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ABSTRACT

Phytohormones, including auxin, abscisic
acid, gibberellic acid, ethylene, cytokinin,
brassinosteroids, salicylic acid, and jas-
monic acid, provide beneficial effects for
plants against metal(loid) toxicity.
However, their mechanisms in alleviating
metal(loid) toxicity in plants have not been
fully understood. Here, we summarize phy-
tohormone-mediated detoxification mech-
anisms of metal(loid)s in plants, including
As, Cd, Cr, Hg, and Pb. First, we discussed
the functions of phytohormones on plant
growth and nutrient uptake, and the
effects of metal(loid)s on plant growth and hormone contents. We then discussed the underlying
mechanisms of selected phytohormones in alleviating metal(loid) toxicity in plants. Those phytohor-
mones protect plants against metal(loid) toxicity mainly by enhancing plant growth, increasing
antioxidant capacity, promoting cell wall synthesis and nutrient uptake, and decreasing metal(loid)
accumulation. This review highlights the beneficial roles of phytohormones in reducing plant
metal(loid) uptake and in enhancing crop yields, which helps to improve crop production and
food safety.
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1. Introduction

Toxic metal(loid)s including As, Cd, Cr, Hg, and Pb are non-essential for plant growth and can
be toxic to plants (Bandara et al., 2020). They are often present in contaminated soils, causing
adverse health effects on humans (Balali-Mood et al., 2021). Their contamination in the environ-
ment mainly results from industrial and agricultural activities, while the main natural sources
include rock weathering and volcano eruption (da Silva et al., 2020). Among the five metal(loid)s,
As and Cr are present in soils mostly as oxyanions while Cd, Hg, and Pb as cations. In soils, As
is mainly present as arsenate (AsV) and arsenite (AsIII) (Tang & Zhao, 2021) whereas Cr exists
as oxidized CrVI and reduced CrIII (de Oliveira et al., 2015). Among the three cationic metals,
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Cd is the most mobile and can be readily taken up by plants and translocated to different tissues
(Rasafi et al., 2022).

Abiotic stress is defined as the negative impacts of non-living factors on living organisms in
the environment (Ben-Ari & Lavi, 2012). Plants cope with metal(loid)-induced abiotic stress by
altering the levels of their phytohormones. For example, under abiotic stress, root cells can stimu-
late rapid synthesis of phytohormones (Zhang et al., 2020), which changes root morphology,
nutrient absorption, and expression of metal transporters (Rasafi et al., 2022). Further, plant
growth and development are also regulated by phytohormones. For example, the application of
hormones decreases metal accumulation in plants (Verma et al., 2020). As such, the application
of phytohormones can be used to help plants to grow better under abiotic stress (Sytar et al.,
2019), which is important to improve crop production.

Phytohormones are trace secondary metabolites in plants, which play important roles in regulat-
ing plant growth and development as well as against metal(loid) stress (Ruzicka et al., 2009).
Classical plant hormones include auxin, abscisic acid, gibberellic acid, ethylene, cytokinin, brassinos-
teroids, salicylic acid, and jasmonic acid (Li et al., 2020), which regulate plant defensive responses
under abiotic stress. They all play important roles in controlling metal(loid) stress in plants through
regulating cell division, nutrient metabolism, antioxidant system, and metal(loid) uptake.

This review aims to discuss the functions and the associated mechanisms of phytohormones in
enhancing plant growth and reducing its abiotic stress (Figure 1; Table 1). This review may pro-
vide a theoretical basis and guidance to mitigate metal(loid)-induced abiotic stress by adopting
different practical approaches to improve crop production and food safety.

2. Functions of phytohormones on plant growth and nutrient uptake

The functions of different phytohormones in plant growth and development have been reviewed
(Jiang & Asami, 2018; Santner & Estelle, 2009). However, the interactions of different hormones
and their effects on nutrient uptake in plants need further research, which is the basis for plant
adaptation to abiotic stress. Important phytohormones can be grouped into growth-promoting

Figure 1. Strategies of different phytohormones in alleviating metal(loid) toxicity in plants.
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Table 1. Effects of different phytohormones in alleviating metal(loid)-stress in plants.

Hormone types Hormone levels As levels Plant species Major changes in plants References

Auxin (IAA) 2lM 10 lM AsV Oryza sativa " Plant growth
# Plant As

He et al. (2022)

3lM 150 lM AsIII Oryza sativa " Plant growth,
chlorophyll

Pandey and
Gupta (2015)

5lM 300 lM AsV Brassica juncea " Plant growth Srivastava
et al. (2013)

Brassinosteroid (24-
Epibrassinolide)

0.5lM 75 lM AsIII Glycine max " Plant growth,
membrane stability,
gene expression of
CAT

# Plant As, MDA

Chandrakar
et al. (2017)

0.5
and 0.75lM

50 and
100lM AsV

Triticum aestivum " Pn, chlorophyll, POD,
SOD, CAT, APX

# Plant As, H2O2, MDA

Maghsoudi
et al. (2020)

Methyl jasmonate 0.25lM 25 lM AsIII Oryza sativa " Plant growth,
chlorophyll,
antioxidant enzyme

# MDA, Plant As, AsIII
uptake and
translocation genes

Verma
et al. (2020)

Cytokinin (Kinetin) 0.4� 7.0lM 6 lM AsV Zea mays " Plant growth,
chlorophyll, SOD,
POD, CAT

# MDA

H. J. Wang
et al. (2015)

Transgenic
Cytokinin
-deficient

5 lM AsV Arabidopsis
thaliana, and
Nicotiana
tabacum

" Plant As, PC, GSH Mohan
et al. (2016)

