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Abstract

This PhD research project is concerned with the development of accurate and ef-

ficient numerical methods, which are based on one-dimensional integrated radial

basis function networks (1D-IRBFNs), point collocation and Cartesian grids,

for the numerical simulation of heat and viscous flows in multiply-connected

domains, and their applications to the numerical prediction of the material

properties of suspensions (i.e. particulate fluids). In the proposed techniques,

the employment of 1D-IRBFNs, where the RBFN approximations on each grid

line are constructed through integration, provides a powerful means of repre-

senting the field variables, while the use of Cartesian grids and point collocation

provides an efficient way to discretise the governing equations defined on com-

plicated domains.

Firstly, 1D-IRBFN-based methods are developed for the simulation of heat

transfer problems governed by Poisson equations in multiply-connected do-

mains. Derivative boundary conditions are imposed in an exact manner with

the help of the integration constants. Secondly, 1D-IRBFN based methods are

further developed for the discretisation of the stream-function - vorticity for-

mulation and the stream-function formulation governing the motion of a New-

tonian fluid in multiply-connected domains. For the stream-function - vorticity

formulation, a novel formula for obtaining a computational vorticity bound-

ary condition on a curved boundary is proposed and successfully verified. For

the stream-function formulation, double boundary conditions are implemented



Abstract v

without the need to use external points or to reduce the number of interior

nodes for collocating the governing equations. Processes of implementing cross

derivatives and deriving the stream-function values on separate boundaries are

presented in detail. Thirdly, for a more efficient discretisation, 1D-IRBFNs are

incorporated into the domain embedding technique. The multiply-connected

domain is transformed into a simply-connected domain, which is more suitable

for problems with several unconnected interior moving boundaries. Finally, 1D-

IRBFN-based methods are applied to predict the bulk properties of particulate

suspensions under simple shear conditions.

All simulated results using Cartesian grids of relatively coarse density agree well

with other numerical results available in the literature, which indicates that the

proposed discretisation schemes are useful numerical techniques for the analysis

of heat and viscous flows in multiply-connected domains.
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Chapter 1

Introduction

This chapter starts with an overview of the Navier-Stokes equations and con-

ventional numerical methods. A review of the numerical study of viscous flows

in multiply connected domains and the motivation for the present study are

then presented. Finally, the structure of the dissertation is outlined.
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1.1 Governing equations and Discretisation meth-

ods

1.1.1 Governing equations

Computational Fluid Dynamics (CFD) is concerned with the numerical study

of the motion of a fluid. The laws of mass and momentum conservation for an

incompressible fluid lead to

∇ · u = 0, (1.1)

ρf
Du

Dt
= ρf f +∇ · σ, (1.2)

where u is the velocity vector, ρf the fluid density, f the body force vector

per unit mass (e.g. gravitational acceleration), σ the total stress tensor, and

D[.]/Dt the material derivative defined as

D[·]
Dt

=
∂[·]
∂t

+ (u ·∇)[·]. (1.3)

For an incompressible fluid, e.g. Oldroyd-B, the stress tensor can be decomposed

into

σ = −p1 + 2η1D+ τ p, (1.4)

where p is the hydrodynamic pressure, 1 the unit tensor, η1 the solvent viscosity,

D the strain rate tensor

D =
1

2
[∇u+ (∇u)T ]; (1.5)
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and τ p the polymer-contributed stress tensor

λ(
Dτ p

Dt
−∇uT · τ p − τ p ·∇u) + τ p = 2η2D. (1.6)

In (1.6), λ is the relaxation time and η2 the polymer-contributed viscosity.

When λ = 0, the Oldroyd-B model reduces to the Newtonian model with the

viscosity η being η = η1 + η2.

In this research project, we consider the motion of a Newtonian fluid (λ = 0) in

two dimensions. The stress-tensor equation (1.4) simply becomes functions of

the velocity and pressure variables and one can write the governing equations

(Navier-Stokes) in the following dimensionless forms.

Velocity and pressure (u− p) formulation

∂u

∂x
+
∂v

∂y
= 0, (1.7)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
, (1.9)

where u and v are the velocity components, p the dynamic pressure, and Re the

Reynolds number defined as Re = UL/ν in which ν is the kinematic viscosity,

L a characteristic length, and U a characteristic velocity.

The velocities and pressure are regarded as the primitive variables. Since there

is no transport equation for the pressure in (1.7)-(1.9), velocity equations (1.8)-

(1.9) need be solved iteratively towards the satisfaction of the continuity condi-

tion (1.7). Several implementations were reported, including the semi-implicit

method for pressure-linked equations (SIMPLE) (e.g. Patankar and Spalding,

1972), the pressure-implicit with splitting of operators (PISO)(e.g. Issa, 1986)
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and the fractional step (FS) method (e.g. Le and Moin, 1991).

Stream-function and vorticity (ψ − ω) formulation

By introducing two new variables, namely the stream function (ψ) and the

vorticity (ω),

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

ω =
∂u

∂y
− ∂v

∂x
, (1.10)

the primitive variable form, (1.7)-(1.9), reduces to

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (1.11)

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (1.12)

In comparison with the u − p formulation, the continuity equation is satisfied

automatically and the number of the field equations is reduced to two.

The given velocity boundary conditions can be transformed into two boundary

conditions on the stream function and its normal derivative

ψ = γ,
∂ψ

∂n
= ξ,

where n is the direction normal to the boundary, and γ and ξ prescribed func-

tions. It can be seen that boundary conditions are over-prescribed for (1.11)

and under-prescribed for (1.12). In practice, the boundary condition on ψ is

used for solving (1.11), while the boundary condition on ∂ψ/∂n is employed to

derive a computational vorticity boundary condition for solving (1.12).
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Stream-function (ψ) formulation

This formulation is obtained by substituting (1.11) into (1.12)

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
=

1

Re

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
. (1.13)

The number of the field equations is further reduced to one. As a result, the

dimension of the set of resultant algebraic equations is only one half of that

by the ψ − ω formulation and only one third of that by the primitive variable

formulation. Solutions to the ψ formulation generally converge faster than

those to the ψ − ω formulation. However, its numerical difficulties lie in the

approximation of higher-order derivatives including cross/mixed ones, and the

treatment of double boundary conditions.

It is noted that the advantages of the ψ−ω formulation and the ψ formulation,

which are mentioned above, are restricted to two-dimensional (2D) problems

only.

1.1.2 Discretisation methods

Principal techniques for the discretisation of (1.7)-(1.9), (1.11)-(1.12) and (1.13)

can be classified into two groups, namely high-order and low-order.

Low-order discretisation methods, which are widely based on constant and linear

interpolants, include finite difference methods (FDMs) (e.g. Harlow and Welch,

1965; Lewis, 1979; Sugiyama et al., 2011), finite element methods (FEMs) (e.g.

Hu, 1996; Sammouda et al., 1999; Glowinski, 2008), finite volume methods

(FVMs) (e.g. Demirdzic and Peric, 1990; Udaykumar et al., 2001), and bound-

ary element methods (BEMs) (e.g. Kitagawa et al., 1988; Tran-Cong and Phan-

Thien, 1989; Beskos, 1997). Each method has some advantages over the others



1.1 Governing equations and Discretisation methods 6

in certain classes of problems. In FDMs, the computational domain needs be

a rectangular one that is usually represented by a uniform grid. In the case of

irregular domains, there might be exist suitable coordinate transformations to

achieve a rectangular computational domain and the governing equations are

then transformed into new forms that are usually more complicated. Deriva-

tive terms in the governing equations are simply replaced with equivalent ap-

proximate finite-difference expressions based on truncated Taylor series. The

methods have been applied to solve fluid mechanics problems (e.g. Lewis, 1979;

Noye and Tan, 1989; Prasad et al., 2011). However, because of their domain-

shape restrictions and large truncation errors, FDMs still have their limitations

in dealing with practical problems. In contrast, FEMs, FVMs, and BEMs,

which involve some sorts of integration, are capable of handling irregular ge-

ometries directly. In FEMs and FVMs, the problem domain is divided into a

finite number of non-overlapping small sub-domains identified as elements or

control volumes, i.e. a mesh. The field variables are sought in the form of

piecewise continuous polynomials defined over elements. For fluid mechanics

problems, FVMs are seen to be more attractive than FEMs. In BEMs, the

governing equations are converted into equivalent boundary integral equations.

The methods may require the discretisation on the boundaries (lines/surfaces)

of the domain only. FVMs, FEMs, and BEMs have achieved a lot of success in

solving engineering and science problems (Hortmann et al., 1990; Feng et al.,

1994a,b; Manzari, 1999; Sahin and Wilson, 2007; etc.). However, the task of

generating a mesh is still difficult, especially for 3D problems or even for 2D

problems with complex geometries. In addition, a very dense mesh is generally

needed to deal with flows with fine structure in practice (Peyret, 2002).

High-order discretisation methods include spectral methods (e.g. Fornberg,

1998; Peyret, 2002), differential quadrature methods (e.g. Shu and Richards,

1992; Bert and Malik, 1996), and radial basis function network (RBFN) based

methods (e.g. Kansa, 1990a; Power and Barraco, 2002; Power et al., 2007;

Šarler, 2005, 2009; Šarler et al., 2010; Divo and Kassab, 2007, 2008; Kosec and
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Šarler, 2008a,b; Mai-Duy and Tran-Cong, 2001a). These methods are capable

of providing accurate simulations for highly nonlinear problems such as buoy-

ancy flows with very thin boundary layers using relatively coarse grids/meshes.

In spectral methods, the computational domain also needs be a rectangular one

that is represented by a non-uniform grid. The field variables are sought in the

form of truncated Fourier series for periodic problems and Chebyshev polynomi-

als for non-periodic problems (Peyret, 2002). Spectral solutions to problems in

fluid dynamics were given in, for instance, (Ghosh et al., 1993; Paik et al., 1994;

Peyret, 2002). In RBFN-based methods, the computational domains can be of

complex geometries. A network of radial basis functions is used as an inter-

polant to represent the solution field over a set of data sites that are randomly

or uniformly distributed. In order to avoid the problem of reduced conver-

gence rates caused by differentiation, the integral collocation formulation was

proposed in (Mai-Duy and Tran-Cong, 2001a). For the integral formulation,

highest-order derivatives of the field variable in the partial differential equation

(PDE) are decomposed into RBFNs and these RBFNs are then integrated to

obtain expressions for its lower-order derivatives and the variable itself (inte-

grated RBFNs (IRBFN)). In (Mai-Duy and Tran-Cong, 2007), IRBFNs were

employed on each grid line (1D-IRBFNs) to solve second-order elliptic PDEs.

The 1D-IRBFN approximations at a grid node involve only points that lie on the

grid lines intersecting at that point rather than the whole set of nodes, leading

to a significant improvement in the matrix condition and computational effort.

RBFN-based methods are further described in Chapter 2. High-order methods

are capable of producing a solution that can converge at a high rate with re-

spect to grid/mesh refinement. However, their matrix is not as sparse as those

generated by low-order methods.
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1.1.3 Nonlinear solvers

The discretisation of (1.7)-(1.9), (1.11)-(1.12) and (1.13) leads to a set of non-

linear algebraic equations because of the presence of the advection/convection

terms. In the present project, we only consider the steady state of flows. There

are two basic approaches to handle this nonlinearity, namely a steady-state so-

lution approach and a time marching approach (Roache, 1998). Each approach

has its own particular strengths.

A steady-state solution approach

All time derivative terms in the transport equations are dropped out. Two

iterative techniques, namely the Picard iteration (Layton and Lenferink, 1995)

and the Newton iteration (Lan, 1994), are widely employed. The former is

known to be simpler but converge slower than the latter. It is noted that, in

the context of Newton iteration, the trust region dogleg techniques (Conn et al.,

2000) are capable of handling the cases where the starting point is far from the

solution and the Jacobian matrix is close to singular.

A time marching approach

Time derivative terms are widely discretised by means of finite difference. The

diffusion and advection terms can be treated implicitly or explicitly. In practice,

first-order accurate finite-difference schemes are usually employed to handle the

variation of the solution with time. At time t = 0, one needs to guess the

initial values of the field variables, e.g. using a lower-Re solution. In the case

of Re = 0, the initial solution can simply be set to zeros. The solution will then

be updated until a steady state is reached.
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1.2 Viscous flows in multiply-connected domains

1.2.1 Problem description

In this thesis, we consider viscous flows in multiply-connected domains. Figure

1.1 shows a typical domain, Π, of rectangular shape with sides {Γ1,Γ2,Γ3,Γ4}
and several holes of circular shape. Let Hi and ∂Hi be the region of the ith hole

and its boundary, respectively, where i = {1, · · · , N} in which N is the number

of holes. Flows in multiply-connected domains occur in many applications from

Figure 1.1: A typical multiply-connected domain

industry to biology, such as thermal conductivity for porous materials, natural

convection, cooling system, particulate suspension, transport of red blood cells

in a vessel, etc. Numerical simulation of such flows faces a lot of numerical diffi-

culties, particularly for the task of generating a mesh (Maury, 2001). Problems

to be studied in the project include natural convection flows and particulate
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flows.

Natural convection is of great interest in many fields of science and engineering

such as meteorology, nuclear reactors and solar energy systems. The problem

has been extensively studied by both experimental and numerical simulations.

The latter was conducted with a variety of numerical techniques such as finite-

difference methods (FDMs) (e.g. Kuehn and Goldstein, 1976; de Vahl Davis,

1983), finite-element methods (FEMs) (e.g. Manzari, 1999; Sammouda et al.,

1999), finite-volume methods (FVMs) (e.g. Glakpe et al., 1986; Kaminski and

Prakash, 1986), boundary-element methods (BEMs) (e.g. Kitagawa et al., 1988;

Hribersek and Skerget, 1999), RBFN-based methods (e.g. Šarler et al., 2004;

Divo and Kassab, 2008; Kosec and Šarler, 2008b; Ho-Minh et al., 2009; Mai-

Duy and Tran-Cong, 2001b; Mai-Duy et al., 2008) and spectral techniques (e.g.

LeQuéré, 1991; Shu, 1999).

Particulate suspensions, which involve transport of rigid particles suspended in

a fluid medium, occur in many industrial processes such as slurries, colloids and

fluidised beds. There is a need for the numerical prediction of the macroscopic

rheological properties of these multiphase materials from their microstructure

parameters. Various numerical schemes have been proposed, including Stoke-

sian Dynamics and direct numerical simulations. Examples of direct approaches

include the Arbitrary Lagrangian-Eulerian (ALE) moving mesh technique (e.g.

Hu et al., 1992; Feng et al., 1994a,b; Hu et al., 2001), the fictitious domain

method, in which no-slip boundary conditions were enforced using a distributed

Lagrange multiplier (DLM) (e.g. Glowinski et al., 1998; Wan and Turek, 2007;

Yu and Shao, 2007; D’Avino et al., 2008), and the lattice Boltzmann method,

where the governing equations are derived from microscopic models and meso-

scopic kinetic equations, (e.g. Ladd, 1994; Aidun and Lu, 1995; Aidun et al.,

1998).
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1.2.2 Numerical simulations

Discretisation techniques for multiply-connected domain problems can be broadly

classified into two categories. The first one is based on the boundary fitted mesh

approach, where only the original domain is considered and several nodes lie

on the boundary of the domain (Figure 1.2). The second one is based on the

domain embedding approach, where the original domain is converted into a

simply-connected domain that is then represented by a fixed regular grid/mesh

(Figure 1.3). 
 
 
 

 
 
 
 
 
 
 

Figure 1.2: A typical boundary fitted mesh

Boundary fitted methods

For this category, unstructured meshes/grids are usually used (Figure 1.2). It

can be seen that one can use a body fitted mesh to represent a geometrically
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complex surface accurately. Moreover, an unstructured finite element mesh can

be locally refined in particular regions in order to capture further details of

the solution fields. In the case of moving boundary, a distorted mesh needs be

regenerated and the flow field is then projected onto a new mesh. Such a task

is a sophisticated work. Further details can be found in, e.g., (Hu et al., 1992;

Feng et al., 1994a).

Figure 1.3: A typical domain embedding mesh

Domain embedding methods

For this category, regular meshes/grids can be used (Figure 1.3). Since the com-

putational domain is simply-connected, one can use fixed meshes and efficient

solution methods (e.g. fast direct solvers for elliptic problems on rectangular

domains). These are particularly helpful for the handling of moving boundary

problems. However, the implementation of boundary conditions on the holes



1.3 Motivation 13

is conducted in an approximate manner, making the solution less accurate.

Further details can be found in (Glowinski et al., 1998; Wan and Turek, 2006).

1.3 Motivation

It has generally been accepted that currently-used discrete schemes for solving

PDEs defined in multiply-connected domains still face a lot of numerical chal-

lenges. For finite-element-based methods (e.g. FEMs and FVMs), the task of

generating a finite-element mesh is complicated and time consuming. On the

other hand, for certain grid-based methods (e.g. FDMs and pseudo-spectral

methods), difficulties lie in the way to find suitable coordinate transformations.

This research project is mainly concerned with the development of accurate

and efficient discretisation schemes for the simulation of heat and fluid flows in

multiply-connected domains. Our objectives include the overcoming of draw-

backs associated with other methods as described above.

A high level of accuracy is achieved by means of the following main components.

• High-order RBFNs are employed to represent the field variables in the

governing equations. The order of accuracy of conventional low-order

polynomials is estimated as O(hα), where α is a finite small number and

h the mesh size. RBFNs can offer O(hγ), where the value of γ is dependent

on the smoothness of the solution. For problems having smooth solutions,

γ is known to be much greater than α.

• The integral collocation formulation is utilised to construct the RBFN

approximations. For conventional approximation schemes, the approxi-

mation order for a kth derivative is reduced to O(hγ−k). It is expected

that the use of integration in IRBFNs can avoid such a reduction.

• The constants of integration arising from the construction of the RBFN
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approximations are exploited to impose derivative boundary conditions

through the process of conversion of the RBF coefficient space into the

physical space. Since the conversion matrix is not over-determined, deriva-

tive boundary conditions are incorporated into the RBFN approximations

in an exact manner.

A high level of efficiency is achieved by means of the following main components.

• Point collocation is employed to discretise the governing equations. No

integrations are involved in the process of transforming the PDEs into sets

of algebraic equations.

