension and cardiovascular disease risk 

(544).  

These features suggest that sorghum waste from bioethanol production is a possibly 

untapped resource for nutraceuticals or functional foods. The potential of this sorghum 

waste product is explored in a rat model of metabolic syndrome and its implications 

for human health are discussed.   

5.2 Materials and Methods   

5.2.1 Ethics  

Approval for experimentation with 20% sorghum was granted under AEC approval 

number 15REA005 valid from 20th June 2015-20th June 2018 by the Animal Ethics 

Committee of the University of Southern Queensland. All rats were treated and housed 

as per the NHMRC (National Health and Medical Research Council) 2014 guidelines 

for the ethical treatment of animals. 

5.2.2 Rat Diet and Experimental Structure  

Forty-eight male Wistar rats were randomly divided into 4 experimental groups of 

n=12; mCS (corn starch diet), mHCHF (high carbohydrate, high fat diet), mCWS (corn 

starch diet + 20% w/w dehydrated wet cake sorghum), mHWS (high carbohydrate, 

high fat diet + 20% w/w dehydrated wet cake sorghum). Wet cake sorghum was kindly 

donated by the United Dalby Bio-refinery (United Petroleum).   

For the first 8 weeks of the protocol, all mCS and mCWS rats received the control 

mCS diet and all mHCHF and mHWS rats received the control mHCHF diet as 



described in Methods method 2.2. Energy and nutrient profile of the wet cake sorghum 

(WS) was tested by Agrifood Technology (Werribee, Victoria), NATA (National 

Australian Testing Authority) accreditation number 2726. Energy was determined by 

Atwater metabolizable energy, protein by method TP/026 (Agrifood test method), fibre 

by method TP/098, carbohydrate by method TP/110 and fat by method TP/050.   

At eight weeks, the mCWS and mHWS groups were transferred to the treatment diet 

as indicated and remained on these diets until protocol completion. Macronutrient and 

energy profiles of the diets are outlined in Table 5.1. An additional 3.85 kJ/mL energy 

was added to calculations for the mHCHF and mHWS diets in fructose water (8). 

Table 5.21: Macronutrient profiles of diets, per 100g. 

 
mCS mHCHF mCWS mHWS 

Energy (kJ)  992.5 1495.9 2269.5 2772.8 

Protein (g)  1.8 5.1 30.6 33.9 

Fat, Total (g)  0.5 11.2 9.4 20.0 

Fibre - Dietary (g)  0.5 0.0 7.0 6.5 

Carbohydrates (g)  54.2 41.9 91.2 78.9 

 

At 16 weeks, prior to termination, oral glucose tolerance (method 2.3), body 

composition (method 2.4) and systolic blood pressure (method 2.5) were determined. 

Urine was collected as described in method 2.10.1. All rats were starved for 2 hours 

prior to termination. Rats were euthanised as described in method 2.6.1. At 

termination, rats underwent serum collection (method 2.6.2), plasma collection 

(method 2.6.3), vascular reactivity (method 2.6.5), ileum and colon contractility 

(method 2.6.6), organ weights (method 2.6.7) and histological tissue collection 

(method 2.8.1). 10 rats per group underwent isolated heart perfusion (method 2.6.4), 

with the remaining two hearts preserved in formalin for histological analysis as 

described in method 2.8.1. Plasma biochemistry was assessed on 8 rats per group for 

liver enzyme activity (method 2.7.1) and plasma lipid profile (method 2.7.2.). 

Collected serum was analysed for the presence of endotoxins as described in method 

2.9. Liver sections were assessed for expression of GLUT2 and TLR4 (method 2.11.3). 

Distal colon sections were also assessed for occludin and claudin expression as 
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described in method 2.11.4, in addition to TLR4. Urine samples collected prior to 

termination were prepared (method 2.10.2) and analysed (method 2.10.3). 

Histological tissue samples were processed automatically and sectioned (method 

2.8.3). Liver, ileum, colon, pancreas and left ventricle were stained with haematoxylin 

and eosin (method 2.8.5.1). Separate sections of left ventricle were stained with 

picrosirius red (method 2.8.5.2). Microscopy and imaging were performed as 

described in methods 2.8.6.1, 2.8.6.2, 2.8.6.3 and 2.8.6.4. 

5.2.3 Statistical analysis 

Statistical analysis was performed using GraphPad Prism (GraphPad Software, 

California). Data was analysed using a one-way ANOVA or two-way ANOVA were 

indicated. A test for normality was undertaken using a D’agostino-Pearson test for 

normality (GraphPad Prism). For analyses where distribution was determined to be 

normal, one-way ANOVA was used (Tukey’s multiple comparison). Where groups 

were determined not to be of a normal distribution, a non-parametric test was applied. 

Removal of outliers was based on a Tukey boxplot identification of outliers.  

In all cases, the null hypotheses were tested: 

1. There is no difference between the mCS or mHCHF diet on the parameter in 

question. 

2. There is no effect of wet cake sorghum addition on the outcomes of the mCS 

or mHCHF, respectively.  

3. Addition of WS to the mHCHF diet does not result in a change which results 

in comparable outcomes to mCS. 

4. Addition of WS to the mCS diet does not result in a change which results in 

comparable outcomes to mHCHF. 

 

 



5.3 Results 

5.3.1 Phytochemical composition  

Extraction profiles of WS supplement are shown. For comparison puposes, profiles of 

whole red sorghum extract have been included. The red sorghum is not the source from 

which the WS was produced, as it is made on an industrial scale. It is provided as a 

guide to indicate that there is alteration in the compounds and their relative abundance 

which occur during processing.  

HPLC with detection at 210nm (Figure 4.42) indicates hydrophilic compounds. There 

was a change in the real-time abundances of compounds in the WS compred to the 

whole red sorghum. The peak at 19.5 minutes was increased in the WS, while the peaks 

between 20.0 and 22.0 minutes were lower than those in the whole red sorghum. There 

was also increased relative sizes of peaks between 1.0 and 2.0 minutes in the WS 

comapred to the whole red sorghum extract.  

 

Figure 5.63: 210nm UV detection of HPLC of acidified methanol extract of WS (top) 

and local whole red sorghum (bottom). 210nm detection detects primarily hydrophilic 

compounds.  

 

510nm detection is optimal for anthocyanin detection (Figure 4.43). Most peaks seen 

in the whole red sorghum extract were absent in the WS extract profile.  
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Figure 5.64: 510nm UV detection of acidified methanol extracts separated by HPLC 

of WS. 510nm detection primarily indicates anthocyanin presence.  

 

The 330nm profile (Figure 4.44) primarily indicates phenolic acids. This wavelength 

is also suitable for detection of flavones (153). Most of the peaks present in the whole 

red sorghum extract were absent from the WS extract. Only the peak at 1.0 minutes 

was larger in the WS profile.  

  

 

Figure 5.65: 330nm UV detection of HPLC separated acidified methanol extracts of 

WS. 330nm detection primarily indicates presence of phenolic acids.  

 

 

 



5.3.2 Feed intake, energy intake and body composition 

All rats began the protocol with the same body weight. At 8 weeks, mHCHF had a 

higher weight than mCS. There was a lower weight at 8 weeks with the mHWS group 

prior to intervention, compared to mHCHF, however final body weight did not differ 

between these groups (Figure 5.66). There was an increase in body weight in the 

mCWS group compared with the un-supplemented mCS from weeks 8-16. 

Figure 5.66: Weekly bodyweight gain.  

An increase in fat mass was evident in the mCWS group compared with mCS (Table 

5.22). No change in fat mass occurred in the mHWS group against the mHCHF 

control. Abdominal fat pad mass was higher in the mHCHF group than the mCS 

control. Addition of WS did not alter abdominal fat pad mass (Table 5.22). 

The lean mass of mHCHF was higher than that of the mCS group at 16 weeks. Addition 

of WS resulted in increased lean mass in both diets from their respective controls. An 

increase in lean mass of 35% in the mCWS and 11.4% in the mHWS was measured, 

when compared with the CS and HCHF controls respectively (Table 5.22). Bone 

mineral density was higher in the mHCHF group compared with the mCS group. WS 

addition to the mHCHF diet reduced bone mineral density. Bone mineral content was 

again higher in the mHCHF group than the mCS control. Addition of WS to the mCS 

diet resulted in an increased bone mineral content. Addition of WS to the mHCHF diet 

did not affect bone mineral content.  
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Table 5.22: Body composition of rats fed on mCS, mCWS, mHCHF, and mHWS protocols.  

 

Values are expressed as mean ± SEM. Differing lower-case letters indicate a significant difference between groups for a parameter determined by 

one-way ANOVA at p<0.05. 

Parameter Interaction Intervention Diet

Total body fat mass 16 weeks (g) 43.63 ± 6.25 a 87.17 ± 11 b 166 ± 12.26 c 155.7 ± 10.8 c < 0.0001 < 0.0001 0.0456

Total body lean mass 16 weeks (g) 247.2 ± 4.3 a 333.8 ± 6.3 b 307.6 ± 8.205 b 342.6 ± 13.2 c 0.0033 < 0.0001 0.0002

Lean:Fat mass ratio 16 weeks 7.10 ± 1.0 b 4.31 ± 0.6 a 1.98 ± 0.167 a 2.33 ± 0.3 a 0.0267 0.0807 < 0.0001

Bone mineral density (g/cm2) 0.167 ± 2E-3 a 0.167 ± 2E-3 a 0.181 ± 2E-3 b 0.172 ± 4E-3 a 0.0897 0.0651 0.0005

Bone mineral content (g by DXA) 9.755 ± 0.3 a 13.03 ± 0.5 b 15.15 ± 0.49 c 15.31 ± 0.42 c 0.001 0.0004 < 0.0001

Retroperitoneal fat (mg/mm tibial length) 140.4 ± 12.5 a 201 ± 14 a 380.7 ± 33.92 b 331.9 ± 20.1 b 0.0157 0.7813 < 0.0001

Epididymal fat (mg/mm tibial length) 69.16 ± 6.73 a 103 ± 12 a 156 ± 13.06 b 185.6 ± 16.6 b 0.8678 0.0152 < 0.0001

Omental fat (mg/mm tibial length) 106.4 ± 8.51 a 122 ± 13 a 206.6 ± 12.23 b 186.2 ± 16.8 b 0.1648 0.8652 < 0.0001
Total abdominal fat pad (mg/mm tibial 
length)

316 ± 23 a 426.1 ± 29 a 743.3 ± 55.6 b 703.8 ± 48.7 b 0.0766 0.3967 < 0.0001

mCS mCWS mHCHF mHWS



Feed intake for the first 8 weeks was not different between the mCS and mCWS 

groups. The mHCHF groups ate less food than mCS while the mHWS group ate less 

than mHCHF. It was expected that the mHWS and mHCHF groups would eat the same 

amount of food prior to intervention. For this reason, changes in intake from the 8 

week point are a better indicator of feed intake changes (Figure 5.67). Addition of WS 

reduced weight of food intake in both diets. Energy intake was increased in the mHWS 

and mCWS groups (Figure 5.67).  

 

Figure 5.67: Change in feed intake and energy intake. Differing lower-case letters 

indicate a significant difference between groups, while asterisks indicate a significant 

change between the 0-8-week period and the 8-16-week period. All data were 

distributed normally and all analyses were determined using a parametric one-way 

ANOVA, at significance <0.05.  

 

Feed efficiency was higher in the mHCHF than mCS in weeks 0-8 and 8-16. Addition 

of WS to the mCS diet or mHWS diet increased feed efficiency (Figure 5.68).   
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Figure 5.68: Feed efficiency 0-8 weeks (hollow bars) and 8-16 weeks (solid colour). 

Differing lower-case letters indicate significant difference between groups for the first 

8 weeks. Differing upper case letter indicate a significant difference between groups 

for the second 8 weeks of the protocol. * indicates a significant difference within a 

group between the first 8 weeks and the second 8 weeks of the protocol. All analyses 

were determined by one-way ANOVA.   

Protein intake in weeks 8-16 was higher in the mHCHF control from the mCS control. 

Both the mCWS and mHWS groups had higher protein intake in the second 8 weeks 

than all controls (Figure 5.69).  

