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Chronic diseases within Indigenous communities constitute the most compelling ill-health 
burdens and treatment inequalities, particularly in rural and remote Australia. In response to these 
vital issues, a systematic literature review of the adoption of wearable, Artificial Intelligence-

driven, electrocardiogram sensors, in a telehealth Internet of Medical Things (IoMT) context was 
conducted to scale up rural Indigenous health. To this end, four preselected scientific databases 
were chosen for data extraction to align with the Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (PRISMA) technique. From the initially collected (𝑛 = 4436) articles, 
a total of 32 articles were analysed, being synthesised from the review inclusion criteria, 
maintaining strict eligibility and eliminating duplicates. None of the various studies found on this 
innovative healthcare intervention has given a comprehensive picture of how this could be an 
effective method of care dedicated to rural Indigenous communities with cardiovascular diseases 
(CVDs). Herein, we presented the unique concepts of IoMT-driven wearable biosensors tailored 
for rural indigenous cardiac patients, their clinical implications, and cardiovascular disease 
management within the telehealth domain. This work contributes to understanding the adoption 
of wearable IoMT sensor-driven telehealth model, highlighting the need for real-time data from 
First Nations patients in rural and remote areas for CVD prevention. Pertinent implications, 
research impacts, limitations and future research directions are endorsed, securing long-term 
Wearable IoMT sensor-driven telehealth sustainability.

1. Introduction

Indigenous healthcare provision is in dire need of delivery reform. A recent study indicates that more than 370 million Indigenous 
inhabitants live worldwide with low health standards compared with benchmark populations [1]. Indigenous communities bear a 
heavy burden of illness, leading to lower life expectancy, severe infectious diseases, malnutrition, depression, infant and child 
mortality, high maternal morbidity and mortality, rising levels of cardiovascular diseases, and other chronic metabolic disease loads 
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[2,3]. Chronic diseases, including obesity, hypertension, CVDs, Diabetes mellitus, chronic kidney disease (CKD), and renal failure, 
have become significant health complications worldwide that cause millions of deaths every year [4].

CVD, an umbrella term for heart and blood vessel conditions, is a significant concern in Australian rural indigenous communities 
[5]. Porykali et al. [6] reveal that the indigenous populations of Australia experience higher rates of CVD, leading to increased 
hospitalisations and mortality compared to their non-indigenous counterparts. This pattern is not unique to Australia, as indige-

nous communities worldwide face elevated CVD risks [7]. While chronic diseases associated with health disparities among these 
communities are well documented, it remains unclear whether existing interventions sufficiently address these issues [8]. Health 
inequalities persist, with the indigenous population bearing a disproportionate disease burden [9]. Crengle et al. [10] demonstrate a 
high prevalence of clinical diagnoses related to CVD among indigenous populations in Australia and Canada [10], highlighting the 
substantial health disparity [9].

Telehealth/telemedicine, particularly when integrated with intelligent wearables through the Internet of Things (IoT)/ Internet 
of Medical Things (IoMT), offers a potential solution to bridge healthcare access gaps [11]. These techniques substantially impact 
modern healthcare systems by bringing value to health seekers, providing high-quality, cost-effective services, and promoting effec-

tive remote care. This study aims to explore how IoMT-driven telehealth can improve health outcomes and reduce health inequalities 
among rural and remote indigenous communities in Australia, especially in managing CVD through real-time patient monitoring and 
optimal disease management [12–15].

While prior studies have investigated chronic diseases among Australian Aboriginal communities [9,16,7,17], there is a gap in 
understanding how smart telehealth, particularly IoMT-aided CVD care, can benefit these communities comprehensively. This study 
presents innovative concepts of IoMT-driven wearable biosensors tailored for rural indigenous cardiac patients and their implications 
for cardiovascular disease management within the domain of telehealth. This study contributes by identifying adoption determinants 
for IoMT-driven telehealth for regional CVD care, advocating for real-time care, and shedding light on how IoMT technologies can 
create a novel telehealth model for remote CVD in Australia and similar settings.

This article proceeds as follows. Section 2 begins with the research rationale and conceptual model. Section 3 labels the research 
methods used. Section 4 outlines the data analysis and results. Section 5 focuses on a discussion of the findings. Section 6 discusses 
the contribution and managerial implications. Section 7 proposes the research impacts. Section 8 provides limitations and suggestions 
for future research directions. Section 9 concludes the article and underlines research highlights.

2. Research rationale

CVD is the second most significant disease burden in Australia [18]. Among the Australian First Nation people, CVD is the leading 
cause of disease burden and death and one of four chronic conditions that account for 70% of indigenous Australian health gaps 
[18]. These Australian communities suffer from heavy infectious disease loads, increasing cardiovascular and other chronic diseases, 
and overall poorer health indicators compared to their non-aboriginal counterparts [3]. Gibson et al. [17] remarked that chronic 
diseases predominantly contribute to health disparities since the life expectancy gaps peaked at 50% of Aboriginal and non-aboriginal 
Australians. These findings exhibit a disproportionate burden of ill health and social suffering upon Australian Aboriginal populations 
[9]. Unexpectedly, much less attention has been given to reducing severe health burdens, social suffering, and health gaps within this 
minority group and decreasing health disparity between indigenous and non-indigenous populations. Smart wearable IoMT Sensors 
and AI-driven telehealth would be well suited to provide cost-effective, high-quality, specialised cardiac patient care and minimise 
the dominating determinants of health disparity.

A plethora of contemporary research is primarily focused on the application of smart telemedicine (i.e., telehealth) for rural and 
remote patients using IoT technology [19–25]. These innovative IoT-aided healthcare systems are used in clinical and operational 
situations as part of digitally transformative practices. For example, Sawyer et al. [25] claimed that physicians make complex clinical 
decisions using medical big data generated by smart wearable sensors/devices. This supports [26], who asserted that big data holds 
great promise to create analytic models for better disease predictions, prevention, and management. Morgan et al. [23] suggested 
that the ground-breaking medical sensors embedded with IoMT-driven telehealth services enable patients to receive enhanced treat-

ments and medical advice remotely. Within telemonitoring, Koya et al. [22] confirmed that an algorithm is designed to run at the 
gateway node to optimise the power efficiency of the sensor without causing a power drain at the gateway node. Medin-Eastwood 
et al. [27] stressed that wearable IoT sensors act as enablers, incessantly producing a large volume of information from structured 
and unstructured medical big data. This validates an underlying contribution made by these traditional technologies and Medical 
technologies. Broadly these are trending towards an IoT-driven healthcare ecosystem in mainstream healthcare provision.

The IoT refers to the interconnected network of physical objects (i.e., “Things”) that are integrated into the exchange of data 
between devices and sensors through the Internet [28]. Bajao et al. [29] revealed that IoT encompasses a network connected to 
the internet with various sensors, electrical chips, and relevant hardware components. The combinations of sensors technologies 
(MedTech) and IoT technologies have the novelty [30] to make connections between people and objects via wearables a conve-

nient to provide them with a convenient living environment [31]. In another study, Dahlqvist et al. [30] landmark applications 
in diverse sectors, including smart cities, smart homes, connected cars, and e-Health/telehealth/m-health. In an application of IoT, 
Dwivedi et al. [28] noted that Wireless Body Area Network (WBAN) systems play significant roles in building IoT-aided Telehealth 
frameworks for real-time rural patient monitoring, treatment and disease management. Similarly, Riley et al. [24] illustrate how 
wearable biomedical IoMT sensors and AI-driven telehealth can screen patient physiological complexities and predict severe medical 
2

conditions. Dwivedi et al. [28] further pointed out that the IoMT-driven robotic technology can interact with patients after analysing 
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Fig. 1. Conceptual Model of Wearable IoMT ECG AI-driven telehealth.

medical data, providing vital signs and the status of their body to predict the risk of CVD, and recommending the necessary lifestyle 
changes to avoid associated complications.

As mentioned above, the fast-growing innovation of machine learning (ML) and AI, further fuelled the digital transformation 
in healthcare services to deliver a better patient experience and optimal care. Digital health transformation technologies such 
as the IoMT, virtual care, real-time remote monitoring, robotic surgery, AI, Big Data analytics, smart wearables, e-health/tele-

health/telemedicine, and m-health platforms are part of modern healthcare services [32]. These technologies enable the storage and 
sharing of relevant health information across the health ecosystems, improving medical diagnosis, the prognosis of medical risks, cre-

ating a continuum of care, and improving health outcomes, thereby creating more evidence-based knowledge for health professionals 
to support cutting-edge healthcare systems [32]. For instance, IoT mobile, wearable devices and smart medical sensors are instrumen-

tal in developing a smart healthcare system (i.e., telehealth). These are omnipresent, fast, and seamlessly accessible to patients [33]

living in rural and remote areas. Motivated by prior research on Wearable IoMT ECG AI-driven telehealth [28,34,35,25], the pro-

posed conceptual model identifies the associations between Wearable IoMT ECG determinants and AI-driven telehealth determinants, 
contributing to developing a future model of care. The conceptual model in Fig. 1 investigates the research question.

This systematic review focuses on the clinical applications and evidence-based interventions of wearable IoMT ECG sensors and 
applications of AI-driven telehealth. In particular, this review focuses on IoT technologies that prevent the risk of cardiovascular 
diseases and mortality among Australian Aboriginal communities via smart telehealth ecosystems.

Meta-studies [7,36,17,37] suggest research on Australian aboriginal patients with CVD has primarily been focused on conven-

tional health care interventions. Little evidence suggests how wearable AI-driven IoMT electrocardiogram sensors can diagnose and 
predict Aboriginal patients’ risk of CVD regardless of their geographical locations. Moreover, there is scant evidence of a robust 
IoMT-driven telehealth model of CVD care for these communities. These endeavours are predominantly missing and almost ignored 
in most existing literature in this critical field. Additionally, there has been little to no investigation into wearable IoMT ECG sensors 
or AI-driven telehealth models to prevent CVD risks among Australian First Nations living in rural, regional, and remote settings. The 
determinants of this knowledge gap ought to be filled. The present review examines the following research question:

RQ: How could wearable IoMT Electrocardiogram sensors that use Artificial Intelligence-driven telehealth models be harnessed to prevent 
cardiovascular disease-causing morbidity and mortality among First Nations peoples living in rural, regional, and remote Australia?