• Cartesian grids are used to represent the problem domain. It is clear that

generating a Cartesian grid is much simpler and easier than generating a

finite-element mesh. This benefit is particularly important for the present

problems.

• One-dimensional (1D) IRBFNs rather than 2D-IRBFNs are employed to

simulate 2D problems in order to achieve some degree of local approxima-

tion. The 1D-IRBFN approximations at a nodal point involve nodes on

the two associated grid lines only.

• One-dimensional IRBFNs are also introduced into the domain embedding

approach towards the handling of moving boundary problems.

1.4 Outline of the Dissertation

The dissertation has seven chapters including this chapter (Introduction); each

chapter is presented in a self-explanatory way. The outline of the remaining

chapters is as follows.
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• Chapter 2 gives a brief review of RBFNs including IRBFNs and a de-

scription of a new 1D-IRBFN collocation method for solving heat transfer

problems governed by Poisson equation in multiply-connected domains.

The problem domain is simply discretised by a Cartesian grid. Special

attention is given to the handling of Neumann boundary conditions. The

proposed method is validated through some test problems with exact so-

lutions.

• Chapter 3 describes a new 1D-IRBFN collocation method for the dis-

cretisation of the stream-function - vorticity - temperature (ψ -ω - T )

formulation in multiply-connected domains. Special attention is given

to the derivation of computational vorticity boundary conditions for a

Cartesian grid. Examples used to validate the proposed method include

the buoyancy flows in concentric annuli.

• Chapter 4 describes a new 1D-IRBFN collocation method for the dis-

cretisation of the stream-function - temperature (ψ - T ) formulation in

multiply-connected domains. Special attention is given to the handling of

higher-order derivatives, double boundary conditions and unknown values

of the stream function on the inner boundaries. Examples used to vali-

date the proposed method include the buoyancy flows in concentric and

eccentric annuli and the viscous flows between a fixed outer cylinder and

a rotating inner cylinder.

• Chapter 5 describes a new 1D-IRBFN-based domain embedding method

for the solution of Poisson equation in multiply-connected domains. Spe-

cial attention is given to the handling of boundary conditions on the hole

boundaries. The proposed method is validated through several linear

boundary-value and initial-value problems.

• Chapter 6 presents a practical application of the proposed 1D-IRBFN

collocation method for numerical prediction of the bulk properties of par-

ticulate suspensions under shear conditions. Special attention is given
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to the reduction of a very large original domain to a reference compu-

tational domain and the implementation of sliding bi-periodic boundary

conditions. Results obtained are compared well with those based on finite

elements in the literature.

• Chapter 7 gives the closure of the present research and suggests some

possible future research developments.



Chapter 2

1D-integrated-RBFN calculation

of heat transfer in

multiply-connected domains

This chapter consists of two parts. The first gives a brief overview of RBFN-

based methods. The second describes a new technique based on Cartesian grids

and one-dimension (1D) IRBFNs for solving heat problems governed by Poisson

equations in multiply-connected domains. Important features of the proposed

method include: (i) Constructing the approximations through integration; (ii)

Employing a Cartesian grid to discretise the problem domain; and (iii) Using in-

tegrated RBFN approximations in one dimension to represent the approximate

solution. These features result in an efficient numerical scheme as (i) the pre-

processing is simple; (ii) the associated matrices have condition numbers that

are much lower than those yielded through conventional RBFN techniques; and

(iii) the reduction of convergence rate caused by differentiation is avoided. Both

Dirichlet and Neumann-type boundary conditions are considered. Several test

boundary-value and initial-value problems, some of which have exact solutions,

are employed to validate the method.
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2.1 Review of RBFN-based methods

RBFNs have become one of the main fields of research in numerical analysis

(Haykin, 1998). They have the property of universal approximation, i.e. an

arbitrary continuous function can be approximated to a prescribed degree of

accuracy by increasing the number of nodes (Poggio and Girosi, 1990; Park

and Sandberg, 1991, 1993). It is noted that some RBFN schemes can offer

an exponential rate of convergence (Madych and Nelson, 1988). RBFNs have

emerged as a powerful tool for the representation of a function and the solution

of an ODE/PDE.

A network of RBFs allows one to convert a nonlinear function representing a

physical field in a low-dimensional space (e.g. 1D, 2D and 3D) into a weighted

linear combination of RBFs in a very high-dimensional space. It can be math-

ematically described as

y(x) ≈ f(x) =
m∑

i=1

wigi(x), (2.1)

where y is the exact function, f the approximate function, x the position vector,

m the number of RBFs, {gi(x)}mi=1 the set of RBFs, and {wi}mi=1 the set of

weights to be found. Common types of RBF include

- the multiquadric function:

gi(x) =
√

‖ x− ci ‖2 +a2i , (2.2)

- the inverse multiquadric function:

gi(x) =
1√

‖ x− ci ‖2 +a2i
, (2.3)
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- the Gaussian function:

gi(x) = exp

(‖ x− ci ‖2
a2i

)
, (2.4)

where ci and ai are the centre and the width of the ith basis function, respec-

tively.

For a large class of RBFs including (2.2)-(2.4), the interpolation matrices de-

rived from (2.1) and a set of distinct data points are proven to be invertible

for some ai > 0 (Micchelli’s theorem (Micchelli, 1986)). Moreover, according

to the Cover theorem (Haykin, 1998), the higher the dimension of the hidden

space (i.e. the number of RBFs used), the more accurate the approximation

will be, indicating the property of “mesh convergence” of RBFNs. These im-

portant theorems can be seen to provide the basis for the design of RBFNs for

the solution of ODEs/PDEs.

2.1.1 Conventional direct/differential approach

The application of RBFNs for solving PDEs was first reported by Kansa (1990b),

where the RBF construction is based on differentiation (direct/differential ap-

proach). In this approach, the field variable is first decomposed into RBFs

using (2.1) and all relevant derivatives of the field variable are subsequently ob-

tained by differentiating (2.1). RBFN-based collocation methods are extremely

easy to implement and capable of achieving a high degree of accuracy using

relatively low numbers of nodal points. Furthermore, they require only a set

of unstructured discrete points to support the approximation, which naturally

offers the advantage of being meshless (Fasshauer, 2007). In this sense, RBFN-

based methods are more suitable for dealing with problems defined on complex

geometries. RBFN-based methods have been developed and applied to solve

different types of differential problems encountered in applied mathematics,

science and engineering (e.g. Zerroukat et al., 1998; Šarler et al., 2004; Šarler,
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2005; Šarler et al., 2006; Šarler, 2009; Šarler et al., 2010; Divo and Kassab,

2005, 2006, 2007, 2008; Vertnik and Šarler, 2006; Vertnik et al., 2006; Yun-Xin

and Yong-Ji, 2006; Kosec and Šarler, 2008a,b, 2009; Bernal and Kindelan, 2007;

Siraj-ul-Islam et al., 2008; Zahab et al., 2009; Chen et al., 2010; Roque et al.,

2010). Numerical experience has indicated that the accuracy of an RBFN so-

lution is strongly influenced by the shape parameter ai. Unfortunately, there

is still a lack of mathematical theories for specifying the optimal values of this

free parameter. Moreover, the resultant RBFN matrix is fully populated and

its condition number grows rapidly with increasing number of nodes. It was

reported in (Li and Hon, 2004) that the system matrix becomes unsolvable

when the total number of collocation points are over 1000. Direct applications

of RBFNs for large-scale problems can thus be seen to be limited. Several at-

tempts to circumvent these difficulties/limitations have been proposed in the

literatures. They include the use of preconditioning, compactly supported RBF,

domain decomposition and local approximation.

Works concerning the development of a pre-conditioner for RBFN collocation

methods include (Beatson et al., 1999; Ling and Kansa, 2005; Brown et al.,

2005; Mai-Duy and Tran-Cong, 2010). A badly conditioned linear system can

be replaced with a new system that is in much better condition. It can work

well for various values of the shape parameter and a large number of nodes.

Another way to improve the matrix condition number is to employ a class of

positive definite and compactly supported RBFs proposed by Wendland (1995,

1998).

RBFNs were also combined with domain decomposition (e.g. Li and Chen,

2003; Li and Hon, 2004; Divo and Kassab, 2006; Chinchapatnam et al., 2007;

Power et al., 2007). A domain of interest is divided into a set of subdomains,

leading to a series of coupled smaller subproblems. These subproblems can

be solved separately, which are suitable for parallel computing. Li and Chen

(2003) employed RBFN collocation methods in conjunction with domain de-
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composition for solving convection-diffusion problems at high Péclet numbers.

Li and Hon (2004) presented both overlapping and nonoverlapping domain de-

composition methods coupled with the meshless RBF method. Divo and Kassab

(2006) developed a domain decomposition RBF method for viscous incompress-

ible fluid flow problems. Chinchapatnam et al. (2007) proposed a numerical

procedure, based on RBFNs and Schwarz domain decomposition technique, to

solve time-dependent problems. Power et al. (2007) studied the influence of

the non-overlapping domain decomposition technique on the symmetric RBFN

collocation method.

Several researchers developed local RBFN methods, where only a small sub-

region, namely the influence domain, is considered for the construction of the

RBFN approximations at a nodal point. It is noted that the influence domain

is usually employed with circular/rectangular shape. Local methods lead to a

sparse and better-conditioned system matrix. Wu and Liu (2003) proposed a lo-

cal radial point interpolation method for incompressible flows. Shu et al. (2003)

incorporated local RBFNs into the differential quadrature method to simulate

incompressible flows. Šarler and Vertnik (2006) localised RBF approximations

using a set of overlapping subregions. Vertnik and Šarler (2006) developed

a meshless local RBFN collocation method for convective-diffusive solid-liquid

phase change problems. Divo and Kassab (2007) presented a localised RBFN

meshless method for coupled viscous fluid flow and convective heat transfer

problems. Chinchapatnam et al. (2009) proposed a mesh-free computational

method based on radial basis functions in a finite difference mode (RBF-FD). Li

et al. (2011) improved localised RBFN expansions using Hardy multiquadrics

for the desired unknowns. Skouras et al. (2011) coupled local multiquadrics

RBFNs with moving least square (MLS).
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Function f(x)

g(x)

g(x)

dg(x)
dx

∫
g(x)dx

Derivative df(x)
dx

Figure 2.1: Differential (left) and Integral (right) approaches

2.1.2 Indirect/Integral approach

Indirect/integrated RBFNs (IRBFNs) were proposed in (Mai-Duy and Tran-

Cong, 2001a). In the integral approach, the highest derivatives in a given PDE

are first decomposed into RBFs using (2.1), and lower derivatives and the field

variable itself are then obtained by integrating (2.1). Figure 2.1 shows a com-

parison of the ways in which DRBFNs and IRBFNs are constructed. The use of

integration, instead of conventional differentiation, to construct the RBFN ap-

proximations allows one (i) to avoid the reduction in convergence rate caused by

differentiation; and (ii) to make a numerical solution more stable. The constants
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of integration in IRBFNs have been found extremely useful in the solution of

ODEs/PDEs in several ways: (i) to provide a proper way of implementing Neu-

mann and multiple boundary conditions (Mai-Duy and Tran-Cong, 2007); (ii)

to describe irregular boundaries on a Cartesian grid accurately (Mai-Duy et al.,

2008); and (iii) to improve the continuity order of the approximate solution

across the subdomain interfaces (Mai-Duy and Tran-Cong, 2008). Numerical

results have shown that the integral approach performs better than the differen-

tial approach for both function approximation (Mai-Duy and Tran-Cong, 2003)

and solution of ODEs/PDEs (Mai-Duy, 2004). For simplicity, consider an uni-

variate function f(x). The integral approach can be mathematically described

as

dpf(x)

dxp
=

m∑

i=1

wigi(x) =
m∑

i=1

wiI
(p)
i (x), (2.5)

dp−1f(x)

dxp−1
=

m∑

i=1

wiI
(p−1)
i (x) + c1, (2.6)

dp−2f(x)

dxp−2
=

m∑

i=1

wiI
(p−2)
i (x) + c1x+ c2, (2.7)

· · · · · · · · · · · · · · ·
df(x)

dx
=

m∑

i=1

wiI
(1)
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · ·+ cp−2x+ cp−1,

(2.8)

f(x) =
m∑

i=1

wiI
(0)
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · ·+ cp−1x+ cp,

(2.9)

where I
(p−1)
i (x) =

∫
I
(p)
i (x)dx, I

(p−2)
i (x) =

∫
I
(p−1)
i (x)dx, · · · , I(0)i (x) =

∫
I
(1)
i (x)dx,

and {c1, c2, · · · , cp} are the constants of integration. In this thesis, the IRBFN

approximation scheme is said to be of pth-order, denoted by IRBFN-p, if the

pth-order derivative is taken as the starting point.
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2.2 One-dimensional IRBFN method for heat

transfer in multiply-connected domains

The objective of discretisation techniques is to reduce the PDEs to sets of alge-

braic equations. To do so, the problem domain needs be discretised into a set of

finite elements, a Cartesian grid or a set of unstructured points. Among these

typical types of domain discretisation, generating a Cartesian grid is seen to be

a straightforward task, and hence the computational cost associated with mesh

generation is much less than that associated with FEMs. Cartesian grid meth-

ods have a long history. Examples of Cartesian grid methods include FDMs

and pseudospectral methods. Applications of FDMs and pseudospectral meth-

ods to problems defined on non-rectangular domains are not straightforward.

One usually needs to use coordinate transformations to convert the problem

domain into a rectangular one. In recent years, there has been a great in-

terest in the development of Cartesian-grid-based techniques for dealing with

geometrically-complicated domains without the need for coordinate transforma-

tions; their applications have become widespread (e.g. Calhoun, 2002; Marella

et al., 2005; Ito et al., 2009; Šarler, 2009; Shinn et al., 2009; Udaykumar et al.,

2009; Erhart et al., 2010; Liao et al., 2010; Sugiyama et al., 2011).

Inspired by attractive features of Cartesian grid and IRBFNs, we extend 1D-

IRBFNs proposed in (Mai-Duy and Tran-Cong, 2007; Mai-Duy et al., 2008)

to handle differential problems with more complicated geometries. Consider

a multiply-connected domain as shown in Figure 2.2. The problem domain is

embedded in a Cartesian grid. Grid points outside the domain (external points)

together with internal points that fall very close - within a small distance - to the

boundary are removed. The remaining grid points are taken to be the interior

nodes. The boundary nodes are points that are generated by the intersection of

the grid lines with the boundaries. IRBFNs are employed to represent the field

variable on each line of the grid separately (1D-IRBFNs). The construction of
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the 1D-IRBFN approximations for a grid node thus involves only nodal points

that lie on lines intersecting at that point and parallel to the coordinate axes,

rather than the whole set of nodes. The inversion is now conducted for a series

of small matrices (each grid line) rather than for a large single matrix (whole

domain). This use of 1D-IRBFNs thus leads to a considerable reduction of

computational cost in constructing the system matrix over conventional RBFN

methods. The meshfree property (i.e. no underlying structured topologies

required) of 1D-IRBFNs is exploited to handle irregular boundaries, where the

boundary nodes do not generally coincide with grid nodes.

Figure 2.2: 1D-IRBFN discretisation and a typical grid line. Points on the grid
line consist of interior nodal points xi (◦) and boundary points xbi (2).
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2.2.1 Mathematical formulations

Heat transfer equations usually involve the following term

L2(T ) =
∂2T

∂x2
+
∂2T

∂y2
, (2.10)

where L2 is the Laplace operator and T the temperature. As presented earlier,

an IRBFN-p scheme permits the approximation of a function and its derivatives

of orders up to p. One can employ IRBFN-2 here to represent T . Consider a

typical grid line as shown Figure 2.2. On this grid line, the following expressions

are obtained by using (2.5)-(2.9) with p = 2

∂2T (x)

∂x2
=

m∑

i=1

wigi(x) =
m∑

i=1

wiI
(2)
i (x), (2.11)

∂T (x)

∂x
=

m∑

i=1

wiI
(1)
i (x) + c1, (2.12)

T (x) =

m∑

i=1

wiI
(0)
i (x) + c1x+ c2, (2.13)

where m is the number of RBFs on the grid line. It has generally been accepted

that, among RBFs, the multiquadric (MQ) scheme tends to result in the most

accurate approximation (Franke, 1982). The present technique implements the

MQ function whose form is

I
(2)
i (x) =

√
(x− ci)2 + a2i , (2.14)

I
(1)
i (x) =

(x− ci)

2
A+

a2i
2
B, (2.15)

I
(0)
i (x) =

(−a2i
3

+
(x− ci)

2

6

)
A+

a2i (x− ci)

2
B, (2.16)

where ci and ai are the centre and the width of the ith MQ, respectively; A =
√

(x− ci)2 + a2i ; and B = ln
(
(x− ci) +

√
(x− ci)2 + a2i

)
. A set of collocation

points {xi}mi=1 is chosen to be a set of centres {ci}mi=1. Such a set is comprised of

two subsets. The first subset consists of the interior nodal points ({xi}qi=1) that
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are also the grid nodes (regular nodes). The values of the field variable at the

interior points are unknown. The second subset is formed from the boundary

nodes ({xbi}2i=1) that do not generally coincide with the grid nodes (irregular

nodes).

Dirichlet boundary conditions

Assume that T is given at xb1 and xb2. Unlike the finite-difference and spectral

approximation schemes, 1D-IRBFNs have the capability to handle unstructured

nodes with high accuracy and thus to deal with irregular boundary in a direct

manner.

Evaluation of (2.13) at a set of collocation points results in


 T̂

T̂b


 = Ĉ ŵ, (2.17)

where

T̂ = (T1, T2, · · · , Tq)T ,

T̂b = (Tb1, Tb2)
T ,

ŵ = (w1, w2, · · · , wm, c1, c2)T ,

Ĉ =




I
(0)
1 (x1) · · · I

(0)
m (x1) x1 1

I
(0)
1 (x2) · · · I

(0)
m (x2) x2 1

...
. . .

...
...

...

I
(0)
1 (xq) · · · I

(0)
m (xq) xq 1

I
(0)
1 (xb1) · · · I

(0)
m (xb1) xb1 1

I
(0)
1 (xb2) · · · I

(0)
m (xb2) xb2 1




,

and m = q + 2.