Salicylic acid 0.5 and 1mM 50 and
100lM AsV

Triticum aestivum " Chlorophyll,
photosynthesis, SOD,
POD, CAT, APX

# Plant As, MDA, H2O2

Maghsoudi
et al. (2020)

40lM 25 lM AsIII Oryza sativa " Plant growth,
chlorophyll, GR, root
Ca, shoot Fe

# H2O2, SOD, CAT, APX,
GPX, shoot As; root
Fe transport gene

Singh et al. (2017)

500lM 100 lM AsV Zea mays " Plant growth,
chlorophyll aþ b, Fv/
Fm, CAT, POD, GSH,
AsA, GSH/GSSG, APX,
GR

# Plant As, MDA, H2O2,
SOD, GSSG

Kaya et al. (2020)

Abscisic acid 10lM 25 and 50l
M AsIII

Oryza sativa " Plant growth, GR, GPX,
GSH/GSSG, PC, SOD,
CAT, APX

# Plant As, H2O2, O2
-

Saha et al. (2021)

Cd levels

Auxin (NAA) 0.05lM 50 lM Arabidopsis
thaliana

" Root Cd, Cd in cell
wall

# Shoot Cd, Cd
membrane
transporters
expression

Zhu et al. (2013)

Brassinosteroid (24-
Epibrassinolide)

0.1lM 500 lM Vigna unguiculata " Plant growth, Ca, Mg,
Mn, Fe, Cu, Zn
content, Fv/Fm, Pn,
chlorophyll,
carotenoids

# Plant Cd, O2
-,

H2O2, MDA

Santos
et al. (2018)

(continued)
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Table 1. Continued.

Hormone types Hormone levels As levels Plant species Major changes in plants References

5lM 1mM Phaseolus vulgaris " Plant growth,
chlorophyll,
carotenoids, SOD, CAT

# Plant Cd

Rady (2011)

0.1lM 1.3mM Pisum sativum " Plant growth,
chlorophyll,
carotenoids,Fv/Fm, Pn,
SOD, CAT, APX, GR,
AsA, GSH, Mg, Ca, K,
P, S

# H2O2, MDA, Plant Cd

Jan et al. (2018)

Cytokinin (Kinetin) 50lM 100 lM Vigna angularis " Plant growth,
chlorophyll,
carotenoids, Pn, SOD,
CAT, APX, GR, AsA,
GSH, N and K

# Plant Cd, O2
-, H2O2,

lipoxygenase activity,
lipid peroxidation

Ahanger
et al. (2020)

Salicylic acid 50lM 1mM Triticum aestivum " Plant growth, IAA, CTK
# Plant Cd, MDA, ABA

Shakirova
et al. (2016)

100lM 10 lM Solanum
lycopersicum

" Cell wall synthesis, Cd
distribution ratio in
cellulose and lignin

# Plant Cd

Jia et al. (2021)

100lM 200 lM Arachis hypogaea " Cd content in cell
wall, Plant growth,
chlorophyll, SOD,
POD, CAT, AsA, GSH,
Pn, K, Ca, Mg, Fe

# Plant Cd, MDA,
O2

-, H2O2,

Xu et al. (2015)

100lM 25 lM Oryza sativa " Plant growth,
chlorophyll

# H2O2, O2
-, MDA, CAT,

Plant Cd

Majumdar
et al. (2020)

100lM 89 lM Oryza sativa " Plant growth, SOD,
POD, CAT

# Plant Cd, H2O2

F. Wang
et al. (2021)

100lM 53 lM Glycine max " Plant Fe, Mg, Ca; Cd;
chlorophyll

# Root K

Drazic and
Mihailovic
(2005)

200lM 500 lM Oryza sativa " Plant growth,
chlorophyll,
carotenoids, GSH,
AsA, SOD, CAT

# Plant Cd, H2O2, MDA

Mostofa
et al. (2019)

100lM 267-1068 lM Mentha piperita " Plant growth,
chlorophyll, Fv/Fm,
SOD, POD, GR, GSH

# Plant Cd

Ahmad
et al. (2018)

10lM 223-893lM Cicer arietinum " Plant growth, nitrogen
fixation and
assimilation

Hayat et al. (2014)

Abscisic acid 0.5lM 10 lM Arabidopsis
thaliana

" Plant growth, Fe
# Plant Cd, Cd

transporter IRT1

Fan et al. (2014)

2-10lM 500-1500 lM Oryza sativa " Chlorophyll
# Plant Cd,

transpiration rate

Hsu and
Kao (2003)

(continued)
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hormones (auxin, gibberellic acid, cytokinin, and brassinosteroids) and stress-response hormones
(abscisic acid, ethylene, salicylic acid, and jasmonic acid), which have different functions in allevi-
ating abiotic stress in plants (Table 1).

2.1. Phytohormone contents in plants

The contents of plant hormones are shown in Figure 2. Different plants contain different amounts
of hormones, which are often based on fresh weight. The contents of auxin, cytokinin, abscisic acid,
salicylic acid, and jasmonic acid are relatively high in plants at 1� 1000 mg kg�1 (Bajguz & Tretyn,
2003; Deng et al., 2017). The contents of gibberellic acid are lower in plants at 0.1� 100 mg kg�1

(Deng et al., 2017). The contents of brassinosteroids are the lowest in plants at 0.01� 0.1 mg kg�1

(Bajguz & Tretyn, 2003). For gaseous hormone ethylene, its contents are at 0.01� 10mL kg�1.