 

Figure 5.69: Protein intake weeks 8-16. Differing lower-case letters indicate a 

significant difference at p<0.05 determined by one-way ANOVA.  
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5.3.3 Glucose control and blood lipid profile  

Non-esterified fatty acids and triglycerides were higher in the mHCHF and mHWS 

groups compared with the mCS control. Addition of wet cake to either diet did not 

alter circulating plasma NEFA or triglycerides (Table 5.23). No changes in cholesterol 

were found with either diet or intervention.  

After 8 and 16 weeks of dietary treatment, mHCHF showed impaired glucose tolerance 

indicated by higher TAUC than the mCS control. The mHWS group showed improved 

glucose tolerance, normalised to within the range of the mCS control (Table 5.23).  

Fasting plasma glucose concentrations at 8 weeks were increased in mHCHF 

compared with mCS. The mCWS and mHWS groups did not differ from the mCS 

control (Table 5.23). At 16 weeks, the mHCHF group again had higher fasting glucose 

concentrations compared with mCS. The mCWS group was comparable to mCS and 

the mHWS was not significantly different from either the mHCHF and mCS groups.  
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Table 5.23: Blood lipids and glucose tolerance.  

 

Differing lower-case letters indicate significant difference at p<0.05 determined by one-way ANOVA. Fasting blood glucose was measured in 

mM, TAUC (total area under the curve) is unitless. 

Parameter Interaction Intervention Diet

Fasting blood glucose 8 week 3.5 ± 0.25 a 3.3 ± 0.25 a 4.4 ± 0.13 b 3.6 ± 0.179 a 0.1621 0.0248 0.0044

 TAUC blood glucose 8 week 688.8 ± 23.5 a 724 ± 22.6 a 861.4 ± 25.5 b 810 ± 34.77 b 0.1194 0.7775 < 0.0001

Fasting blood glucose 16 week 4.0 ± 0.21 a 3.8 ± 0.14 a 4.7 ± 0.11 b 4.5 ± 0.13 ab 0.8499 0.1253 < 0.0001

 TAUC blood glucose 16 week 728.3 ± 20.3 a 761 ± 22.4 a 916.4 ± 46.3 b 791 ± 31.25 a 0.0314 < 0.0001 < 0.0001

Plasma total cholesterol (mM) 1.65 ± 0.08 a 1.79 ± 0.1 a 1.69 ± 0.09 a 1.72 ± 0.065 a 0.5244 0.3287 0.9039

Plasma triacylglycerides (mM) 0.58 ± 0.06 a 0.98 ± 0.09 a 1.77 ± 0.2 b 2.42 ± 0.3216 b 0.4977 0.0076 < 0.0001
Plasma non-esterified fatty acids 
(mM) 1.96 ± 0.16 a 2.73 ± 0.19 a 4.83 ± 0.19 b 4.54 ± 0.395 b 0.0305 0.3115 < 0.0001

mCS mCWS mHCHF mHWS



Histology sections of the pancreas showed that the cell density per islet was lower in 

the mCS groups than in all other groups.  

 

Serum lipopolysaccharide concentrations did not differ between any group as 

indicated in Figure 5.71.  

 

 

 

Figure 5.71: Serum lipopolysaccharide concentrations determined by horseradish 

peroxidase activity. No significant differences were found at p<0.05 determined by 

one-way ANOVA.  

5.3.4 Cardiovascular and liver structure and function 

Liver wet weight was increased in the mHCHF from mCS. Addition of WS to the mCS 

diet caused increased liver wet weight. No change resulted from addition to the 

mHCHF diet (Table 5.24). Histology of livers revealed ballooning and fat deposits in 
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the mHCHF, which were absent in the mCS rats. In the mHWS rats, these features 

were all but absent (Figure 5.72).  

  

  

Figure 5.72: Haematoxylin and eosin stain of liver section at magnification 20x. 

Arrows show indicative cellular ballooning and fat vacuoles (FV) and inflammatory 

cells (INF). mCS,(A), mHCHF (B),mCWS (C), mHWS (D). 

 

Plasma ALT activity did not differ between any groups. AST activities were lower in 

the mHCHF than the mCS group. The mCWS and mHWS AST activities were 

between the two controls, not differing from either (Table 5.4). ALT/AST ratio was 

lower in the mHCHF group than the mCS. mCWS and mHWS were comparable to 

both groups. Lactate dehydrogenase was higher in the mCWS model compared with 

all other groups. Creatinine kinase did not differ between any groups (Table 5.24).   
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C D 
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FV 



Table 5.24: Cardiovascular and liver structure and function parameters of rats fed on mCS, mCWS, mHCHF, and mHWS protocols.  

 

Differing superscript lower-case letters indicate a significant difference at p<0.05 determined by one-way ANOVA.  

 

 

 

Parameter Interaction Intervention Diet

Systolic blood pressure (mmHg) 134.2 ± 1.6 a 138.8 ± 2.1 a 128.0 ± 2.5 a 127.6 ± 1.4 a 0.2158 0.295 0.0004
Left ventricle + septum (mg/mm tibial 
length)

18.1 ± 1.1 a 23.1 ± 1.5 b 23.0 ± 1.1 b 22.5 ± 0.7 b 0.0172 0.051 0.0573

Right ventricle (mg/mm tibial length) 12.4 ± 1.0 a 16.7 ± 0.8 b 18.2 ± 0.8 b 17.5 ± 0.5 b 0.0034 0.0273 <0.0001

Liver (mg/mm tibial length) 183.5 ± 6.2 a 241.2 ± 6.6 b 316.8 ± 14.8 c 307.2 ± 6.8 c 0.0008 0.0141 < 0.0001

Diastolic stiffness constant (κ) 24.9 ± 0.3 a 25.9 ± 1.7 a 27.5 ± 0.4 a 25.6 ± 0.3 a 0.0754 0.5563 0.1732

Plasma ALT activity (U/L) 29.3 ± 1.4 a 28.5 ± 2.7 a 28.0 ± 2.6 a 25.1 ± 2.2 a 0.6439 0.4313 0.3165

Plasma AST activity (U/L) 93.3 ± 6.2 a 70.8 ± 5.9 ab 65.3 ± 4.3 b 74.3 ± 5.6 ab 0.0095 0.2465 0.0399

Plasma AST/ALT ratio 3.2 ± 0.2 b 2.5 ± 0.1 ab 2.5 ± 0.2 a 3.0 ± 0.2 ab 0.0045 0.7153 0.5397

Lactate dehydrogenase (U/L) 273.8 ± 29.2 b 124.3 ± 8.8 a 159.0 ± 27.2 a 159.1 ± 15.1 a 0.001 0.001 0.0552

Creatine kinase (U/L) 99.5 ± 11.6 a 139.4 ± 30.8 a 117.8 ± 25.6 a 114.6 ± 19.0 a 0.3906 0.4638 0.8962

mCS mCWS mHCHF mHWS
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Liver TLR4 expression did not differ between the mCS and mHCHF controls. 

Addition of 20% intervention in the mHCHF diet resulted in decreased expression of 

TLR4 in the liver from the mHCHF control. The addition of 20% intervention to the 

mCS diet did not alter expression. Liver GLUT2 expression did not differ between the 

mCS and mHCHF controls. The mCWS group had lower GLUT2 expression in the 

liver than the mCS control. No change was found in the mHCHF diet group, Figure 

5.73.  

 

Figure 5.73: Liver TLR4 and GLUT expression determined by semi-quantitative 

ELISA. Differing lower-case letters indicate significant difference at p<0.05 

determined by one-way ANOVA. AU indicates absorption units.   

 

Normalised right ventricular weights and left ventricular weights were higher in the 

mHCHF, mHWS and mCWS groups, compared to the mCS, at termination. Diastolic 

stiffness was not changed by diet or intervention. Systolic blood pressure was 

unchanged by addition of WS, and did not differ between mCS and mHCHF.  

 

mCS
mCWS

mHCHF

mHWS
0.00

0.02

0.04

0.06

0.08

0.10

TL
R4

 A
U

ab

b

a

b

mCS
mCWS

mHCHF

mHWS
0.00

0.02

0.04

0.06

0.08

0.10

G
LU

T2
 A

U

a

b

a

ab



 

Figure 5.74: Ex vivo thoracic aortic reactivity in response to acetylcholine, sodium 

nitroprusside and noradrenaline. Differing lower-case letters indicate a significant 

difference in final maximal force of contraction, p<0.05 determined by one-way 

ANOVA.  

 

Maximum force of relaxation upon acetylcholine exposure did not differ between the 

mCS and mHCHF groups. Maximum force of relaxation was lower in the mHWS and 

mCWS groups than both control groups (Figure 5.74). Different forces of contraction 

were observed at concentrations of 1x10-6M acetylcholine and above. The minimum 

concentration required to elicit a response did not differ between any groups. Maximal 

force of contraction with sodium nitroprusside exposure did not differ between any 

groups (Figure 5.74). The minimum concentration required to induce relaxation did 

not differ between any groups.  

The maximum force of contraction in response to noradrenaline was higher in the 

mHCHF group than the mCS group. Both the mHWS and mCWS groups were 

increased from the mCS control, however not the mHCHF control, Figure 5.74. The 

minimum concertation required to induce contraction did not differ between the mCS 
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and mHCHF control groups. The mHWS groups showed contraction at a lower 

concentration of noradrenaline than the mHCHF control. 

  

  

Figure 5.75: Type I and III collagen stained by picrosirius red, determined at % of total 

cross-sectional area. Differing lower-case letters indicated significant difference as 

determined by one-way ANOVA, at p<0.05. mCS,(A), mHCHF (B),mCWS (C), 

mHWS (D). 

 

Collagen cross-sectional areas were higher in the mHCHF group than the mCS group. 

The mHWS group had lower collagen than the mHCHF control, comparable to the 

mCS group, Figure 5.75.   

 

5.3.5 Gastrointestinal function 

No statistical differences were noted in the maximal force of contraction of the ileum 

between groups. Concentration-contraction comparisons showed no difference in 

contraction between any groups at any individual concentration. No differences in total 

area under the curve were noted between any groups, nor was the minimum 

concentration required for contraction.  

 

There was no difference in the minimum concentration of acetylcholine required to 

induce contraction between the mCS and mHCHF groups in the colon. The 

concentrations required in the mHWS and mCWS groups were higher than both 
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controls. Maximal force of contraction did not differ between the mCS and mHCHF 

controls. At concentrations of 1x10-7M acetylcholine and above, force of contraction 

was lower in the mCWS and mHWS than both controls (Figure 5.76).   

  

Figure 5.76: Reactivity of isolated ileum and proximal colon sections to acetylcholine. 

Differing lower-case letters indicate significant difference in maximal force of 

contraction determined by one-way ANOVA.  

 

Colon TLR4 or claudin-1 expression did not differ between any treatments as shown 

in Figure 5.77. There was higher occludin expression in the proximal colon of mHCHF 

rats compared with mCS. Addition of 20% WS to mCS diet increased occludin 

expression and addition to the mHCHF reduced occludin expression.   

 

Figure 5.77: Colon occludin, claudin-1 and TLR4 expression. Differing lower-case 

letters indicate a significant difference at p<0.05 determined by one-way ANOVA.  

 

Recovery of sucrose, lactulose and sucralose did not differ between any group, for a 

given time period. Recovery of mannitol did not differ between any groups for the 0-

3 hour time period or the 3-8 hour time period. In the 8-20 hour time period, there was 

a higher recovery of mannitol in the mHCHF group than the mCS group. The mCWS 
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recovery did not differ from the mCS control. The recovery in the mHWS was 

comparable to both the mCS and mHCHF groups (Table 5.25)  



Table 5.25: Total percent recovery of sugars from urine.  

 

Differing lower-case letters indicate a significant difference at p<0.05 determined by one-way ANOVA between groups for a given time point. 