The obtained system (2.17) for the unknown vector of network weights ŵ can
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be solved using the singular value decomposition (SVD) technique

ŵ = Ĉ−1


 T̂

T̂b


 , (2.18)

where Ĉ−1 is the pseudo-inverse of Ĉ.

Taking (2.18) into account, the values of the first and second derivatives of T

at the interior points are computed by (2.12)




∂T1
∂x

∂T2
∂x
...

∂Tq
∂x




=




I
(1)
1 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) 1 0

...
. . .

...
...

...

I
(1)
1 (xq) · · · I

(1)
m (xq) 1 0



Ĉ−1


 T̂

T̂b


 , (2.19)

and (2.11)




∂2T1
∂x2

∂2T2
∂x2

...

∂2Tq
∂x2




=




I
(2)
1 (x1) · · · I

(2)
m (x1) 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) 0 0

...
. . .

...
...

...

I
(2)
1 (xq) · · · I

(2)
m (xq) 0 0



Ĉ−1


 T̂

T̂b


 , (2.20)

or in compact forms

∂̂T

∂x
= D̂1xT̂ + k̂1x, (2.21)

and

∂̂2T

∂x2
= D̂2xT̂ + k̂2x, (2.22)

where the matrices D̂1x and D̂2x consist of all but the last two columns of the

product of two matrices on the right-hand side of (2.19) and (2.20), and k̂1x and

k̂2x are obtained by multiplying the vector T̂b with these last two columns. It is

noted that k̂1x and k̂2x are the vectors of known quantities related to boundary
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conditions.

Dirichlet and Neumann boundary conditions

It is known that RBFN results for Dirichlet and Neumann problems are gener-

ally less accurate than those for Dirichlet problems. To alleviate this problem,

several techniques have been proposed. Examples include (i) a properly selected

weight method, which is based on the observation of unbalanced errors between

domain, Neumann boundary, and Dirichlet boundary least-squares terms (Hu

et al., 2004); (ii) a stabilised RBF collocation scheme for Neumann type bound-

ary value problems (Libre et al., 2008); and (iii) a modified equilibrium on line

method to impose Neumann boundary conditions (Sadeghirad and Kani, 2009).

In this research, Neumann boundary conditions are presently incorporated into

the 1D-IRBFN approximations with the help of integration constants through

the process of converting the network-weight space into the physical space.

Assume that ∂T/∂x and T are given at xb1 and xb2, respectively (Figure 2.2).

The process of conversion above, i.e. (2.17)-(2.18), is modified as follows.




T̂

Tb1

Tb2
∂Tb1
∂x




=


 Ĉ

B







ŵ

c1

c2


 , (2.23)




ŵ

c1

c2


 =


 Ĉ

B




−1




T̂

Tb1

Tb2
∂Tb1
∂x



, (2.24)

where

B =
[
I
(1)
1 (xb1) · · · I

(1)
m (xb1) 1 0

]
.
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One obtains the following nodal derivative values of T by collocating (2.12) and

(2.11) at {xi}qi=1 and making use of (2.24)




∂T1
∂x

∂T2
∂x
...

∂Tq
∂x




=




I
(1)
1 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) 1 0

...
. . .

...
...

...

I
(1)
1 (xq) · · · I

(1)
m (xq) 1 0





 Ĉ

B




−1




T̂

Tb1

Tb2
∂Tb1
∂x



, (2.25)

and




∂2T1
∂x2

∂2T2
∂x2

...

∂2Tq
∂x2




=




I
(2)
1 (x1) · · · I

(2)
m (x1) 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) 0 0

...
. . .

...
...

...

I
(2)
1 (xq) · · · I

(2)
m (xq) 0 0





 Ĉ

B




−1




T̂

Tb1

Tb2
∂Tb1
∂x



. (2.26)

The 1D-IRBFN expressions for derivatives are now written in terms of nodal

values of T and they already satisfy the given boundary conditions. Thus one

only needs to force them to satisfy the governing equation. By collocating

the governing equation at interior points and Neumann boundary points (i.e.

nodal points associated with unknown values of T ), a square system of algebraic

equations is obtained, which is solved for the approximate temperature field. It

is noted that, as with FDMs, FVMs, BEMs and FEMs, the global 1D-IRBFN

approximations matrices are also formed through the assembly process.

2.2.2 Numerical examples

For all numerical examples studied, the width of the ith MQ-RBF, ai, is sim-

ply chosen to be the grid size h, and we remove all interior points that fall

within a distance of h/8 to the boundary. Three types of problems, namely

boundary-value problem with Dirichlet boundary conditions, boundary-value

problem with Dirichlet and Neumann boundary conditions, and initial-value
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problem with Dirichlet boundary conditions are considered.

The solution accuracy is measured by means of the discrete relative L2 norm of

the error defined as

Ne =

√∑M
i=1(T

e
i − Ti)2√∑M

i=1(T
e
i )

2

, (2.27)

where M is the number of unknown nodal values of T , and T e and T denote

the exact and approximate solutions, respectively. Another important measure

is the convergence rate α of the solution with respect to grid refinement

Ne(h) ≈ γhα = O(hα), (2.28)

in which α and γ are exponential model’s parameters. Given a set of ob-

servations, these parameters can be found by the general linear least squares

technique.

Example 1 - A boundary value problem (Dirichlet)

The present technique is first verified through the solution of a test problem

governed by

∂2T

∂x2
+
∂2T

∂y2
= b(x, y), (2.29)

on a multiply-connected domain and subject to Dirichlet boundary conditions.

The problem domain chosen and its typical discretisation are shown in Figure

2.3. Two particular driving functions are considered.
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Figure 2.3: Example 1 (boundary value problem - Dirichlet boundary condi-
tion): Domain of interest and its typical discretisation. Two holes are of cir-
cular shapes with the same radius 0.2. The coordinates of the hole centres are
(−0.4, 0.3) and (0.2;−0.3). It is noted that the nodes outside the domain are
removed.

Case 1:

b(x, y) = 2π2 cos(πy) cos(π(x− 0.5y)) + π2 sin(πy) sin(π(x− 0.5y))

+ π20.25 cos(πy) cos(π(x− 0.5y)). (2.30)

The exact solution is

T e(x, y) = cos(π(x− 0.5y)) cos(πy), (2.31)

from which boundary values of T can be easily derived.



2.2 One-dimensional IRBFN method for heat transfer in multiply-connected
domains 33

Case 2:

b(x, y) = 0. (2.32)

Analytic solution to this case is not available. The boundary conditions are set

to one at the outer square boundary and to zero at the inner boundaries.

For Case 1, a number of uniform grids, (12 × 12, 22 × 22, ..., 102 × 102), are

considered. Table 2.1 presents the matrix condition (denoted by cond(A)). It

can be seen that condition numbers of the present matrix are relatively low (e.g.

6.5× 103 with grid 102× 102). Figure 2.4 shows the profile of the approximate

solution. Figure 2.5 displays the behaviour of Ne against h, where the 1D-

IRBFN solution converges apparently as O(h3.28).

Table 2.1: Example 1 (boundary value problem - Dirichlet boundary condition
- Case 1): Condition numbers of the IRBFN system matrix.

Grid cond(A)
12× 12 4.4× 101

22× 22 2.0× 102

32× 32 5.5× 102

42× 42 1.2× 103

52× 52 1.7× 103

62× 62 2.0× 103

72× 72 3.3× 103

82× 82 4.5× 103

92× 92 5.2× 103

102× 102 6.5× 103

For Case 2, we present a visual comparison of the distribution of T between

the present technique and FEM (Figure 2.6). It is noted that the FEM result

is obtained using the PDE Toolbox in MATLAB. It can be seen that the two

solutions have similar behaviours.
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Figure 2.4: Example 1 (boundary value problem - Dirichlet boundary condition
- Case 1): Profile of the approximate solution using a grid of 42× 42.

Example 2 - A boundary value problem (Dirichlet and Neumann)

The driving function is taken as

b(x, y) = −cos(
√
x2 + y2)

(x2 + y2)

(
1

x2
+

1

y2

)
+

sin(
√
x2 + y2)

(x2 + y2)3/2y2

(
1

x2
+

1

y2

)

− 2
sin(

√
x2 + y2)√
x2 + y2

(2.33)

and the domain of interest is the region lying between a square of 1 × 1 and

a circle of radius 1/8 which are both centered at the origin (Figure 2.7). The
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Figure 2.5: Example 1 (boundary value problem - Dirichlet boundary condi-
tion - Case 1): Convergence behaviour of the approximate solution with grid
refinement.

exact solution for this problem can be verified to be

T e(x, y) = cos(
√
x2 + y2). (2.34)

from which Dirichlet boundary conditions on the inner circular boundary and

Neumann boundary conditions on the outer square boundary can be derived

analytically.

A number of grids, namely (12 × 12, 22× 22, · · · , 102 × 102), are employed to

study the convergence behaviour of the solution. Results concerning the error

Ne and condition numbers of the system matrix are given in Table 2.2. It can

be seen that the 1D-IRBFN solution is very accurate even at coarse grids (e.g.

Ne = 2.25× 10−4 using a grid of 12× 12) and condition numbers of the system
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Figure 2.6: Example 1 (boundary value problem - Dirichlet boundary condition
- Case 2): A contour plot of T by the 1D-IRBFN method using a grid of 42×42
(top) and FEM (bottom).
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matrix is relatively low (e.g. 3.1× 104 for a grid of 102× 102). A contour plot

of T is shown in Figure 2.8

Table 2.2: Example 2 (boundary value problem - Dirichlet and Neumann bound-
ary conditions): Overall accuracy of the solution T by the present technique.
Condition numbers of the IRBFN system matrix are also included.

Grid Ne(T ) cond(A)
12× 12 2.2529× 10−4 4.7× 102

22× 22 7.9877× 10−5 1.4× 103

32× 32 3.9202× 10−5 3.0× 103

42× 42 2.3111× 10−5 5.2× 103

52× 52 1.5405× 10−5 1.3× 104

62× 62 1.1084× 10−5 1.8× 104

72× 72 8.2404× 10−6 1.6× 104

82× 82 6.3450× 10−6 2.0× 104

92× 92 5.0574× 10−6 4.4× 104

102× 102 4.1250× 10−6 3.1× 104

Example 3 - An initial-value problem

Consider the following PDE

∂T

∂t
−

(
∂2T

∂x2
+
∂2T

∂y2

)
= (1 + 2π2k2t) sin(kπx) sin(kπy), (2.35)

where k is a given number. We choose the domain to be the same as that in

Example 1 (i.e. Figure 2.3). The exact solution is given by

T e(x, y, t) = sin(kπx) sin(kπy)t, (2.36)

from which the initial solution and Dirichlet boundary conditions are derived

analytically.

The time derivative term in (2.35) is simply discretised using a first-order finite-

difference scheme. It is noted that the system matrix, which is generated from
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Figure 2.7: Example 2 (boundary value problem - Dirichlet and Neumann
boundary conditions): Domain of interest and its typical discretisation. It is
noted that the nodes outside the domain are removed.

the Laplacian and the time derivative term in (2.35), stays the same during the

iterative process.

The spatial discretisation is based on Cartesian grids of 32 × 32 and 52 × 52.

Results concerning Ne for four values of k , namely 1, 2, 3, 4, using a time step

of 0.1 are listed in Table 2.3 and Table 2.4 for grids of 32 × 32 and 52 × 52,

respectively. Condition numbers of the system matrix are 5.5 × 102 for a grid

of 32 × 32 and 1.6 × 102 for 52× 52. Plots for T at t = 1 are shown in Figure

2.9. It can be seen that the behaviour of the solution T grows complex quickly

with increasing value of k and the present scheme is able to capture accurately

a very complex function at k = 4 using a relatively low number of nodes (about

900 nodes).
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Figure 2.8: Example 2 (boundary value problem - Dirichlet and Neumann
boundary conditions): Approximate solution using a grid of 42 × 42. This
plot contains 21 contour lines whose levels vary linearly from the minimum to
maximum values

Table 2.3: Example 3 (initial-value problem): Relative L2 errors of the solution
(grid of 32× 32). It is noted that a(b) represents a× 10b.

t k = 1 k = 2 k = 3 k = 4
0.1 6.1616(-5) 3.4048(-4) 8.7540(-4) 1.8977(-3)
0.2 6.6472(-5) 3.5274(-4) 8.9339(-4) 1.9259(-3)
0.3 6.8883(-5) 3.5777(-4) 9.0031(-4) 1.9368(-3)
0.4 7.0252(-5) 3.6040(-4) 9.0388(-4) 1.9425(-3)
0.5 7.1114(-5) 3.6200(-4) 9.0606(-4) 1.9460(-3)
0.6 7.1701(-5) 3.6308(-4) 9.0752(-4) 1.9483(-3)
0.7 7.2124(-5) 3.6385(-4) 9.0857(-4) 1.9500(-3)
0.8 7.2442(-5) 3.6443(-4) 9.0935(-4) 1.9513(-3)
0.9 7.2691(-5) 3.6488(-4) 9.0997(-4) 1.9522(-3)
1.0 7.2890(-5) 3.6524(-4) 9.1046(-4) 1.9530(-3)
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Table 2.4: Example 3 (initial-value problem): Relative L2 errors of the solution
(grid of 52× 52). It is noted that a(b) represents a× 10b.

t k = 1 k = 2 k = 3 k = 4
0.1 2.7378(-5) 1.5101(-4) 3.9744(-4) 8.5594(-4)
0.2 2.9372(-5) 1.5589(-4) 4.0499(-4) 8.6748(-4)
0.3 3.0365(-5) 1.5789(-4) 4.0789(-4) 8.7195(-4)
0.4 3.0932(-5) 1.5893(-4) 4.0938(-4) 8.7428(-4)
0.5 3.1291(-5) 1.5957(-4) 4.1029(-4) 8.7571(-4)
0.6 3.1536(-5) 1.5999(-4) 4.1089(-4) 8.7667(-4)
0.7 3.1714(-5) 1.6030(-4) 4.1133(-4) 8.7736(-4)
0.8 3.1847(-5) 1.6053(-4) 4.1165(-4) 8.7788(-4)
0.9 3.1952(-5) 1.6071(-4) 4.1191(-4) 8.7828(-4)
1.0 3.2036(-5) 1.6085(-4) 4.1211(-4) 8.7861(-4)

2.3 Concluding remarks

In this chapter, we give a brief review of RBFNs and then present 1D-IRBFN

calculations of heat problems governed by Poisson equation on irregular multiply-

connected domains. Numerical examples show that (i) accurate results are ob-

tained using relatively coarse grids; and (ii) condition numbers of the system

matrix are relatively low. In the following chapters, 1D-IRBFNs are further

developed for the simulation of fluid-flow problems.
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Figure 2.9: Example 3 (initial-value problem): 1D-IRBFN solution for four
values of k at t = 1 using a grid of 32× 32.



Chapter 3

1D-integrated-RBFN

discretisation of stream-function

- vorticity (ψ − ω) formulation in

multiply-connected domains

This chapter presents a new numerical collocation procedure, based on Carte-

sian grids and one-dimensional integrated radial-basis-function networks (1D-

IRBFNs), for the simulation of natural convection defined in two-dimensional

multiply-connected domains and governed by the stream-function - vorticity -

temperature (ψ−ω−T ) formulation. Special emphasis is placed on the handling

of vorticity values at boundary points that do not coincide with grid nodes. A

suitable formula for computing vorticity boundary conditions, which is based on

the approximations with respect to one coordinate direction only, is proposed.

Normal derivative boundary conditions for the stream function are forced to be

satisfied identically. Several test problems, including natural convection in an

annulus between square and circular cylinders, are considered to investigate the

accuracy of the proposed technique.
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3.1 Introduction

Natural convection, where the motion of a fluid is caused by the combination

of density variations and gravity, can be governed by the coupling of the mo-

mentum (velocity field) and energy (temperature field) equations within the

Boussinesq approximation. In the momentum equation, the fluid is assumed

to have a constant density except for the generation of buoyancy forces and in

the energy equation, one neglects the viscous dissipation and compressibility ef-

fects. The governing equations can be written in different dependent variables,

including the velocity - pressure - temperature (u − p − T ), stream-function -

vorticity - temperature (ψ−ω−T ), and stream-function - temperature (ψ−T )
formulations. Each formulation has some strengths and weaknesses from a com-

putational point of view.

With the introduction of the stream-function variable, the pressure variable

does not have to be considered, resulting in an easy implementation. However,

several issues arise, to which special attention should be paid. For example, in

the ψ − T approach, one has to cope with fourth-order derivatives and double

boundary conditions. Fourth-order systems are known to have higher matrix

condition numbers than second-order systems. Errors for approximating higher-

order derivatives are generally larger. In the implementation of double bound-

ary conditions, special treatments are required because of two values given at a

boundary point. For the ψ−ω−T formulation, one has to derive computational

boundary conditions for the vorticity transport equation. The boundary vortic-

ity values are defined through the Poisson equation, which needs to be solved

discretely on the boundaries. The ψ − ω − T approach requires the approxi-

mations for derivatives of order up to 2 (instead of 4), leading to a significant

improvement in the matrix condition number over the ψ − T approach. This

feature is very attractive in dealing with flows with a fine structure as a large

number of nodes is usually required for an accurate simulation.
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Numerical solutions to these formulations can be achieved by means of dis-

cretisation, followed by solutions of the resultant algebraic equations. Results

have been reported using different numerical techniques such as FDMs, FEMs,

FVMs, BEMs, meshless methods and spectral methods (e.g. Kuehn and Gold-

stein, 1976); Manzari, 1999; Glakpe et al., 1986; Hribersek and Skerget, 1999;

Šarler et al., 2004; Šarler, 2005; Kosec and Šarler, 2008a; Shu, 1999). These

methods are based on a finite-element mesh, a finite-volume mesh, a Carte-

sian grid or a set of unstructured points. When dealing with non-rectangular

domains, conventional FDMs and pseudospectral techniques require coordinate

transformations to convert the physical domains into rectangular ones (e.g.

Moukalled and Acharya, 1996; Shu and Zhu, 2002). The relationships between

the physical and computational coordinates are given by a set of algebraic equa-

tions or a set of PDEs, depending on the level of complexity of the geometry.