3. Research methodology

Systematic reviews and meta-analyses are essential tools and techniques for summarising the evidence extracted from the liter-
3

ature precisely, accurately and reliably [38]. This systematic review uses the standard guidelines as the Preferred Reporting Items 
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for Systematic Reviews and Meta-Analysis(PRISMA), an approach recommended by many scholars [39,38]. PRISMA provides com-

prehensive review guidelines for each checklist item related to research backgrounds, development, explanations, and rationale that 
reviewers can follow to ensure the undertaken review processes and meta-analysis are authentic and transparent [38].

3.1. Information sources

This study conducted a comprehensive peer-reviewed journal article search using four digital databases. The four digital 
databases, IEEE Xplore, Web of Science, ScienceDirect, and PubMed, provide a broad view of health informatics research from 
2015 to 2021 and are deemed appropriate and relevant to the study’s discipline. These data sources allowed us to extract a body of 
scholarly work on the topic, enhancing the credibility of our research findings. In addition, using four reputable databases ensured 
the inclusion of high-quality articles, further strengthening the validity of our systematic literature review and enabling us to provide 
valuable insights into the topic and contribute to the existing body of knowledge in health informatics.

3.2. Search approach

The search strategy for the targeted articles was limited to peer-reviewed journals from 2015 to 2021. The initial search was 
started on 25 July 2020 and was updated on 31 June 2021 for relevant studies that the initial search might have missed [39]. 
Addressing the PRISMA statement, the following search strings are used for article extraction, “Internet of Things (IoT) on cardiovas-

cular disease prediction” OR “Indigenous Cardiovascular Disease-causing death prediction through IoT embedded Telehealth”, AND 
“IoT-based telemedicine”. We used a single and mix of keywords, including operators “AND” and “OR”, such as “Indigenous Cardio-

vascular disease and Telehealth”, OR “Indigenous-CVD-Telehealth”, “Australian Telehealth and Indigenous CVD”, “Internet of Things 
and Cardiovascular disease”, “Australian Rural Health and Aboriginal people”, “Indigenous people and Telehealth”, “Cardiovascular 
Disease and telehealth”, AND “CVD and IoT based telehealth, OR IoT and Telehealth”, “Aboriginal people and Telehealth”, OR “First 
people and telehealth”, “First People and Cardiovascular disease”, “Torres Islanders and Telehealth”, “Machine learning and Internet 
of Things based wearables”, AND “Deep learning and Cardiovascular disease monitoring using wearable IoMT sensors”, OR “Artifi-

cial Intelligence and Cardiovascular disease” AND “AI and CVD” OR “IoT and wearable ECG devices”, AND “IoT and wearable ECG 
sensors”, OR “Wearable CVD monitoring devices”.

3.3. Inclusion, exclusion and eligibility

This review included (inclusion criteria) strictly peer-reviewed published journal articles in English related to the mainstream of 
research; others, including duplications along with irrelevant resources, are excluded (exclusion criteria). Furthermore, this review 
included studies involving wearable and handheld electrocardiogram sensors, IoT technologies, as well as AI and machine learning 
applications. However, studies not directly related to cardiovascular disease detection, prevention, and management were excluded 
from consideration. It is worth noting that this review included peer-reviewed articles related to Aboriginal patients with CVDs 
as part of the search due to the unavailability of sufficient relevant research on wearable IoT-aided electrocardiogram sensors 
and AI-driven telehealth for Aboriginal patients with CVD in rural and remote Australia and globally. To ensure the appropriate 
article selection, the authors administered three rounds of screening and filtering processes and removed all irrelevant articles, 
book chapters, conference papers, and research notes, securing the most relevant items for analysis and synthesis. By adhering to 
stringent inclusion and exclusion criteria and employing meticulous screening and filtering processes, this review maintained a high 
standard of article selection, contributing to the accuracy of the study findings. The following section discusses the major themes 
of this research and the outcomes of the analysis. This is focused on the development of an analytic model for CVD risk prediction 
and policy recommendation for sustainable IoT/IoMT aided telehealth interventions for the rural and remotely living Indigenous 
communities.

4. Analysis

This study presents the review results using PRISMA guidelines (see Fig. 2) at each stage of the article classification (i.e., cleaning 
and filtering), adhering to the selection processes. Continuing with this approach, initially, this research yielded (𝑛 = 4436) articles 
from four digital databases, namely IEEE Xplore, Web of Science, ScienceDirect, and PubMed. Upon the complete screening of the 
title, abstract, and content and duplication, a total (𝑛 = 190) of papers were primarily selected that were deemed relevant to the 
purpose of this study. The filtering process was administered, and there were (𝑛 = 56) articles included for congruency with the 
review inclusion criteria and (𝑛 = 135) papers were excluded. Full-text articles were further assessed to meet eligibility criteria since, 
after careful appraisal (𝑛 = 24), articles were excluded due to not being strictly pertinent to the study’s subject matters. Finally, a 
total of (𝑛 = 32) articles were finalised for data synthesis (see Fig. 2).

To summarise the existing findings, Fig. 2 provides evidence of the literature search and selection process administered using 
the PRISMA review technique. While Fig. 1 demonstrates the conceptual model as the workflow of wearable IoMT ECG sensors, the 
AI-driven telehealth (IoMT, AI-TH) model for the constant real-time monitoring the patients with CVD in rural and remote areas is 
relevant to this study. In the present study, Table A.1 (see Appendix A) and Table B.2 (see Appendix B) describe the characteristics 
of the articles published within the time frame. Figs. 3 and 4 exhibit the summary characteristics of diverse applications of wearable 
4

IoT-aided ECG sensors and AI used to diagnose and prognosis the CVD described in the literature. Moreover, our findings indicate 
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Fig. 2. Literature search and selection process using PRISMA technique.

that (19%) of studies validate the compatibility of wearable IoT/IoMT ECG sensors with AI-driven telehealth for CVD care across 
diverse settings. The key findings to be addressed in the following sections are the reviews.

4.1. Statistical and geographical distributions of published articles

Fig. 5 shows the number of articles published from 2015 to 2021, indicating an overall increasing tendency, particularly in the USA 
(25%), accounting for eight articles, followed by China (15.62%), and India (12.5%) each contributing five and four respectively. 
Similarly, Australia (9.37%), France (6.25%) and Poland (6.25%) each produced 3 and 2 articles, respectively. Meanwhile, the 
UK (3.12%), Germany (3.12%), Belgium (3.12%), Italy (3.12%), Singapore (3.12%), Malaysia (3.12%), Iran (3.12%), and Pakistan 
(3.12%) each presented similar papers in the review. The inclusion of works from various countries offers a broader view of IoT/IoMT 
sensors-driven telehealth models for rural CVD care, ensuring a more holistic analysis and synthesis of the research landscape.

This distribution provides deep insight into the global interest and active engagement of various countries in research related to 
5

Wearable IoT-ECG Sensors, AI-Driven Telehealth for CVDs care. This validates that the USA, China, and India have been particularly 
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Fig. 3. Articles published globally optimising Wearable ECG Sensors for CVD care.

Fig. 4. Summary Characteristics of Studies on Wearable IoT-ECG Sensors, AI-Driven Telehealth for CVDs Care.

active in generating new findings on this innovative model of care, while other countries also have important contributions with 
fewer publications.

Furthermore, the varied geographical distribution of research contributions from countries like the USA, China, and India (see 
Fig. 6) reflect their dominant engagements in this emerging field of research, reinforcing the innovative nature of this model of 
care. The variation in the number of studies from these countries suggests disparities in research emphasis, adequacy of funding 
and prevalence of the topic interest. This distribution also helps identify potential collaborations in research within these countries, 
offering significant opportunities for further exploration and cross-country comparisons. Additionally, the insights gained from this 
diverse pool of literature will better identify the determinants of adopting IoT/IoMT wearable ECG sensors and AI-driven telehealth 
models within Australia and similar settings. Finally, the findings corroborate the identification of potential gaps and opportunities 
for future research and practices within this innovative field.

4.2. Wearable IoT/IoMT sensors, AI-driven telehealth platform

IoT/IoMT-driven telehealth services have gained intensive attention and sparked interest in successful adoption to create clinical 
and economic values amongst diverse global health providers. The continuous evolution of technology and artifacts plays a key role 
in developing IoT/IoMT-based telehealth services to ensure high-quality service, safe and secured health access with affordable and 
reliable coordinated care for rural and remote patients. Furthermore, with the growing recognition of the roles of the IoT/IoMT and 
the multi-purpose biomedical devices and their interoperability of functions, there is an increased impetus for building patient-centric 
‘smart’ healthcare systems. For example, Jin et al. [40] asserted that the IoMT technology has gradually been used in remote patient 
6

monitoring, screening and treatment using various innovative (i.e., MedTech) medical sensors and devices. The authors proposed 
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Fig. 5. Statistical Distribution of Articles Published in Several Countries.

Fig. 6. Geographical Distribution of Articles Published between 2015 to 2021.

a multi-dimensional predictive model based on BP neural network [40]. The proposed study incorporates multi-dimensional data 
analysis and achieves high prediction accuracy as an important guiding significance for intelligent medical treatment.

To determine the sustainability of IoMT-based telehealth for cardiovascular care in rural settings, Hamil et al. [21] proposed a 
wearable IoMT ECG, AI-driven telehealth model for arrhythmias of cardiovascular disease detection, prediction and management. 
The proposed wearable ECG can capture the bio-signal data and analyse them using AI and ML approaches. The authors found this 
model has achieved high prediction accuracy peaking at 99.56%, demonstrating the future opportunity of a large-scale deployment. 
Throughout this review, we will use IoT and IoMT interchangeably [21]. Utilising IoT in the MedTech industry context, Albahri et 
al. [19] mapped the lifecycle and architecture of wearable IoT-based telemedicine (i.e., telehealth) healthcare framework comprising 
IoT wearable sensors, network communications, cloud computing, hardware devices, smartphones, and AI technique. The authors 
in [19] further show that the IoT-based healthcare systems (LoRaWAN) contain four essential elements: data collector, analysis, 
treatment plan generator and treatment plan executor. Similarly, Grooby et al. [41] designed a wearable IoT phonogram (PCG), an 
AI-driven telehealth model for the automatic estimation of heart rate (HR) and breathing rate (BR) of CVD care. The performance 
and reliability of signal detection have been tested for the proposed PCG [41]. A total of 88 ten-second-long chest sound samples 
7

were taken from 76 preterm and full-term babies since this PCG successfully detected high-quality sound data and analysed them 
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using AI and achieved a high prediction accuracy of heart rate and breath rate accounting for 93% and 82%, respectively, elucidating 
a robust model of CVD care for neonatal CVD patients for telehealth applications.