Time 
(hours) Interaction Time Treatment

Sucrose 0-3 0.05 ± 0.02 a 0.04 ± 0.03 a 0.05 ± 0.01 a 0.04 ± 0.02 a 0.9734 < 0.0001 0.8848

3-8 0.20 ± 0.07 a 0.11 ± 0.03 a 0.18 ± 0.03 a 0.11 ± 0.05 a

8-20 0.26 ± 0.06 a 0.26 ± 0.05 a 0.24 ± 0.09 a 0.26 ± 0.10 a

Lactulose 0-3 0.31 ± 0.14 a 0.25 ± 0.19 a 0.21 ± 0.08 a 0.34 ± 0.10 a 0.5639 0.0142 0.2600

3-8 1.29 ± 0.72 a 0.54 ± 0.15 a 1.26 ± 0.32 a 0.90 ± 0.23 a

8-20 0.90 ± 0.30 a 0.45 ± 0.23 a 1.20 ± 0.40 a 2.02 ± 0.59 a

Mannitol 0-3 0.44 ± 0.14 a 0.51 ± 0.27 a 0.58 ± 0.16 a 0.51 ± 0.17 a 0.2940 < 0.0001 0.0007

3-8 1.28 ± 0.32 a 1.03 ± 0.39 a 2.51 ± 0.67 a 2.77 ± 0.81 a

8-20 1.51 ± 0.47 a 1.59 ± 0.29 a 4.07 ± 0.87 b 2.94 ± 0.94 ab

Sucralose 0-3 0.49 ± 0.21 a 0.59 ± 0.25 a 0.70 ± 0.23 a 0.89 ± 0.24 a 0.7212 0.0001 0.3046

3-8 3.08 ± 0.95 a 1.13 ± 0.34 a 2.86 ± 0.59 a 3.11 ± 1.15 a

8-20 2.53 ± 0.89 a 2.80 ± 1.22 a 4.27 ± 0.90 a 3.68 ± 0.96 a

mCS mCWS mHCHF mHWS
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Total % recovery over the 24 hour period only differed for mannitol recovery, Figure 

5.78. The lactulose/mannitol ratio was higher in mCS than mHCHF. The mCWS had 

a lower lactulose/mannitol ratio of recovery compared to mCS. No change from the 

mHCHF control was seen in mHWS (Figure 5.78).  

  

Figure 5.78: Total mannitol recovery and lactulose/mannitol recovery ratio over a 20 

hour period. Differing lower-case letters indicate difference at p<0.05 determined by 

one-way ANOVA. 

 

5.4 Discussion 

It was hypothesised that supplementation in the mHCHF diet with WS would reverse 

the symptoms associated with metabolic syndrome. Not all parameters were reversed, 

however several beneficial outcomes were noted.  

Physiology and metabolism 

Supplementation resulted in decreased food intake in the mHCHF diet. The reduced 

intake can be explained by the increased protein and energy densities in the diet. 

Protein intake is suggested to be the major driver of food intake (474), and higher 

satiety with protein intake is well documented (545-547). With addition of WS, there 

was a large increase in protein intake in both diets. The initial mCS diet and mHCHF 

diets are considered to be low in protein when compared with other studies of rat 

models (467-470).  

Many studies have linked reduced calorie consumption with improvements in 

metabolic syndrome (548, 549). Therefore, this is especially promising in the mHCHF 
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model which aimed to mimic metabolic syndrome. High protein, calorie-reduced diets 

have a wide scientific grounding in improving metabolic syndrome (477, 550-552). In 

the mCS model, WS consumption increased protein intake and energy intake. In mice, 

long-term dietary studies of low protein, high carbohydrate intakes indicated good 

cardio-metabolic health, but with a higher risk of fatty liver, low lean mass and high 

triglyceride concentrations (474).  

Notably, the feed efficiency in the rats which received WS was increased. In the 

mHWS group, the increased feed efficiency resulted in an increased lean mass, with 

no apparent change in total body fat mass. In the mCWS diet, the increased efficiency 

resulted in both lean mass and fat mass increase. Similar results have been seen in 

other studies. In a cat model, high protein diets resulted in a lean mass increase of 

4.2%, with no additional exercise (553). Inverse correlations have been established 

between lean mass and metabolic syndrome (484-486, 488). Sorghum distillery waste 

products increased lean mass in feedlot cattle however less efficiently than a corn 

equivalent (554). In finishing, distillery waste reduced fat free mass (555). Little 

research has been done on its consumption outside the livestock production field.  

Increases in lean mass are driven by protein intake, but also essential amino acid intake 

(556). Increased leucine intake, even without increased protein intake, resulted in 

improved muscle mass (483). This has been theorised to be due to inhibition of muscle 

breakdown (myopathy) rather than increased muscle synthesis (557). Sorghum is high 

in leucine, and after processing, leucine can represent 9.59% of total crude protein, 

and up to 2.55% of total dry mass (558).  

There is evidence to suggest that epicatechin is a myostatin inhibitor, which may 

prevent skeletal muscle breakdown (559). WS is known to contain catechin and 

epicatechin (160). The inhibition of myostatin by epigallocatechin-3-gallate in tea 

results in inhibition of ubiquitin-mediated protein breakdown, and increased anabolic 

factors (560). The increased lean mass is also likely to be a contributing factor in the 

improved glucose tolerance.  

Glucose Tolerance  

The improved glucose tolerance in the mHWS group was a significant outcome in this 

study. Sorghum grain extracts improve diabetes by increasing insulin sensitivity in 

mice fed a high fat diet (185) and have anti-diabetic effects in rats (207, 208). 
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However, this appears to be the first study that has shown whole spent sorghum from 

distilleries can have an anti-diabetic effect.  

Peripheral glucose clearance dysfunction is one of the contributing factors to the 

development of impaired glucose tolerance (561, 562). Muscle fibre area correlated 

with the latter stage of the glucose tolerance test (52) with a correlation of 0.39 between 

muscle fibre area and glucose tolerance (53). Not all studies agreed, with lean mass 

amount not related to glucose tolerance in overweight or obese individuals (54). Our 

results indicate no correlation between lean mass and oral glucose tolerance. Many 

suggest it is the function of the muscle, rather than the total mass, that dictates skeletal 

muscle influence on glucose tolerance. This has been linked to mitochondrial 

dysfunction (563), GLUT4 dysfunction (561) and insulin-like growth factor-1 (564). 

Procyanidins improved peripheral glucose clearance by correcting GLUT4 

translocation (565). Procyanidins are present in sorghum and its distillery waste 

products (160). Isolated sorghum fractions rich in phenolics showed antidiabetic 

effects in rats and mice (185, 207, 208, 214) 

Liver GLUT2 is involved in control of blood glucose (281). In hyperthyroid rats, 

impaired glucose tolerance is associated with an increase in GLUT2 expression in the 

liver (566). Cellular models of fatty liver were associated with increased GLUT2 

mRNA expression and glucose output and gluconeogenesis, rather than increased 

uptake (322). GLUT2 increases are usually associated with impaired glucose 

tolerance, and correction was seen in improved glucose tolerance (282, 313, 315, 318). 

In this study, there was a reduction in the GLUT2 expression in mHWS rats which 

also showed improved glucose tolerance. However, in the corn starch diet, the reduced 

expression was not coupled with changes in glucose tolerance. There is also a lack of 

difference between the controls with respect to GLUT2 expression, with vastly 

different glucose tolerances. Although GLUT2 is involved, explaining the complexity 

is beyond the scope of this research. The effect of WS on its expression and the 

mechanism by which it occurs are not clear.  

Observations in the pancreas showed that there was no change in islet density 

accompanying the improved mHWS glucose tolerance. Although progression of 

diabetes results in reduced β-cell density (567), it has also been shown to be positively 

correlated with weight in non-diabetic patients (568, 569). The increased body weights 



of all these three groups compared to the mCS control may underlie the increased β-

cell density in these rats, and not appear to be directly correlated to glucose tolerance. 

Irrespective of the mechanism, the improvement in glucose tolerance is in line with 

other studies using sorghum extracts where glucose tolerance was improved (208, 

570). This study furthers the work by showing that not only isolated extracts can 

improve glucose tolerance, but a commercial waste product can do the same as a novel 

food. 

Dyslipidaemia 

No changes were noted in the plasma triglyceride, cholesterol or non-esterified fatty 

acid concentrations. Therefore, sorghum distillery waste does not improve the 

dyslipidaemia of metabolic syndrome. Other studies indicated that extracts of WS alter 

plasma lipid profiles, particularly lowering both HDL and LDL concentrations (183). 

The wax component reduced cholesterol concentration in hamster models (571). These 

changes may only be noted in certain extracts rather than the whole fraction. 

Approximately 86% of the lipids present in WS are triacylglycerides (126), so 

although dietary intake of triglycerides was increased, this did not lead to increased 

circulating triglycerides.  

Previous studies showed that the fatty acid composition of sorghum distillery waste 

was 53.96-56.53% linoleic acid, 25.25−27.15% oleic acid, 13.25−16.41% palmitic 

acid, 1.80−2.34% stearic acid and 1.15−1.40% linolenic acids (572). Although these 

unsaturated fats have been associated with improved lipid profiles, this was not seen 

in this study. As with cholesterol, plasma triglyceride concentrations and their link to 

metabolic syndrome are also dependent on the composition whereby unsaturated fatty 

acids, especially linoleic and oleic acids, are inversely related to metabolic syndrome, 

and saturated C14 and C16 fatty acids are positively correlated with metabolic 

syndrome development (573). The intake did not alter plasma lipids, but the dietary 

lipids may have been the functional compounds which affected other parameters, 

especially since WS fats comprised 8.8% of the daily diet.  

Liver 

The mCWS and mHWS showed increased liver weight, which was not associated with 

observations of steatosis or liver inflammation as indicated by histology. There exists 

a linear relationship in the body size and organ weight (574). The same increase was 
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noted in left ventricular weight and right ventricular weight of rats consuming WS. 

Although these values are normalised to tibial length prior to statistical analysis, the 

tibial length is set prior to intervention and is not a reflection of changes in lean mass 

or overall body size. Lean mass is indeed correlated with higher liver size and total 

body weight (575). Similarly lean mass is correlated with ventricular weight, whereas 

height or skeletal size is less indicative (576).  

Due to the low protein content of the mCS diet, using it as a “healthy” control for liver 

studies is not ideal. The elevated plasma AST activity in the mCS may be an indication 

of liver damage, but it can also indicate poor nutrition or low protein intake (513). 

Other studies of low protein diets using maize meal at 4% protein reported AST 

increases after just 5 days (513). This would usually be accompanied by an increase in 

ALT activity but this was not noted, and an increase in lactate dehydrogenase, which 

was. Median reference values for male Wistar rats are 33 U/l and 66 U/l for ALT and 

AST respectively (512). Normal ranges for male Wistar rats are 23-50U/l ALT and 

49-98U/l AST (512). All rats, irrespective of diet or intervention, had ALT values in 

the lower range. The mCS rats showed AST activities increased to the upper range of 

normal, while the mHCHF had “healthier” activities comparable to the median 

reference range.  

Similarly, using this as a control for lactate dehydrogenase may not be optimal. Typical 

reference ranges for male Wistar rats for lactate dehydrogenase are between 83-298 

U/l (512). The rats in this study all had values in the upper range, well above the 

median 114 U/l value for male Wistar rats (512). All rats that were given an 

intervention, irrespective of base diet, were closer to the median value than the 

controls. The addition of 20% WS to the mCS diet markedly reduced the lactate 

dehydrogenase activity. Again, this is possibly due to the low protein content of the 

diets. Protein energy malnutrition in humans is associated with low lactate 

dehydrogenase activity compared to normal protein and energy intake (577).  

Despite the lack of change in liver enzyme activity caused by addition of WS to an 

obesogenic diet, there was improved histology of the liver. The mHCHF group showed 

steatosis and fat vacuoles, while these were absent in the mHWS group. Aqueous 

extracts of Sorghum bicolor improve liver microstructure in rats (413). Sorghum 

bicolor leaf sheath ethanol extract induced hepatocyte ballooning, however only at 



very high doses of over 2000mg/kg per day and prolonged exposure (578). The lack 

of changes to liver enzyme activity are similar to the outcomes seen with rats ingesting 

sorghum flour (253, 489). Aqueous sorghum extracts dose-dependently increased ALT 

and AST activities in rats on a normal diet (579). Methanol extracts of sorghum seed 

showed no effect on the liver enzyme activity, ALT or AST, but these were also 

unchanged by a high fat diet (185). 

Due to the lack of difference between the mCS and mHCHF for TLR4 expression in 

the liver, it is difficult to suggest which changes occur with metabolic syndrome, 

although WS decreased TLR4 expression in the high-fat diet. The implications of this 

are not clear, and whether the reduction in TLR4 affected other parameters is not clear, 

but warrants further research. There was no correlation between LPS concentrations 

and liver TLR4 expression.  