These transformation processes are, in general, complicated. It is very desirable

that one is able to retain the PDEs in their original form (i.e. in terms of x and

y coordinates) and then solve them on a Cartesian grid. Such a numerical solu-

tion procedure can be very economical. The use of Cartesian grids for solving

problems defined on irregular domains has received much increased attention in

recent decades.

It has been recognised that RBFN-based methods are easy to implement and

capable of achieving a high level of accuracy using a relatively-small number of

nodes. These approximators can work well with gridded and scattered points.

RBFN solutions to fluid flow problems can be found in Ding et al., 2006; Divo

and Kassab, 2006, 2007, 2008; Kosec and Šarler, 2008a,b; Orsini et al., 2009;

Šarler et al., 2004; Šarler, 2005, 2009; Zahab et al., 2009; Erhart et al. (2010).

One can construct the RBFN approximations through differentiation or inte-

gration. Since integration is a smoothing operator, the latter has higher ap-

proximation power than the former in the handling of derivative functions (e.g.

Mai-Duy and Tran-Cong, 2003; Mai-Duy et al., 2008; Mai-Duy and Tanner,

2005).
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This chapter reports a Cartesian-grid-based collocation technique incorporating

1D-IRBFNs on grid lines for the simulation of natural convection in multiply-

connected domains. The technique combines strengths of the three approaches,

namely 1D-IRBFNs (high-order accuracy), Cartesian grids (easy preprocessing)

and the ψ−ω−T formulation (low-order system). It should be emphasised that

conventional RBFN methods lead to fully-populated matrices that tend to be-

come ill-conditioned quickly with increasing numbers of RBFs. Instead of using

conventional schemes, 1D-IRBFN approximation schemes (Mai-Duy and Tran-

Cong, 2007) are utilised in the present work. We take the governing equations in

the ψ−ω−T formulation. A new formula for deriving computational vorticity

boundary conditions on a Cartesian grid is developed. First derivatives of the

stream function along the boundaries are incorporated into computational vor-

ticity boundary values by means of integration constants. The present IRBFN

approximations are constructed to satisfy all boundary conditions identically.

The matrix condition number is significantly improved over that produced by

the ψ− T formulation. Since there are no coordinate transformations required,

the present technique works in a similar fashion for all domain shapes. Results

obtained are compared well with available numerical data in literature.

The remainder of the chapter is organised as follows. Section 3.2 gives a brief

review of the governing equations. In Section 3.3, the proposed technique is de-

scribed. Emphasis is placed on the development of a novel formula for handling

vorticity boundary conditions at irregular boundary points. Numerical results

are presented in Section 3.4. Section 3.5 concludes the chapter.

3.2 Governing equations

The ψ − ω − T formulation is used here. The non-dimensional basic equations

for natural convection under the Boussinesq approximation in the Cartesian
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x− y coordinate system can be written as (e.g. Ostrach, 1988)

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (3.1)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

√
Pr

Ra

(
∂2ω

∂x2
+
∂2ω

∂y2

)
− ∂T

∂x
, (3.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (3.3)

where ψ is the stream function, ω the vorticity, T the temperature, t the time, u

and v the velocity components, and Pr and Ra the Prandtl and Rayleigh num-

bers defined as Pr = ν/α and Ra = βg∆TL3/αν, in which ν is the kinematic

viscosity, α the thermal diffusivity, β the thermal expansion coefficient and g

the gravity, respectively. In this dimensionless scheme, L, ∆T (temperature

difference), U =
√
gLβ∆T and (L/U), are taken as scale factors for length,

temperature, velocity and time, respectively. Here, the velocity scale is chosen

in such a way that the buoyancy and inertial forces are balanced (e.g. Ostrach,

1988).

The velocity components are defined in terms of the stream function as

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

The given velocity boundary conditions can be transformed into two boundary

conditions on the stream function and its normal derivative

ψ = γ,
∂ψ

∂n
= ξ,

where n is the direction normal to the boundary, and γ and ξ prescribed func-

tions. In the case of fixed concentric cylinders, non-slip boundary conditions

usually lead to γ = 0 and ξ = 0.
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3.3 The present technique

The fluid domain is simply embedded in a Cartesian grid. Grid nodes outside

the domain are removed from the computations. Boundary points are generated

by the intersection of the grid lines and the boundaries of the domain. It can

be seen that boundary conditions are over-prescribed for the stream-function

equation (3.1) and under-prescribed for the vorticity equation (3.2). Normal

derivative boundary conditions for the stream function are utilised to derive

boundary conditions for the vorticity. For natural-convection problems em-

ployed in this study, boundary conditions for the energy equation (3.3) are the

temperature values. Consequently, the three governing equations are all subject

to Dirichlet boundary conditions. On a grid line, 1D-IRBFNs are employed to

represent the stream function, vorticity and temperature variables.

3.3.1 1D-IRBFN discretisation

All PDEs in the present governing equations are of second order. Consider an

x−grid line. Making use of (2.5)-(2.9) with p = 2, second-order derivative of

the field variable f along a grid line can be decomposed into RBFs

∂2f(x)

∂x2
=

m∑

i=1

wigi(x) =

m∑

i=1

wiI
(2)
i (x), (3.4)

where m is the number of RBFs, {gi(x)}mi=1 ≡
{
I
(2)
i (x)

}m
i=1

the set of RBFs,

{wi}mi=1 the set of weights to be found and f represents ψ, ω and T . Approximate

expressions for first-order derivative and the field variable are then obtained
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through integration

∂f(x)

∂x
=

m∑

i=1

wiI
(1)
i (x) + c1, (3.5)

f(x) =

m∑

i=1

wiI
(0)
i (x) + c1x+ c2, (3.6)

where I
(1)
i (x) =

∫
I
(2)
i (x)dx and I

(0)
i (x) =

∫
I
(1)
i (x)dx. As shown in Figure

x1 x2 xq

xb1 xb2

Figure 3.1: Points on a grid line consist of interior points xi (◦) and boundary
points xbi (2).

3.1, a grid line contains two sets of points. The first set consists of q interior

points that are also the grid nodes (regular nodes). The function values at the

interior points ({xi}qi=1) are unknown. The second set is formed with the two

boundary nodes that do not generally coincide with the grid nodes (irregular

nodes). At the boundary nodes (xb1 and xb2), the function values are given

(Dirichlet boundary conditions). The boundary conditions are incorporated into

the IRBFN approximations through the process of conversion of the network-

weight space into the physical space. Collocating (3.6) at the nodal points

yields


 f̂

f̂b


 = Î(0)

[2]




ŵ

c1

c2


 , (3.7)



3.3 The present technique 49

where

f̂ = (f(x1), f(x2), · · · , f(xq))T ,

f̂b = (f(xb1), f(xb2))
T ,

ŵ = (w1, w2, · · · , wm)T ,

Î(0)
[2] =




I
(0)
1 (x1) I

(0)
2 (x1) · · · I

(0)
m (x1) x1 1

I
(0)
1 (x2) I

(0)
2 (x2) · · · I

(0)
m (x2) x2 1

...
...

. . .
...

...
...

I
(0)
1 (xq) I

(0)
2 (xq) · · · I

(0)
m (xq) xq 1

I
(0)
1 (xb1) I

(0)
2 (xb1) · · · I

(0)
m (xb1) xb1 1

I
(0)
1 (xb2) I

(0)
2 (xb2) · · · I

(0)
m (xb2) xb2 1




,

m = q + 2 and the subscript [2] indicates that the integral formulation starts

with second-order derivatives. Solving (3.7) for the coefficient vector including

the two integration constants results in




ŵ

c1

c2


 =

(
Î(0)
[2]

)
−1


 f̂

f̂b


 , (3.8)

where
(
Î(0)
[2]

)
−1

is the generalised inverse of Î(0)
[2] .

The values of the first and second derivatives of f with respect to x at the

interior points are thus computed in terms of nodal variable values




∂f(x1)
∂x

∂f(x2)
∂x
...

∂f(xq)
∂x




= Î(1)
[2]

(
Î(0)
[2]

)
−1


 f̂

f̂b


 , (3.9)
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and




∂2f(x1)
∂x2

∂2f(x2)
∂x2

...

∂2f(xq)
∂x2




= Î(2)
[2]

(
Î(0)
[2]

)
−1


 f̂

f̂b


 , (3.10)

where

Î(1)
[2] =




I
(1)
1 (x1) I

(1)
2 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) I

(1)
2 (x2) · · · I

(1)
m (x2) 1 0

...
...

. . .
...

...
...

I
(1)
1 (xq) I

(1)
2 (xq) · · · I

(1)
m (xq) 1 0



,

and

Î(2)
[2] =




g1(x1) g2(x1) · · · gm(x1) 0 0

g1(x2) g2(x2) · · · gm(x2) 0 0
...

...
. . .

...
...

...

g1(xq) g2(xq) · · · gm(xq) 0 0



.

Expressions (3.9) and (3.10) can be rewritten in compact form

∂̂f

∂x
= D̂1xf̂ + k̂1x, (3.11)

and

∂̂2f

∂x2
= D̂2xf̂ + k̂2x, (3.12)

where D̂1x and D̂2x are the first- and second-order differentiation matrices in

the physical space, and k̂1x and k̂2x are the known vectors whose components

are functions of given boundary conditions.

In the same manner, one can obtain the IRBFN expressions for ∂f/∂y and



3.3 The present technique 51

∂2f/∂y2 at the interior points along a vertical grid line.

As with FDMs, FVMs, BEMs and FEMs, the IRBFN approximations will be

gathered together to form the global matrices for the discretisation of the PDE.

3.3.2 A new formula for computing vorticity boundary

conditions

The values of the vorticity on the boundaries can be computed via

ωb =
∂2ψb
∂x2

+
∂2ψb
∂y2

, (3.13)

where the subscript b is used to indicate the boundary quantities. The handling

of ωb thus involves the evaluation of second-order derivatives of the stream

function in both x and y directions.

For regular boundary points (also grid nodes), one can apply (3.13) directly. The

x− and y−grid lines passing through those points can be used for computing

∂2ψb/∂x
2 and ∂2ψb/∂y

2, respectively. However, in general, the boundary points

do not coincide with the grid nodes and hence they lie on either x− or y−grid

lines. Information about ψ is thus given explicitly in one coordinate direction

only. A great challenge here is how to compute second derivatives of ψ in (3.13)

with respect to the direction without a grid line. A new formula to overcome

this difficulty is proposed as follows.

Consider a curved boundary, along which the values for ψ and ∂ψ/∂n are pre-

scribed (Figure 3.2). It can be seen that the values of ∂ψ/∂x and ∂ψ/∂y on

the boundary can then be obtained in a straightforward manner. Let s be the

arc length of the boundary. By introducing an interpolating scheme (e.g. 1D-

IRBFNs), one is able to derive derivatives of ∂ψ/∂x and ∂ψ/∂y with respect to

s such as ∂2ψ/∂x∂s and ∂2ψ/∂y∂s.



3.3 The present technique 52

Figure 3.2: A curved boundary.

A tangential derivative of a function f at a boundary point can be computed

using the following formula

∂f

∂s
=
∂f

∂x
tx +

∂f

∂y
ty, (3.14)

where tx and ty are the two x and y components of the unit vector t̂ tangential

to the curve (tx = ∂x/∂s and ty = ∂y/∂s).

Replacing f with ∂ψb/∂x, one has

∂2ψb
∂x∂s

=
∂2ψb
∂x2

tx +
∂2ψb
∂x∂y

ty, (3.15)

or

∂2ψb
∂x∂y

=
1

ty

(
∂2ψb
∂x∂s

− ∂2ψb
∂x2

tx

)
, (3.16)

where ∂2ψb/∂x∂s is considered as a known quantity.

Similarly, taking f as ∂ψb/∂y results in

∂2ψb
∂x∂y

=
1

tx

(
∂2ψb
∂y∂s

− ∂2ψb
∂y2

ty

)
, (3.17)
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where ∂2ψb/∂y∂s is a known value.

From (3.16) and (3.17), one can derive the relationship between ∂2ψ/∂x2 and

∂2ψ/∂y2 at a boundary point

1

ty

(
∂2ψb
∂x∂s

− ∂2ψb
∂x2

tx

)
=

1

tx

(
∂2ψb
∂y∂s

− ∂2ψb
∂y2

ty

)
. (3.18)

Consider an x−grid line. The interpolating scheme employed along this line

does not facilitate the computation of second-order derivative of ψ with respect

to the y coordinate. However, such a derivative at a boundary point can be

found by using (3.18)

∂2ψb
∂y2

=

(
tx
ty

)2
∂2ψb
∂x2

+ qy, (3.19)

where qy is a known quantity defined by

qy = −tx
t2y

∂2ψb
∂x∂s

+
1

ty

∂2ψb
∂y∂s

. (3.20)

By substituting (3.19) into (3.13), a boundary condition for the vorticity at a

boundary point on a horizontal grid line will be computed by

ωb =

[
1 +

(
tx
ty

)2
]
∂2ψb
∂x2

+ qy, (3.21)

where only the approximations in the x direction are needed.

In the same manner, on a vertical grid line, a boundary condition for the vor-

ticity at a boundary point will be computed by

ωb =

[
1 +

(
ty
tx

)2
]
∂2ψb
∂y2

+ qx, (3.22)
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where qx is a known quantity defined by

qx = − ty
t2x

∂2ψb
∂y∂s

+
1

tx

∂2ψb
∂x∂s

. (3.23)

The boundary conditions for the vorticity are thus written in terms of second

derivative of the stream function with respect to x or y only.

3.3.3 Numerical implementation of vorticity boundary

conditions

As mentioned earlier, normal derivative boundary conditions for the stream

function are used for solving the vorticity transport equation. As a result, the

values of ∂ψ/∂x and ∂ψ/∂y at the boundary points have to be incorporated

into (3.21) and (3.22), respectively.

It is well known that the computational vorticity boundary conditions strongly

affect the performance of a numerical discretisation scheme. To evaluate the

values of a second-order derivative using integrated RBFs only, the 1D-IRBFN

scheme of at least second order needs be employed. As shown in (Mai-Duy and

Tanner, 2005), higher-order IRBFNs can give more accurate results. In this

study, we attempt to employ 1D-IRBFNs of order 2 (Scheme 1) and 4 (Scheme

2), in which second and fourth derivatives of ψ are respectively decomposed

into RBFs, to evaluate ∂2ψ/∂x2 and ∂2ψ/∂y2 in (3.21) and (3.22). A distin-

guishing feature here is that derivative boundary values, ∂ψ/∂x and ∂ψ/∂y,

are incorporated into the IRBFN approximations by means of the constants of

integration.

Along an x−grid line, the process of conversion of the network-weight space
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into the physical space can be described as follows.

B̂


 ŵ

ĉ


 =




ψ̂

ψ̂b
∂̂ψb

∂x


 , (3.24)

where ĉ is a vector of integration constants, ŵ and ψ̂ are defined as before,

ψ̂b = (ψ(xb1), ψ(xb2))
T ,

∂̂ψb
∂x

=

(
∂ψ(xb1)

∂x
,
∂ψ(xb2)

∂x

)T

,

and

B̂ =


 B̂1

B̂2


 ,

in which

B̂1 = Î(0)
[2] ,

B̂2 =


 I

(1)
1 (xb1) I

(1)
2 (xb1) · · · I

(1)
m (xb1) 1 0

I
(1)
1 (xb2) I

(1)
2 (xb2) · · · I

(1)
m (xb2) 1 0


 ,

for Scheme 1, and

B̂1 = Î(0)
[4] =




I
(0)
1 (x1) I

(0)
2 (x1) · · · I

(0)
m (x1) x31/6 x21/2 x1 1

I
(0)
1 (x2) I

(0)
2 (x2) · · · I

(0)
m (x2) x32/6 x22/2 x2 1

...
...

. . .
...

...
...

...
...

I
(0)
1 (xm) I

(0)
2 (xm) · · · I

(0)
m (xm) x3m/6 x2m/2 xm 1



,

B̂2 =


 I

(1)
1 (xb1) I

(1)
2 (xb1) · · · I

(1)
m (xb1) x2b1/2 xb1 1 0

I
(1)
1 (xb2) I

(1)
2 (xb2) · · · I

(1)
m (xb2) x2b2/2 xb2 1 0


 ,

for Scheme 2, where I
(4)
i (x) = gi(x), I

(3)
i (x) =

∫
I
(4)
i (x), · · · , I(0)i (x) =

∫
I
(1)
i (x).

Taking (3.24) into account, second derivatives of ψ at the two boundary points
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can be expressed in terms of the values of ψ at every point on the grid line and

the values of ∂ψ/∂x at the two boundary points

∂̂2ψb
∂x2

= D̂B̂−1




ψ̂

ψ̂b
∂̂ψb

∂x


 , (3.25)

where

D̂ =


 g1(xb1) g2(xb1) · · · gm(xb1) 0 0

g1(xb2) g2(xb2) · · · gm(xb2) 0 0




for Scheme 1, and

D̂ =


 I

(2)
1 (xb1) I

(2)
2 (xb1) · · · I

(2)
m (xb1) xb1 1 0 0

I
(2)
1 (xb2) I

(2)
2 (xb2) · · · I

(2)
m (xb2) xb2 1 0 0




for Scheme 2.

It should be emphasised that the IRBFN approximation for ∂2ψ/∂x2 satisfies

normal derivative of ψ at the two boundary points identically. Substituting

(3.25) into (3.21), one is able to obtain the boundary conditions for the vorticity

equation.

The process of computing the values of the vorticity at the two boundary points

on a vertical line is similar to that on a horizontal line.

3.3.4 Solution procedure

The three governing equations must be solved simultaneously to find the values

of the temperature, vorticity and stream function at the discrete points within

the domain. In this chapter, a time marching approach is adopted and at each

time step, to minimise the memory requirement, the three equations are solved
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in a sequential manner. The solution procedure involves the following main

steps.

1. Guess the distributions of T, ω and ψ.

2. Discretise the governing equations in time using a first-order accurate

finite-difference scheme, where the diffusive and convective terms are treated

implicitly and explicitly, respectively.

3. Discretise the governing equations in space using 1D-IRBFNs. Since the

differentiation matrices are the same for all variables, the construction

process only needs to be carried out for one variable. The system matrices,

which involve the IRBFN approximations for the Laplacian operator in

the governing equations, stay the same during the iterative process. All

equations are subject to Dirichlet boundary conditions.