Table 1. Continued.

Hormone types Hormone levels As levels Plant species Major changes in plants References

Cr levels

Brassinosteroid (24-
Epibrassinolide)

10-9 M 1.2mM CrVI Raphanus sativus " Plant growth, IAA,
GSH, AsA, SOD, PC,
chlorophyll,
carotenoids, Fv/Fm

# ABA, CAT, GR, MDA,
O2

-, H2O2, Plant Cr

Choudhary
et al. (2012)

0.01-1lM, 0.5mM Cr Oryza sativa " Plant growth, SOD,
CAT, AsA, GR, APX,
antioxidant genes

# MDA, H2O2, Plant Cr

Sharma
et al. (2016)

0.01lM 100 lM Cr Oryza sativa " Plant growth,
photosynthesis, SOD,
POD, CAT, APX

# MDA, H2O2

Basit et al. (2022)

Hg levels

Salicylic acid 50lM 50 lM Hg (HgCl2) Melissa officinalis " Plant growth,
chlorophyll synthase
gene, chlorophyll,
antioxidant activities

# MDA

Safari et al. (2019)

Pb levels

Auxin (IAA) 0.01lM 100 lM Acutodesmus
obliquus

" Auxin, CTK, GA3, GSH,
PCS

# ABA

Piotrowska-
Niczyporuk
et al. (2020)

Brassinosteroid (24-
Epibrassinolide)

100 nM 200 lM Oryza sativa " Plant growth,
chlorophyll, Pn, SOD,
CAT, APX, K, Ca, Mg,
Mn, Cu, Zn

# Plant Pb, MDA,
O2

-, H2O2

Guedes
et al. (2021)

Jasmonic acid 0.01, 1,
and 100 nM

0.25, 0.50,
and 0.75mM

Lycopersicon
esculentum

" Plant growth,
chlorophyll,
carotenoids, Pn, AsA,
GSH, APX, GR

# Plant Pb, H2O2

Bali et al. (2018)

Cytokinin 0.01lM trans-
zeatin, or
0.1 lM
Kinetin

100 lM Acutodesmus
obliquus

" Auxin, CTK, and GA3;
GSH

# ABA, PC

Piotrowska-
Niczyporuk
et al. (2020)

Abbreviations: SOD: superoxide dismutase; CAT: catalase; POD: peroxidase; MDA: malondialdehyde; Pn: net photosynthetic rate;
APX: ascorbate peroxidase; PC: phytochelatin; PCS: phytochelatin synthase; GSH: glutathione; GSSG: oxidized glutathione; GR:
glutathione reductase; GPX: glutathione peroxidase; Fv/Fm: maximal quantum yield of PSII photochemistry, or efficiency of
PSII; NAA: alpha-naphthaleneacetic acid; ABA: abscisic acid; CTK: cytokinin; GA3: Gibberellin A3.
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The contents of phytohormones vary with plant species and tissues (Figure 2; Ahmad & Li,
2021; Navarro-Leon et al., 2016). For example, gibberellic, jasmonic, and salicylic acids mainly
exist in the leaves of lettuce, with little in the stems or roots. The contents of natural auxin IAA
(indole-3-acetic acid) in the roots decrease in the order of lettuce> tomato> rice> soybean
(Figure 2).

Generally, metal(loid)-induced abiotic stress increases the stress-response hormones level while
decreasing the growth-promoting hormones level, leading to lower plant biomass (Guo et al.,
2019; Srivastava et al., 2013). For example, stress-induced H2O2 production decreases its auxin
levels and increases abscisic acid accumulation to coordinate plant growth (Liu et al., 2022).

2.2. Impacts on photosynthesis in plants

Photosynthesis is critical for plant growth and development, which is regulated by phytohormones. For
example, brassinosteroids enhance chlorophyll content by increasing chlorophyll biosynthesis enzymes
(Siddiqui et al., 2018). However, photosystem-II in the photosynthesis system splits water to oxygen,
generating reactive oxygen species (ROS) as a byproduct, which destabilizes photosystem-II repair pro-
tein-D1 and leads to photoinhibition in plants. Fortunately, brassinosteroids promote protein-D1 stabil-
ization, thus enhancing photosystem-II efficiency in plants (Siddiqui et al., 2018). Moreover,
brassinosteroids also increase the stomatal aperture to allow more CO2 uptake into the photosynthesis
system (Serna et al., 2012). Further, brassinosteroids induce formation of ribulose bisphosphate carb-
oxylase/oxygenase in the Calvin cycle, the most common CO2 fixation pathway in plants, thereby
increasing sugar synthesis (X. J. Li et al., 2016). Thus, brassinosteroid-mediated increase in photosyn-
thetic efficiency enhances plant growth and development.

Other phytohormones also play a role in plant photosynthesis. For example, abscisic acid is a
well-known regulator of stomatal closure, which decreases photosynthesis by limiting CO2 diffu-
sion (Pinheiro & Chaves, 2011), while cytokinins, auxin, and ethylene induce stomatal opening
(Zlobin et al., 2020). In addition, gibberellin plays a positive role in enhancing photosynthesis
activity and promotes chloroplast biogenesis (X. J. Li et al., 2016).