TLR4 is a known mediator of hepatic injury in high fat diets, but its research has been 

focussed on activation and knockouts which have revealed its involvement in 

metabolic syndrome (219, 370, 580, 581). TLR4 expression was increased in muscle 

from insulin-resistant patients (518). TLR4 expression was increased in monocytes 

exposed to oxidised LDL cholesterol (582), which is a risk factor for metabolic 

syndrome (583). No studies have shown that sorghum altered liver TLR4 expression.  

Cardiovascular health 

There was no improvement in left ventricular diastolic stiffness or systolic blood 

pressure with WS consumption. The reduction in collagen deposition may have 

preceded larger physiological changes such as reductions in diastolic stiffness. There 

is some evidence to suggest that procyanidins reduced the proliferation of cardiac 

fibroblasts (584) which are the primary cell type responsible for collagen synthesis in 

the heart (585).   

Increased vascular contraction in response to noradrenaline with WS consumption 

may indicate hypersensitivity. Increased sensitivity to noradrenaline can lead to 

increased blood pressure (586). It was expected that the mHCHF group would have 

lower reactivity than the mCS controls, as has been shown in studies of high fat, diet-

induced obesity in mice (501) and rats (353). In this case, all intervention groups 

showed poorer relaxation when exposed to acetylcholine, which may be detrimental 

to blood pressure control, as may be the increased contraction to noradrenaline. 
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Increased vasoconstriction sensitivity to noradrenaline occurs in diabetic dogs (502) 

and is linked to hypertension in rats (503).  

Gastrointestinal health 

Generally, reduced gastrointestinal motility is associated with increased satiety in the 

small intestine, and in the colon with poorer expulsion of faecal pellets (587). 

Increased sectional contractility resulted in delayed emptying (84). There are still 

significant knowledge gaps in the role of gastrointestinal contraction and metabolic 

syndrome. However, this study suggested that there was reduced sectional contractile 

force with WS consumption which may either reduce risks of constipation, or improve 

colonic clearing.  

This is indeed an area that requires more research. This study indicates that altering 

the diet by adding WS sorghum will change the gastrointestinal function with respect 

to contraction, but its implications are only speculative. Although it is observational 

and data were not collected quantitatively, it was noted that the stool of mCWS rats 

was softer, bulkier and appeared to be passed more frequently than the mCS control. 

Isolated sorghum compounds caused relaxation of pig ileum ex vivo (420). In mice, 

increasing sorghum leaf extract concentration in the diet increased transit time and 

reduced intestinal motility and doses of 200mg/kg or more showed anti-diarrhoeal 

activities (421). Sorghum extracts dose-dependently increased relaxation in the rabbit 

jejunum and rat stomach (421). Likewise, methanol extracts of red sorghum seeds 

showed anti-diarrhoeal activity and prolonged gastrointestinal transit time (523).  

There were no improvements in the gastrointestinal permeability with WS 

consumption. A high fat diet increased gastrointestinal permeability in many rat 

studies (175, 219, 588, 589). Diet did not affect stomach permeability or colon 

permeability but the small intestine was affected as indicated by the mannitol recovery. 

The recovery of mannitol is an indicator of transcellular permeability or absorption, 

while lactulose is an indicator of paracellular absorption (590). These respectively 

indicate villi absorptive capacity and intestinal permeability (591). There was a large 

increase in mannitol recovery in the mHCHF group, which was unchanged by WS. 

The uptake is proportional to absorptive capacity (591), and the subsequent excretion 

shows poor absorption in the high fat diet. One study of red and white sorghum showed 

that colon crypt depth was reduced in the proximal colon with sorghum consumption 



(466) and, in fat rats, crypt depth is also decreased and coupled with poor 

gastrointestinal absorption of sugars (592).  

The expression of tight junctions was not studied in the small intestine, which would 

add weight to this comparison. The expectation based on literature was that changes 

would occur primarily in the large intestine. Ultimately, addition of WS did not greatly 

alter colon permeability, nor did there appear to be changes in serum LPS 

concentrations as was hypothesised.  

Metabolic endotoxaemia 

No significant differences in serum LPS concentrations existed between any control 

or treatment groups. LPS can induce symptoms of metabolic syndrome (238) and 

others suggest it is a direct cause of diet-induced metabolic syndrome (175, 237). 

While LPS may play a role in the progression of metabolic syndrome by initiating 

TLR4-mediated inflammation in the pancreas, colon, liver, heart and other tissues 

(370), this research does not support these changes as being the key factors. It must be 

considered that there is a complex interaction of multiple factors. LPS is produced by 

gastrointestinal Gram-negative bacteria (593). Poor gastrointestinal integrity will 

allow cells and cell components into the blood stream that cause inflammatory 

responses (237). Other factors will affect the concentrations of LPS, including the 

microbial composition of the colon (593), detoxification of LPS by intestinal alkaline 

phosphatase (594), the expression of TLR4 in tissues which is able to be activated 

(595) and the concentration of serum lipopolysaccharide binding protein (596). A more 

comprehensive study investigating all of these components will be beneficial. The 

complexity has not been fully studied, and the high concentration of circulating plasma 

free fatty acids which mimic LPS cannot be discounted (433, 434).  

There are many cellular components that result in inflammation of bacterial origin and 

these must not be discounted in the process of metabolic syndrome progression. TLR2 

is critical in the development of metabolic syndrome (597). TLR5 has a protective 

effect against metabolic syndrome development, where TLR5-deficient mice develop 

metabolic syndrome (598), rather than being protected as in TLR4-deficient mice 

(219). All inflammatory mediators which react to environmental signals are likely to 

play some role in progression of the disease. There is evidence to show that circulating 

free fatty acids and other lipids can stimulate TLR4 and TLR2, and exacerbate 
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inflammation (599). In dyslipidaemia, high concentrations of circulating fatty acid 

components are surmised to be the cause of excessive inflammation and cellular 

dysfunction, rather than LPS itself (370). TLR3, typically associated with detection of 

exogenous double stranded RNA (600), was involved in the progression of type 2 

diabetes, where TLR3-deficient mice were resistant to development of whole body 

insulin sensitivity and somewhat protected from dyslipidaemia (601).  

In this study, I approached the expression of TLR4, but I was unable to quantify all 

the factors which link TLR4 concentrations and the inflammatory process which 

contribute to metabolic syndrome. A single dietary intervention of WS is not sufficient 

to change the concentrations of circulating LPS, and changes in colonic permeability 

did not appear to be involved. Approaching only one inflammatory mediator may have 

been too simplistic.  

5.5 Other considerations and limitations 

Identification and quantification of the bioactive compounds present in the distillers 

grain sorghum used in this study would add considerable weight to the knowledge and 

outcomes. Determination of the individual components would provide a link between 

these compounds and the research outcomes. There can be vast differences in sorghum 

composition due to genetic and environmental factors, and in processing of the grain 

for ethanol production. This will affect the composition of batches used in other 

research, and the research outcomes. Knowledge of the bioactives would provide a 

baseline for further research. In the absence of this information, comparison to future 

studies will be limited.   

5.6 Conclusions 

WS sorghum has shown some positive changes in a model of diet-induced metabolic 

syndrome. One aspect which has become clear is that there is a strong interaction 

between the diet and the supplement. It appears insufficient to use a single supplement 

to reverse the symptoms and a focus needs to be made on the whole diet. The most 

relevant change was the improvement of glucose tolerance, even in a diet high in fat 

and simple sugars. I could not elucidate the mechanisms that were at play, as changes 

in GLUT2 in the liver and pancreatic histology revealed little.   



The link between gastrointestinal permeability, inflammation and LPS has not been 

shown in this dietary model. It is most likely that these changes were minor at the 

molecular level, which did not result in statistical changes, or that the changes are a 

much smaller component of overall diet-induced metabolic syndrome, which is a very 

complex disease.   
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Chapter 6 – Phloretin in a rat model of metabolic syndrome 

6.1 Introduction 

Glucose transport inhibitors have gained much interest with the theoretical application 

to the management or amelioration of diabetic progression (602). Many sugar 

transporters are present, however recent interest has emphasised sodium-dependent 

glucose transporters 1 and 2 (SGLT1, SGLT2) and Glucose Transporter 2 (GLUT2). 

Several SGLT2 inhibitors are already on the market including dapagliflozin, 

canagliflozin and empagliflozin (603).  

SGLT1 transports glucose and galactose and is present in the intestine tract, kidney, 

heart, brain, testis and prostate. SGLT2 is also responsible for glucose and galactose 

transport, however in the kidney, brain, liver, thyroid, muscle and heart (280). GLUT2 

is present in the gastrointestinal tract, pancreas, liver, brain and other parts of the 

nervous system (281). It is not only responsible for sugar transport of glucose, 

galactose and fructose (282), but hepatoportal glucose sensing, pancreatic sensing, 

taste preference and thermoregulation (281).  

Several studies have shown potential for SGLT and GLUT inhibitors to ameliorate 

diabetes (331, 333, 604, 605). Phloretin produces anti-inflammatory responses (349, 

350). As many of the signs of metabolic syndrome are initiated by and associated with 

an inflammatory mechanism (606-608), phloretin has the potential to suppress the 

inflammatory status of the disease. When exposed to phloretin concentrations greater 

than 10µM, LPS-induced macrophages had reduced translocation of TNF-α (tumour 

necrosis factor alpha), PGE-2 (prostaglandin E2), iNOS (inducible nitrogen oxide 

synthase), COX-2 (cyclooxygenase-2) and NFκ-B (nuclear factor kappa-B) (Chang et 

al., 2012). Phloretin improved glucose homeostasis (336, 609), reduced glycation 

which is responsible for diabetic complications (339), was hepatoprotective (341) and 

improved lipid metabolism (337).  

As the targets for phloretin are expressed in multiple tissues, there could be wide-

reaching effects including altered glucose uptake in the GI tract, kidneys, altered 

GLUT2 mediated peripheral uptake and release in the liver, and potentially alterations 

in the sensing of glucose in the pancreas. In addition, SGLT-mediated glucose re-

uptake in the kidney and other tissues may be altered.  



Many studies have looked at the cellular responses to phloretin by exposure in cell or 

tissue culture (339, 343, 349, 351, 610). Very few studies have been conducted to 

assess the overall physiological changes with ingestion in diet-induced metabolic 

syndrome. Only one study appears to have combined all of these effects and researched 

oral ingestion of phloretin in a model of metabolic syndrome, a recently published 

work by Alsanea, et al. (340).  

Metabolic syndrome is hypothesised to be both contributed to by gastrointestinal 

function and as causing gastrointestinal dysfunction (177, 377, 611). Increased 

permeability of the gastrointestinal tract is linked to high plasma insulin and low HDL 

cholesterol concentrations (589). The increased permeability has been associated with 

higher inflammation, resulting from mild endotoxaemia, particularly activation of the 

TLR4 innate immune receptor (219). TLR4 activation increases the risk of 

development of fatty liver (612), hepatic dysfunction (613), vascular inflammation and 

insulin resistance (345). Diet can influence expression of tight junction proteins, 

responsible for maintaining the gastrointestinal integrity. High fat diets increase small 

intestinal permeability (424). Lipopolysaccharides reduce tight junction proteins 

(614), which have origins in the gut induced by a high fat diet (611). Flavonoids 

studied to date that show improved tight junction barrier protein function in the 

gastrointestinal tract are epigallocatechin gallate, genistein, myricetin and quercetin 

(615). Phloretin has not been studied in a gastrointestinal model.  

6.2 Materials & Methods 

6.2.1 Phloretin analysis 

Approximately 1mg of phloretin was dissolved in 10mL of 100% methanol. The 

sample was analysed using an Agilent 1260 HPLC-MS system. The system consisted 

of an Agilent 1260 Degassing Unit, 1260 ALS Infinity Autosampler, 1260 TPP 

quaternary Pump, 260 DAD (Diode Array Detector), connected to an Agilent 6120 

Quadrupole LC/MS (Liquid chromatography/ mass spectrometry) (Agilent, Santa 

Clara, California). 