4. Solve the energy equation (3.3) for T .

5. Derive computational boundary conditions for ω.

6. Solve the vorticity equation (3.1) for ω.

7. Solve the stream-function equation (3.2) for ψ.

8. Check to see whether the solution has reached a steady state using the

following convergence measure (CM)

CM =

√
∑nip

i=1

(
ψ

(k)
i − ψ

(k−1)
i

)2

√
∑nip

i=1

(
ψ

(k)
i

)2
< ǫ, (3.26)

where nip is the number of interior points, k the time level and ǫ the

tolerance (in this study, ǫ is taken to be 10−12).

9. If it is not satisfied, advance time step and repeat from step 4. Otherwise,

stop the computation and output the results.
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3.4 Numerical examples

The first two examples, for which analytic solutions are available, are used to

verify the vorticity boundary formula and its numerical implementations on

both simply- and multiply-connected domains. In the last two examples, the

proposed technique is applied for the simulation of natural convection in the

region between two concentric cylinders. The thermal boundary conditions are

prescribed as T = 0 and T = 1 along the stationary outer and inner walls,

respectively.

The present technique implements the multiquadric (MQ) basis function whose

form is

gi(x) =
√
(x− ci)2 + a2i , (3.27)

where ci and ai are the centre and the width of the ith MQ function.

For all numerical examples presented in this chapter, the problem domain is

discretised with a uniform Cartesian grid. The width of the ith MQ-RBF, ai,

is simply chosen to be the grid spacing h (grid size), and the interior points

that fall very close to the boundary (within a distance of h/8) are removed

from the set of nodal points. In the first two examples, the accuracy of an

approximation scheme is measured by means of the discrete relative L2 norm

of the error defined as

Ne =

√∑M
i=1(f

e
i − fi)2√∑M

i=1(f
e
i )

2

, (3.28)

where M is the number of unknown nodal values of f , and f e and f are the

exact and approximate solutions, respectively. Another important measure is

the convergence rate α of the solution with respect to the refinement of spatial
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discretisation

Ne(h) ≈ γhα = O(hα), (3.29)

in which α and γ are exponential model’s parameters. Given a set of ob-

servations, these parameters can be found by the general linear least squares

technique.

3.4.1 Example 1: Circular shape domain

The present technique is first verified through the solution of the following test

problem governed by

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (3.30)

∂2ω

∂x2
+
∂2ω

∂y2
= b(x, y), (3.31)

on a unit circular domain with the boundary conditions in terms of ψ and

∂ψ/∂n. The exact solution of this problem is taken as

ψe = cos(
√
x2 + y2), (3.32)

from which the driving function b(x, y) and the boundary conditions can be

derived analytically. The problem domain and its typical discretisation are

shown in Figure 3.3, while the exact solution is shown in Figure 3.4. It can be

seen that the two components of the unit vector t̂ tangential to the boundary

of the present domain are simply computed by

tx =
−y√
x2 + y2

, (3.33)

ty =
x√

x2 + y2
. (3.34)
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Figure 3.3: Example 1: Domain of interest and its typical discretisation. It is
noted that the nodes outside the domain are removed.

Expressions for the vorticity at the boundary nodes on the x− and y−grid lines

thus reduce to

ωb =

[
1 +

(y
x

)2
]
∂2ψb
∂x2

+ qy, (3.35)

ωb =

[
1 +

(
x

y

)2
]
∂2ψb
∂y2

+ qx, (3.36)

each of which only requires the approximation of second-order derivative of ψ

with respect to one coordinate direction. Both Scheme 1 and Scheme 2 are

employed to compute the above expressions.

Two investigations are conducted here: (i) the accuracy of Scheme 1 and Scheme

2 for approximating ∂2ψ/∂x2 in (3.35); and (ii) the accuracy of the RBF solution

to the PDEs.
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Figure 3.4: Example 1 (circular shape domain): Exact solution. It is noted that
the exact solution is plotted over the square covering the problem domain.

For the former, calculations are carried out for various grids from 5×5 to 90×90.

Results of Ne obtained by the two different order interpolating schemes are

displayed in Table 3.1, which shows that Scheme 2 gives much more accurate

results than Scheme 1. Scheme 2 is thus recommended for use in practice.

For the latter, a number of grids, namely (12×12, 22×22, · · · , 62×62), are em-

ployed to study the convergence behaviour of the solution. Results concerning

the condition number of the system matrix, denoted by cond(A), and the error

Ne are given in Table 3.2. The present technique produces system matrices with

relatively-low condition numbers. For example, the matrix condition number is

only 6.0× 103 for a grid of 62× 62. It can be seen that the choice of Scheme 1

(1D-IRBFN-2s) and Scheme 2 (1D-IRBFN-4s) for computing ωb in (3.35) and

(3.36) has a profound influence on the overall accuracy of the IRBFN solution.
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Table 3.1: Example 1( circular shape domain): Errors by 1D-IRBFN-2s (Scheme
1) and 1D-IRBFN-4s (Scheme 2) in the computation of second derivatives of ψ
at the boundary points. It is noted that a(b) represents a× 10b.

Grid Ne
Scheme 1 Scheme 2

5× 5 3.5(-2) 4(-3)
10× 10 3.7(-2) 5.3(-4)
30× 30 6.8(-2) 1.1(-4)
50× 50 9.6(-2) 9.5(-5)
70× 70 6.9(-2) 1.9(-5)
90× 90 7.3(-2) 1.3(-5)

The fourth-order boundary scheme outperforms the second-order one regarding

both accuracy and convergence rate. The recommended scheme 2 yields a fast

rate of convergence, Ne of O(h3.1), in comparison with that of Scheme 1, Ne of

O(h1.8).

3.4.2 Example 2: Multiply-connected domain

This test problem is also governed by the two coupled equations (3.30) and

(3.31) with Dirichlet boundary conditions, ψ and ∂ψ/∂n. The driving function

is taken as

b(x, y) = 256(π2 − 1)2 [sin(4πx) cosh(4y) + cos(4πx) sinh(4y)] , (3.37)

and the domain of interest is the region lying between a circle of radius 1/2 and

a square of dimensions 1/2× 1/2 which are both centered at the origin (Figure

3.5). The exact solution for this problem is

ψe = sin(4πx) cosh(4y)− cos(4πx) sinh(4y). (3.38)
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Table 3.2: Example 1 (circular shape domain): Overall accuracy of the so-
lution ψ by the present technique employed with two different computational
vorticity boundary schemes, namely Scheme 1 (1D-IRBFN-2s) and Scheme 2
(1D-IRBFN-4s). Condition numbers of the IRBFN system matrix are also in-
cluded. It is noted that h is the spacing (grid size) and a(b) represents a× 10b.

Grid Ne(ψ) cond(A)
Scheme 1 Scheme 2

12× 12 1.5(-3) 6.5(-5) 8.9(1)
22× 22 9.4(-4) 1.1(-5) 3.6(2)
32× 32 7.4(-4) 3.9(-6) 8.0(2)
42× 42 6.4(-4) 1.4(-6) 2.4(3)
52× 52 6.4(-4) 6.4(-7) 3.3(3)
62× 62 4.5(-4) 3.1(-7) 6.0(3)

O(h1.8) O(h3.1)

The variation of (3.38) over the extended square domain is plotted in Figure

3.6. A number of uniform grids, (10× 10, 20× 20, ..., 50× 50), are considered.

Since inner boundaries are parallel to the x and y axes, one can use the original

formula for deriving a computational vorticity boundary condition. The stream-

function equation can be rewritten as

ωb =
∂2ψb
∂n2

+
∂2ψb
∂t2

, (3.39)

where ∂2ψb/∂t
2 is a known quantity derived from the boundary conditions for ψ,

and ∂2ψb/∂n
2 can be evaluated using a grid line passing through that point. On

the outer boundary, the handling of ωb is similar to that in the previous example.

For brevity, only the recommended scheme (i.e. Scheme 2) for computing ωb is

employed here. Results concerning Ne(ψ) are given in Table 3.3, from which one

can also make remarks that are similar to those in the case of simply-connected

domains. It can be seen that the present matrix condition numbers are relatively

low and the approximate solution converges fast to the exact solution with Ne

of O(h3.78).



3.4 Numerical examples 64

Table 3.3: Example 2 (multiply-connected domain): Condition numbers of the
system matrix and relative L2 errors of the solution. It is noted that h is the
spacing (grid size) and a(b) represents a× 10b.

Grid Ne cond(A)
10× 10 2.6(−2) 1.2(1)
20× 20 9.4(−4) 4.5(1)
30× 30 2.0(−4) 1.0(2)
40× 40 8.5(−5) 1.8(2)
44× 44 6.0(−5) 2.5(2)
50× 50 4.2(−5) 2.9(2)

O(h3.78)

3.4.3 Example 3: Concentric annulus between two cir-

cular cylinders

The present method is now applied to the simulation of buoyancy-driven flow in

an annulus between two concentric cylinders which are separated by a distance

L, the inner cylinder heated (T = 1) and the outer cylinder cooled (T = 0)

(Figure 3.7a). A comprehensive review of this problem can be found in (Kuehn

and Goldstein, 1976). Most cases have been reported with Pr = 0.7 and L/Di =

0.8, in whichDi is the diameter of the inner cylinder. To these conditions, results

by Kuehn and Goldstein (1976) using FDM for Ra = 102 to Ra = 7 × 104 are

often cited in the literature for comparison purposes. Later on, Shu (1999), who

employed a differential quadrature method (DQM), has provided very accurate

solutions for the values of Ra in the range of 102 to 5 × 104. It is noted that

those works required a computational domain be rectangular.

The three governing equations (3.1), (3.2), (3.3) are presently solved with re-

spect to Cartesian coordinates (Figure 3.7a). Numerical simulations are also

conducted for Pr = 0.7 and L/Di = 0.8 . Like in the case of Kuehn and

Goldstein (1976), the values of the Rayleigh number varies from Ra = 102 to

Ra = 7 × 104, which is broader than those reported in (Shu, 1999). Several



3.4 Numerical examples 65

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3.5: Example 2: Multiply-connected domain and its typical discretisa-
tion. It is noted that the nodes outside the domain are removed.

grids, namely (12× 12, 22× 22, · · · , 52× 52), are employed.

The stream function and its normal derivative are set to zero along the inner

and outer cylinders. Expressions (3.35) and (3.36) derived in Example 1 are

applicable here to compute the values of the vorticity on the cylinder walls.

Since the boundary values for ∂ψ/∂x and ∂ψ/∂y are simply zeros, the terms qx

and qy vanish. The values for the vorticity at the boundary nodes on the x−
and y−grid lines can thus be computed by

ωb = [1 + (
y

x
)2]
∂2ψb
∂x2

, (3.40)

ωb = [1 + (
x

y
)2]
∂2ψb
∂y2

, (3.41)

respectively. As mentioned earlier, Neumann boundary conditions for the stream
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Figure 3.6: Example 2 (multiply-connected domain): Exact solution. It is noted
that the exact solution is plotted over the square covering the problem domain.

function, ∂ψ/∂x = 0 and ∂ψ/∂x = 0, are presently incorporated into the com-

putational vorticity boundary conditions via integration constants and they are

satisfied identically. Table 3.4 indicates a significant improvement in the ma-

trix condition number of the present formulation over the ψ − T formulation

reported in (Mai-Duy et al., 2008). The former yields the matrix condition

number several orders of magnitude lower than the latter. This feature is very

attractive in the context of RBFN techniques. One is thus able to use a larger

number of nodes with the present approach in the RBFN simulation of fluid

flow problems.

Both accuracy and grid convergence of the present technique are investigated.

The solution accuracy is assessed through the average equivalent conductivity
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(a) (b)

Figure 3.7: Computational domains and discretisations: Annulus between two
circular cylinders (a) and annulus between inner circular cylinder and outer
square cylinder (b).

Table 3.4: Example 3 (circular - circular cylinders): Condition numbers of the
1D-IRBFN system matrix by the two formulations.

Grid cond(A)
ψ − ω − T ψ − T

12× 12 1.7× 101 8.4× 101

22× 22 9.1× 101 1.6× 103

32× 32 2.4× 102 6.9× 103

42× 42 6.7× 102 1.0× 105

52× 52 9.3× 102 2.1× 105

62× 62 1.7× 103 1.2× 106

defined as e.g. (Kuehn and Goldstein, 1976; Shu, 1999)

k̄eq =
− ln(Do/Di)

2π

∮
∂T

∂n
ds, (3.42)

in which Do and Di are the diameters of the outer cylinder and the inner

cylinder, respectively. Results concerning k̄eq together with those of Kuehn and

Goldstein (1976) and of Shu (1999) for Ra = {102, 103, 3× 103, 6× 103, 104, 5×
104, 7 × 104} are presented in Table 3.5. It can be seen that there is a good

agreement between these numerical solutions.
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Figures 3.8 and 3.9 show the convergence of the stream function and temper-

ature fields with respect to grid refinement for Ra = 104 and Ra = 7 × 104,

respectively. It can be seen that the present technique is able to capture com-

plex structures of the stream function and temperature fields even at coarse

grids, and those patterns are improved in quality (smoothness) with increasing

grid-densities. At a grid of 42 × 42 for Ra = 104 and a grid of 52 × 52 for

Ra = 7× 104, the plots look reasonable when compared with those reported in

(Kuehn and Goldstein, 1976; Shu, 1999).
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Table 3.5: Example 3 (circular - circular cylinders): Comparison of the average
equivalent conductivity on the inner and outer cylinders, keqi and keqo, between
the present IRBFN technique using a grid of 52×52 and some other techniques
for Ra in the range of 102 to 7× 104. KG stands for Kuehn and Goldstein

Ra 102 103 3× 103 6× 103 104 5× 104 7× 104

keqi
Present Method 1.000 1.083 1.396 1.709 1.975 2.962 3.207

FDM
(KG, 1976) 1.000 1.081 1.404 1.736 2.010 3.024 3.308

DQM
(Shu, 1999) 1.001 1.082 1.397 1.715 1.979 2.958

keqo
Present Method 0.999 1.080 1.393 1.712 1.970 2.942 3.246

FDM
(KG, 1976) 1.002 1.084 1.402 1.735 2.005 2.973 3.226

DQM
(Shu, 1999) 1.001 1.082 1.397 1.715 1.979 2.958
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22× 22
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42× 42

Figure 3.8: Example 3 (circular-circular cylinders): Convergence of the temper-
ature (left) and stream-function (right) fields with respect to grid refinement
for the flow at Ra = 104.
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32× 32

42× 42

52× 52

Figure 3.9: Example 3 (circular-circular cylinders): Convergence of the temper-
ature (left) and stream-function (right) fields with respect to grid refinement
for the flow at Ra = 7× 104.
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3.4.4 Example 4: Concentric annulus between a square

outer cylinder and a circular inner cylinder

For this example, natural convection between a heated inner circular cylinder

and a cooled square enclosure is considered (Figure 3.7b). It is noted that the

transformation of this domain into a rectangular one in other methods where it

is required is much more complicated than that in the previous problem.

An aspect ratio of H/Di = 2.5 (H : the side length of the outer square and Di:

the diameter of the inner circle), Pr = 0.71 and Ra = {104, 5 × 104, 105, 5 ×
105, 106} are employed here to investigate the accuracy of the technique.

An attractive feature here is that the present technique does not require any

coordinate transformations. The problem domain is simply represented by a

Cartesian grid (Figure 3.7b). Numerical results are obtained for three uniform

grids of 32× 32, 42× 42, and 52× 52.

For Ra = 104, the solution is started from rest to simulate the flow. For higher

values of Ra, the initial solution is taken as the solution obtained at the nearest

lower Ra. Figure 3.10 presents the behaviour of the convergence measure CM

against the number of time steps. It can be seen that the decrease in CM

is rather monotonic. As expected, the simulation of high-Ra flows requires a

larger number of iterations.

The obtained results are presented in Table 3.6, and Figures 3.11 and 3.12.

Table 3.6 is concerned with the accuracy of the solution. Following the work of

Moukalled and Acharya (1996), the local heat transfer coefficient is defined as

h = −k∂T
∂n

, (3.43)

where k is the thermal conductivity. The average Nusselt number (the ratio

of the temperature gradient at the wall to a reference temperature gradient) is
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Table 3.6: Example 4 (square-circular cylinders): Comparison of the average
Nusselt number on the outer and inner cylinders, Nuo and Nui, for Ra from 104

to 106 between the present technique (grid 52× 52) and some other techniques.

Ra 104 5× 104 105 5× 105 106

Nuo
Present Method 3.22 4.04 4.89 7.43 8.70

DQM (Shu and Zhu, 2002) 3.24 4.86 8.90
FVM (Moukalled and Acharya, 1996) 3.33 5.08 9.37

Nui
Present Method 3.21 4.04 4.89 7.51 8.85

DQM (Shu and Zhu, 2002) 3.24 4.86 8.90
FVM (Moukalled and Acharya, 1996) 3.33 5.08 9.37

computed by

Nu =
h

k
, (3.44)

where h = −
∮

∂T
∂n
ds. Since the computational domain in (Moukalled and

Acharya, 1996) is taken as one-half of the physical domain, the values of Nu

in the present work (Table 3.6) are divided by 2 for comparison purposes. The

present results agree well with those in (Moukalled and Acharya, 1996) and

(Shu and Zhu, 2002).

Figures 3.11 and 3.12 display streamlines and isotherms versus grid densities

for Ra = 5×105 and Ra = 106, which show a very fast convergence of all fields.

The qualitative behaviour of these fields and those in (Shu and Zhu, 2002) is

similar.
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3.5 Concluding remarks

In this chapter, a new numerical discretisation scheme for the ψ−ω−T formu-

lation using Cartesian grids and 1D-IRBFNs is reported. Attractive features

of the proposed technique include (i) the preprocessing is simple; and (ii) the

boundary conditions for the vorticity are implemented in a new and effective

manner. Numerical results show that (i) the matrix condition number is sig-

nificantly improved over the ψ − T formulation; and (ii) accurate results are

obtained using a relatively-coarse grid.
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Figure 3.10: Example 4 (square-circular cylinders): Iterative convergence. Time
steps used are 0.002 for Ra = 104, 0.005 for Ra = 5× 104, and 0.008 for
Ra = {105, 5 × 105, 106}. The values of CM become less than 10−12 when
the numbers of iterations reach 10925, 9740, 8609, 15017, and 17938 for Ra =
{104, 5× 104, 105, 5× 105, 106}, respectively. Using the last point on the curves
as a positional indicator, from left to right the curves correspond to Ra =
{104, 5× 104, 105, 5× 105, 106}.
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Figure 3.11: Example 4 (square-circular cylinders): Convergence of the temper-
ature (left) and stream-function (right) fields with respect to grid refinement
for the flow at Ra = 5× 105.
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Figure 3.12: Example 4 (square-circular cylinders): Convergence of the temper-
ature (left) and stream-function (right) fields with respect to grid refinement
for the flow at Ra = 106.