Taking a new approach to wearable IoT ECG sensor-based telehealth for CVD management, Koya et al. [22] distinguished the 
era of the IoT and hyperconnection with an ECG telemonitoring via WBAN or cloud-based within telehealth framework. The authors 
found these models are easy to use, self-configured, secure, plug-and-play systems with minimum hardware. Furthermore, Koya et 
al. [22] investigated the adaptability of smartphones as an IoT gateway for sending and receiving data to a remote server. Mobile 
IoT gateways offer high potential due to their widespread usage, small size with relatively high computational power, and seamless 
wireless connectivity [22]. Similarly, integrating more technologies into wearable IoT ECG sensor-driven telehealth systems, Beach 
et al. [12] proposed a wearable IoT Wrist-Worn ECG sensor to monitor home-based patients with CVDs in out-of-clinic settings in the 
UK. This wearable offers low-power consumption for real-time CVD patients’ heart rate variability monitoring systems. These studies 
conclude that wearables IoT/IoMT ECG sensor has great potential for rural and remote CVD care.

Within IoMT-enabled applications, Sanamdikar et al. [15] proposed an IoMT-integrated electrocardiogram (ECG) sensor (IoMT) 
to monitor five different forms of beat arrhythmias, including regular, supraventricular ectopic beats, ventricular ectopic beats, the 
fusion of ventricular and normal, and fusion of placed and normal (N, S, V, F, Q) for early detection of heart problems of CVD patients. 
The findings reveal that the proposed algorithm successfully predicted cardiac arrhythmias, accounting for 98% of accuracy in feature 
extraction, classifications, and arrhythmia detection validating tremendous value to the patients with CVDs [15]. Additionally, the 
authors further clarified how the ECG beats classification technique can improve accuracy, sensitivity, specificity, and precision 
associated with detecting cardiac arrhythmias [15]. Dwivedi et al. [28] presented a comprehensive guideline of the IoMT structure 
and its competitive advantages in the healthcare system, along with various potential applications. The authors classified components 
of IoMT into several categories, given the full details concerning the methods and analysis used in the study.

From the prolific growth of MedTech, Rashid et al. [42] proposed a portable ECG-based telemedicine model for real-time moni-

toring of patients with CVD residing in non-clinical environments such as the home, office, or remote rural areas. This lightweight, 
portable ECG sensor enables sensing patients’ heartbeat, amplitude level, and PQRST wave via the Atmega-32 microcontroller using 
the RS-232 serial module. Likewise, Randazzo et al. [43] designed wearable, wireless-based ECG Watch wrist-worn sensors for real-

time patients with CVD monitoring. The proposed algorithm detects possible atrial fibrillation episodes within 10 seconds through a 
smartphone or desktop App. The authors verified that this wrist-worn ECG Watch sensor performed well in diagnosing and prognosis 
of atrial fibrillation disease since this cannot be easily detected in reality [43]. Interestingly, both proposed (portable ECG and wrist-

worn ECG sensors) are designed for telehealth applications, but none was implanted with IoT/IoMT platforms. Likewise, Wang et al. 
[44] proposed a dynamic ECG compatible with telemedicine to prevent and diagnose CVD patients in Singapore. The authors applied 
ECG signal analysing algorithms for external noise reduction captured by ECG and found noise reduction performance outstanding. 
However, these sensors could have been tested with IoT/IoMT platforms for validity checks within the telehealth domain. To identify 
what elements of wearable IoT/IoMT-based ECG sensors are compatible with the telehealth framework for rural and remote CVD care.

4.3. CVD challenges in Australian aboriginal communities

Research indicates that chronic disease is the single leading cause of death among Aboriginal and Torres Strait Islander peoples in 
Australia [17]. Gi bson et al. [17] reviewed and highlighted the enablers and impediments related to adopting a primary healthcare 
model to support indigenous populations with chronic diseases in Australia, New Zealand, Canada and the USA. Their findings have 
some similarities to the other publications. For instance, Calabria et al. [7] found that the CVD risk is consistently higher in indigenous 
than non-indigenous populations indicating that Native American, Canadian First Nation, Māori, and Australian Aboriginal and 
Torres Strait Islander communities are at increased risk against their counterparts. Interestingly, the authors found a high absolute 
CVD risk in young Australian Aboriginal and Torres Strait Islanders under the age of 35 years [7], vividly highlighting health 
inequalities between the two groups. Unfortunately, research, strategies, policy implications, and individual and community-based 
efforts are not being sufficiently put forward to recognise the realities of chronic diseases. Health and well-being are also being 
ignored, pointing to direct and indirect health disparities between Aboriginal and non-aboriginal communities [9].

Apart from other chronic diseases, coronary heart disease (CHD), which may appear without any symptoms of cardiovascular 
disease, is the leading cause of morbidity and mortality worldwide [45]. The authors presented an invasive CVD diagnostic measure-

ment and evaluation of aortic stiffness in the carotid-femoral pulse wave velocity (PWV) index to diagnose patients with CVD [45]. 
This index explains how the velocity of arterial pulse moving along the vessel wall indicates and predicts possible CVD events. The 
authors further clarified the antecedents to CVDs causing events comprising age, sex, blood pressure (BP), and heart rate (HR), all 
tied to be substantial auxiliary factors of aortic stiffness representing an essential index for the CVD diagnosis [45]. Moreover, they 
used cutting-edge AI (i.e., Artificial Neural Network) technology to explore a new CVD characteristics/elements pattern that could 
effectively detect coronary heart disease, prevention, and management [45].

From an early detection point of view, Shomaji et al. [46] proposed a novel wearable diagnostics system for CVD patients in the 
USA. These authors outlined a set of CVD diagnostic tools that can assist physicians in detecting heart diseases, including CT heart 
scan, chest X-rays, blood tests, cardiac catheterisation, heart MRI, stress test, pericardiocentesis, myocardial biopsies, and coronary 
angiography. Further, they designed the essential hardware components for wearable imaging systems and an algorithm to predict 
intima-media thickness (IMT), an indicator of CVDs. Likewise, in Belgium, De et al. [47] offered a multi-parameter wearable sensor 
for follow-up cardiac rehabilitation patients. The authors applied AI and ML approaches to visualise the relationships between sensor-

derived biomarkers and sensors’ capability to monitor remote CVD patient tracking. Lin et al. [35] presented an IoT-aided wearable 
8

ECG sensor for real-time patient monitoring with CVDs. They found the five different sensors that can be used to detect cardiovascular 
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diseases such as Pulse Wave Velocity (PWV), electrocardiogram (ECG), phonocardiogram (PCG), Seismocardiogram/ballistocardio-

gram (SCG/BCG) and apexcardiogram (ACG). The same was found in the study by Yang et al. [48], who proposed an IoT-cloud-based 
ECG sensor for real-time patients with CVDs monitoring. These authors classified bio-signal data into five different ECG signal cate-

gories (P wave, T wave, Q wave, R wave and S wave) that should allow physicians to diagnose cardiovascular diseases [48].

Creating value in chronic care for Aboriginal populations via telehealth, Brazionis et al. [16] proposed a telehealth model for 
remote and very remote indigenous patients with CVD and Diabetes. Due to insufficient data availability, the authors could not 
strongly conclude whether telehealth applications can facilitate best practices in CVD and Diabetes care and disease management 
in remote indigenous communities in Australia. This unanswered question demands an avenue of research for this exciting new 
area. Table A.1 and Table B.2 (appendix) provide evidence that almost all studies used wearable ECG sensors for CVD care. At the 
same time, the aggregation of findings Tables A.1 and B.2 (appendix), and Figs. 3–6 confirm that existing literature recognized the 
potential significance of IoT/IoMT-ECG sensors AI-driven telehealth for rural and remote CVD care.

4.4. Wearable IoT/IoMT ECG sensors-based CVD patients monitoring

In Fig. 3 and Table B.2 (appendix), diverse applications of wearable IoT-aided ECG sensors to diagnose and prognosis CVD 
reported in the literature were exhibited. Much work on various wearable, handheld, and dynamic ECG sensors integrated into 
IoT, artificial intelligence-based algorithms-driven sophisticated systems to real-time monitoring patients with CVDs proposed by 
Hamil et al. [21]. For instance, various ECGs are made of flexible materials, lightweight, and low-cost and are successfully and 
purposefully used for biomedical sensing. For example, Balsam et al. [49] proposed a biomedical shirt-based electrocardiography 
(ECG) sensor to monitor patients with CVD in various clinical situations. The proposed wearable ECG sensor uses Nuubo ECG systems, 
enables monitoring of patients with CVD, captures high-quality ECG recordings and ensures comfort for patients while wearing a 
biomedical shirt [49]. This novel wearable ECG technology was tested using four independent patient groups with CVD comprising 
patients after pulmonary veins isolation (PVI) procedure, cardiac resynchronisation therapy recipients (CRT), patients during cardiac 
rehabilitation after the myocardial infarction, and paediatric patients with supraventricular tachycardia (SVT) [49]. The authors 
found this highly effective in improving CVD diagnosis in different situations since this is washable, allowing greater patient comfort 
and cost-effectiveness. The biomedical shirt ECG is used in continuous real-time recordings with a battery life lasting up to 36 hours 
[49]. Additionally, this wearable ECG has become viable for clinical applications certified by European Union [49].