 

The sample was run isocratically in 90% water, 10% methanol at 0.400mL/min on an 

Agilent, with a 10µL injection volume. The system was run at 20°C on a 

150x10.00mm 5µm Phenomenex Luna 5u C18(2) column (Phenomenex, Lane Cove, 
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New South Wales). The mass spectrum was analysed using APCI (atmospheric 

pressure chemical ionisation), in the negative mode. Gas temperature and vaporiser 

were maintained at 300°C, with a drying gas flow of 9.0L/min, corona current of 

20µA, and a nebuliser pressure of 40 pounds per square inch, gage. The mass spectrum 

peak width was set to 0.1 minutes. 

 

The compound was confirmed to be >99% by peak area, eluting at 0.768 minutes. The 

mass spectrum confirmed the identity of phloretin with an expected molecular weight 

of 274.26g/mol. The negative ion mode generated two major peaks at 273.1 (intensity 

100, parent peak) and 274.1 (intensity 15.1) as shown in Figure 6.1. 

 

 

Figure 6.79: Mass spectrum of phloretin. 

6.2.2 Rats and diets  

Forty-eight male Wistar rats were purchased from ARC (Animal Research Centre, 

Perth, Western Australia) and divided into 6 experimental groups of n=12. 

Experimental groups were CS (corn starch diet), HCHF (high carbohydrate, high fat 

diet), CPh50 (corn starch diet + 50mg/kg/day phloretin), HPh50 (high carbohydrate, 

high fat diet + 50mg/kg/day phloretin), CPh200 (corn starch diet + 200 mg/kg/day 

phloretin), HPh200 (high carbohydrate, high fat diet + 200mg/kg/day phloretin). 

For the first 8 weeks of the protocol, CS, CPh50, and CPh200 rats received the CS diet 

and HCHF, HPh50 and HPh200 rats the HCHF diet as described in method 2.2. At 

eight weeks, treatment groups were changed to their respective intervention diets of 

CS (corn starch), CPh50 (CS containing 0.1% w/w phloretin), CPh200 (CS + 0.4% 



w/w phloretin), HCHF (high carbohydrate, high fat), HPh50 (HCHF + 0.1% w/w 

phloretin), and HPh200 (HCHF + 0.4% w/w phloretin). Phloretin was considered to 

have no metabolisable energy. 

At 0, 8, and 16 weeks, prior to termination, oral glucose tolerance (method 2.3), body 

composition (method 2.4) and systolic blood pressure (method 2.5) were determined. 

Rats were starved for 2 hours prior to termination. Rats were euthanised as per method 

2.6.1. At termination, rats underwent plasma collection (method 2.6.3), vascular 

reactivity (method 2.6.5), ileum and colon contractility (method 2.6.6), organ weights 

(method 2.6.7) and histological tissue collection (method 2.6.1). 10 rats per group 

underwent isolated heart perfusion (method 2.6.4), with the remaining two hearts 

preserved in formalin for histological analysis as per method 2.6.1. Plasma samples 

were assessed on 8 rats per group for liver enzyme activity (method 2.7.1) and plasma 

lipid profile (method 2.7.2.). Collected serum was analysed for presence of endotoxins 

as per method 2.9. Liver sections were assessed for expression GLUT2 and TLR4 

(method 2.11.3). Distal colon sections were also assessed for occludin and claudin-1 

expression using the method described in method 2.11.4, and for TLR4 expression. 

Histological tissue samples were processed manually (method 2.8.2) and sectioned 

(method 2.8.3). Liver, ileum, colon, pancreas and left ventricle were stained with 

hematoxylin and eosin (method 2.8.5.1). Separate sections of left ventricle were 

stained with picrosirius red (method 2.8.5.2). Microscopy and imaging were 

performed as per method 2.8.6.1, 2.8.6.2, 2.8.6.3 and 2.8.6.4. Statistical analysis was 

performed on pancreatic islet cell count and density.  

6.3 Results 

6.3.1 Physiological parameters 

Phloretin daily intake, and equivalent human dose is shown in Table 6.1. Calculations 

have been based on scaling equations by Bachmann, et al. (616) for a 70kg adult 

human.  
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Table 6.26: Phloretin daily intake of rats and equivalent human doses. Calculations are 

based on the average rat bodyweight at 16 weeks.  

 

 CS CPh50 CPh200 HCHF HPh50 HPh200 

Rat phloretin intake (mg) 0 61 ± 0.3 131 ± 0.6 0 26 ± 0.1 100 ± 0.3 

Rat bodyweight (g) 379 ± 1.9 397 ± 1.7 378 ± 2.0 505 ± 1.6 543 ± 3.6 511 ± 4.0 

Dose (mg/kg) 0 93.4 347 0 47 183 

Equivalent human dose (mg) 0 1167 4270 0 657 2543 

Equivalent human dose (mg/kg) 0 17 61 0 9 36 

 

Treatment with phloretin did not change body weight gain as indicated in Figure 6.2. 

Food intake and energy intake did not differ in the first 8 weeks of intervention within 

a dietary group (Table 6.27). HCHF rats consumed a lower weight of food than the CS 

groups, however showed higher energy intake (Table 6.2). After intervention, the 

HCHF, HPh50 and HPh200 rats showed similar food and energy consumption. 

Similarly, energy intake did not differ between the CS fed rats and CPh50 or CPh200 

rats.  

 

Figure 6.80: Weekly body weight.  

 

0 4 8 1 2 1 6
0

2 0 0

4 0 0

6 0 0

W e e k

W
e

ig
h

t 
(g

)

C S

H C H F

C P h 5 0

C P h 2 0 0

H P h 50

H P h2 00
P h lo re t in  t re a tm e n t



Feed efficiency increased in all HCHF rats in the first 8 weeks of feeding. Feed 

efficiency with phloretin addition was not different from respective diet controls. 

However, HPh200 feed efficiency was comparable to CS controls, and CPh50 feed 

efficiency was similar to HCHF diet.  

Total body fat mass was affected by both diet and by intervention. Total body fat mass 

(body composition by DXA) was increased in the HPh50 rats compared to the HCHF 

group. Addition of phloretin at 200mg/kg/day in the HPh200 rats did not result in any 

fat mass changes by DXA compared with the HCHF rats. 

Addition of phloretin was shown to have an impact on lean body mass, which was 

increased when a dose of 200mg/kg/day were administered, and decreased at a dose 

of 50mg/kg/day in the CS diet. The only change was a difference between the CPh200 

and CPh50 groups, however neither differed from respective controls (Table 6.27). 

The ratio of lean:fat mass was increased in the CPh200 rats compared with the CS rats. 

Lean:fat mass ratio was unchanged by adding phloretin to the HCHF diet.  

Both diet and phloretin supplementation had an impact on individual abdominal fat 

pads and total abdominal fat pads, as determined by two-way ANOVA, shown in Table 

6.1. Despite this, statistically significant changes from the respective controls were not 

evident, based on a one-way ANOVA. The significance of the intervention effect was 

due to the consistent trend of higher abdominal fat pad mass in the 50mg/kg/day dose, 

and consistently lower trend of abdominal fat pad mass in rats consuming 

200mg/kg/day. 

Bone mineral content (BMC) was increased in all HCHF rats compared with CS 

control, CPh50 and CPh200 rats. There was no difference between HCHF and HPh200 

fed rats; however, the HPh50 rats had a significantly higher BMC than HCHF. Bone 

mineral density (BMD) was higher in the HCHF fed groups. Addition of phloretin did 

not alter BMD. 
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Table 6.27: Physiological and metabolic parameters of CS, CPH50, CPh200, HCHF, HPh50, and HPh200 fed rats. 

 

Differing superscript letters indicate significant difference at p<0.05 as determined by one-way ANOVA. Interaction, intervention, and diet were 

tested for significant contributions to variation using a two-way ANOVA, with p values reported far right.    

Parameter Interaction Intervention Diet

Food intake (g/day) Week 0-8 36.6 ± 1.1 a 36.8 ± 0.9 a 39.7 ± 1.3 a 24.4 ± 0.3 b 26.3 ± 0.8 b 24.4 ± 0.4 b 0.0244 0.1883 < 0.0001

Food Intake (g/day) Week 8-16 36.2 ± 0.8 ab 37.1 ± 0.6 a 32.8 ± 0.9 b 24.2 ± 0.6 c 25.7 ± 0.9 c 24.9 ± 0.7 c 0.0238 0.0068 < 0.0001

Energy intake (kJ/day) Week 0-8 410.6 ± 12.1 b 412.9 ± 10.1 b 445.8 ± 14.2 b 514.2 ± 5.6 a 548.7 ± 15.4 a 530.0 ± 10.8 a 0.099 0.0951 < 0.0001

Energy intake (kJ/day) Week 8-16 406.6 ± 9.1 b 416.1 ± 6.4 b 368.5 ± 10.5 b 523.7 ± 10.9 a 553.9 ± 17.4 a 539.6 ± 14.8 a 0.0882 0.0411 < 0.0001

Feed efficiency (g gained. kJ-1) Week 0-8 0.22 ± 0.24 b 0.31 ± 0.13 b 0.77 ± 0.24 b 3.09 ± 0.13 a 3.59 ± 0.22 a 3.32 ± 0.25 a 0.2148 0.1488 < 0.0001

Feed efficiency (g gained. kJ-1) Week 8-16 1.57 ± 0.12 2.03 ± 0.20 0.95 ± 0.38 2.72 ± 0.15 3.06 ± 0.17 2.29 ± 0.25 0.7852 0.0005 < 0.0001

Bone mineral density (g/cm2) 0.176 ± 0.003 ab 0.179 ± 0.003 ab 0.174 ± 0.002 b 0.183 ± 0.002 ab 0.189 ± 0.004 a 0.182 ± 0.003 ab 0.8616 0.1494 0.0021

Bone mineral content (g by DXA) 11.16 ± 0.35 c 12.52 ± 0.40 c 11.23 ± 0.32 c 15.40 ± 0.38 b 17.96 ± 0.48 a 15.35 ± 0.39 b 0.1835 < 0.0001 < 0.0001

Total body fat mass (g by DXA) 85.3 ± 7.5 cd 117.5 ± 11.4 c 58.3 ± 4.6 d 202.8 ± 9.0 b 262.4 ± 14.8 a 201.7 ± 16.7 b 0.4387 < 0.0001 < 0.0001

Total body lean mass (g by DXA) 284.8 ± 6.8 ab 265.2 ± 8.2 b 315.1 ± 6.6 a 286.8 ± 4.5 ab 274.5 ± 10.5 ab 294.7 ± 19.0 ab 0.4039 0.0133 0.7471

Lean:Mat mass ratio 3.32 ± 0.46 b 3.02 ± 0.56 a 5.11 ± 0.63 ab 1.51 ± 0.09 c 1.03 ± 0.09 a 1.72 ± 0.27 ab 0.1238 0.0053 0.7471

Retroperitoneal fat (mg/mm tibial length) 164.40 ± 15.16 b 182.10 ± 14.33 b 128.50 ± 7.60 b 383.40 ± 40.54 a 449.70 ± 23.67 a 363.10 ± 30.54 a 0.6017 0.0208 < 0.0001

Epididymal fat (mg/mm tibial length) 91.85 ± 8.19 b 104.60 ± 8.18 b 84.05 ± 2.25 b 194.80 ± 18.07 a 219.00 ± 10.25 a 164.80 ± 21.88 a 0.4267 0.0212 < 0.0001

Omental fat (mg/mm tibial length) 97.65 ± 12.91 b 123.40 ± 8.21 b 88.38 ± 6.00 b 206.30 ± 14.86 a 240.40 ± 16.54 a 195.00 ± 14.23 a 0.9084 0.0062 < 0.0001

Total abdominal fat pad (mg/mm tibial length) 338.9 ± 28.5 c 410.0 ± 27.5 c 300.9 ± 11.5 c 784.5 ± 56.5 ab 909.1 ± 39.0 a 723.0 ± 55.3 b 0.6043 0.0014 < 0.0001

HPh200CS CPh50 CPh200 HCHF HPh50



6.3.2 Plasma lipids and glucose control 

At 8 weeks of dietary feeding, prior to phloretin intervention, the HCHF, HPh50 and 

HPh200 rats showed increased fasting blood glucose concentrations as indicated in 

Table 6.28. The CPh200 group also had raised fasting blood glucose concentrations. 

Glucose area under the curve was raised in the HCHF diets at 8 weeks.  