Chapter 4

1D-integrated-RBFN

discretisation of stream-function

(ψ) formulation in

multiply-connected domains

This chapter describes a new numerical procedure, based on point collocation,

integrated multiquadric functions and Cartesian grids, for the discretisation

of the stream-function formulation for flows of a Newtonian fluid in multiply-

connected domains. Three particular issues, namely (i) the derivation of the

stream-function values on separate boundaries; (ii) the implementation of cross

derivatives in irregular regions; and (iii) the treatment of double boundary

conditions, are studied in the context of Cartesian grids and approximants based

on integrated multiquadric functions in one dimension. Several test problems,

i.e. steady flows between a rotating circular cylinder and a fixed square cylinder

and also between eccentric cylinders maintained at different temperatures, are

investigated. Results obtained are compared well with numerical data available

in the literature.
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4.1 Introduction

The motion of a Newtonian fluid is governed by the Navier-Stokes equations

which can be written in terms of different dependent variables, including the

velocity - pressure (u− p) formulation, the stream-function - vorticity (ψ − ω)

formulation and the stream-function (ψ) formulation. The u− p formulation is

able to work for two- and three-dimension flows in a similar manner. One main

concern is that there are no explicit transport equation and boundary conditions

for the pressure variable. The resultant algebraic system could be solved itera-

tively where the pressure value is corrected using the continuity equation. For

two-dimensional (2D) problems, by introducing the stream-function variable,

one can eliminate the pressure and reduce the number of unknowns, i.e. from

three ( for the u− p formulation) to two (the ψ − ω formulation) and only one

(the ψ formulation). However, the last two formulations have some drawbacks.

Special attention should be given to the handling of the vorticity boundary

condition for the ψ − ω formulation and the double boundary conditions as

well as high-order derivatives including the cross ones for the ψ formulation.

Furthermore, the pressure field needs be computed after solving the governing

equations, which is generally regarded as a complicated process. In the case

of multiply-connected domains, an added difficulty is that the stream-function

variable generally has different values, which are unknown, on separate bound-

aries.

The governing differential equations can be transformed into sets of algebraic

equations by means of discretisation. To support the approximations, the prob-

lem domain needs be represented by a set of finite elements, a Cartesian grid or

a collection of discrete points. For problems with complicated geometries such

as flows in multiply-connected domains, it has been recognised that the task of

dividing the spatial domain into a number of finite elements can be the most

time-consuming part of the solution process. Generating a Cartesian grid or a

set of discrete points is clearly much more economical.
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In recent years, RBFNs have been developed to solve different types of differ-

ential problems encountered in applied mathematics, science and engineering.

Details can be found in (Divo and Kassab, 2005, 2006, 2007, 2008; Kosec and

Šarler, 2008a,b, 2009; Šarler et al., 2004; Šarler, 2005; Šarler et al., 2010; Wu and

Liu, 2003; Siraj-ul-Islam et al., 2010; Yao et al., 2011). As shown in (Driscoll

and Fornberg, 2002; Schaback, 2005; Wright and Fornberg, 2006), there is a re-

lation between the RBFN collocation method and the finite difference method

(FDM). For 1D approximations, the standard RBF interpolant converges to

the Lagrange interpolating polynomial as the RBF width goes to infinity, which

means that all classical FD formulas can be recovered by the limiting RBF in-

terpolant. In the case of two and higher dimensions, the situation is not clear

due to the fact that multivariate polynomial interpolations are not well-posed.

In (Le-Cao et al., 2009; Mai-Duy et al., 2008; Mai-Duy and Tran-Cong, 2001b,

2003, 2007), the RBFN approximations are constructed using integration (inte-

grated RBFNs (IRBFNs)) rather than the usual differentiation. This approach

has the ability to overcome the problem of reduced convergence rates caused by

differentiation and to provide effective ways to implement derivative boundary

conditions. IRBFNs have been developed for the simulation of flows in simply-

connected domains governed by the ψ formulation and the ψ − ω formulation

(e.g. Mai-Duy and Tran-Cong, 2001b) as well as natural convection governed

by the ψ−ω formulation in a region between concentric cylinders (symmetrical

flows) (e.g. Le-Cao et al., 2009).

This chapter is concerned with the simulation of unsymmetrical flows of a New-

tonian fluid in multiply-connected domains using the ψ formulation, Cartesian

grids and 1D-IRBFNs. Unlike the symmetrical case, the stream-function vari-

able has different values on separate boundaries. These values can be found

using the single-value condition for the pressure, whose implementations are

known to be difficult (e.g. Peyret, 2002). Further difficulties include the imple-

mentation of cross derivatives in regions bounded by irregular surfaces as the
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boundary points do not generally coincide with the grid nodes. New treatments

for these difficulties and their 1D-IRBFN-based implementations are the focal

point of this study.

An outline of this chapter is as follows. The ψ formulation and 1D-IRBFNs

are briefly reviewed in Section 4.2 and Section 4.3, respectively. The proposed

procedure is described in Section 4.4 and then numerically verified through

the simulation of steady flows between a rotating circular cylinder and a fixed

square cylinder and also between eccentric cylinders maintained at different

temperatures in Section 4.5. Section 4.6 concludes the chapter.

4.2 Governing equations

The non-dimensional basic equations for natural convection under the Boussi-

nesq approximation in the Cartesian x− y coordinate system can be written as

(e.g. Ostrach, 1988)

∂u

∂x
+
∂v

∂y
= 0, (4.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

√
Pr

Ra

(
∂2u

∂x2
+
∂2u

∂y2

)
, (4.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

√
Pr

Ra

(
∂2v

∂x2
+
∂2v

∂y2

)
+ T, (4.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (4.4)

where u and v are the velocity components, p the dynamic pressure, T the

temperature, and Pr and Ra the Prandtl and Rayleigh numbers defined as

Pr = ν/α and Ra = βg∆TL3/αν, respectively in which ν is the kinematic

viscosity, α the thermal diffusivity, β the thermal expansion coefficient, g the

gravity, and L and ∆T the characteristic length and temperature difference,

respectively. In this dimensionless scheme, the velocity scale is taken as U =
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√
gLβ∆T for the purpose of balancing the buoyancy and inertial forces.

By writing the velocity components in terms of a stream function ψ defined as

u =
∂ψ

∂y
, (4.5)

v = −∂ψ
∂x

. (4.6)

the continuity equation is satisfied identically and the momentum equations

reduce to

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)

=

√
Pr

Ra

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
− ∂T

∂x
, (4.7)

Using the equivalent stream-function formulation, the set of four equations

(4.1)-(4.4) reduces to a set of two equations: (4.4) and (4.7).

For iso-thermal flows, the non-dimensional basic equations reduce to

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
=

1

Re

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
, (4.8)

where Re is the Reynolds number defined as Re = UL/ν.

The given velocity boundary conditions for u and v can be transformed into

two boundary conditions on the stream function and its normal derivative

ψ = γ, (4.9)

∂ψ

∂n
= ξ, (4.10)
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where n is the direction normal to the boundary, and γ and ξ prescribed func-

tions. For the case of fixed concentric cylinders, non-slip boundary conditions

usually lead to γ = 0 and ξ = 0 at walls. For the case of rotating cylinders

and eccentric cylinders, because of the existence of a global circulation flow,

the stream-function values on the inner and outer cylinder walls cannot be the

same.

4.3 Brief review of 1D-integrated RBFNs

The present governing equations consist of of a fourth order PDE (4.8) and a

second order PDE (4.4). We employ an 1D-IRBFN-4 scheme for the discretisa-

tion of (4.8) and an 1D-IRBFN-2 scheme for (4.4).

4.3.1 1D-IRBFN-4

The following expressions are obtained by using (2.5)-(2.9) with p = 4

d4f(x)

dx4
=

m∑

i=1

wigi(x) =
m∑

i=1

wiI
(4)
i (x), (4.11)

d3f(x)

dx3
=

m∑

i=1

wiI
(3)
i (x) + c1, (4.12)

d2f(x)

dx2
=

m∑

i=1

wiI
(2)
i (x) + c1x+ c2, (4.13)

df(x)

dx
=

m∑

i=1

wiI
(1)
i (x) + c1

x2

2
+ c2x+ c3, (4.14)

f(x) =

m∑

i=1

wiI
(0)
i (x) + c1

x3

6
+ c2

x2

2
+ c3x+ c4, (4.15)

where there are four integration constants that are treated like the RBF weights.
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4.3.2 1D-IRBFN-2

The following expressions are obtained by using (2.5)-(2.9) with p = 2

d2f(x)

dx2
=

m∑

i=1

wiI
(2)
i (x), (4.16)

df(x)

dx
=

m∑

i=1

wiI
(1)
i (x) + c1, (4.17)

f(x) =
m∑

i=1

wiI
(0)
i (x) + c1x+ c2, (4.18)

where there are two integration constants that are treated like the RBF weights.

Both 1D-IRBFN-4 and 1D-IRBFN-2 implement the multiquadric (MQ) func-

tion whose form is

gi(x) =
√
(x− ci)2 + a2i , (4.19)

where ci and ai are, respectively, the centre and the width of the ith MQ basis

function.

4.4 Proposed numerical procedure

Calculations for unsymmetrical flows in multiply-connected domains are carried

out on Cartesian grids. Grid nodes inside the domain of interest are taken to

be interior nodes. Boundary points are generated by the intersection of the grid

lines and boundaries. Boundary nodes are thus comprised of two sets of points.

The first set is generated by the x−grid lines; the other by the y−grid lines.

1D-IRBFNs of orders 4 (i.e. equations (4.11)-(4.15)) and 2 (i.e. equations

(4.16)-(4.18)) are employed on the grid lines to represent the stream-function

and temperature variables, respectively. The governing differential equations,
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which involve high-order and cross derivatives, are discretised by means of point

collocation. Emphasis is placed on the following issues: (i) the implementation

of cross derivatives in irregular regions; (ii) the derivation of the stream-function

values on separate boundaries; and (iii) the treatment of double boundary con-

ditions. Formulas are derived in terms of Cartesian coordinates and they are

implemented with 1D-IRBFNs.

It is noted that conventional RBFN methods are global and lead to full pop-

ulated matrices. Unlike conventional methods, at a grid node, the proposed

method only uses RBF centres on the two associated grid lines rather than the

whole set of RBF centres to construct the approximations at that point. The

present method thus possesses some local approximation properties. In compar-

ison with conventional RBFN methods, relatively-large numbers of nodes can

be employed here. However, the resultant system matrix is still not as sparse

as those produced by finite-difference methods. The present technique needs

be combined with domain decompositions for handling large-scale engineering

problems.

4.4.1 Boundary values for stream function

Since there is no flow in the direction normal to a solid boundary, the stream

function is constant at a wall. The stream-function variable has different values

on different walls. The value of ψ on the outer wall is simply set to zero,

while the values of ψ on inner walls are considered as unknowns. Consider

an inner wall. The associated unknown there cannot be determined from the

governing equation; an independent equation/integral condition is needed. To

find the value of ψ on the wall, Lewis (1979) suggested using the condition

that the pressure is a single-valued function of position. This condition can be
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mathematically described as

∮

Γ

∂p

∂s
ds =

∮

Γ

∇p · d~s = 0, (4.20)

where p is the pressure, s the arc length, ds the length of an infinitesimal part

of the boundary Γ. It should be pointed out that Γ can be any closed path. In

the present work, the inner cylinder boundary is taken to be Γ . The pressure

gradient ∇p can be obtained from the momentum equations. The reader is

referred to, for example, (Lewis, 1979; Shu et al., 2002; Shu and Wu, 2002) for

further details. In the Cartesian coordinate system, equation (4.20) becomes

∮
∂p

∂x
dx+

∮
∂p

∂y
dy = 0. (4.21)

From the primitive variable formulation, we have

∂p

∂x
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
−

(
u
∂u

∂x
+ v

∂u

∂y

)
, (4.22)

∂p

∂y
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
−

(
u
∂v

∂x
+ v

∂v

∂y

)
. (4.23)

Substituting (4.22) and (4.23) into (4.21) and then making use of (4.5) and (4.6)

lead to

∮
∂3ψ

∂x2∂y
dx+

∮
∂3ψ

∂y3
dx−Re

∮
∂ψ

∂y

∂2ψ

∂x∂y
dx+Re

∮
∂ψ

∂x

∂2ψ

∂y2
dx−

∮
∂3ψ

∂x3
dy −

∮
∂3ψ

∂y2∂x
dy +Re

∮
∂ψ

∂y

∂2ψ

∂x2
dy − Re

∮
∂ψ

∂x

∂2ψ

∂y∂x
dy = 0.

(4.24)

In the case of a fixed cylinder, the convection term vanishes on its wall. Equation

(4.24) thus reduces to

∮
∂3ψ

∂x2∂y
dx+

∮
∂3ψ

∂y3
dx−

∮
∂3ψ

∂x3
dy −

∮
∂3ψ

∂y2∂x
dy = 0. (4.25)
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By expressing integrals in (4.24)/(4.25) in terms of the values of ψ at the interior

points, the resultant equation can be used as an extra equation to determine

the value of ψ on the wall.

4.4.2 Cross derivatives

In the present formulations, the governing equations and the single-valued pres-

sure condition involve cross derivatives, namely ∂4ψ/∂2x∂2y, ∂3ψ/∂2x∂y, and

∂3ψ/∂x∂y2. As mentioned earlier, the IRBFN approximations are constructed

on the grid lines. It is necessary to transform the computation of these mixed

derivatives to that of pure derivatives. This can be achieved through the fol-

lowing relations

∂4ψ

∂x2∂y2
=

1

2

[
∂2

∂x2

(
∂2ψ

∂y2

)
+

∂2

∂y2

(
∂2ψ

∂x2

)]
, (4.26)

∂3ψ

∂x2∂y
=

∂2

∂x2

(
∂ψ

∂y

)
, (4.27)

∂3ψ

∂x∂y2
=

∂2

∂y2

(
∂ψ

∂x

)
. (4.28)

In (4.26)-(4.28), there are two terms, namely ∂2 (∂2ψ/∂y2) /∂x2 and ∂2 (∂ψ/∂y) /∂x2,

to be evaluated on the x−grid lines and two terms, namely ∂2 (∂2ψ/∂x2) /∂y2

and ∂2 (∂ψ/∂x) /∂y2, to be evaluated on the y−grid lines.

Consider an x−grid line. To carry out the approximation of ∂2 (∂2ψ/∂y2) /∂x2

and ∂2 (∂ψ/∂y) /∂x2, the values of ∂2ψ/∂y2 and ∂ψ/∂y at the interior and

boundary nodes on the x−grid line are assumed to be given (i.e. they are

known values or can be expressed in terms of the nodal values of ψ). For nodal

interior points, these values can be obtained straightforwardly by using the

approximations on the vertical grid lines. For the boundary points, the value of

∂ψ/∂y is known as it can be easily computed from the given boundary conditions

ψ and ∂ψ/∂n, while one does not generally know the value of ∂2ψ/∂y2. For

the latter, there are two possible cases. If the boundary point is also a grid
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Figure 4.1: A curved boundary.

node, the computation of ∂2ψ/∂y2 is similar to that of an interior point. If the

boundary point is not a grid node, special treatment is required. A new formula

for computing ∂2ψ/∂y2 is derived as follows. Along a curved boundary (Figure

4.1), the values of ∂ψ/∂x and ∂ψ/∂y can be easily obtained from the prescribed

boundary values for ψ and ∂ψ/∂n. By introducing an interpolating scheme

(e.g. 1D-IRBFNs) on the boundary, one is able to get derivatives of ∂ψ/∂x and

∂ψ/∂y along the boundary such as ∂2ψ/∂x∂s and ∂2ψ/∂y∂s in which s is the

arc-length of the curved boundary. The following expressions were derived in

section 3.3.2 of Chapter 3 and are reproduced here for convenience.

∂2ψ(xb)

∂y2
=

(
tx
ty

)2
∂2ψ(xb)

∂x2
+ qy, (4.29)

where qy is a known value defined by

qy = −tx
t2y

∂2ψ(xb)

∂x∂s
+

1

ty

∂2ψ(xb)

∂y∂s
. (4.30)

Formula (4.29) facilitates the computation of the value of ∂2ψ/∂y2 at a bound-

ary point xb using the approximations on the x−grid line.
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Consider a y−grid line. In the same manner, the value of ∂2ψ/∂x2 at a boundary

point yb can be computed by

∂2ψ(yb)

∂x2
=

(
ty
tx

)2
∂2ψ(yb)

∂y2
+ qx, (4.31)

where qx is a known value defined by

qx = − ty
t2x

∂2ψ(yb)

∂y∂s
+

1

tx

∂2ψ(yb)

∂x∂s
. (4.32)

It can be seen that, given a Cartesian grid, expressions (4.29) and (4.31) allow

the approximations of mixed derivatives in regions bounded by irregular surfaces

to be expressed in terms of the nodal values of ψ and the boundary conditions.

4.4.3 1D-IRBFN expressions

1D-IRBFN expressions on the x− and y−grid lines have similar forms. In the

following, the process of deriving 1D-IRBFN expressions for the stream-function

variable and its derivatives on the x−grid lines is presented in detail.

Pure derivatives

x1 x2 xq

xb1 xb2

Figure 4.2: Points on a grid line consist of interior points xi (◦) and boundary
points xbi (2).