From advances in medical sensors and leveraging patients’ care point of view, Lin et al. [35] summarised various sensor tech-

nologies and their flexible bio-signal sensing mechanisms, what is known as an electrocardiogram (ECG), phonocardiogram (PCG), 
seismocardiogram/ballistocardiogram (SCG/BCG), and apexcardiogram (ACG) used for managing cardiovascular diseases in China. 
Lin et al. [35] explicated how these sensors capture bio-signals, pulse wave signals, and the characteristics/elements that play key 
roles in CVD incidents. Similarly, Borujeni et al. [50] presented a four-layer IoT-driven intelligent healthcare system for real-time 
monitoring of patients with cardiovascular diseases. In the proposed model, a patient’s vital signs are measured using a body sensor 
network and sent to an intelligent healthcare domain. Their findings confirm a significant improvement of 70% in response time and 
scalability compared to the state-of-the-art techniques. Another study by Al-Alusi et al. [51] configured several groups of wearable 
ECG sensors comprising AlivCor Kardia devices, AlivCor Apple Watch Series 4, and several others are available for clinical use since 
these wearables are commonly integrated into the health network infrastructure. For instance, QardioCore and Hexoskin are chest-

worn-based sensors capable of recording high-quality ECG signals and tracking patients when placed in their bodies [51], thereby 
helping physicians manage patients with CVDs even remotely.

By optimising CVD care, advancing detection and diagnosis via ECG sensors, Baghel et al. [52] designed a phonocardiogram (PCG) 
for automated and real-time cardiac disease diagnostic systems that detect the present heart conditions of remote patients. Baghel et 
al. [52] used machine learning, AI-based (i.e., convolutional neural network) algorithms for biosignal data classifications and anal-

ysis captured by PCG sensors. They achieved high model accuracy, peaking at 98.60%, validating the robustness for multi-cardiac 
disease prevention, prediction and management [52]. The authors further highlighted the functional features of the PCG, which is 
compatible with any computing device, single-board computing processors, and Android handheld devices. Similarly, McRae et al. 
[53] proposed a Cardiac ScoreCard - a multivariate index assay system for early detection and frequent monitoring of traditional risk 
factors along with novel biomarkers for patients with CVDs. The proposed Cardiac ScoreCard system exhibited high-performance 
functionality and diagnostic accuracy. Another study by Pevnick et al. [54] presented broadened features of existing medical wear-

ables adopted and accepted by many physicians for patients’ heart rate and heart rhythm thoracic fluid monitoring. Behind these, to 
better understand characteristics and reap the benefits of various other wearables points of view, authors provided recommendations 
for future wearables and their potential in disease management and adoption impediments that must thoroughly be addressed [54].

With the pervasive application of wearables (i.e., ECG) from clinical practices, Sanamdikar et al. [15] implemented an IoT-based 
ECG that categorises five different beat arrhythmias (N, S, V, F, U), which are essential to identify a patient’s heart problems. The 
evidence from their findings suggests that the device remained pivotal in screening, detection and prediction of cardiac arrhythmias 
than other approaches and achieved high predictive accuracy accounting for 98% [15]. This supports Beach et al. [12] findings, who 
proposed a wearable IoT Wrist-Worn ECG sensor to monitor home-based patients with CVDs in out-of-clinic settings in the UK. The 
authors confirmed that the proposed wearable IoT Wrist-Worn ECG sensor is significantly effective, user-friendly and lightweight 50 g, 
including the strap, has low power consumption, and is compatible with SPHERE (Sensor Platform for Healthcare in a Residential 
Environment) smart home architecture [12]. Similarly, Florez et al. [55] demonstrated an efficient wearable, IoT-aided BlooXY 
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sensor for cardiovascular disease control, prevention, treatment, and management. The proposed IoT-based BlooXY sensor can sense 
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and monitor patients’ blood pressure, heart rate, and blood oxygen level (oximetry-SPO2), which are the essential characteristics of 
CVD detection and prevention [55].

4.5. Applications of AI and ML in CVD care

Widespread adoption interest in machine learning technology has revitalised the field of data science, and AI-powered applications 
have become a driving engine in many organisations [56], including health care. Tsay et al. [56] provided an overview of how AI 
and ML approaches promote real-time care for patients with CVDs. In this context, the authors outlined the strategies to strengthen 
existing clinical processes to increase accessibility, effectiveness, efficiency and availability of CVD care. Bini et al. [57] asserted 
that ML as a subset of AI is experiencing exponential growth in healthcare applications and has a profound impact on care delivery 
refinement. The author’s purpose is to demystify these technology innovations for practising data scientists so they can better grasp 
how and where to apply them [57].

AI applications for diagnosis and prognosis are sustained in various branches of health, including oncology, dermatology, neu-

rology, and cardiology [21]. For instance, Raj et al. [14] proposed automated handheld arrhythmias detection ECG systems for 
CVD diagnosis in India. The authors presented high-performance metrics that yield an overall accuracy peaked at 92.81%, 92.68% 
and 92.42% with average sensitivity, specificity and positive predictivity, respectively. Krittanawong et al. [58] asserted that deep 
learning (DL) is well-suited to cardiovascular medicine. Fig. 4 illustrates that the wearable IoT/IoMT ECG sensors AI-driven tele-

health for CVD research peaked at 38% between 2015 and 2021. Likewise, ML, DL, and AI-powered diagnostic tools used for 
various wearable ECG sensors’ sensing bio-signal data analyses for CVD detection, prediction, management and control articles 
peaked at 66% since different algorithms used papers peaked at 84%. In addition, wearable IoT/IoMT aided ECG, AI-driven tele-

health/telemedicine/e-Health/Smart Health papers peaked at 53%. These findings (see Fig. 4) validate the continued growth of 
digital healthcare infrastructure along with virtual CVD care research in this exciting field.

A plethora of literature indicates that cardiovascular diseases are largely preventable but unpredictable due to underlying risk 
factors that may appear without any symptoms or compliance [45]. Taking this severe challenge of developing novel ML and AI-

driven methods for CVD risk prediction is of immediate scientific and practical interest [45].

Similarly, Faust et al. [59] proposed a cost-effective hybrid IoT and advanced AI-based Heart Health Monitoring Service Platform 
(HHMSP) for CVD management. The proposed hybrid model advocates that humans and computers work together to improve cost 
efficiency while maintaining the reliability of diagnosis and prognosis of the CVDs [59]. From ML and AI in clinical care point of view, 
Bini et al. [57] presented how AI can act as a tool amplifying human cognitive functions for health providers to provide healthcare 
support to increasingly complicated patients. Krittanawong et al. [58] revealed that deep learning is deemed an appropriate method 
for cardiovascular medicine. Hemodynamic and electrophysiological indices are constantly captured by wearable sensors and image 
segmentation in cardiac imaging. Tsay et al. [56] demonstrated how AI platforms improve the operational delivery of cardiac care. 
These corroborate that AI and ML integrated into the health domain should keep pushing forward towards the novel future journey 
of chronic care for rural and remote communities.

From an IoT, phonography AI-driven telehealth point of view, Grooby et al. [41] offers a new approach to heart rate and 
breathing rate estimation from noisy neonatal chest sounds. The evidence from their proposed model demonstrated high accuracy 
in prediction, accounting for 93% heart sound and 82% lung sound, bolstering future telehealth applications for CVD detection, 
prevention, treatment, management and control in rural and remote Australia. Another study by Hamil et al. [21] designed a 
secured IoT, ECG AI-driven telehealth for predicting the automatic identification of arrhythmias (cardiac state) and achieved high 
accuracy peaking at 99.56%. The proposed model showed functional robustness, allowing a good balance between low costs and 
high performance while maintaining ease of use with prompt access to multiple bio-signals, thereby preventing loss of life during 
patients’ critical situations [21].

Ma et al. [60] investigated Atrial fibrillation (AF) for CVD events. They found it is one of the most common arrhythmias related 
to CVDs which is difficult to monitor in real-time monitoring due to its intermittent nature. These authors proposed a wearable ECG, 
AI-driven telemedicine for AF detection and prevention. The proposed model achieved the highest sensitivity accounting for 99.3%, 
specificity of 97.4% and prediction accuracy of 98.3%, demonstrating an outperforming model of CVD care [60]. Similarly, Wang 
et al. [44] presented how a dynamic ECG sensor embedded with telemedicine can be implemented for real-time patient monitoring 
and diagnosing and preventing CVD events. The authors used a deep neural network to demonstrate how external environmental 
interferences (noises) could be reduced from the dynamic ECG signal classifications [44].

From an AI-powered ECG signal analysis and prediction point of view, Al-Alusi et al. [51] revealed that sensor manufacturers 
create algorithms that interpret ECG sensing bio-signal data governed by all the same parameters, such as negative predictive 
values. For example, Apple Heart Study sets a target sensitivity and specificity for their devices (Apple Watch Series 4), accounting 
for 92% and 90%, respectively, for AF detection algorithm [51]. A recent study by Baghel et al. [52] presented the performance 
and prediction accuracy of various algorithms used for analysing phonocardiogram (PCG) signal data to diagnose and prognosis 
of cardiac diseases. The proposed algorithms of Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network 
(ANN), Deep Neural Network (DNN), K-Nearest Neighbour (K-NN), Convolutional Neural Network (CNN) without augmentation, and 
Convolutional Neural Network (CNN) with augmentation peaked at 87.65%, 97.78%, 95%, 89.30%, 96.50%, 96.23% and 98.60% 
respectively leading its high accuracy and robustness to automatically diagnose and predict cardiac disorders from the PCG signals 
[52]. Similarly, Hamil et al. [21] presented a novel wearable IoT, ECG sensor, AI-driven telehealth model with secure wireless 
10

transmission and classification of the bio-signal platform and Xbee module with Arduino Uno and Raspberry Pi as data acquisition 
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and processing. Authors used ECG signal data for arrhythmias (i.e., CVD event) prediction using different AI algorithms and ML 
methods, comprising ANN, CNN, SVM, KNN, and RF and the best classification accuracy achieved accounting for 99.56%, [21].