However, the effects of methyl jasmonate on photosynthesis are dose-dependent. Methyl jasm-
onate is a plant signal-regulating morphogenesis, which responds to abiotic stress. For example,
application of 1.1–2.2mM methyl jasmonate enhances photosynthesis in trifoliate orange. In con-
trast, application of 4.4mM methyl jasmonate to trifoliate orange decreases its photosynthesis
(Kurowska et al., 2020). This is because higher jasmonate inhibits stomatal development in plants

Figure 2. The maximum concentrations of different hormones in different plants (Ahmad & Li, 2021; Arkhipova et al., 2005;
Formentin et al., 2018; Li et al., 2018; X. Y. Liu et al., 2018; Navarro-Leon et al., 2016). Abbreviations: IAA: indole-3-acetic acid;
CTK: cytokinin; GA: gibberellic acid; BRs: brassinosteroids; ABA: abscisic acid; JA: jasmonic acid; SA: salicylic acid; ETH: ethylene.
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(Han et al., 2018), thereby reducing plant photosynthesis. However, our knowledge on the mecha-
nisms of hormone-mediated regulation of photosynthesis is still fragmentary.

2.3. Impacts on nutrient uptake in plants

Phytohormones promote plant growth by coping with nutrient deficiency. Plant responds to
nutrient deficiency by growing more roots. For example, Mg-deficiency elevates the auxin levels
in Arabidopsis thaliana roots (M. Liu et al., 2018), which helps to regulate root hair development
(M. Liu et al., 2018). Further, K-deficiency increases the ethylene levels in A. thaliana, which
stimulates root hair growth (Hogh-Jensen & Pedersen, 2003; Shin & Schachtman, 2004).
Similarly, under B deficiency, A. thaliana increases brassinosteroids to promote its root growth
(Zhang et al., 2021).

Phytohormones also play a role in nutrient homeostasis in plants. For example, both auxin
and abscisic acid play a role in Mg and Fe homeostasis, which are important for photosynthesis
(David-Assael et al., 2006; Shahid et al., 2020). In addition, salicylic acid increases Mg uptake in
watermelon plants and brassinosteroid increases Mg and Zn uptake in rice plant (Guedes et al.,
2021; Moustafa-Farag et al., 2020). Further, Zn is an important component of many enzymes,
thereby participating in chloroplast synthesis in plants. The effects of jasmonic acid on nutrient
uptake in plants are plant-dependent. For example, 1mM methyl jasmonate increases the Fe and
Zn content in soybean and sunflower while decreasing that in tomato plants (Li et al., 2017).

3. Effects of metal(loid)s on plant growth and hormone contents

3.1. Toxic effects of metal(loid)s on plants

Toxic metal(loid)s, including As, Cd, Cr, Hg, and Pb, enter plants mostly via root uptake (Ali
et al., 2021; Peralta-Videa et al., 2009). The accumulated metals dominantly localize in the roots,
with only a small proportion being translocated to the shoots. For As, both AsV and AsIII can be
taken up by plant roots, with AsIII being more toxic and mobile than AsV (Peralta-Videa et al.,
2009; Tang & Zhao, 2021). Once taken up, AsV is rapidly reduced to AsIII in the roots, which is
often extruded outside the roots (Deng et al., 2020). Similar to As, CrVI can also be reduced to
CrIII in the roots (de Oliveira et al., 2015), with CrVI being more toxic than CrIII. Compared to
CrVI, CrIII is less soluble, which is mostly concentrated in the roots (de Oliveira et al., 2018).
Among cationic metals, Cd is of most concern as it can be readily taken up by plants, which
accumulate more than other metals in their tissues (Rasafi et al., 2022).

Hormesis is a tendency for low levels of stress to stimulate rather than reduce plant responses
like growth. So plant growth stimulation has been observed after exposing plants to tolerable con-
centrations of metal(loid)s (Carvalho et al., 2020; Poschenrieder et al., 2013). However, at higher
concentrations, metal(loid)s are toxic to plants, which include: (1) reducing plant growth by dam-
aging cell membrane (Nagajyoti et al., 2010); (2) increasing oxidative stress by forming ROS
(Shahid et al., 2020); and (3) disrupting nutrient uptake and inhibiting metabolic processes
(Kupper & Kochian, 2010). Under metal(loid)-stress, cells often undergo lipid oxidation, leading
to membrane damage and impaired DNA repair (Valko et al., 2005). For example, AsV competes
with phosphate uptake, which uncouples the oxidative phosphorylation and inhibits cell energy
supply (Tang & Zhao, 2021). Besides, Hg can replace Mg from chlorophyll and Zn from photo-
system II, causing toxicity to plants (Patra et al., 2004).
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3.2. Effects of metal(loid)s on phytohormones

Synthesis of phytohormones in plants is impacted under metal(loid)-stress, which plays a crucial
role in plant’s stress adaptation. The role of hormones in response to metal(loid)s is well-known
(Ronzan et al., 2018; Shahid et al., 2020).

3.2.1. Effects on auxin, gibberellin, cytokinin, and brassinosteroids in plants
All four phytohormones play an important role in regulating plant growth and development
under abiotic stress (Table 1). In plants, metal(loid)s can alter auxin levels, with its transportation
to the roots being inhibited, thereby reducing plant growth. Among known auxins, IAA is the
most predominant and well-known. For example, IAA level decreases in mustard roots under
300lM AsV stress, and in rice roots under 5 lM Cd stress (Srivastava et al., 2013; H.-Q. Wang
et al., 2021).