Along an x−grid line (Figure 4.2), the set of RBF centres consists of the inte-

rior points {xi}qi=1 and the two boundary points {xbi}2i=1. The stream-function

variable is approximated using 1D-IRBFN-4s (equations (4.11)-(4.15) and f is

replaced with ψ). At a boundary point xb, there are double boundary condi-
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tions, ψ(xb) and ∂ψ(xb)/∂x. Unlike conventional differentiated RBFNs, there

are four integration constants in the 1D-IRBFN formulation. These extra co-

efficients allows for the addition of some extra equations to the process of con-

version of the coefficient space into the physical space. The extra equations

are utilised here to implement derivative boundary conditions. The conversion

system is thus formed by not only collocating (4.15) at {xi}qi=1 and {xbi}2i=1 but

also collocating (4.14) at {xbi}2i=1




ψ̂

ψ̂b
∂̂ψb

∂x


 = Ĉ ŵ, (4.33)

where

ψ̂ = (ψ(x1), ψ(x2), · · · , ψ(xq))T ,

ψ̂b = (ψ(xb1), ψ(xb2))
T ,

∂̂ψb
∂x

=

(
∂ψ(xb1)

∂x
,
∂ψ(xb2)

∂x

)T

,

Ĉ =




I
(0)
1 (x1) · · · I

(0)
m (x1) x31/6 x21/2 x1 1

I
(0)
1 (x2) · · · I

(0)
m (x2) x32/6 x22/2 x2 1

...
. . .

...
...

...
...

...

I
(0)
1 (xq) · · · I

(0)
m (xq) x3q/6 x2q/2 xq 1

I
(0)
1 (xb1) · · · I

(0)
m (xb1) x3b1/6 x2b1/2 xb1 1

I
(0)
1 (xb2) · · · I

(0)
m (xb2) x3b2/6 x2b2/2 xb2 1

I
(1)
1 (xb1) · · · I

(1)
m (xb1) x2b1/2 xb1 1 0

I
(1)
1 (xb2) · · · I

(1)
m (xb2) x2b2/2 xb2 1 0




,

ŵ = (w1, w2, · · · , wm, c1, c2, c3, c4)T ,

and m = q + 2. The values of the lth-order derivative (l = {1, 2, 3, 4}) of ψ at
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the interior points on the grid line are evaluated as

∂̂lψ

∂xl
= Î(l)

[4] Ĉ−1




ψ̂

ψ̂b
∂̂ψb

∂x


 , (4.34)

where

Î(4)
[4] =




I
(4)
1 (x1) · · · I

(4)
m (x1) 0 0 0 0

I
(4)
1 (x2) · · · I

(4)
m (x2) 0 0 0 0

...
. . .

...
...

...
...

...

I
(4)
1 (xq) · · · I

(4)
m (xq) 0 0 0 0



,

Î(3)
[4] =




I
(3)
1 (x1) · · · I

(3)
m (x1) 1 0 0 0

I
(3)
1 (x2) · · · I

(3)
m (x2) 1 0 0 0

...
. . .

...
...

...
...

...

I
(3)
1 (xq) · · · I

(3)
m (xq) 1 0 0 0



,

Î(2)
[4] =




I
(2)
1 (x1) · · · I

(2)
m (x1) x1 1 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) x2 1 0 0

...
. . .

...
...

...
...

...

I
(2)
1 (xq) · · · I

(2)
m (xq) xq 1 0 0



,

and

Î(1)
[4] =




I
(1)
1 (x1) · · · I

(1)
m (x1) x21/2 x1 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) x22/2 x2 1 0

...
. . .

...
...

...
...

...

I
(1)
1 (xq) · · · I

(1)
m (xq) x2q/2 xq 1 0



.
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Expressions (4.34) can be rewritten in compact form

∂̂lψ

∂xl
= D̂lxψ̂ + k̂lx, (4.35)

where D̂lx are the differentiation matrices in the physical space, and k̂lx the

vectors whose components are functions of boundary conditions. It is noted

that, for the grid lines which cross over the inner cylinder, only the values of ψ

on the outer cylinder are given.

Similarly, 1D-IRBFN expressions for pure derivatives on the y−grid lines take

the following forms

∂̂lψ

∂yl
= D̂lyψ̂ + k̂ly, (4.36)

where l = {1, 2, 3, 4}.

The temperature variable is represented by 1D-IRBFN-2s, i.e. equations (4.16)-

(4.18), where f is replaced with T . It is noted that the present energy equation

(4.4) is subject to the Dirichlet boundary condition only. The process of deriving

1D-IRBFNs for T is similar to that for ψ, except that no extra equations are

employed in the process of conversion (4.33).

Mixed derivatives

On an x−grid line, it can be seen from (4.26)-(4.28) that relevant mixed deriva-

tive to be evaluated here are ∂2 (∂ψ/∂y) /∂x2 and ∂2 (∂2ψ/∂y2) /∂x2. Approxi-

mate expressions for ∂ψ/∂y and ∂2ψ/∂y2 can be obtained at the interior points

using (4.36) with l = {1, 2}. At the boundary points, the values of ∂ψ/∂y

are given, while the values of ∂2ψ/∂y2 can be computed using (4.29) in which



4.4 Proposed numerical procedure 93

∂2ψ/∂x2 is evaluated using the nodal values of ψ on the x−grid line

∂2ψ(xb)

∂x2
=

[
I
(2)
1 (xb) · · · I(2)m (xb) xb 1 0 0

]
Ĉ−1




ψ̂

ψ̂b
∂̂ψb

∂x


 , (4.37)

where xb is a boundary point and ψ̂, ∂̂ψb/∂x, ŵ and Ĉ are defined as before.

Let g represent ∂2ψ/∂y2 and ∂ψ/∂y. The remaining task is to form an 1D-

IRBFN expression for ∂2g/∂x2. This process is similar to that for the stream

function which is described in Section 4.4.3, except that there are no extra

equations representing derivative boundary values in (4.33).

Single-valued pressure equation

As shown in (4.24)/(4.25), this pressure condition involves pure and mixed

derivatives on the wall.

Using 1D-IRBFN expressions which are derived above, one can express deriva-

tives in (4.24)/(4.25) in terms of the nodal values of ψ. For example, the

integrand of the third term in (4.25) can be written as

∂3ψ(xb)

∂x3
=

[
I
(3)
1 (xb) · · · I(3)m (xb) 1 0 0 0

]
Ĉ−1




ψ̂

ψ̂b
∂̂ψb

∂x


 , (4.38)

where xb is the boundary point on the inner wall and ψ̂, ∂̂ψb/∂x, ŵ and Ĉ are

defined as before. The vector ψ̂b in (4.38) contains the value of the stream

function on the inner cylinder, i.e. ψ(xb), that is an unknown to be found.

All associated integrals in (4.24)/(4.25) are then evaluated using the Gauss

quadrature scheme.
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The pressure condition leads to a relation where the value of ψ on the inner wall

is expressed as a linear combination of the values of ψ at the interior points.

4.4.4 Solution Procedure

The set of algebraic equations resulting from the discretisation of the stream-

function formulation is nonlinear because of the presence of the convective

terms. There are two approaches widely used to handle this nonlinearity. In

the first approach, all time derivative terms are dropped out and nonlinear

solvers such as Newton iterations can be applied. In the second approach, the

solution is obtained by means of time marching. Each approach has some ad-

vantages over the other for certain problems. In this study, fluid flow problems

are considered and the second approach is applied.

1. Guess initial values of T, ψ and their spatial derivatives at time t = 0.

2. Discretise the governing equations in time using a first-order accurate

finite-difference scheme, where the diffusive and convective terms are treated

implicitly and explicitly, respectively.

3. Discretise the governing equations in space using 1D-IRBFN schemes,

Solve the energy equation (4.4) for T , and

Solve the momentum equation (4.7) for ψ.

The two equations are solved separately in order to keep matrix sizes to

a minimum.

4. Check to see whether the solution has reached a steady state

CM =

√
∑nip

i=1

(
ψ

(k)
i − ψ

(k−1)
i

)2

√
∑nip

i=1

(
ψ

(k)
i

)2
< ǫ, (4.39)

where k is the time level and ǫ is the prescribed tolerance.
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5. If it is not satisfied, advance time step and repeat from step 2. Otherwise,

stop the computation and output the results.

4.5 Numerical results

The present method is verified through the simulation of steady iso-thermal

flows between a rotating circular cylinder and a fixed square cylinder, and steady

buoyancy-driven flows in eccentric annuli with a wide range of the eccentricity

parameter. The computed solution at the nearest lower value of Re/Ra is

taken to be the initial solution. Internal grid points that fall very close–within

a distance of h/8–to the boundary are removed.

It is well known that RBFN-based schemes suffer from the so-called uncer-

tainty or trade-off principle. As the value of the RBF-width/shape-parameter

increases, the approximation error reduces while the condition number of the

system matrix grows. Unfortunately, there is still a lack of theory to determine

the optimal value for the RBF width. The RBF width is usually chosen by trial

and error or some other ad-hoc means. In this study, the grid size h is taken to

be the MQ-RBF width.

For conventional FDMs and pseudo-spectral techniques, coordinate transfor-

mations are required to convert non-rectangular domains into rectangular ones

(Shu et al., 2002; Moukalled and Acharya, 1996). The relationships between

the physical and computational coordinates are given by a set of algebraic equa-

tions or a set of partial differential equations (PDEs), depending on the level

of complexity of the geometry. Such transformation processes are, in general,

complicated. The proposed technique can work with irregular domains in a di-

rect manner, i.e. without the need for using coordinate transformations. How-

ever, the proposed technique is restricted to structured uniform or non-uniform

Cartesian grids.
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Figure 4.3: Example 1 (rotating cylinder): geometry (top) and discretisation
(bottom).
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4.5.1 Example 1: Steady flow between a rotating circular

cylinder and a fixed square cylinder

This test problem is employed for the investigation of accuracy of the proposed

technique in computing the value of the stream function on the inner cylinder.

The flow geometry and discretisation are shown in Figure 4.3. The inner cylin-

der rotates at a unit angular velocity. The stream function on the outer wall

is set to zero. Formula (4.24) is utilised to determine the value of the stream

function on the inner wall, denoted by ψw. This flow is governed by (4.8) and

subject to the boundary conditions

ψ =
∂ψ

∂x
=
∂ψ

∂y
= 0,

on the outer cylinder and

ψ = ψw,
∂ψ

∂x
= −x, ∂ψ

∂y
= −y,

on the inner cylinder. The flow is simulated with R = 0.25 and L = {0.55, 1.0}
using a uniform grid of 52×52. Several values of the Reynolds number, namely

1, 100, 500, 700 and 1000, are considered. Results concerning ψw obtained

by the proposed technique and the finite-difference technique (Lewis, 1979) are

presented in Table 4.1, showing a satisfactory agreement. Plots for the velocity

and vorticity fields for the case of L = 1 and R = 0.25 at Re = {1, 700} are

given in Figure 4.4.



4.5 Numerical results 98

Table 4.1: Example 1 (rotating cylinder): Comparison of the stream-function
values at the inner cylinder, ψw, for Re from 1 to 1000 between the present
technique (grid of 52× 52) and finite difference technique.

Re 1 100 500 1000
(R,L) (0.25, 0.55)

ψw
Present method 0.0581 0.0582 0.0586 0.0596

FDM (Lewis, 1979) 0.0625 0.0626 0.0621 0.0600
(R,L) (0.25, 1)

ψw
Present method 0.4622 0.4617 0.4500 0.4264

FDM (Lewis, 1979) 0.4656 0.4577 0.4465 0.4375
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Re = 1

Re = 700

Figure 4.4: Example 1 (rotating cylinder, R=0.25, L=1): Velocity field (left)
and vorticity field (right) for the flow at Re = 1 and Re = 700.
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4.5.2 Example 2: Natural convection in an eccentric an-

nulus between two circular cylinders

Natural convection is governed by the coupling of the momentum equation

(velocity field) (4.7) and energy equation (temperature field) (4.4). Solutions to

natural convection have been reported using various discretisation techniques

such as FDMs (e.g. Kuehn and Goldstein, 1976; de Vahl Davis, 1983), FEMs

(e.g. Manzari, 1999; Sammouda et al., 1999), FVMs (e.g. Glakpe et al., 1986;

Kaminski and Prakash, 1986), BEMs (e.g. Kitagawa et al., 1988; Hribersek and

Skerget, 1999), spectral methods (e.g. Shu, 1999; Shu et al., 2002; Shu and Wu,

2002) and meshless methods (e.g. Divo and Kassab, 2008; Šarler et al., 2004;

Šarler, 2005).

Figure 4.5: Example 2 (eccentric circular-circular annulus): geometry.
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(a)

(b)

Figure 4.6: Schematic spatial discretisations for an annulus between two circular
cylinders (a) and an annulus between inner circular and outer square cylinders
(b).



4.5 Numerical results 102

Consider buoyancy-driven flows of a Newtonian fluid between two cylinders

whose centres are separated by a distance ε (Figure 4.5). As shown in Figure

4.5, the flow geometry is defined by the following geometrical parameters: the

eccentricity ε, angular position ϕ, the diameter of the outer cylinder Do and the

diameter of the inner cylinder Di. In the present work, the numerical results

are reported with Pr = 0.71 and Do/Di = 2.6. A typical discretisation is shown

on Figure 4.6a, where no coordinate transformations are employed.

The inner and outer cylinders are heated (T = 1) and cooled (T = 0), re-

spectively. The stream-function value at the outer cylinder is set to zero. The

stream-function value at the inner cylinder is a part of the solution and can be

determined by the single-valued pressure condition (4.25). The normal deriva-

tives of the stream function are set to zero at both walls.

Both trust region and time marching techniques are applied here to solve the

nonlinear equation set. For the trust region technique, it takes about 5 to 10

iterations to get a converged solution. For the time marching technique, much

more iterations are required as shown in Figure 4.7. However, a single iteration

of the decoupled approach consumes much less CPU time than that of the

coupled approach. Overall, the decoupled approach is more efficient than the

coupled approach. For example, in the case of simulating the flow at Ra = 104

using a grid of 41 × 41, the decoupled approach is about 9.2 times faster than

the coupled approach.
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Figure 4.7: Example 2 (circular-circular annulus): 61×61, decoupled approach,
iterative convergence. Time steps used are 0.5 for Ra = {102, 103, 3× 103}, 0.1
for Ra = {6×103, 104}, and 0.05 for Ra = {5×104, 7×104}. The values of CM
become less than 10−12 when the numbers of iterations reach 58, 154, 224, 1276,
1541, 5711 and 5867 for Ra = {102, 103, 3 × 103, 6 × 103, 104, 5× 104, 7× 104},
respectively. Using the last point on the curves as a positional indicator, from
left to right the curves correspond to Ra = {102, 103, 3 × 103, 6 × 103, 104, 5 ×
104, 7× 104}
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Table 4.2: Condition numbers of the RBFN matrices associated with the har-
monic and biharmonic operators.

Grid cond(L2T ) cond(L4ψ)
11× 11 1.3× 101 7.4× 101

21× 21 1.2× 102 5.0× 103

31× 31 3.3× 102 3.3× 104

41× 41 5.1× 102 7.9× 104

51× 51 7.5× 102 1.6× 105

61× 61 1.0× 103 3.2× 105

The condition numbers of the system matrix associated with the energy equa-

tion (4.4) and momentum equation (4.7) are reported in Table 4.2.

One typical quantity associated with this type of flow is the average equivalent

conductivity denoted by k̄eq. This quantity is defined as (e.g. Kuehn and

Goldstein, 1976)

k̄eq =
− ln(Do/Di)

2π

∮
∂T

∂n
ds (4.40)

Table 4.3: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 102.

Grid Outer cylinder, keqo Inner cylinder, keqi
11× 11 0.969 0.972
21× 21 0.994 0.989
31× 31 0.997 0.997
41× 41 0.999 0.999

FDM (Kuehn and Goldstein, 1976) 1.002 1.000
DQM (Shu, 1999) 1.001 1.001

The present method is first tested with the case of symmetrical flows, where the

exact value of ψ at the inner wall is known (i.e. ψw = 0 for the present case).

Three uniform grids of 41×41, 51×51 and 61×61 are employed to represent the
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Table 4.4: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 103.

Grid Outer cylinder, keqo Inner cylinder, keqi
11× 11 1.133 1.046
21× 21 1.072 1.069
31× 31 1.078 1.077
41× 41 1.080 1.079
51× 51 1.081 1.080

FDM (Kuehn and Goldstein, 1976) 1.084 1.081
DQM (Shu, 1999) 1.082 1.082

Table 4.5: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 3× 103.

Grid Outer cylinder, keqo Inner cylinder, keqi
11× 11 1.745 1.200
21× 21 1.365 1.378
31× 31 1.387 1.386
41× 41 1.391 1.390
51× 51 1.393 1.393

FDM (Kuehn and Goldstein, 1976) 1.402 1.404
DQM (Shu, 1999) 1.397 1.397

flow field. For concentric cylinders, results concerning k̄eq together with those of

(Kuehn and Goldstein, 1976) and of (Shu, 1999) for various Rayleigh numbers

from 102 to 7×104 are presented in Tables 4.3-4.9. It can be seen that there is a

good agreement between these numerical solutions. For each Rayleigh number,

the convergence of the average equivalent conductivity with grid refinement is

fast, e.g. the solution keqo for the last two Rayleigh numbers (i.e. Ra = 104

and Ra = 5 × 104) converges as O(h2.71) and O(h3.36) in which h is the grid

spacing (errors are computed relative to the spectral results). Variations of the

local equivalent conductivity on the inner and outer cylinder surfaces using a

grid of 51 × 51 for Ra = 103 and Ra = 5 × 104 are shown in Figures 4.8 and
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Table 4.6: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 6× 103.

Grid Outer cylinder, keqo Inner cylinder, keqi
31× 31 1.698 1.702
41× 41 1.704 1.705
51× 51 1.709 1.709
61× 61 1.711 1.711

FDM (Kuehn and Goldstein, 1976) 1.735 1.736
DQM (Shu, 1999) 1.715 1.715

Table 4.7: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 104.