5. Discussion of the results

This is the first study to shed light on the feasibility of adopting wearable IoMT ECG sensors, an AI-driven telehealth model for 
rural communities, especially suitable for Aboriginal patients with CVDs living in rural and remote Australia. This review revealed 
that the wearable IoMT ECG sensors’ AI-driven telehealth model (see Fig. 1) delivers tremendous value to rural patients in an 
innovative way transforming their journey towards preventive and predictive CVD care. Fig. 3 summarises IoT/IoMT embedded 
wearable ECG, AI/ML, algorithm, and telehealth as analysed from the reviewed studies. The aggregation of findings from the analysis 
(see Tables A.1 and B.2 (Appendix A and Appendix B), and Figs. 3, 4, 5, and 6) concurs that the adoption of the wearable IoMT 
ECG sensors AI-driven telehealth continues to accelerate potential opportunities in reducing health inequalities between urban and 
rural counterparts. The results from the studies from 2015 to 2021 (see Fig. 3) have grown exponentially and exceeded the numbers 
from previous years concerning IoT/IoMT-wearable ECG sensors and AI-driven telehealth for CVD care. These findings validate the 
assertion that empirical research strongly emphasises the significance of this innovative model of care. This could unfold future 
models of CVD care for rural, regional, remote, and very remote patients with CVD regardless of the indigenous and non-indigenous 
communities in Australia and similar settings. Referring to health disparity between two groups, Power et al. [61] found stark health 
disparities between Aboriginal and non-aboriginal Australians. Another study by Haynes et al. [1] described the colonial legacies 
resulting in trauma, loss, and grief, contributing to a range of inequitable health and well-being outcomes. Prior research by Adelson 
et al. [9] asserted that health disparities point to underlying various causes of the imbalances that constantly reside outside the 
typically constituted health domain.

Empirical evidence from the review shows that chronic disease threat differs between the indigenous and non-indigenous pop-

ulations in Australia and globally. The assumptions from the study provide evidence that CVDs have a potential impact on human 
health in general since the treatment period is extended, thus posing a significant threat to patients’ health [35]. On this basis, 
a recent study by Heraganahally et al. [62] demonstrate chronic respiratory conditions among indigenous inhabitants are highly 
predominant, particularly in English-speaking countries. However, there appears to be significant knowledge gaps concerning in-

digenous inhabitants in non-English speaking countries. Haynes et al. [1] show how chronic Rheumatic heart disease predominantly 
impacts young people with the contemporary age-standardised occurrence at 60 times higher in the Australian aboriginal population 
than non-Aboriginal Australians < 55 years of age. We found that demographic characteristics are dominant factors contributing 
to chronic disease prevalence between indigenous and non-indigenous groups. For example, Brown et al. [63] revealed that the 
Indigenous population’s age-adjusted cardiovascular disease death remained the most significant single cause of death and was three 
times higher than in the non-Aboriginal community.

With regard to age factors dominantly influencing high mortality, Brown et al. [63] further illustrated that age-specific CVD 
causes mortality rates to even worsen between the ages of 25 and 54, peaking at 7 and 12 times that of non-Indigenous populations. 
Geographical factors also significantly impact chronic disease conditions among indigenous communities. For example, CVD-causing 
morbidity and mortality ratios also provide important insight into the cardiovascular disease burden for rural and remote aboriginal 
inhabitants in Australia. In covering these issues, a recent study by Gaffney et al. [64] asserted that rural and remote residents have 
inadequate resources to treat and prevent chronic obstructive pulmonary disease (COPD) than their urban counterparts in America. 
This validates that facing higher costs involving chronic conditions, which are more challenging and expensive to treat, patients are 
less likely to visit physicians due to additional expenses [64]. Our findings suggest that these statistics could consider a more holistic 
approach to adopting wearable IoMT ECG and AI-driven telehealth systems to tackle chronic disease-causing morbidly and mortality 
risks and reduce health inequalities in these underserved communities.

The findings from the review confirmed that tackling a growing number of patients with cardiovascular, pulmonary, and metabolic 
chronic diseases requires a closer look at their symptoms [65]. This corroborates that managing these diseases remains a complex 
clinical task because it occurs with comorbid conditions. Effective medical treatment of these chronic diseases typically requires 
lifestyle and food habit changes, medication regimens, and close patient monitoring [66]. Research suggests telehealth is remarkably 
consistent with satisfying patient care requirements in a challenging healthcare environment [25]. To this proposition, Butten et 
al. [67] argue that telehealth is persistently valuable and relevant to provide primary and specialist health care for disadvantaged 
communities who often have unfavourable health access to mainstream healthcare compared with the general population. From a 
practice point of view, we found that 19% of studies confirm that wearable IoT/IoMT ECG sensors are compatible with AI-driven 
telehealth for CVD care. The remaining 81% of studies have not been explored within the telehealth domain, indicating a significant 
gap in the research that our conceptual model aims to bridge.

The evidence from the review shows that the IoMT remained a fascinating digital innovation that seems poised to cross over into 
human biology, technology, and medical devices to treat rural and remote communities with specialised primary care via telehealth 
ecosystems. For instance, Albalawi et al. [20] revealed that the IoMT enables interconnecting patients, health providers, medical 
devices, and machines to promote evidence-based, safe, secure, and reliable patient care. This is consistent with Zhu et al. [68], 
who highlighted that telehealth is shown to be tied to the effectiveness of reducing risks of heart failure, diabetes, and other chronic 
diseases, maintaining successful distance communications between patients and physicians and increasing patients’ health outcomes 
compared with conventional healthcare systems. This suggests wearable AI-driven telehealth provides potential health solutions for 
rural and remote CVD care. This is congruent with Cronin et al. [69] explanation of smart healthcare monitoring systems using 
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cardiovascular devices (CIED: cardiac implantable electronic devices) for remotely living patients conferred a 50% relative decrease 
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in CVD causing deaths than attending clinics follow-up. Similarly, Yang et al. [48] offers a portable ECG integrated into an IoT-

based monitoring system to diagnose remotely living patients with cardiovascular diseases. From a low-cost wearable ECG sensor on 
the mobile devices context, Martinez et al. [70] proposed a wearable ECG sensor from e-Health (i.e., Telehealth) Biometric Sensor 
Platform designed by Libelium could be used for real-time CVD patients’ heart rate variability monitoring.

The findings suggest that electrocardiogram (ECG), blood pressure (BP), and blood oxygen saturation level (SpO2) sensors inte-

grated into IoT-driven telemedicine enable the collecting of data from remote patients with chronic diseases (i.e., CVD). Secondly, 
transmitting results can be close to real-time through a remote server connected with computers located in the medical centre [71]. 
For instance, Albalawi et al. [20] asserted that patients with chronic diseases get alerts if their health conditions deteriorate. The 
sensors instantly send the recorded information to the physicians via digital health networks. As the above review demonstrates, 
there is growing support for implementing this technology. This is consistent with our review as it outlines various dynamic electro-

cardiograms for real-time cardiovascular patient monitoring and demonstrates the tremendous growth of these MedTech devices in 
recent years. For example, Beach et al. [12] presented a wearable wristband ECG integrated into an IoT-driven model for CVD care. 
Similarly, Scheffler et al. [72] designed wearable wristband ECG sensors that are compatible with telemedicine and suitable for rural 
patients with CVD care. These validate that this wrist-worn ECG is ideal for detecting, predicting and managing CVD care, especially 
for the populations (i.e., patients) living in rural regional and remote areas. For example, Cugliari et al. [73] employed machine 
learning and AI approaches to predict the biomarkers (i.e., biological molecules found in blood, body fluids, or tissues are the sign of 
disease conditions) of CVD in Italy and achieved high prediction accuracy, peaked at 90%. These authors describe how myocardial 
infarction, acute coronary syndrome, ischemic cardiomyopathy, coronary (carotid) revascularisation, and ischemic or haemorrhagic 
stroke play a key role in CVD events.

In experimental research, Pevnick et al. [54] revealed that wrist-worn ECG could measure heart rates with less than 10% error 
compared to slandered devices under ideal circumstances. However, these devices remain largely outside usual channels [74]. More 
specifically, these devices detect, transmit, store and analyse data but in a database not linked to and incompatible with traditional 
health records resulting in useful information being unavailable for the physician unless patients volunteer it [74]. This suggests 
today’s healthcare systems have yet to take full advantage of IoT/IoMT-enabled sensors/devices to provide extensive medical support 
and keep patients healthier longer [74]. However, Kindle et al. [75] argue that integrating decision support systems (CDSS) to real-

time remote patient monitoring by physicians remained a formidable challenge. It is important to recognise that the advancement of 
ML algorithms and large databases for CDSS development provide substantial hope that a renaissance in tele-ICU care (intensive care 
unit) is coming soon [75]. Likewise, Liu et al. [76] proposed classification and recognition methods of encrypted ECG data based on 
neural networks and found satisfactory accuracy, efficiency and feasibility compared to other solutions.

From the characteristics, adaptability, and compatibility of wearable ECG sensors, this review revealed interest in whether these 
novel MedTech sensors can benefit patients with CVDs. For example, Al-Alusi et al. [51] asserted that the ECG sensor technology is 
currently being built into wearable forms capable of real-time monitoring, diagnosing and prognosis of remote patients with CVDs. 
Similarly, Dwivedi et al. [28] revealed that wearable medical devices with in-built sensors enable the screening of various human 
body infections and transfer data to monitor the real-time status of symptomatic patients. Majumder et al. [77] confirmed that an 
electrocardiogram (ECG) is a non- invasive approach commonly used by physicians for measuring the different forms of arrhythmia 
diseases (i.e., CVD events). Although many arrhythmias are uncategorised as life-threatening, such as myocardial infarction (MI), 
it may lead to cardiac arrest if not responded to immediately [77]. The review demonstrated various flexible MedTech sensors are 
currently being used in recent years. Compared with hospital devices, wearables are smaller, have lower power consumption, and can 
be worn comfortably [78]. These include wristbands, smart watches, glasses, body metric textiles, and more [78]. The advantages 
of scalability, flexibility, lightweight, and cost-effectivity, polymer films or fabrics advocate designing diverse wearable biomedical 
flexible sensors [79].

5.1. Recent advancement (2022-2023)

With recent advancements in current literature, further findings have emerged to strongly support our case. For instance, Blake et 
al. [80] studied Cardiac Analytics and Innovation for CVD care from an Australian perspective and highlighted the ‘siloed’ and poorly 
linked nature of its healthcare data. In contrast, Deniz et al. [81] found that the determinants of AI and Big Data in m-Health adoption 
in remote care facilities were impossible without ensuring data privacy, security, and quality assessment. IoT-driven eHealth research 
by Sun et al. [82] found that the high classification accuracy of interpatient ECGs is crucial in diagnosing Arrhythmia (CVD), given 
the pertinent risk of misclassification in eHealth settings. To resolve such problems, DL methods must be implemented to maintain 
high classification accuracy in AI-driven eHealth for CVD care [83].