There are numerous members of auxin efflux gene in PIN family in plants (Lu et al., 2015),
which likely play an important role in its transport from the shoots to roots. By inhibiting
OsPIN5 synthesis in rice and AtPIN1 synthesis in A. thaliana, Cd and As lower the auxin accu-
mulation in the roots to reduce root growth (Fattorini et al., 2017; Ronzan et al., 2018). Further,
metal(loid)s suppress auxin biosynthesis in the roots. For example, Cd suppresses the expression
of auxin biosynthesis gene OsYUCCA7 in rice roots (H.-Q. Wang et al., 2021). Thus, auxin bio-
synthesis and transportation in the roots is inhibited by metal(loid)-stress, including Cd and As
(Betti et al., 2021; Ronzan et al., 2018). Further, the data suggest that lower auxin accumulation
in meristematic tissue reduces root growth.

Besides auxin, metal(loid)-stress decreases gibberellic acid (GA) production in plants. For
example, 100� 400lM AsV reduces the GA3 content to 0.7� 2.1 lg g�1 in Faba bean, while
27lM Cd decreases the GA3 content to 3.49mg kg�1 in wheat (J. J. Guo et al., 2019; Mohamed
et al., 2016). Based on the transcriptome analysis of rice, 25 lM AsV inhibits the expression of its
gibberellin genes (Huang et al., 2012).

Further, metal(loid)-stress decreases the cytokinin production in plants. For example, 27 lM
Cd decreases the cytokinin content to 6.35mg kg�1 in wheat and 30 lM AsV decreases the cytoki-
nin content in A. thaliana (J. J. Guo et al., 2019; Mohan et al., 2016). Transcriptome analysis of
rice reveals strong expression of its cytokinin deactivation genes under 25lM AsV stress (Huang
et al., 2012). Further, AsV down-regulates other genes, including cytokinin synthesis genes and
response regulator genes in plants (Mohan et al., 2016). The decrease in cytokinin may be due to
metal(loid)-induced oxidative stress, resulting in oxidative degradation of cytokinin (Hashem,
2014). In short, both As and Cd reduce the content of phytohormones including auxin, gibberel-
lins, and cytokinin in plants, thereby reducing their growth.

Unlike cytokinin, metal(loid)-stress increases the brassinosteroid production in plants. For
example, AsV promotes the brassinosteroid synthesis in mustard plants, while the brassinosteroid
signaling pathway is activated in A. thaliana under 50lM Cd exposure (Kanwar & Bhardwaj,
2015; Villiers et al., 2012). Metal(loid)-induced synthesis of brassinosteroids is probably a anti-
stress defense strategy adopted by plants (Kanwar & Bhardwaj, 2015). Since brassinosteroids regu-
late cell division and elongation, they probably play a vital role in plant growth under metal(-
loid)-stress (Peleg & Blumwald, 2011).

Plants can regulate growth-promoting hormone levels to cope with metal(loid)-stress.
Metal(loid)s often promote brassinosteroids synthesis while inhibit auxin, gibberellins, and cytoki-
nin synthesis (Nazir et al., 2021). At low concentrations, these growth-promoting hormones are
insufficient to alleviate metal(loid)-induced growth inhibition. As such, exogenous hormone sup-
ply can help to mitigate metal(loid)-induced stress in plants (Ruzicka et al., 2009).
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3.2.2. Effects on abscisic acid, ethylene, salicylic acid, and jasmonic acid in plants
These four hormones play an important role in reducing plant toxicity under metal(loid)-induced
abiotic stress (Table 1). It is known that metal(loid) induces the production of abscisic acid in
plants, which reduces stomatal conductance, thereby affecting photosynthesis and plant growth
(Mohamed et al., 2016). In plants, increased abscisic acid contents equate to increased resistance
levels (Christmann et al., 2006). However, under low metal(loid) stress, increased abscisic acid
content causes hormesis, contributing to plant growth (Shahid et al., 2020). While 25 lM AsIII
increases the abscisic acid levels to 0.19mg kg�1 in rice, 100 lM Cd increases the abscisic acid
levels to 1.72mg kg�1 in potato plants (Yadav et al., 2021; Stroi�nski et al., 2010). In rice, the
expression levels of abscisic acid biosynthesis genes are upregulated by both Cd and As (Huang
et al., 2012; Tan et al., 2017).

Besides abscisic acid, metal(loid) induces the production of other hormones, including ethyl-
ene, salicylic acid, and jasmonic acid in plants. A higher level of ethylene reduces plant growth
via altering its central metabolism and cell wall composition (Nascimento et al., 2021). Unlike
ethylene, higher levels of salicylic acid and jasmonic acid increase plant growth by enhancing its
chlorophyll synthesis and photosynthesis (Farooq et al., 2016; Moussa & El-Gamal, 2010). For
example, 50lM Cd increases the contents of ethylene, salicylic acid and jasmonic acid in pea
plants, which is also observed under As stress (Drzewiecka et al., 2018; Rodriguez-Serrano et al.,
2006; Yadav et al., 2021). Under metal(loid)-stress, ethylene activity increases with the metal(loid)
levels in plants (Emamverdian et al., 2020). Transcriptome analysis of rice reveals strong expres-
sion of biosynthesis genes of ethylene and jasmonic acid under 25lM AsV stress (Huang et al.,
2012). The enhanced salicylic acid and jasmonic acid are beneficial, while ethylene is toxic to
plant growth. This is supported by the fact that the addition of aminovinylglycine, an inhibitor of
ethylene synthesis, inhibits ethylene synthesis, thereby improving plant growth in Cd-exposed
plants (Zhou et al., 2018).