At 16 weeks, the HCHF, HPh50 and HPh200 groups had elevated fasting glucose 

compared to the CS. Supplementation at 50mg/kg/day did not alter the fasting blood 

glucose or glucose tolerance in either the CS or HCHF diet. Supplementation at 

200mg/kg/day reduced the TAUC in the CPh200 fed rats from the CS control. The 

HPh200 group showed glucose tolerance normalised to that of the CS control (Table 

6.28). The HPh200 glucose tolerance curves show that fasting glucose was not altered 

from the HCHF model, however peak glucose concentration was reduced, and from 

60 minutes onward the curve was comparable to that of the CS control.  
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Table 6.28: Blood glucose control and plasma lipids of CS, CPH50, CPh200, HCHF, HPh50, and HPh200 fed rats.  

 

Differing superscript letters indicate significant difference at p<0.05 as determined by one-way ANOVA. Interaction, intervention, and 

diet were tested for significant contributions to variation using a two-way ANOVA, with p values reported far right.    

 

Parameter Interaction Intervention Diet

Fasting blood glucose (mM) 8 week 3.0 ± 0.1 b 3.2 ± 0.2 b 3.8 ± 0.2 a 4.4 ± 0.3 a 4.2 ± 0.1 a 4.2 ± 0.1 a 0.0239 0.1609 < 0.0001

 TAUC blood glucose 8 week 686.7 ± 26.5 a 689.4 ± 26.8 a 692.8 ± 20.3 a 724.0 ± 46.8 ab 786.1 ± 22.1 ab 816.1 ± 26.1 b 0.2998 0.2144 0.0004

Fasting blood glucose (mM)16 week 3.5 ± 0.2 b 3.7 ± 0.2 b 3.7 ± 0.2 b 5.0 ± 0.3 a 5.1 ± 0.2 a 4.5 ± 0.1 a < 0.0001 < 0.0001 < 0.0001

 TAUC blood glucose 16 week 723.0 ± 22.4 bc 775.9 ± 29.7 b 635.9 ± 17.8 c 919.1 ± 36.8 a 922.4 ± 34.0 a 724.0 ± 21.5 b 0.1364 < 0.0001 < 0.0001

Plasma total cholesterol (mM/L) 1.66 ± 0.30 a 1.67 ± 0.33 a 2.08 ± 0.29 b 1.62 ± 0.15 a 1.85 ± 0.36 a 2 ± 0.24 b 0.3615 0.0003 0.8255

Plasma triacylglycerides (mM/L) 0.45 ± 0.21 ab 0.39 ± 0.11 a 0.46 ± 0.26 ab 0.98 ± 0.55 c 0.7 ± 0.65 b 1.24 ± 0.43 c 0.2268 0.0946 < 0.0001

Plasma non-esterified fatty acids (mM/L)1.31 ± 0.43 a 1.42 ± 0.41 a 1.83 ± 0.95 a 3.6 ± 1.60 b 2.96 ± 2.42 ab 4.23 ± 1.22 b 0.5957 0.1826 < 0.0001

HPh200CS CPh50 CPh200 HCHF HPh50



    

   

Figure 6.81: Haematoxylin & eosin stain of pancreatic islets at 10x magnification. CS 

(A), CPh50 (B), CPh200 (C), HCHF (D), HPh50 (E), HPh200 (F).  

 

Pancreatic islet cell density was not changed by diet or phloretin intervention. No 

indication of b-cell death was noted in any section, as shown in Figure 6.81.  

Total cholesterol concentration did not differ between the HCHF and CS control 

groups. Both the CPh200 and HPh200 groups showed increased total plasma 

cholesterol concentrations compared to all other groups (Table 6.28).   

Plasma triacylglycerides (TAG) were more than doubled in the HCHF diet compared 

with the CS. No change was evident with phloretin ingestion (Table 6.28). 

Plasma NEFA (non-esterified fatty acids) were 2.75 times higher in the HCHF model 

compared with the CS. No statistical changes were associated with phloretin addition 

in the CS diet. The HPh50 group had NEFA concentrations comparable to the CS 

control, but had not changed sufficiently to be different from the HCHF control, as 

shown in Table 6.3. The HPh200 group did not show the same decrease, indicating 

that there may be dose-dependent effects. 

6.3.3 Cardiovascular and hepatic structure and function 

Normalised left ventricular weight did not differ between any groups (Table 6.29). 

Normalised liver wet weight was increased in HCHF compared to CS diets, and was 
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not altered by phloretin consumption. The diastolic stiffness (κ) was not altered in any 

group.  



Table 6.29: Cardiovascular and hepatic structure and function of CS, CPH50, CPh200, HCHF, HPh50, and HPh200 fed rats. 

 

Differing superscript letters indicate significant difference at p<0.05 as determined by one-way ANOVA. Interaction, intervention, and 

diet were tested for significant contributions to variation using a two-way ANOVA, with p values reported far right.    

 

Parameter Interaction Intervention Diet
Left ventricle + septum (mg/mm tibial length) 18.55 ± 0.95 ab 18.96 ± 1.04 ab 18.10 ± 0.50 a 21.83 ± 1.02 b 21.55 ± 0.56 b 19.99 ± 0.71 ab 0.6953 0.2536 0.0003
Right ventricle (mg/mm tibial length) 4.09 ± 0.28 ab 4.30 ± 0.44 ab 3.87 ± 0.22 b 4.97 ± 0.27 ab 5.16 ± 0.26 a 4.90 ± 0.24 ab 0.9502 0.4999 0.0003
Systolic blood pressure (mmHg) 154.4 ± 1.2 a 124.1 ± 1.1 c 121.4 ± 0.5 c 135.6 ± 3.5 b 136.5 ± 1.9 b 135.4 ± 1.3 b < 0.0001 < 0.0001 0.114
Liver (mg/mm tibial length) 204.40 ± 6.83 b 198.70 ± 5.41 b 215.80 ± 8.17 b 305.00 ± 8.65 a 292.40 ± 6.52 a 291.10 ± 14.20 a 0.3361 0.5296 < 0.0001
Diastolic stiffness constant (κ) 26.45 ± 2.193 a 30.94 ± 1.595 b 31.51 ± 1.134 bc 32.8 ± 1.34 ab 27.08 ± 2.301 ab 26.66 ± 0.6361 ab 0.0097 0.8256 0.1523
Plasma ALT activity (U/L) 33.25 ± 11.57 a 28.18 ± 7.236 a 30.22 ± 7.085 a 28.7 ± 10.6 a 29.18 ± 20.33 a 31.67 ± 7.599 a 0.692 0.7952 0.826
Plasma AST activity (U/L) 83 ± 20.78 a 66.82 ± 15.85 b 67.67 ± 13.38 ab 62.3 ± 14.67 b 63.91 ± 23.61 b 60.56 ± 10.48 b 0.2566 0.2625 0.0284

HPh200CS CPh50 CPh200 HCHF HPh50
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The deposition of collagen was not altered by treatment with phloretin (Figure 6.82). 

Deposition of collagen was increased in the HCHF (6.4%) group compared to the CS 

control (4.8%). Both the CPh50 (14.1%) and CPh200 (9.6%) groups showed increased 

collagen deposition compared to the CS control. In the HPh200 (6.5%) group, collagen 

was comparable to the HCHF control.  

 

 

Figure 6.82: Picrosirius red staining indicating deposition of collagen type I and III 

fibres in the left ventricle. Shown at 20x magnification. CS (A); CPh50 (B), CPh200 

(C), HCHF (D); HPh50 (E); HPh200 (F).  

 

HCHF rats had a severely blunted relaxant response to acetylcholine in isolated 

thoracic aortic rings compared with the CS control. HPh50 and HPh200 rats did not 

display this. Maximal responses were normalised to the CS control in the HPh50 

group. Both the CPh200 and HPh200 rats had comparable responsiveness, which 

exceeded the CS control, as indicated in Figure 6.5. 

Aortic responsiveness to noradrenaline did not differ between CS and HCHF groups. 

Maximal responses to noradrenaline were markedly increased in the CPh200 group, 

compared to all other groups, which did not differ, as shown in Figure 6.83. Maximal 

responses to sodium nitroprusside were higher in the CS, CPh200 and HPh50 groups 

than the HCHF, CPh50 and HPh200 groups.  

A B C 

D E F 



             

   

Figure 6.83: Thoracic aortic responses to acetylcholine, sodium nitroprusside and 

noradrenaline of control and phloretin-treated rats. Lower-case letters indicate a 

significant difference in final force of contraction (mN) at p<0.05 determined by one-

way ANOVA. 

 

Plasma alanine aminotransferase (ALT) activity was not affected by diet or 

intervention. Plasma aspartate aminotransferase (AST) activity was higher in the CS 

control compared with the HCHF. Phloretin did not change AST activity at either dose 

in the HCHF model, in the CPh50 group AST was lower than the CS control, 

comparable to the HCHF control Table 6.4. 

Hepatocyte ballooning and fat deposition were evident in the HCHF model, and not in 

the CS model. This appeared unchanged with phloretin addition as shown in Figure 

6.6. 
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Figure 6.84; Haematoxylin and eosin stains of liver indicating ballooning and fat 

deposition, at 20x magnification. CS (A); CPh50 (B); CPh200 (C); HCHF (D); HPh50 

(E); HPh200 (F). Scale bars indicate 200µm. 

 

GLUT2 and TLR4 expression in the liver were unchanged by diet or intervention, 

Figure 6.85.  

 

 

Figure 6.85: Liver GLUT2 expression (left) and liver TLR4 expression (right).  
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6.3.4 Gastrointestinal parameters 

Colonic and ileal reactivity did not differ with dietary groups. Rats on the HPh200 diet 

had a higher final ileal force of contraction than the CS control, and all other groups 

as shown in Figure 6.86. No other groups differed. No changes in colonic responses 

were noted between any groups.  

 

Figure 6.86: Colon (top) and ileum (bottom) reactivity to acetylcholine. Differing 

lower-case letters indicate a different final maximal force of contraction, determined 

by one-way ANOVA, p<0.05. Where no letters are indicated, no difference was 

calculated. 

 

TLR4 expression in the colon did not differ between any groups, Figure 6.87. 
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Figure 6.87: Liver TLR4 expression determined by semi-quantitative ELISA. No 

significant difference was seen between any groups.  

Claudin-1 expression was elevated in the HCHF group. The CPh50 and CPh200 

groups had increased expression from the CS control. Occludin expression was 

unchanged by diet or intervention, Figure 6.88. 

  

Figure 6.88: Claudin-1 expression in the colon (left) and occludin (right) expression 

in the colon determined by semi-quantitative ELISA. Differing lower-case letters 

indicate a significant difference at p<0.05.  

 

6.4 Discussion 

The aim of this study was to determine whether phloretin was able to ameliorate the 

physiological and biochemical changes that occur with metabolic syndrome including 

cardiovascular remodelling, impaired glucose tolerance, adipose tissue presence and 

dyslipidaemia. Further, the study aimed to determine some of the molecular 

mechanisms by which phloretin may affect metabolic syndrome including alteration 

of gastrointestinal integrity reflected in changes in occludin and claudin-1 expression, 

and expression of TLR4. 

It was predicted that phloretin would have the largest impact on glucose tolerance due 

to its known activity in inhibiting SGLT-1 and GLUT2. Phloretin was also surmised to 

be highly anti-inflammatory based on in vitro studies, which could reverse or prevent 

progression of metabolic syndrome. Using body weight scaling equations (616), the 

equivalent human dose for the HPh200 group is 2543mg per day, for an adult of 70kg. 
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When compared with other studies that use a similar animal model, this high dose is 

probably excessive, expensive and not more effective than other supplements. Overall, 

the most promising indication for phloretin intake appears to be improved glucose 

tolerance.  

Body composition 

Phloretin did not result in fat loss where obesity is caused by a high fat diet. This is 

consistent with the data from Alsanea, et al. (340), who used intraperitoneal injections 

in mice. Given the different direction of change in fat mass, lean:fat mass ratio, and 

abdominal fat pad mass with the two phloretin doses, it is surmised that there is a dose-

dependent and dietary interaction. The effect on adiposity may be from altered uptake 

of sugars and fats, altered gene expression, or changes in metabolic pathways, as the 

energy intake was unaltered. Lipid accumulation and adipocyte differentiation 

increased with phloretin exposure in in vitro studies using 3T3L-1 adipocytes, and 

markers of lipid accumulation were increased (609). Adipogenic regulator expression 

increased on exposure to phloretin at 50µM with increased 3T3L-1 adipocyte 

differentiation (610). Skeletal muscle palmitate uptake in cell culture was inhibited by 

phloretin in the presence of 300mmol phloretin (617). Other studies suggest that 

phloretin inhibited lipid accumulation and reduced the expression of adipogenic 

transcription factors (351).  