Similarly, to improve the accuracy of IoT-driven ECG sensors, data fusion algorithms that outperform the baseline “20 Channel 
RR-Interval” averaging approach by ≃ 54% and ≃ 21% at signal-to-noise ratios (SNR) of 20 dB, respectively were developed [84]. 
In the context of AI-driven CVD care for Indigenous populations, Jeong et al. [85] pointed out that AI and ML-based predictive 
models could be robust solutions to CVD care rather than conventionally-used methods of care. In an experiment, Rajkumar et al. 
[86] echoed the superiority of IoT and DL-based methods in predicting CVD onset with an accuracy of 98.01%, boasting an error rate 
of 91.11% compared to other existing techniques.

5.2. Summary of key findings

The findings indicate that this unique model of care delivers substantial value, transforming the journey towards predictive and 
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preventive CVD care and improving health outcomes for First Nations people. Further, adopting IoT/IoMT sensor-driven telehealth 
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can reduce health inequalities and accelerate opportunities between urban and rural communities. The findings also emphasised the 
potential of wearable IoMT ECG and AI-driven telehealth systems to address chronic disease burdens in underserved communities 
and minimise health gaps between urban, rural, and remote regions.

The most consistent finding in this review highlighted the potential of integrating IoMT technology with telehealth ecosystems 
to provide evidence-based, safe, and reliable patient care for CVD. This indicates that wearable ECG and other biomedical flexible 
sensors offer significant advantages such as scalability, flexibility, low power consumption, and cost-effectiveness. This research 
suggests that wearables, IoT/IoMT electrocardiogram sensors, and AI-driven telehealth present potential opportunities for CVD 
diagnosis, prognosis, and management for rural and remote patients. Nevertheless, the review proposes that wearable IoMT ECG 
and AI-driven telehealth have the potential to transform CVD care for rural, regional, and remote aboriginal and non-aboriginal 
populations, providing accessible, cost-effective, and efficient smart healthcare solutions. In conclusion, this review points out that 
the long-term sustainability of the innovative IoT/IoMT sensor-driven telehealth care in various settings would be an enormous 
challenge for Australian rural healthcare infrastructure, combined with the complexity of the public healthcare administration.

In particular, the studies highlighted the disjointed nature of Australian healthcare data, the importance of accurate ECG signal 
classifications, and secured data privacy in facilitating the adoption of AI and big data in remote mHealth care settings. Further, 
AI-based predictive models emerged as robust solutions to address these issues, emphasising the superiority of wearable IoT-driven 
telehealth methods for CVD care dedicated towards remote Aboriginal peoples in Australia.

5.3. Barriers and facilitators of wearable IoT/IoMT sensors-driven telehealth for CVD care

Following the evidence from this review, for example, [19,52,12,47,21,1,75] we argue that the wearable IoT ECG sensors, AI-

driven telehealth methods of care have had clear benefits for CVD care for rural, remote communities globally. A key question for 
future research to consider is: what are the barriers that prevent this life-saving technology from being implemented in rural Australia 
and similar settings?

This model of care has clinically been tested in various CVD conditions (adults, children, male, and female patients), and almost all 
types of cardiovascular disease have been screened and predicted remotely. This novel model of care provides patients and physicians 
with greater opportunities and flexibilities for CVD detection, early prediction, prevention, and management. This virtual model of 
care appears sound and could become a benchmark model to study AI-driven telehealth within the Aboriginal health domain. We 
believe the successful deployment of this innovative model of care will improve rural indigenous patients with CVDs and reduce 
health inequality among indigenous communities. Our claims are consistent with Calabria et al. [7]. CVDs are responsible for 21% of 
fatal diseases burden and the most prominent health disparity between aboriginal and non-aboriginal Australians [7]. Telehealth is 
suitable for serving broader rural and remote patients with CVD due to its technology-driven nature. Waller et al. [87] revealed that 
functional telehealth serving remote patients providing real-time consultation, diagnosis (e.g., echocardiogram), monitoring (e.g., 
EKG, glucose monitor and patients with congestive heart failure) and mentoring (e.g., another specialist observes and provide advice 
a remote real-time operation and virtual ICU). In a case study, Taylor et al. [88] echoed that A Children’s Mercy Hospital (CHM) 
in Kansas City, MO, telemedicine dominantly support children in a variety of settings incorporating primary care, speciality care, 
pulmonary function tests, radiographs, and echocardiograms. This case study demonstrates positive public acceptance and demand 
for telemedicine in rural Missouri and Kansas and has led to a massive expansion, resulting in over 2000 outpatient encounters last 
year with a high growth rate exceeding over 40%. CHMs facilitated telemedicine now encompasses 27 paediatric specialities across 
four regional locations with additional expansions underway [88].

Similarly, Albahri et al. [19] commented that the wearable IoMT ECG Sensor, AI-driven telehealth, promises a vast improvement 
of services for remote care without incurring high medical costs. AI-based predictive aspects in the systems can assist in avoiding 
delays whilst timely medical treatment even before patients with CVD reach a severe condition [19]. Likewise, Zerna et al. [89]

argue that multidisciplinary stroke expertise physicians are sufficiently unavailable in many rural areas, which makes delivering 
appropriate CVD (i.e., stroke) care in such areas a significant public health challenge. The heart of this novel method (i.e., wearable 
IoMT sensors, AI-driven telehealth) of care lies in its perspective on how it benefits both remote living care seekers (i.e., Aboriginal 
community) and urban-based care providers (i.e., physicians) and continues to serve them well.

To summarise, the contemporary literature discussed above on wearable IoMT sensors used for CVD care has had a narrow 
focus on clinical practices via AI-driven telehealth, particularly for rural patients. Insufficient attention has been directed towards 
conducting clinical trials using a large sample size. This inadequacy is reflected in the infrastructure facilities accessed and through 
evidence-based clinical practices. This review also exposes that the determinants of patients’ acceptance, expectations, and satisfac-

tion with this virtual care are still unidentified. What is lacking is an insight into how wearable IoMT ECG sensors collect bio-signal 
data and analyse them to arrive at a course of medical treatment via telehealth (medical decisions) for rural and remote communities. 
To point out this could drastically reduce fatalities, treatable illnesses, and related problems substantially.

From a compatibility standpoint, it is also unclear how these various MedTech technologies are compatible with traditional 
IoT/IoMT technologies and fit together, shaping a smart telehealth platform to create potential opportunities for rural and remote 
care. This indicates that research was undertaken haphazardly in recent decades. This drawback and limitations of current literature 
remind us that the AI-driven telehealth systems and underlying various services/facilities are not entirely recognised, even though the 
need is dire, and applications are readily available. Given these outcomes, we argue that health providers, policymakers, researchers, 
and stakeholders demand new knowledge about each aspect of this virtual care. The potential to bring health equality outcomes and 
reduce fatalities in treatable conditions in these communities is paramount. This new knowledge could also be shared between and 
13

across health industries strengthening service productivity, systems sustainability, and growth in Australia and globally.
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6. Contribution and managerial implications

This study has a threefold contribution to health informatics literature. The first contribution is the investigation and identification 
of the adoption determinants of the wearable IoMT sensor-driven telehealth model for rural CVD care, which continues to be an 
under-researched area. To the authors’ knowledge, this is a novel study that sheds light on the viability of adopting wearable IoMT 
ECG sensors within an AI-driven telehealth framework for Indigenous patients with CVD living in rural and remote Australia. This 
review demonstrates that there is a need for better care in rule and indigenous communities; that is, there is an inequality of access 
to good healthcare because of the remoteness and inaccessibility of healthcare professionals. These inadequacies are evident in the 
existing research both in Australia and abroad.

Second, this review demonstrates the need for adopting a wearable IoMT sensor AI-driven telehealth model for real-time care 
appropriate for Aboriginal and non-Aboriginal patients with CVD living in rural and remote Australia and similar settings. The 
adoption of this technology widens telehealth scope in developed countries’ rural contexts and could drastically improve health 
outcomes. Thus, we believe this research further broadens the scope of AI-based health informatics research and provides helpful 
directions to health providers, policymakers, health authorities and stakeholders to integrate approaches to strengthen telehealth 
adaptability and sustainability for locational disadvantaged communities.

Third, this study makes a significant contribution to indigenous health, particularly by clarifying further how the various 
IoT/IoMT and sensor (MedTech) technologies could work together to build a novel telehealth model for remote CVD care in Australia 
and similar settings. Further, the long-term sustainability of the smart telehealth project is one of the most dominating challenges 
for rural healthcare infrastructure, alongside the complexity of the rural public healthcare administration. Failure to recognise these 
challenges could undermine their potential efficacy and years of hard work.

From a managerial perspective, the findings from the research have important implications for information systems, particularly in 
health informatics research. This review’s findings illustrate that this care model has been clinically tested in various CVD conditions 
(adults, children, males, and female patients), and almost all types of CVD have been screened and predicted remotely. This novel 
model of care provides patients and physicians with greater opportunities and flexibilities for CVD detection, early prediction, 
prevention, and management. This virtual model of care appears sound and could become a benchmark model to study AI-driven 
telehealth within the Aboriginal health domain. This suggests that the successful deployment of this innovative model of care will 
improve rural indigenous patients with CVDs and reduce health inequality among indigenous communities. Given these discoveries, 
health providers and policymakers should design effective strategies, develop favourable policy guidelines, and implement Aboriginal 
CVD management plans for achieving goals.