4. Role of phytohormones in mitigating metal(loid)-induced abiotic stress in plants

Taking a comprehensive view of phytohormone’s functions under metal(loid)-stress, this review
focuses on the mechanisms of phytohormones in mitigating metal(loid)-induced stress in plants
(Figure 1). Different phytohormones function differently in alleviating metal(loid)-stress, includ-
ing increasing plant growth, antioxidant defense system, nutrient uptake and cell wall synthesis,
and decreasing metal(loid) accumulation (Table 1; Figure 3). Since phytohormones help to allevi-
ate metal(loid)-stress, they can be applied to alleviate plant toxicity. Here we mainly focus on the
associated mechanisms of phytohormones in regulating plant growth, antioxidant defense, nutri-
ent and metal(loid) uptake, and cell wall synthesis in plants.

4.1. Auxin mediates root growth under metal(loid)-stress

Root growth inhibition is common for plants under metal(loid)-stress (Tu et al., 2021), which is
associated with reduced auxin accumulation in plant meristematic tissue. Since plants take up water
and nutrients from soil through the roots, root plasticity is an important adaptive trait (Ogura et al.,
2019). Plants adapt to abiotic stress by changing root growth, in which auxin plays a central role in
controlling root growth (Tu et al., 2021; Table 1). Root cells near the tips divide frequently under
proper auxin levels, thereby promoting root elongation and differentiation in A. thaliana, but higher
auxin levels make cells quiescent (Petersson et al., 2009). For example, application of low auxin levels
at 200 nM stimulates mitotic activity, resulting in a larger meristematic zone in plants (Ruzicka
et al., 2009).

Under metal(loid)-stress, reduction in auxin decreases the formation of lateral roots in plants
(Ronzan et al., 2019), so application of auxin increases their root growth (He et al., 2022). This is
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because auxin is a key phytohormone in controlling lateral root formation (Betti et al., 2021).
Under metal(loid)-stress, auxin biosynthesis gene expression in the leaves and transportation gene
expression in lateral roots are lower (Fattorini et al., 2017), leading to lower auxin levels in the
lateral roots. For example, Cd reduces the auxin levels in the roots by repressing the expression
of auxin efflux genes PIN1, PIN3, and PIN7 in A. thaliana, thereby inhibiting root meristem
growth (Yuan & Huang, 2016). Similar findings reveal alteration in the expression of BjPIN5 and
BjPIN3 in leaves and roots of Brassica Juncea under As stress (Praveen et al., 2019).

Furthermore, auxin regulates lateral root formation by working with jasmonate. For example,
the application of jasmonate increases the lateral roots, suggesting that jasmonate may counteract
As/Cd effects, specifically on lateral roots (Ronzan et al., 2019). The interactions between jasmo-
nate and auxin signaling pathways activate root steam cells to promote plant root growth (Betti
et al., 2021). The MYB gene family consists of a vast and diverse class of proteins, which involve
from cell cycle and morphogenesis to stress signaling regulations. Auxin-salicylic acid crosstalk
under metal(loid)-stress is regulated by the signaling network of the OsMYB-R1 transcription fac-
tor. Tolerance to Cr stress in rice plants is observed in OsMYB-R1-overexpressing lines, which
manifests by a significant increase in lateral root and higher auxin accumulation (Tiwari et al.,
2020). However, the auxin signaling routes mostly appear to function as a downstream compo-
nent to those phytohormones in plants (Mathur et al., 2022).

Besides salicylic acid, other phytohormones play a role in controlling the auxin levels under
metal(loid)-stress. Among phytohormones, brassinosteroids, cytokinin, gibberellic acid, and salicylic
acid can increase the auxin level in plants under metal(loid)-stress. In this case, a decrease in cytoki-
nin levels lowers the auxin levels in plants (Mohan et al., 2016; Ronzan et al., 2018). This is because
cytokinin induces the expression of auxin biosynthesis genes to enhance its production, thereby cat-
alyzing the conversion of indole pyruvic acid to auxin in plants (Di et al., 2016; Zhou et al., 2011).

In addition, the interactions of auxin and cytokinin/salicylic acid regulate the root develop-
ment in plants (Tiwari et al., 2020). For example, in the roots, auxin induces meristematic cell
division, whereas cytokinin promotes cells to switch from the meristematic to differentiated state
by inhibiting auxin signal (Su et al., 2011). In addition, application of brassinosteroids on radish
seedlings increases its auxin contents under CrVI stress, while application of salicylic acid on

Figure 3. Strategies of different phytohormones in alleviating metal(loid) toxicity in plants. Effects of phytohormones on plants
under Cd stress (A), Pb stress (B), As stress, with hormones of green color for AsV stress and red color for AsIII stress (C), and Hg
and CrVI stress (D). Green arrows indicate positive regulation, and T bars denote negative regulation. Abbreviations: IAA: indole-
3-acetic acid; CTK: cytokinin; GA: gibberellin; BRs: brassinosteroids; ABA: abscisic acid; JA: jasmonic acid; SA: salicylic acid; PC:
phytochelatin.
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wheat increases its auxin contents under Cd stress (Choudhary et al., 2012; Shakirova et al., 2016;
Table 1). Transport of polar auxin by multiple hormonal pathways has been reviewed by
Semeradova et al. (2020). However, the interrelations among auxin and other phytohormones
under metal(loid)-stress remain unanswered, which needs further investigations.