Given that the outcomes of fat accumulation differed in magnitude and direction with 

differing doses, phloretin may be adipogenic or anti-adipogenic depending on the dose. 

It is also noted that the true dose in the HCHF and CS supplemented diets differ, despite 

the same dose in food. For this reason, comparison between the interaction with the 

CS diet and phloretin, and the HCHF diet and phloretin may be affected largely by the 

dose, rather than simply interaction with the other dietary components.  

Energy and food consumption 

Phloretin did not affect appetite in high fat diets but reduced food volume intake by 

approximately 11% in a low-fat diet. To date, very little research has been reported on 

sugar inhibitors affecting appetite. However, Kuhre, et al. (618) showed that inhibition 

of GLUT2 by phloretin resulted in suppression of neurotensin release, which is 

surmised to be responsible for glucose-stimulated appetite regulation. Inactivation of 
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glucose sensors in GLUT2-null mice resulted in over-consumption (619). 

Administration of 2-deoxyglucose, also a GLUT2 inhibitor, resulted in hypoglycaemia 

and stimulated food consumption (620). These results contrast with the food intake 

results in this study. Consumption of a GLUT2-inhibiting compound in the diet did not 

lead to impaired glucose-controlled feeding.  

 

Pre-diabetes 

Phloretin corrected post prandial glucose tolerance but not fasting glucose. There 

appeared to be no damaging effects of phloretin to glucose tolerance in a normal, 

healthy diet. The results here are somewhat consistent with other studies. Treatment of 

obese mice with phloretin by intraperitoneal injection led to reduced insulin 

concentrations in a rat model of obesity (340). In cell culture models, phloretin 

improved insulin sensitivity (610). The phloretin glycoside, phloridzin, improved non-

fasted glucose concentrations in streptozotocin-diabetic rats at concentrations less than 

40mg/kg/day (337). Reduced blood glucose concentrations have been shown with 

phloretin intake simultaneous to glucose ingestion (621).   

The improvement seen could not be attributed to normalisation of β-cell mass. In 

animal models of obesity, preceding type 2 diabetes mellitus, there is an increase in 

the b-cell mass (622), whereas after development of type 2 diabetes mellitus there is a 

distinct decrease in b-cell mass (623). The restoration of glucose tolerance must be due 

to improved function of the islets, improved peripheral glucose clearance or action of 

glucose regulating hormones.  

Plant-derived flavonoids including marinin and okanin at a dose of 20mg/kg/day 

restored pancreatic function in diabetic Wistar rats (624). In pre-diabetic rats, there 

was a loss of GLUT2 from the pancreatic b-cells (302, 303, 625). GLUT2 expression 

in the pancreas reduced with non-insulin dependent diabetic progression (625) (626). 

Inhibition of GLUT2 can prevent loss of expression in pancreatic β-cells in rat models 

of streptozotocin-induced diabetes, exhibiting potential for phloretin (300). In other 

studies, GLUT2 inhibition was protective and preventative in the progression of 

insulin resistance and pre-diabetes (627, 628). This was not studied in our research as 



humans do not have GLUT2 as their primary glucose sensor in the pancreas (299), 

limiting the indications for phloretin in human trials.  

Peripheral glucose clearance can be improved by normalisation of GLUT2 expression 

in the liver. The expression of GLUT2 in the liver was unchanged in this study. This 

is in contradiction to other models of diabetes. In other models, an increase in GLUT2 

expression occurred in glucose-impaired hyperthyroid rats (566). Cell models of fatty 

liver showed increased GLUT2 mRNA expression, glucose output and 

gluconeogenesis, rather than uptake (322). In an 60 day model of diabetes, Wistar rats 

had increased GLUT2 mRNA in the liver and increased protein expression (629).  

The composition of sugars and complex carbohydrates is likely to be of importance in 

the situations where sugar transporters are targeted as therapeutic agents. The ability 

of GLUT2 to transport fructose (630) may be one of the contributing factors that have 

caused differing effects in the HCHF and CS diets in this study. Other sugar 

transporters may have a compensatory role when another is inhibited. GLUT2 and 

GLUT5 work in conjunction to transport fructose, and GLUT5 contributes most of the 

fructose transport at the brush border (631). GLUT5 increased under high fructose 

feeding in GLUT2 null mice, therefore this may have a compensatory action (632). 

Fructose uptake can be reduced by GLUT2 inactivity (632) but cannot be fully 

stopped. This is likely to explain the lack of weight loss in the high fructose HCHF 

diet, even though it was expected.    

Dyslipidaemia 

At high doses, phloretin increased plasma total cholesterol concentrations. The 

increased total cholesterol concentration suggests an increased risk of atherosclerosis 

associated with the metabolic syndrome. Low HDL concentrations are a risk factor 

and diagnostic tool for metabolic syndrome (173). As LDL and HDL were not tested 

separately, we cannot definitively suggest that phloretin will increase the 

predisposition of cardiovascular risk due to high total cholesterol. A more significant 

factor is reduced HDL, and increased LDL cholesterol. Shu, et al. (609) showed 

reduced cholesterol concentrations at low doses of phloretin. Alsanea, et al. (340) 

showed no change in plasma lipids, despite reduced fat deposits in the liver, similar to 

what was seen in our study. Apple polyphenols, which include phloretin, resulted in 

an improved plasma cholesterol profile, through altering the ratio of LDL:HDL (633). 
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In vitro studies have shown that phloretin and GLUT2 inhibition may increase 

cholesterol secretion rates in intestinal TC7 cells, however  it was suggested that this 

was a non-significant increase (634). In contrast, apple polyphenols were shown by 

Vidal, et al. (635) to reduce cholesterol esterification and secretion by TC7 cells, by 

the related phloretin metabolite phloretin-2-glucoside. Uptake of cholesterol was 

inhibited by phloretin in vitro (636), which is not supported by this research. If 

phloretin is able to prevent oxidation of cholesterol molecules, this will reduce the 

cardiovascular risk (637). 

Cardiovascular health and liver health 

Phloretin restored efficacy of acetylcholine in eliciting vasodilation in the HCHF diet 

at both doses, but this was not correlated with improved systolic blood pressure. This 

may be due to the anti-inflammatory effects with phloretin resulting in reduced aortic 

stiffness. TNFα antagonists also have these effects (638). Phloretin suppressed changes 

in endothelial cells when exposed to TNFα (343). In rabbit isolated vessels, phloretin 

induced vascular relaxation at concentrations as low as 5µM by an endothelium-

independent mechanism (639). The same study showed that genestin had similar 

effects and was transferrable to in vivo human trials. Presence of phloretin impaired 

noradrenaline contractile responses in isolated rabbit vascular sections, and was again 

suggested to be endothelium-independent, and promote vaso-relaxation (640). There 

was no reduction in diastolic stiffness or collagen deposition with phloretin 

consumption. Phloretin does not show promise for cardiovascular health in a model of 

metabolic syndrome when all factors are accounted for.  

The addition of phloretin to the CS diet resulted in reduced plasma AST activity yet 

the change was not associated with changes in the histology of the liver or liver size. 

Although no changes in liver enzymes occurred in the high fat diet with phloretin, 

there was an improvement in the liver histology. Estrogenic studies show no changes 

in liver enzyme activity with phloretin doses up to 100mg/kg (641). Phloretin delivered 

by intraperitoneal injection at a dose of 10mg/kg twice weekly reversed fat 

accumulation and cellular ballooning of hepatocytes in a high-fat diet, mouse model 

(340). 

 



Gastrointestinal function 

Gastrointestinal effects of phloretin include increased colonic and ileal reactivity on 

exposure to acetylcholine. Within the gastrointestinal tract, there is an ideal contraction 

strength and frequency which can be altered by multiple disorders. In obese leptin-

deficient mice, responses to cholecystokinin were diminished, but responses to 

acetylcholine were unchanged (642). This may explain the lack of difference between 

the CS and HCHF diets. Other research indicated increased small intestinal 

contractility and lowered distal contractility (179). The increase in ileal contractility 

with phloretin addition, specifically in a high fat diet, may lead to increased smooth 

muscle contraction, and should be considered a potential contraindication in those with 

pre-existing gastrointestinal disorders. Phloretin phosphate at 40µg/mL decreased 

contraction in isolated guinea pig ileum (643).  

Gastrointestinal integrity is gaining traction as a contributing factor to overall health, 

particularly with respect to inflammatory disease such as obesity and metabolic 

syndrome. In this study, we demonstrated that the HCHF model unexpectedly showed 

increased claudin expression. The complex of tight junction proteins also contains ZO-

1 (zonula occludin-1) and junctional adhesion molecules (644). ZO-1 was not studied, 

and occludin was not altered. These results appear to contradict other studies that 

suggest high fat feeding reduces expression of tight junction proteins (237) and in 

genetically obese and diabetic mice (177, 423).  

Increased expression of occludin has been linked to improved gut integrity. Similar to 

the outcome seen in phloretin ingestion, grapeseed extract containing polyphenols 

increased colonic occludin expression (645). Although the outcomes in control rats 

were unexpected, there is a promising indication that phloretin can improve 

gastrointestinal integrity.  

Limitations 

A number of shortcomings are evident in this study. Due to the complexity of the 

system, it was not possible to explore all mechanisms involved in phloretin’s 

improvement of glucose tolerance. Several other aspects such as changes in cholesterol 

oxidation, oxidative state, GLUT2 and TLR4 expression in more tissues, and the 

densities of SGLT-1 and other sugar transporters were not assessed. In addition to 
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determining the pancreatic islet density, it would have been ideal to assess a suite of 

inflammatory markers that alter insulin release, and determining insulin concentrations 

in conjunction with blood glucose concentrations. It would also prove beneficial to 

assess GLUT-4 and 5 expression in muscle tissue, as there appeared to be a much 

improved peripheral glucose clearance in phloretin-supplemented rats.  

6.5 Conclusions 

The research provides evidence that phloretin has a therapeutic role with respect to the 

glucose tolerance aspect of metabolic syndrome, but this is no greater than other more 

cost-effective examples. There is some evidence to suggest that it may cause 

gastrointestinal discomfort at high doses, as indicated by the increased ileal 

contractions. Although phloretin does not seem to be harmful in this rat model of 

obesity, it does have some contraindications which require consideration. While 

phloretin impacts glucose uptake and results in lower peak blood glucose 

concentrations, long-term ingestion with meals does not reduce calorie consumption 

in ad libitum models, nor does it ameliorate weight gain, cardiovascular changes or 

lipid dysregulation associated with metabolic syndrome.  

  



Chapter 7 – Conclusions 

7.1 Conclusions and future directions of sorghum in diets 

7.1.1 Summary of key findings and their implications 

Sorghum as an addition to diets to improve metabolic syndrome has shown potential 

in this research as it alters a range of parameters of metabolic syndrome. A key take-

away message from the research was that sorghum’s impacts were varied, based on 

the type of intervention.   

Whole sorghum showed significant promise for reduction of total cholesterol in a 

similar way that oats have been touted as a dietary component to improve cholesterol 

concentrations, and also normalisation of post-prandial glucose. Incorporating 

sorghum into diets is a simple and feasible way for people to improve cholesterol 

concentrations at a dose of just 30g per day. Continuing research with clinical trials to 

further this, and confirm the effects in humans, will be important to promote sorghum 

products for the consumer market, and reduce the risk of developing  type 2 diabetes 

and cholesterol-related complications.   

Black sorghum flour and red sorghum flour improved metabolic parameters in a 

normal diet, although few changes in high fat-high carbohydrate diets that induce 

metabolic syndrome. This should not be a deterrent for the consumption of sorghum, 

as there were indications that sorghum flour can help prevent the changes that lead to 

metabolic syndrome. A wholegrain flour will have greater functional properties.   