7. Research impact

The present study’s underlying impacts are classified into four-dimensional categories: knowledge, novelty, Australian First 
Nations Peoples, and developed country. This study’s ability contributed to defining, distinguishing, explaining, and interpreting 
wearable IoT/IoMT-ECG sensors and AI-driven telehealth adoption determinants in contexts of developed countries’ rural, regional, 
and remote settings. It provides unique insights into rural Australian First Nations’ CVD treatment regarding telehealth services. 
This study explored the adoption determinants of the AI-driven telehealth model for CVD care. This study focused on adopting an 
AI-driven telehealth ecosystem for potentially applicable indigenous communities living in rural and remote Australia and similar 
settings. This research highlighted how this novel model of care provides patients and physicians with greater opportunities and 
flexibilities for CVD detection, early prediction, prevention, and disease management. This research identified wearable ECG sen-

sors, such as a wrist-worn, dynamic watch that can detect cardiovascular signals for early diagnosis, predict patients’ current CVD 
conditions, and manage cardiovascular diseases by early interventions.

This study introduced smart wearable IoT embedded MedTech, functional materials, network configurations, and bio-signal de-

tection algorithms (i.e., AI and Machine Learning/Deep Learning) and their advantages. It emphasised how innovative telehealth 
synchronises digital and physical therapeutic modalities, reduces remote diagnostic hurdles, facilitates adaptable, comfortable, reli-

able, and economical healthcare interventions, and bridges inequality gaps between urban and rural health landscapes. Further, this 
research identified four areas of impact, namely (1) research-related (i.e., research problem, methods used, research management 
and communication), (2) policy (i.e., level of policy making, type, nature and policy networks), (3) service (i.e., health services, 
service management, quality of care and information systems) [90].

8. Limitations and future research

Nevertheless, several limitations should be considered when interpreting these research findings. This review used only four 
scientific databases for data extraction and synthesis. The future review should include additional databases to extract more data 
that may influence the broad view of the phenomenon. The future search should broaden by including other chronic disease risks 
and management using these technologies to observe the viability and effectiveness of this model of care on a large-scale adoption. 
Finally, our study did not undertake a formal quality assessment of the incorporated literature, thus constraining our ability to 
14

critically evaluate the sources utilised to substantiate our assertions.
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9. Conclusion

One relatively unexplored research area involves the broad adoption of wearables IoMT sensors AI-driven telehealth focusing 
on rural and remote communities. Although wearables Internet of Medical Things electrocardiogram sensors, Artificial Intelligence-

driven telehealth hold increased opportunities for cardiovascular disease diagnosis, prognosis, and management for rural and remote 
patients. Incorporating a large volume of research on the issues discussed in this review serves as a comprehensive guideline and list of 
the sources to lead the way in adopting this novel model of care for the Aboriginal communities living in rural and remote Australia.

The novelty of this study has advanced a pragmatic understanding of sustaining this cutting-edge model of care tackling high risks 
of CVD, causing deaths, challenges, and potential future directions of continuous monitoring and ubiquitous medical treatment via 
telehealth for underprivileged and vulnerable aboriginal communities. The study findings highlight the essential tools and resources 
that should be taken into consideration by the relevant authorities for extensive adoption. The government, health authorities, 
policymakers, health providers, and stakeholders are urged to work together, emphasising the implementation strategies for an 
initial pilot project as setting up a foundation before its widespread adoption in rural Australia and similar settings. The successful 
adoption of a wearable IoMT sensor-driven telehealth model of care could help reduce health inequalities affecting underprivileged 
rural/remote minorities. Rural regional and remote populations often have limited access to dedicated public medical facilities, and 
most lack private after-hours medical practitioners [34]. Hence, these locational disadvantages and sparsely populated regions should 
continue to be a priority [34].
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Appendix A. Literature search results on wearable IoT/IoMT, ECG sensors, AI-driven telehealth for CVD care

Table A.1

Literature Search results on Wearable IoT/IoMT, ECG sensors, AI-driven Telehealth for CVD care.

ID Year Author Country 
of Studies

Study Proposal Methods Accuracy (%) Objectives and Outcome Measures

1 2018 [49] Poland Study design and rationale 
for biomedical shirt-based 
electrocardiography 
monitoring in relevant 
clinical situations: 
ECG-shirt study.

Arrhythmia detecting 
algorithm: the 
Shapiro-Wilk test with 
SAS® software version 
9.4.

98% This study shows the utility of 
biomedical shirt-based 
electrocardiography (ECG) 
monitoring of patients with CVD in 
different clinical situations 
employing the Nuubo ECG (nECG) 
systems. The proposed biomedical 
shirt captures the 
electrocardiographic signal via 
textile electrodes integrated into a 
garment.
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Table A.1 (continued)

ID Year Author Country 
of Studies

Study Proposal Methods Accuracy (%) Objectives and Outcome Measures

2 2019 [50] Iran A hierarchical, scalable and 
real-time monitoring system 
for electrocardiography 
using context-aware 
computing.

Wireless body area 
networks, Global 
Positioning System, Blood 
Pressure, survey systems, 
activity monitors, body 
temperature, and ECG 
signal detector.

70%. In the proposed model, a patient’s 
vital signs are measured using a 
body sensor network and sent to 
an intelligent health care domain. 
Empirical findings confirm a 
significant improvement of 70% in 
response time and scalability 
compared to the state-of-the-art 
techniques. This improvement is 
about 30% compared to Fog 
computing approaches.

3 2019 [51] USA Wearing Your Heart on 
Your Sleeve: the Future of 
Cardiac Rhythm 
Monitoring.

Arterial Fibrillation (AF) 
detection algorithms.

92% specificity, 
90% sensitivity

This study configured several 
groups of wearable ECG sensors 
comprising of AlivCor Kardia 
devices, Apple Watch Series 4, and 
several others.

4 2020 [52] India Automatic diagnosis of 
multiple cardiac diseases 
from PCG signals using 
Convolutional Neural 
Network (CNN).

CNN 98.60% This study designed a 
phonocardiogram for automated 
and real-time cardiac disease. The 
authors used CNN for biosignal 
data classifications captured by 
PCG sensors. The authors also 
highlighted that PCG is compatible 
with any computing device, single 
board computing processors, 
android handheld devices.

5 2016 [53] USA Cardiac ScoreCard: A 
diagnostic multivariate 
index assay system for 
predicting a spectrum of 
cardiovascular disease.

Lasso Logistic regression. AUC=0.8403 
for disease vs. 
non-case and 
0.9412 for 
cardiac wellness 
vs. HF.

Cardiac ScoreCard is a multivariate 
index assay system for early 
detection and frequent monitoring 
of traditional risk factors along 
with novel biomarkers for patients 
with CVDs.

6 2017 [16] Australia Evaluation of telehealth 
facilitation of Diabetes and 
cardiovascular care in 
Indigenous communities.

Analysis of covariance 
(ANCOVA).

95% Creating value in chronic care for 
Aboriginal populations via 
telehealth, the authors surveyed 
proposing a telehealth model for 
remote and very remote 
indigenous patients with 
cardiovascular disease and 
Diabetes.

7 2021 [15] India Classification f cardiac 
arrhythmia based on 
incremental support vector 
regression on IoT platform.

Incremental Support 
Vector Regression.

98% This study proposed IoT integrated 
electrocardiogram sensor to 
monitor different forms of beat 
arrhythmias for identifying heart 
problems. The proposed algorithm 
successfully predicted cardiac 
arrhythmias with 98% accuracy.

8 2018 [12] UK An Ultra-Low Power 
Personalised Wrist Worn 
ECG Monitor Integrated 
With IoT Infrastructure.

Flexible textile electrodes 
into smart clothing.

10% variance of 
the mean.

Proposed a wearable IoT 
Wrist-Worn ECG sensor to monitor 
home-based patients with CVDs in 
the UK. This wearable offers 
low-power consumptions for 
real-time heart rate variability 
monitoring.

9 2019 [91] China Signal Quality Assessment 
and Lightweight QRS 
Detection for Wearable ECG 
SmartVest.

Signal Quality Assessment 
and QRS detection 
algorithms

F1 score 
> 99.5%

Proposed an IoT-based wearable 
12-lead ECG SmartVest system for 
the early CVD detection. The 
proposed method can efficiently 
deal with the trade-off between 
accepting good and rejecting poor 
quality ECGs.
16
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Table A.1 (continued)

ID Year Author Country 
of Studies

Study Proposal Methods Accuracy (%) Objectives and Outcome Measures

10 2016 [13] Poland Telerehabilitation in heart 
failure patients.

Unspecified. 94.7% Discusses the characteristics, 
applicability, and effectiveness of 
telemonitoring tools to provide 
optimal long-term management for 
heart failure patients unable to 
attend traditional rehabilitation 
programs.

11 2015 [14] India Development of Handheld 
Cardiac Event Monitoring 
System.

Principal Component 
Analysis and 
Feed-forward Neural 
Networks.

Sensitivity 
92.81%, 
specificity 
92.68% and 
precision 
92.42%.

Proposed automated handheld 
arrhythmias detection ECG systems 
for CVD diagnosis in India.

12 2016 [48] China An IoT-cloud Based 
Wearable ECG Monitoring 
System for Smart 
Healthcare.

Unspecified. R wave 0.68 
indicates health 
heart.

Proposed an IoT-cloud-based ECG 
sensor for real-time patients with 
CVDs monitoring. The proposed 
system is reliable in collecting and 
displaying real-time ECG signal 
data, which may contribute to the 
diagnosis of certain patients with 
CVDs.

13 2020 [47] Belgium Wearable monitoring and 
Interpretable ML to track 
progression in patients 
during cardiac 
rehabilitation.

Support Vector Machine 
(SVM).

66%. Proposed a multi-parameter 
wearable sensor for follow-up 
cardiac rehabilitation patients in 
Belgium. Applied a interpretable 
ML approach to visualise the 
relationships between 
sensor-derived biomarkers and 
their ability to monitor remote 
patients.

14 2019 [46] USA Early detection of CVD 
using wearable ultrasound 
device.

Wearable imaging system 
algorithm.

Unspecified. Proposed a wearable ultrasound 
imaging device for the early 
detection of CVDs through a 
quantitative carotid artery 
monitoring system in the USA. The 
distinctive features of the device 
include portability, accuracy, ease 
of use, and cost-effectiveness. The 
authors outlined a set of diagnostic 
tools including CT heart scans, 
chest X-rays, blood tests, cardiac 
catheterisation, heart MRI, stress 
test, pericardiocentesis, myocardial 
biopsies, and coronary 
angiography.

15 2021 [21] France Design of a secured 
telehealth system based on 
multiple biosignals 
diagnosis and classification.