4.2. Brassinosteroid enhances antioxidant system under metal(loid)-stress

Under metal(loid)-stress, apart from direct toxicity, excess production of reactive oxygen species
(ROS) causes oxidative stress in plants (Sytar et al., 2019). In this case, their antioxidant system is
important for plants to cope with oxidative stress by decreasing ROS accumulation and lipid per-
oxidation (Table 1), which has also been demonstrated by proteomic analysis (Ove�cka & Tak�a�c,
2014). In plants, there are several important enzymatic antioxidants, including superoxide dismu-
tase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and glutathi-
one peroxidase (GPX) (Sharma et al., 2016). Among these antioxidants, SOD catalyzes the
dismutation of free radicals O2

� into H2O2, with CAT and APX converting H2O2 into H2O.
While GR mediates conversion of oxidized glutathione (GSSG) to reduced glutathione (GSH),
GPX mediates conversion of H2O2 to H2O using GSH as a reductant. Besides enzymatic antioxi-
dants, non-enzymatic antioxidants include GSH and ascorbate. While GSH regulates redox poten-
tial for amino acids and proteins by scavenging oxidative damage, water-soluble ascorbate acts as
a substrate for ascorbate peroxidase, donating electrons to ROS.

Under metal(loid)-stress, brassinosteroid-induced higher activities of antioxidant enzymes help
to cope with oxidative stress in plants (Table 1; Guedes et al., 2021). The capacity of brassinoste-
roid to boost the antioxidant defense system of plants has been used to tolerate multiple abiotic
stress, including metal(loid)s (Table 1; Jan et al., 2018; Sharma et al., 2016). For example, under
100lM CrVI, 0.01 lM brassinosteroid enhances rice tolerance by increasing its SOD, POD, CAT,
and APX activities (Table 1; Basit et al., 2022). Further, application of 5 lM brassinosteroid
decreases its lipid peroxidation by increasing the SOD, CAT, and GR activity under 1mM Cd
stress in bean plants (Table 1; Rady, 2011).

Brassinosteroid-mediated higher activities of antioxidant enzymes are mainly due to activation
of their gene expression (Sharma et al., 2016). For example, 0.01–1 lM brassinosteroid increases
the gene expression of SOD, CAT, APX, and GR in rice under 0.5mM Cr stress (Table 1;
Sharma et al., 2016). Since the external application of brassinosteroid induces transient apoplastic
H2O2 formation, which upregulates stress-proteins and defensive enzymes to counter metal(loid)-
stress in plants (Kour et al., 2021). For example, under 0.15–1.5mM Cu stress in tomato, applica-
tion of 0.01 lM brassinosteroid and/or 0.1mM H2O2 increases its ROS-scavenging enzyme activ-
ities, including SOD, POD, and CAT (Nazir et al., 2021). In addition, nitrate reductase reverses
the positive effects of brassinosteroid by its reducing nitrous oxide content, suggesting nitrate
reductase is a potential contributor of brassinosteroid-induced generation of nitrous oxide. This
has been shown in the tolerance of pepper plants to Cd stress by accelerating its antioxidant
enzymes (Kaya et al., 2020).

4.3. Salicylic acid promotes cell wall synthesis and nutrient uptake in plants

The cell wall is the first barrier for metals to enter plants, which plays a key role in metal detoxi-
fication in plants (Figure 1; Parrotta et al., 2015). Cell wall composition affects metal uptake by
plants. For example, the binding of pectin, a component of cell wall, to metals can reduce their
entrance to plants due to their negative charges (B. Guo et al., 2019; Hossain et al., 2006). To
bind metals, pectin methylesterase needs to catalyze pectin demethylation, making free carboxyl
groups to bind metals such as Pb in plants (Krzesłowska et al., 2016; Sheshukova et al., 2017).
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Similarly, Hg and Pb can bind to low-methyl-esterificated pectin in the cell wall (Figure 1;
Carrasco-Gil et al., 2011; Krzesłowska et al., 2016).

In addition, it is important to decrease metals from crossing the cell walls into the cytoplasm.
As a kind of glucan, callose accumulation in cell wall prevents metals from penetrating into the
cells, thus reducing the metal content in plants (O’Lexy et al., 2018). Further, plants can thicken
cell walls through the accumulation of cellulose, hemicelluloses, and lignin to bind metals via
complexing (Kovac et al., 2018). Phytohormones can influence the composition of cell wall, thus
changing metal deposition on cell wall. Recently, the beneficial roles of salicylic acid in enhancing
Cd tolerance have been reported in plants. For example, 100lM salicylic acid enhances the syn-
thesis of cell wall in tomato roots, thereby decreasing its Cd accumulation in the plant (Table 1;
Jia et al., 2021). Similarly, Xu et al. (2015) found that 100lM salicylic acid increased its Cd accu-
mulation in peanut cell walls under 200 lM Cd stress (Table 1).

The hemicellulose and pectin in the cell wall are major components for Cd deposition due to
their negative charges (Zhu et al., 2012). Using energy-dispersive X-ray microanalysis, Cd binding
to plant cell walls is directly visualized (Wojcik et al., 2005). Salicylic acid application alters the
lignin and hemicellulose composition of cell wall in Brachypodium distachyon by increasing its
ferulic and p-coumaric acid content (Napole~ao et al., 2017), because both ferulic and p-coumaric
acid can cross-link with hemicellulose and lignin, reinforcing cell walls against digestibility
(Buanafina, 2009; Jung et al., 2012). In addition, ferulic and p-coumaric acids also play a crucial
role in mitigating As-induced oxidative stress in plants (Zulfiqar & Ashraf, 2022).