Wet cake sorghum consumption resulted in improvements in glucose tolerance, 

improved liver histology, increased lean mass, and reduced liver GLUT2 and TLR4 

expression. Few studies have looked at sorghum products or sorghum-based diets and 

their effects on metabolic syndrome, and wet cake has not been studied in a human 

context for health. This presents an important possibility for future research. This 

research provides a foundation to indicate that this waste product of sorghum 

fermentation for ethanol production can be used as a functional food product. Sorghum 

wet cake has been added to chocolate chip cookies, sugar cookies, molasses cookies, 

bread (646), and spaghetti (647) with no sensory aversion by consumers. These studies 
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are old, and the idea has not taken off. We may see these fortified food products on the 

market with added health information backing their use.  

Addition in the diet also showed increased lean mass which is of interest for fields 

other than metabolic syndrome. This could be looked at as an alternate nutrition source 

in countries where protein is expensive or has low availability, as well as in ageing 

patients. Further, this is likely to influence nutrition studies where efficient sources of 

protein are of high interest and components which inhibit muscle breakdown such as 

catechins, or components which promote muscle growth, are also of interest.   

7.1.2 Limitations and considerations for future research 

There are limitations to this research, especially considering the physiological 

differences between rat models of metabolic syndrome and transferring to human 

consumption. Further, the development of metabolic syndrome was less pronounced 

in the modified high-carbohydrate, high-fat diet with minimal changes in liver 

enzymes, diastolic stiffness and cholesterol concentrations. There were inconsistent 

changes in the expression of GLUT2, TLR4, occludin and claudin between the two 

diets. This suggests other components may be contributors or that one progresses the 

molecular changes more quickly. Further, the control diets differed in their 

macronutrient composition and the rats fed the modified corn starch diet showed 

indications of liver damage and muscle wasting, possibly due to the low protein or 

energy content of the diet.  

Rat models are inherently complex systems, as are humans. Assessing a single system 

such as the progression from gastrointestinal tract to tight junctions to intestinal 

permeability to endotoxaemia and finally to metabolic syndrome is important to 

understand its contribution and involvement, but does not give a full picture of the 

processes involved. Because of the complexity of the system, monitoring a wider range 

of biomarkers as a pilot study might show the weighted average of contributions of the 

biochemical pathways which lead to metabolic syndrome. Statistically, we did not see 

changes in many anatomical, pathological or biochemical features of metabolic 

syndrome. The application of statistics is key in moving forward with metabolic 

research. Continual improvement of statistics applied to clinical and animal trial needs 

to be prioritised. In this study, simply adding more “groups” to the mix altered the 



outcome when assessing the difference between the corn starch and high-carbohydrate, 

high-fat diets, hence the application of t-tests in the 20% sorghum flour study. Sliding 

dichotomy models have been proposed (648) to show progressive changes rather than 

absolute “yes” or “no” statistical changes. Re-assessing this data with new statistical 

methods will most likely reveal new information.  

The situation is further complicated by the presence of responders and non-responders 

in the population (649). Even within this research, I saw that changes with sorghum 

consumption varied from individual to individual in a population despite a similar 

genetic makeup. Not all humans will show the same response to food interventions, as 

with drugs, and as genomics progresses we may be able to implement “designer” diets 

based on genetics (650).  

Scientifically, the limitations are that not all mechanisms of the changes could be 

identified. Although I hypothesised that there would be changes in intestinal 

permeability, occludin and claudin expression, which would translate to a reduction in 

LPS presence in the blood stream, this was not evident. This linear progression of 

following the changes in LPS through to implications for metabolic syndrome was not 

supported by the outcomes. Despite published studies showing that LPS can induce 

metabolic syndrome, and metabolic syndrome is linked to higher concentrations of 

circulating endotoxins, this is a very complex system and did not appear to be a driver 

of metabolic syndrome in this research.  

There is also the suggestion that circulating fatty acids can mimic the effect of LPS on 

TLR4-mediated inflammation that leads to metabolic syndrome. I tested only 

expression of TLR4, not the activation of TLR4 or the cytokines produced by TLR4 

activation. Further to this, I tested it only in the colon and liver. Further testing of 

expression of TLR4 as well as its activation in cardiac tissue, pancreas, small intestine 

and kidney would assist understanding whether sorghum alters TLR4-mediated 

inflammation leading to metabolic syndrome.  

The identification of individual compounds in the sorghum and products would have 

provided understanding of their contribution to health effects. Furthermore a 

quantitation of these would provide a baseline reference for building upon this 

research.    



205 
 

Consumption of sorghum likely altered the composition of the gut microbiome, as with 

consumption of other cereals. Unfortunately, I was unable to assess the changes, 

however future animal and human studies would greatly benefit from the 

understanding of changes in the composition of the gut microbiome with sorghum 

consumption, and how these changes correlate with metabolic and physiological 

changes. We need to acknowledge that the changes to the gastrointestinal tract in rats 

may not translate to humans. Notably, humans do not have a caecum while rats do. 

There is also a discrepancy in the relative surface areas of different gastrointestinal 

sections between humans and rats, in addition to differences in microbial populations 

and the ability to extract nutrients (651).  

Overall, this research has contributed to the knowledge base of how sorghum can affect 

health in a single scenario. While it has shown promise, realistically the development 

of metabolic syndrome is a long-term process which can be best changed by re-

education and more comprehensive changes in dietary habits and attitudes, and 

changes in physical activity. Future human clinical trials should incorporate sorghum 

into a more thorough diet change and aid in educating participants on making better 

dietary choices. Animal models do not necessarily translate to humans. Human trials 

are really the best way forward for researching sorghum as a functional food.  

The biggest barrier to inclusion of sorghum into diets is most likely going to be a lack 

of acceptance by the wider community. Generally, communities are resistant to 

changing their dietary traditions. Sorghum inclusion into products will be helped by 

the current trend of “gluten-free” foods, and it has already been incorporated into a 

number of products. These include bio-fortified sorghum cookies (652), porridges 

(653), “complete nutrition” foods (654, 655) and breads (656). Wheat flour is the 

primary grain consumed in Australia. Wheat flour has unique properties and has been 

bred and highly researched to have improved properties for baking or for flour 

production in the case of durum wheat.  

Sorghum does not possess all of these properties and so there will be a discrepancy in 

the sensory evaluation of products made with sorghum flour. Likewise, consumers are 

accustomed to wholegrains such as oats, but steam flaking of sorghum may be able to 

provide an oat substitute that suits consumer preferences. Research indicates that 



wholegrain breakfast cereals made from sorghum show higher sensory acceptance and 

bioactive content than a wheat counterpart (657). 

Sorghum wet-cake is likely incur the most resistance from consumers. Whilst the smell 

is highly appealing with a “caramel” scent, texturally it may incur resistance from 

consumers. This will be a challenge to food science technology. However, sorghum 

wet-cake has been incorporated into chocolate chip cookies, sugar cookies, molasses 

cookies, bread (646) and spaghetti (647) with little sensory aversion.  

7.1.3 Key recommendations for future studies 

Future research should focus on human studies. Let’s be honest, people love free food. 

If you offer them free sorghum products in exchange for a few blood tests, you’ll 

probably get a number of people on board. Sorghum should not only be researched in 

the context of metabolic syndrome, it should also be researched in the health and 

fitness area.   

Although it will be difficult to assess levels of expressed proteins in tissues, monitoring 

plasma indicators of dyslipidaemia, plasma LPS concentrations, and also monitoring 

intestinal permeability by the lactulose/mannitol test are all possible as they are non-

invasive options. In addition, plasma testing for cytokines that are TLR4-dependent 

will help construct a picture of whether sorghum alters TLR4 activation and alters 

metabolic syndrome. Metabolomic studies of blood markers where large scale screens 

are conducted will give a more comprehensive picture of the contributing processes 

which lead to metabolic syndrome, but also how sorghum consumption affects these 

biochemical pathways and markers.  

Further research should also focus on understanding how to process sorghum to 

receive a good response from consumers, while retaining the properties of components 

that produce sorghum’s effects.  

Sorghum is in its infancy in terms of breeding. In the future, research on specific effects 

of genotypes or “specialty” lines of sorghum such as those with high anthocyanidins, 

high tannins, high phenolics, high amylose and altered proteins for nutraceutical 

purposes will be possible.    
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Sorghum is a minor cereal grain for human consumption in Australia, but in Africa 

and India, it feeds millions of people. This research indicates that sorghum is not 

detrimental to health, and shows a great deal of promise in improving symptoms in 

patients with metabolic syndrome and possibly other ailments. The potential is much 

more far-reaching than simply altering metabolic syndrome. Incorporating sorghum as 

a human food source will add a market for Australian-produced sorghum which will 

then feed into plant breeding research, the food processing market and new product 

development.  

Clinical work which supports the findings in humans, and also promoting sorghum as 

a food, will increase its adoption as an accepted food. If this occurs, I hope that it will 

contribute to a reduced incidence of diabetes and cardiovascular disease.  

7.2 Conclusions and future directions for phloretin in diets 

7.2.1 Summary of key findings and their implications 

This thesis presents results on different interventions as possible treatments to reverse 

diet-induced metabolic syndrome. Compounds have been tested using a validated rat 

model of high-carbohydrate, high-fat diet to induce metabolic, cardiovascular and liver 

changes mimicking metabolic syndrome in humans. Further, a different rat model was 

characterised which allowed higher doses of interventions such as cereals which are 

used at higher amounts in the human diet. Phloretin showed dose-dependent effects, 

especially a normalisation of post-prandial glucose tolerance with a dose of 

200mg/kg/day. Thus, phloretin could be a suitable dietary supplement for patients with 

insulin resistance that may proceed to diabetes. This should be researched in a clinical 

trial situation before recommending to patients. The likely mechanism of action of 

phloretin is by SGLT2 inhibition. Although synthetic SGLT2 inhibitors are on the 

market with support from clinical trials, their adverse effects including effects on bone 

(658) need to be tested for phloretin. However, phloretin did not change other 

cardiovascular parameters and showed improvement in liver structure.  

Moving forward to a closely monitored clinical trial with phloretin would increase the 

knowledge and use of phloretin in metabolic syndrome. Other research in animal 

models has delivered phloretin by oral gavage or intraperitoneal injection, which are 



not appropriate for chronic dosage in humans. A dietary pill will be suitable, such as 

those in cellulose caps or pressed pills. This will alter the concentration in the 

gastrointestinal tract and likely alter the uptake of sugars depending on the 

concentration. This will differ from the chronic low dose in food delivered in this 

study.  

Considering the GLUT2 inhibiting potential of phloretin and SGLT1 inhibiting 

potential of phloridzin, it is surprising that these natural compounds have not been 

researched more extensively for their ability to alter insulin resistance. It is possible 

that more potent compounds such as dapagliflozin, canagliflozin and empagliflozin 

have taken centre stage (659). It may be time to shift focus and look at the potential of 

inhibitors of other sugar transport molecules, such as those inhibited by phloretin.  

Dysfunction of other sugar transporters including GLUT5 (660) and GLUT4 (661) has 

been implicated in metabolic syndrome, so the potential for research into preventing 

and reversing metabolic syndrome is just beginning. Prevention is better than cure, and 

although this research has focussed on reversing and minimising progression of 

metabolic syndrome, a healthy diet and exercise is paramount. Integrating whole foods 

into the diet to limit the risk of metabolic syndrome needs to be stressed, in addition 

to researching medications and supplements to reverse metabolic syndrome that is 

already occurring. Sugar transport inhibitors differ between rats and humans. The 

improvements in glucose tolerance in rats may not translate to humans, especially as 

human pancreatic glucose sensing is not mediated through GLUT2 as it is in rats. 

7.3 Post script 

The opportunity to study an underutilised wholegrain is what drew me to this PhD, 

especially considering sorghum is a crop grown on my family farm. My father 

introduced me to sorghum as a child, popping it in a similar fashion to popcorn. I had 

forgotten about this memory until the opportunity to study sorghum as a potential 

human food source with nutraceutical benefits came up.  

I am personally passionate about health, fitness and nutrition. Knowing that sorghum 

has a great potential and aiding to better the knowledge of its presence in the human 

food market is of personal satisfaction. I am a big believer that the whole diet and 
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lifestyle, not just one component, is what influences health. Spreading information and 

knowledge about this will be my focus in years to come. Having a PhD in health 

science after a career in agriculture will undoubtedly give rigour to the information 

and education I am hoping to spread, in addition to helping me make sense of the 

information and misinformation about nutrition and health that that is rife in the 

community.   
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