Artificial Neural Network 
(ANN), Convolutional 
Neural Network (CNN), 
Support Vector Machine 
(SVM), K-Nearest 
Neighbour (KNN) and 
Random Forest (RF).

99.56%. Proposed a wearable IoMT ECG, 
AI-driven telehealth model for 
arrhythmias of CVD detection, 
prediction, and management. The 
proposed wearable ECG can 
capture the biosignal data and 
analyse them using AI and ML 
approaches.

16 2020 [41] Australia Neonatal heart & lung 
sound quality assessment 
for heart and breathing rate 
estimation.

Support Vector Machine 
(SVM), K-Nearest 
Neighbours (KNN), 
Decision Tree (Tree).

93% for heart 
sounds, and 
82% for lung 
sounds.

Designed a wearable IoT 
phonogram (PCG), an AI-driven 
telehealth model for the automatic 
estimation of heart rate and 
breathing rate of CVD patients. 
Analysed a total of 88 
10-second-long chest sound 
samples from 76 preterm and 
full-term babies.

(continued on next page)
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Table A.1 (continued)

ID Year Author Country 
of Studies

Study Proposal Methods Accuracy (%) Objectives and Outcome Measures

17 2020 [44] Singapore ECG signal denoising based 
on deep factor analysis.

Deep factor analysis for 
noise reduction.

Unspecified Proposed a dynamic ECG 
compatible with telemedicine to 
prevent and diagnose CVD 
patients. The authors applied ECG 
signal analysing algorithms for 
external noise reduction captured 
by ECG.

18 2019 [45] France Coronary heart disease 
diagnosis by artificial 
neural networks including 
aortic pulse wave velocity 
index and clinical 
parameters.

Artificial neural networks 
(ANNs).

63-93% Presented an invasive CVD 
diagnostic measurement and 
evaluation of aortic stiffness in the 
carotid-femoral pulse wave 
velocity (PWV) index to diagnose 
patients with CVDs. The index 
explains how the velocity of 
arterial pulse moving along the 
vessel wall indicates and predicts 
the possible CVD events. Used 
cutting-edge AI (i.e., ANN) 
technology to explore a new CVD 
characteristics/elements pattern.

19 2018 [7] Australia Absolute CVD risk and 
lipid-lowering therapy 
among Aboriginal and 
Torres Strait Islander 
Australians.

Risk assessment and risk 
management algorithm.

Unspecified. Found that the CVD risk is 
consistently higher in indigenous 
than non-indigenous populations 
including Native American, 
Canadian First Nation, Māori, 
Australian Aboriginal, and Torres 
Strait Islander communities.

20 2019 [42] Pakistan Design and implementation 
of real-time 
electrocardiogram 
monitoring system for 
telemedicine services.

MultisimTM Unspecified. Proposed a portable ECG-based 
telemedicine model for real-time 
monitoring of patients with CVD 
residing in non-clinical 
environments. The lightweight, 
portable ECG sensor enables 
sensing patients’ heartbeat, 
amplitude level, and PQRST wave 
via a microcontroller

21 2017 [55] Germany BlooXY: a non-invasive 
blood monitor.

Used secured 128 bits 
asymmetric encryption for 
data security.

Unspecified. Demonstrated an efficient 
wearable sensor called BlooXY for 
CVD control, prevention, 
treatment, and management. 
BlooXY is able to sense and 
monitor blood pressure, heart rate, 
and blood oxygen level.

22 2019 [22] India Plug and play 
self-configurable IoT 
gateway node for 
telemonitoring of ECG.

A self-configuration 
algorithm is designed to 
run at the gateway node 
to optimize the power 
efficiency.

Unspecified. Assessed hyper connection with an 
ECG telemonitoring via WBAN. 
Investigated the adaptability of 
smartphones as an IoT gateway for 
sending and receiving data to a 
remote server.

23 2018 [56] USA Evaluation of AI and ML 
applications in real-world 
Cardiac Care.

Overview Overview Provided an overview of how AI 
platforms promote the operational 
delivery of care for patients with 
CVDs. Outlined strategies for 
integrating ML to augment existing 
clinical care processes to improve 
CVD care.

24 2018 [57] USA To understand the impact 
of AI, ML, deep learning 
and cognitive computing on 
healthcare.

Artificial neural networks 
and deep learning.

Unspecified. Provide a historical perspective of 
AI and ML approaches and 
evolution of deep learning 
algorithms through biomimicry 
(biological entities and processes). 
Main aim is to demystify these 
technology innovations for 
surgeons.
18
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Table A.1 (continued)

ID Year Author Country 
of Studies

Study Proposal Methods Accuracy (%) Objectives and Outcome Measures

25 2020 [60] China Automated classification of 
atrial fibrillation.

Artificial neural network 
(ANN).

98.3% Proposed a wearable ECG, 
AI-driven telemedicine for AF 
detection and achieved 99.3% 
sensitivity, 97.4% specificity and 
98.3% accuracy outperforming 
previous models.

26 2019 [58] USA Deep learning for 
cardiovascular medicine: a 
practical primer.

Deep learning. Unspecified Revealed that deep learning based 
cardiac image analysis can be 
useful for CVD patients care.

27 2018 [54] USA To provide a framework for 
the future wearable 
technologies for cardiology

Overview Overview Presented broadened features of 
existing medical wearables for 
patients’ heart rate and heart 
rhythm thoracic fluid monitoring. 
Authors provided 
recommendations for future 
wearables and their potential in 
disease management.

28 2016 [48] China An IoT-cloud based 
wearable ECG monitoring 
system.

ECG monitoring system. Unspecified. Proposed a wearable IoT-driven 
ECG for CVD monitoring systems. 
ECG data are gathered using a 
wearable monitoring node and are 
transmitted directly to the IoT 
cloud using WI-Fi. HTTP and 
MQTT protocols are employed to 
provide visual and timely ECG 
data.

29 2021 [35] China Wearable sensors and 
devices for real-time CVD 
monitoring.

Overview Overview Reviews the latest developments in 
surveillance technologies for CVD. 
A variety of signals that can 
monitor CVD are summarised. The 
different mechanisms and 
principles of monitoring pulse 
signals are discussed.

30 2019 [43] Italy ECG WATCH: a real-time 
wireless wearable ECG.

Atrial fibrillation 
detection algorithm.

90.5% Designed wearable, wireless-based 
ECG watch (writs-worn) for the 
real-time monitoring. The 
proposed algorithm detects 
possible atrial fibrillation episodes 
within 10 seconds through a 
smartphone or desktop App.

Appendix B. Characteristics of the selected studies

Table B.2

Characteristics of the Selected Studies.

ID Year Authors Country Disease 
Type

Devices/Sensors used IoT/IoMT 
(Y/N)

Sample 
Size

ML/AI 
(Y/N)

Algorithm 
(Y/N)

Telehealth/

Telemedicine/

e-health/Smart 
health

1 2018 [49] Poland CVD Biochemical shirt-based ECG N 120 N Y Y

2 2019 [50] Iran CVD Four layers ECG Y 0 N Y Y

3 2019 [51] USA CVD Wearable ECG N 0 N N Y

4 2020 [52] India CVD Phonocardiogram signal ECG N 3000 Y Y Y

5 2016 [53] USA CVD The Cardiac Scorecard systems N 579 Y Y N

6 2017 [16] Australia CVD Mobile Tablet based CVD 
management tool

N 576 N Y Y

7 2021 [15] India CVD IoT based ECG Y 400 Y Y Y

8 2018 [12] UK CVD IoT based wrist-worn ECG sensor Y 5 Y Y Y

9 2019 [91] China CVD IoT based ECG Smart Vest system Y 317 Y Y Y

10 2016 [13] Poland CVD Cardiovascular implantable 
electronic devices (CIED)

N 0 N N Y

11 2021 [19] Malaysia CVD IoT sensors Y 0 N N Y

12 2020 [14] India CVD Phonocardiogram signal ECG N 48 Y Y Y
19
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Table B.2 (continued)

ID Year Authors Country Disease 
Type

Devices/Sensors used IoT/IoMT 
(Y/N)

Sample 
Size

ML/AI 
(Y/N)

Algorithm 
(Y/N)

Telehealth/

Telemedicine/

e-health/Smart 
health

13 2016 [48] China CVD IoT aided ECG sensor N 0 N Y N

14 2020 [47] Belgium CVD Dynamic ECG Sensor N 129 Y Y Y

15 2019 [46] USA CVD Wearable point-of-care imaging 
system

N 12 N Y N

16 2017 [21] USA CVD Breast arterial calcifications 
Mammogram images

N 840 Y Y N

17 2021 [41] France CVD IoT based ECG N 473 Y Y Y

18 2020 [44] Singapore CVD ECG Sensor N 47 Y Y Y

19 2020 [45] France CVD Dynamic ECG Sensor N 437 Y Y N

20 2018 [7] Australia CVD Not used N 14350 N N N

21 2015 [17] Australia CVD Not used N 0 N N N

22 2019 [42] Pakistan CVD Atmega-32 micro controller based 
Handheld based ECG

N 0 N Y Y

23 2017 [55] Germany CVD IoT based Writs-worn ECG 
(BlooXY)

Y 37 N Y N

24 2019 [22] India CVD IoT based ECG Sensor Y 549 Y Y Y

25 2019 [56] USA CVD IoT based ECG (wrist-worn) Y 0 Y Y N

26 2018 [57] USA CVD Wearable ECG N 0 N Y N

27 2020 [60] China CVD Wearable ECG Y 0 Y Y N

28 2020 [58] USA CVD IoT based HHMSP systems (ECG) Y 0 Y Y N

29 2018 [54] USA CVD ECG sensor N 0 Y Y N

30 2021 [35] China CVD IoT based ECG, PCG 
SCG/BCG/ACG sensors

Y 0 Y Y Y

31 2016 [48] China CVD Wearable ECG Sensors Y 0 Y Y Y

32 2019 [43] Italy CVD IoT ECG Watch Y 40 Y Y Y

Note: CVD=cardiovascular diseases; ECG=Electrocardiogram; PCG=Phonocardiogram; IoT=Internet of Things; IoMT=Internet of Medical Things; ML=Machine 
Learning; AI=Artificial Intelligence.
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