Besides cell walls, glutathione is important in protecting plants against Cd-induced oxidative
stress, which is a component of phytochelatin involved in Cd chelation (Figure 1; Szalai et al.,
2009). Salicylic acid (SA) is linked to glutathione biosynthesis. For example, the glutathione con-
tent is lower in Cd-stressed leaves in SA-mutant than in wild-type in A. thaliana (Guo et al.,
2016). Furthermore, SA application increases its glutathione content in peppermint under Cd
stress (Table 1; Ahmad et al., 2018). The SA-induced glutathione increase under Cd stress can be
explained by (1) increased transcription in serine acetyltransferase, the precursor gene to catalyze
cysteine formation (Freeman et al., 2005), (2) enhanced S uptake, a key element for GSH synthe-
sis (Guo et al., 2016), and (3) increased activities of glutathione synthetase and glutathione reduc-
tase to maintain GSH in the reduced state (Guo et al., 2016). To further alleviate Cd stress, plants
can sequester PC-Cd complexes into the vacuoles through ATP-binding cassette (ABC) transport-
ers (Bovet et al., 2005). An ABC transporter from soybean is identified under salicylic acid induc-
tion (Eichhorn et al., 2006). However, whether ABC transporters are involved in SA-induced Cd
tolerance needs further study.

Nutrients are necessary for plant growth, but their contents in plants are influenced by metals
(X. H. Li et al., 2016). For example, Cd disrupts the C, N, and S metabolism in plants, which
causes nutrient deficiency, including Zn, Ca, Mg, Mn, P, K, and Fe (Kupper & Kochian, 2010).
Fortunately, SA can help to increase the nutrient content in plants under metal(loid)-stress (Table
1). For example, 100 lM SA increases the Fe, Ca, and Mg content in soybean under 53lM Cd
(Table 1; Drazic & Mihailovic, 2005), and 10 lM SA enhances the efficiency of nitrogen fixation
and assimilation in chickpea plants under 223–893lM Cd stress (Table 1; Hayat et al., 2014).
This is because salicylic acid can alter the plasma membrane properties to increase the activity of
Hþ-ATPase, thereby facilitating plant nutrient assimilation under Cd stress (Gordon et al., 2004;
B. Guo et al., 2019).

4.4. Abscisic acid decreases metal accumulation in plants

Several phytohormones, including auxin, brassinosteroids, gibberellin, jasmonic acid, abscisic acid
(ABA), and cytokinin, can decrease plant metal uptake to alleviate its toxicity (Table 1; Figure 3).
Among them, ABA is the most effective (Saha et al., 2021; Vishwakarma et al., 2017). Abscisic
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acid is effective in decreasing the Cd accumulation in plants (Fan et al., 2014; Shen et al., 2017).
For example, ABA decreases the Cd accumulation in rice shoots by regulating its stomatal closure
to lower its transpiration rate (Figure 1; Hauser et al., 2017; Uraguchi et al., 2009). Further, appli-
cation of ABA reduces its transpiration rate and Cd content in rice (Table 1; Hsu & Kao, 2003).
However, application of ABA biosynthesis inhibitor, fluridone, reduces ABA accumulation,
thereby increasing the transpiration rate and Cd content in rice (Hsu & Kao, 2003). Abscisic acid
decreases its Cd translocation to the shoots by regulating its transpiration rate in rice (Hsu &
Kao, 2005).

At the molecular level, Fan et al. (2014) reported that decreased Cd accumulation in ABA
treatment correlates with the down-regulation of ABA-inhibited expression of iron-regulated
transporter 1 (IRT1) in the roots of A. thaliana (Table 1), which is critical for Cd uptake in plants
(Kobayashi & Nishizawa, 2012; Vert et al., 2002). However, Cd uptake in an IRT1-mutant fails to
respond to ABA application, suggesting the important role of ABA in controlling Cd uptake in
A. thaliana (Fan et al., 2014). Besides, the basic region/leucine zipper transcription factor abscisic
acid-insensitive5 (ABI5) is involved in Cd accumulation. This is because its overexpression
reduces whereas ABI5 mutant increases the Cd accumulation in A. thaliana (Zhang et al., 2019).

5. Limitations and future research

An increased understanding of the functions of phytohormones in promoting plant growth and
alleviating its metal(loid) stress is a key to increase crop yield and enhance food safety. In this
review, we summarized the interactions of phytohormones and metal(loid)s in plants. Most stud-
ies focus on basic parameters, such as plant growth and antioxidant enzymes. Further studies
should focus on the molecular mechanisms involved in phytohormone-mediated metal(loid)
uptake, and the complex metal(loid) signaling network in plants also needs further study.
Further, it is important to study the functions of multiple-hormones simultaneously in reducing
metal(loid)-stress in plants. Our knowledge on the mechanisms of hormone-mediated regulation
of photosynthesis and plant growth is still fragmentary, which needs more in-depth research.
Efforts are also needed to investigate the effects of phytohormones-induced plant hormesis under
metal(loid)-stress. The effective contents of phytohormones for different plants need to be deter-
mined, which helps to develop cost-effective and environment-friendly crop management system.

The relationship between phytohormones/signaling molecules and abiotic stress has been
widely reported, while those under metal(loid)-stress are still scarce and need more research. It
is important to investigate the interactions among phytohormones, signaling-molecules and
metal(loid)s, and their functions in metal(loid)-stressed plants. This may help to decrease the
metal(loid) content in plants and improve plant growth. However, phytohormones and signaling-
molecule system are complicated, so attention should be paid to phytohormone analysis together
with other physiological and biochemical parameters. The advanced genome editing tools have
been widely used during the last decade, which may help to better understand phytohormone-
regulated metabolisms in plants under metal(loid)-stress.
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