Grid Outer cylinder, keqo Inner cylinder, keqi
41× 41 1.961 1.967
51× 51 1.969 1.971
61× 61 1.973 1.973

FDM (Kuehn and Goldstein, 1976) 2.005 2.010
DQM (Shu, 1999) 1.979 1.979

4.9, respectively. It can be seen that they are compared well with those of

(Kuehn and Goldstein, 1976). The present solutions converge well and are in

close agreement with the other solutions. It can be seen that the IRBFN results

are more agreeable to the DQ ones than the FD results. Figure 4.10 shows the

streamlines and isotherms of the flow for Ra = {103, 6 × 103, 5 × 104, 7 × 104}
using a grid of 51 × 51. Each plot contains 21 contour lines whose levels vary

linearly from the minimum to maximum values. The plots look reasonable in

comparison with those of the FD and DQ methods. For eccentric cylinders (i.e.

the centres of inner and outer cylinders lie on the vertical symmetrical axis),

results obtained show that the value of ψw is less than 10−6, which is close to

zero. Table 4.10 compares the maximum value of ψ for Ra = 104 between the

proposed method and the DQM (Shu, 1999). Good agreement is achieved.
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Table 4.8: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 5× 104.

Grid Outer cylinder, keqo Inner cylinder, keqi
41× 41 3.089 3.045
51× 51 2.936 2.946
61× 61 2.922 2.941

FDM (Kuehn and Goldstein, 1976) 2.973 3.024
DQM (Shu, 1999) 2.958 2.958

Table 4.9: Example 2 (symmetric flow, concentric circular-circular annuli): Con-
vergence of k̄eq with grid refinement for the flow at Ra = 7× 104.

Grid Outer cylinder, keqo Inner cylinder, keqi
41× 41 3.465 3.254
51× 51 3.241 3.187
61× 61 3.167 3.174
FDM

(Kuehn and Goldstein, 1976) 3.226 3.308

For the case of unsymmetrical flows, the value of ψ at the inner wall has non-zero

value that varies with the location of the inner cylinder. Different amounts of

eccentricity (ε), namely {0.25, 0.5, 0.75, 0.95}, and angular direction ϕ, namely

{−450, 00, 450}, are employed. In Table 4.11, the values of ψ at the inner walls

are presented and agree satisfactorily with those conducted by the DQM (Shu

et al., 2002) and the domain free discretisation method (DFD) (Shu and Wu,

2002). Figure 4.11 shows the streamlines and isotherms of the flow at Ra =

104 using a grid of 61 × 61, where several values of eccentricity and angular

directions are employed. Each plot contains 21 contour lines whose levels vary

linearly from the minimum to maximum values. All plots look reasonable when

compared with those of the DQM (Shu et al., 2002).
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Figure 4.8: Example 2 (concentric circular-circular annulus): Local equivalent
conductivities for Ra = 103 by 1D-IRBFN and FDM.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

 

 
IRBFN, Inner cylinder
FDM
IRBFN, Outer cylinder
FDM

θ (degree)

k
e
q

Figure 4.9: Example 2 (concentric circular-circular annulus): Local equivalent
conductivities for Ra = 5× 104 by 1D-IRBFN and FDM.
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Table 4.10: Example 2 (symmetric flow, eccentric circular-circular annuli):
Comparison of the maximum stream-function values, ψmax, for two special cases
ϕ = {−900, 900} between the present technique and DQM technique.

ε 0.25 0.5 0.75 0.95
ϕ −900

ψmax
Present method 22.19 20.72 18.50 15.71

DQM (Shu et al., 2002) 22.16 20.62 18.32 15.50
ϕ 900

ψmax
Present method 11.26 9.64 8.25 7.28

DQM (Shu et al., 2002) 11.13 9.55 8.12 7.17

Table 4.11: Example 2 (unsymmetrical flow, eccentric circular-circular annuli):
Comparison of the stream-function values at the inner cylinders, ψw, for ε =
{0.25, 0.5, 0.75, 0.95} and ϕ = {−450, 00, 450} between the present, DQM and
DFD techniques.

ε 0.25 0.5 0.75 0.95
ϕ 450

ψw
Present method 0.52 1.25 1.01 0.01

DQM (Shu et al., 2002) 0.52 1.31 1.07 0.03
DFD (Shu and Wu, 2002) 0.54 1.29 1.09 0.03

ϕ 00

ψw
Present method 0.60 1.28 1.18 0.01

DQM (Shu et al., 2002) 0.72 1.15 1.30 0.06
DFD (Shu and Wu, 2002) 0.72 1.10 1.26 0.06

ϕ −450

ψw
Present method 0.48 0.80 1.05 0.6

DQM (Shu et al., 2002) 0.51 0.92 0.99 0.08
DFD (Shu and Wu, 2002) 0.51 0.77 0.77 0.04
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Ra = 103

Ra = 6× 103

Ra = 5× 104

Ra = 7× 104

Figure 4.10: Example 2 (concentric circular-circular annulus): Contour plots
of temperature (left) and stream function (right) for four different Rayleigh
numbers using a grid of 51 × 51. Each plot contains 21 contour lines whose
levels vary linearly from the minimum to maximum values.
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ε = 0.25, ϕ = 450

ε = 0.5, ϕ = 00

ε = 0.75, ϕ = −450

ε = 0.95, ϕ = 00

Figure 4.11: Example 2 (eccentric circular-circular annuli): Contour plots for
the temperature (left) and stream-function (right) fields for several values of
eccentricity ε and angular directions ϕ for the flow at Ra = 1 × 104. Each
plot contains 21 contour lines whose levels vary linearly from the minimum to
maximum values.
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4.5.3 Example 3: Natural convection in eccentric annuli

between a square outer and a circular inner cylin-

der

Figure 4.12: Example 3 (eccentric square-circular domain): geometry.

In this example, natural convection between a heated inner circular cylinder

and a cooled square enclosure (Figure 4.12) is considered. An aspect ratio of

L/2R = 2.6 (L: the side length of the outer square and R: the radius of the

inner circle), Pr = 0.71 and Ra = 3× 105 are used.

The problem domain is simply replaced with a Cartesian grid (Figure 4.6b),

where no coordinate transformations are employed.

For the concentric case, the obtained results are presented in the forms of

streamlines and isotherms (Figure 4.13). In Figure 4.13, each plot contains

21 contour lines whose levels vary linearly from the minimum to maximum val-
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Table 4.12: Example 3 (symmetric flow, eccentric square-circular annuli):
Comparison of the maximum stream-function values, ψmax, for special cases
ϕ = {−900, 900} between the present technique and MQ-DQ technique.

ε 0.25 0.5 0.75 0.95
ϕ −900

ψmax
Present method 18.63 21.30 23.47 24.48

MQ-DQ (Ding et al., 2005) 18.64 21.29 23.52
ϕ 900

ψmax
Present method 12.37 11.36 10.10 9.289

MQ-DQ (Ding et al., 2005) 12.39 11.38 10.09

ues. For special cases of eccentric square-circular annuli, where the centre of the

inner cylinder lies on the vertical symmetrical axis of the outer square cylinder,

the values of ψmax are given in Table 4.12. It can be seen that the present

results are in very good agreement with those of Ding et al., 2005.

Table 4.13: Example 3 (concentric square-circular annuli): Comparison of the
average Nusselt number on the outer and inner cylinders, Nuo and Nui, for Ra
from 104 to 106 between the present technique (grid of 62× 62) and some other
techniques.

Ra 104 5× 104 105 5× 105 106

Nuo
Present method 3.22 4.04 4.89 7.43 8.70

MQ-DQ (Ding et al., 2005) 3.24 4.86 8.90
FVM (Moukalled and Acharya, 1996) 3.33 5.08 9.37

Nui
Present method 3.21 4.04 4.89 7.51 8.85

MQ-DQ (Ding et al., 2005) 3.24 4.86 8.90
FVM (Moukalled and Acharya, 1996) 3.33 5.08 9.37

Following the work of Moukalled and Acharya (Moukalled and Acharya, 1996),
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Table 4.14: Example 3 (unsymmetrical flow, eccentric square-circular an-
nuli): Comparison of the maximum stream-function values, ψmax, for ε =
{0.25, 0.5, 0.75, 0.95} and ϕ = {−450, 00, 450} between the present technique
and MQ-DQ technique.

ε 0.25 0.5 0.75 0.95
ϕ 450

ψmax
Present method 15.31 14.23 13.52 12.91

MQ-DQ (Ding et al., 2005) 15.32 14.35 13.61 12.98
ϕ 00

ψmax
Present method 17.00 16.99 16.87 17.18

MQ-DQ (Ding et al., 2005) 17.00 16.97 16.84
ϕ −450

ψmax
Present method 18.50 20.09 21.02 21.61

MQ-DQ (Ding et al., 2005) 18.50 20.03 21.01 21.68

the local heat transfer coefficient is defined as

θ = −k∂T
∂n

, (4.41)

where k is the thermal conductivity. The average Nusselt number (the ratio

of the temperature gradient at the wall to a reference temperature gradient) is

computed by

Nu =
θ

k
, (4.42)

where θ = −
∮

∂T
∂n
ds. Since the computational domain in (Moukalled and

Acharya, 1996) is taken as one-half of the physical domain, the values of Nu in

the present work (Table 4.13) are divided by 2 for comparison purposes. The

present results agree well with those in (Moukalled and Acharya, 1996) and

(Ding et al., 2005).
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Ra = 5× 104

Ra = 105

Ra = 5× 105

Ra = 106

Figure 4.13: Example 3 (concentric square-circular annulus): Contour plots
of temperature (left) and stream function (right) for four different Rayleigh
numbers using a grid of 61 × 61. Each plot contains 21 contour lines whose
levels vary linearly from the minimum to maximum values.
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Similar to Example 2, the eccentricity values used are ε = {0.25, 0.5, 0.75, 0.95}
and the angular positions are ϕ = {−450, 00, 450}. The value of ψ along the

inner wall is considered as an unknown and the values of ψ along the outer

boundary can be taken to be zero. Calculations are performed on a uniform

Cartesian grid of 62 × 62. In Table 4.14, the maximum values of the stream

function are presented and compared very well with those obtained by Ding

et al. (2005).

In Figure 4.14, the effects of time step on convergence behaviour of the proposed

technique are investigated for the case of Ra = 1×105 using a grid of 53×53. It

can be seen that the present technique can work with a wide range of values of

time step. As expected, convergence is faster but less stable when the length of

time step increases. In relation to CPU times, the present technique consumes

0.013715 (s) per iteration for a grid of 33 × 33, 0.0599 for 49 × 49 and 0.0807

for 53× 53 (Intel Core 2 6300-1.86 Ghz). Figures 4.15 displays streamline and

isotherm fields for several positions of the inner cylinder for Ra = 3× 105. The

qualitative behaviours of these fields and those in (Ding et al., 2005) are similar.

For all values of the Reynolds/Rayleigh number employed in these examples,

it is observed that the solution evolves in a stable manner with relatively-large

time steps. As a result, the use of special treatments for the convection term

such as the upwind scheme is not necessary here.
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Figure 4.14: Example 3 (eccentric square-circular annulus): the effects of time-
step length on convergence behaviour.

4.6 Concluding Remarks

In this chapter, flows in multiply-connected domains are studied using the

stream-function formulation, one-dimensional integrated RBFN approximations

and Cartesian grids. Formulas for handling mixed derivatives in irregular re-

gions and boundary conditions for the stream-function variable are derived un-

der the Cartesian framework, and they are implemented effectively with 1D-

IRBFNs. Attractive features of the proposed technique include (i) simple pre-

processing; and (ii) the ability to retain the PDEs in their Cartesian forms, and

thus to work in a similar fashion for different shapes of annuli. Various solutions

are reported to demonstrate the capabilities of the proposed technique.
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ε = 0.25, ϕ = −450

ε = 0.5, ϕ = 00

ε = 0.75, ϕ = 450

ε = 0.95, ϕ = 900

Figure 4.15: Example 3 (eccentric square-circular annuli): The temperature
(left) and stream-function (right) fields for several values of eccentricity ε and
angular direction ϕ for the flow at Ra = 3×105. Each plot contains 21 contour
lines whose levels vary linearly from the minimum to maximum values.



Chapter 5

1D-integrated-RBFN-based

domain embedding technique

This chapter presents a new domain embedding numerical technique for solving

PDEs in multiply-connected domains. The problem domain is converted into a

simply-connected domain that is then discretised using a Cartesian grid. The

field variable in a given PDE is assumed to vary over interior holes according

to appropriate analytic functions that are constructed to satisfy the boundary

conditions. Point collocation and 1D-IRBFNs are applied to discretise the PDE

in a resultant simple domain. Several linear boundary-value and initial-value

problems, some of which have exact solutions, are considered to validate the

proposed technique.



5.1 Introduction 120

5.1 Introduction

There are two general approaches of handling geometrically-complex multiply-

connected domains in solving PDEs, namely boundary fitted and domain em-

bedding. The former was considered in the previous three chapters, while the

latter is studied in the context of 1D-IRBFNs in this chapter.

The use of the domain embedding approach for solving differential problems

defined on irregular domains has received much increased attention in recent

years (e.g. Glowinski et al., 1994; Maury, 2001; Parvizian et al., 2007; Husain

et al., 2009; Mai-Duy et al., 2009; Buffat and Penven, 2010). The concept of

domain embedding or fictitious domain is known to provide an efficient way

to handle complex geometries. The basic idea of domain-embedding/fictitious-

domain based methods is to extend the problem defined on a geometrically-

complex domain to that on a larger, but simpler shaped domain. However,

special attention is paid to the imposition of given boundary conditions in order

to match the solution on the extended domain with that on the original domain.

The extended domain allows the use of a regular grid/mesh, and one can thus

employ fast direct solvers for the resultant algebraic system. In the case of

multiply-connected domains with moving interior holes, the mesh/grid may

remain fixed. As a result, the discrete system matrix may be formed once and

stay unchanged through the computation process.

Domain-embedding-based methods have been very successful in solving compli-

cated engineering problems. Glowinski et al. (1994, 1998) presented a family

of fictitious-domain techniques which are based on the explicit use of Lagrange

multipliers defined on the actual boundary and associated with the boundary

conditions for Dirichlet elliptic problems. Since then, Lagrange multiplier/fictitious-

domain methods have become increasingly popular. They were applied success-

fully to simulate practical problems including fluid/rigid-body interactions (e.g.

Patankar et al., 2000), fluid/flexible-body interactions (e.g. Yu, 2005), and par-
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ticulate suspension flows (e.g. Wan and Turek, 2006). Parvizian et al. (2007)

proposed a finite cell method with h− and p− extension for embedded domain

problems in solid mechanics. Duster et al. (2008) extended the finite cell method

to 3D problems of linear elasticity. Maury (2001) introduced a fat boundary

method (FBM) for solving PDEs in a domain with holes. Bertoluzza et al.

(2005) gave some numerical results on a semi-discrete FBM in the framework

of a FE discretisation. Vos et al. (2008) combined the classic fictitious domain

method and FBM to form an implicit FBM.

This chapter reports a new domain-embedding-based technique for the solution

of PDEs in multiply-connected domains. The proposed technique combines

strengths of the three approaches, namely 1D-IRBFNs (high-order approxima-

tor), Cartesian grids (simple preprocessing) and fictitious domains (complex

geometry). Unlike other domain-embedding-based techniques, the variations

of the field variable over interior holes are presently represented by appropri-

ate analytic functions that are constructed to satisfy the boundary conditions.

Results obtained are compared well with analytic and other numerical solutions.

The remainder of this chapter is organised as follows. In Section 5.2, the pro-

posed method is presented for the solution of elliptic and parabolic equations.

Emphasis is placed on the construction of analytic functions representing the

solution over fictitious regions. Details for 1D-IRBFN discretisations of PDEs

in extended (rectangular) domains are also included. Numerical results are

presented in Section 5.3. Section 5.4 concludes the chapter.

5.2 Proposed domain-embedding technique

Consider a multiply-connected domain such as the one shown in Figure 5.1. This

physical domain is embedded in a rectangular domain that is used for compu-

tation. The computational domain thus involves two kinds of subregion: the
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first made up of the holes (fictitious) and the second by the multiply-connected

domain (real). One thus needs to ensure that all boundary conditions on the

boundaries of the inner holes are taken into account.

Let ff and fr represent the solution f in the holes and in the real domain,

respectively. We assume that (i) the function f is at least C0-continuous (i.e.

ff = fr) across the interfaces between the real domain and fictitious regions; and

(ii) the solution in the holes can be represented by suitable analytic functions.

Figure 5.1: A multiply-connected domain. Its extension is a rectangular domain
that is represented by a Cartesian discretisation.

Cartesian grids are employed to represent the extended/computational domain

and IRBFNs are then utilised to approximate the field variable f on each grid

line. In the following, details are presented for two main parts, namely (i)

1D-IRBFN discretisation for the PDE in a rectangular domain (i.e. extended

domain); and (ii) imposition of boundary conditions on the interfaces between

the real domain and fictitious regions.
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5.2.1 1D-IRBFN discretisation for extended domain

All PDEs in the present chapter are of second order. Consider an x−grid line.

Making use of (2.5)-(2.9) with p = 2, second-order derivative of the field variable

f along a grid line can be decomposed into RBFs

∂2f(x)

∂x2
=

m∑

i=1

wigi(x) =

m∑

i=1

wiI
(2)
i (x), (5.1)

where m is the number of RBFs, {gi(x)}mi=1 ≡
{
I
(2)
i (x)

}m
i=1

the set of RBFs,

{wi}mi=1 the set of weights to be found. Approximate expressions for the first-

order derivative and the field variable are then obtained through integration

∂f(x)

∂x
=

m∑

i=1

wiI
(1)
i (x) + c1, (5.2)

f(x) =
m∑

i=1

wiI
(0)
i (x) + c1x+ c2, (5.3)

where I
(1)
i (x) =

∫
I
(2)
i (x)dx, I

(0)
i (x) =

∫
I
(1)
i (x)dx and {c1, c2} are the constants

of integration.

Collocating (5.3) at the nodal points yields

f̂ = Î(0)




ŵ

c1

c2


 , (5.4)
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where

f̂ = (f(x1), f(x2), · · · , f(xm))T ,

ŵ = (w1, w2, · · · , wm)T ,

Î(0) =




I
(0)
1 (x1) I

(0)
2 (x1) · · · I

(0)
m (x1) x1 1

I
(0)
1 (x2) I

(0)
2 (x2) · · · I

(0)
m (x2) x2 1

...
...

. . .
...

...
...

I
(0)
1 (xm) I

(0)
2 (xm) · · · I

(0)
m (xm) xm 1



.

Solving (5.4) for the coefficient vector including the two integration constants

results in




ŵ

c1

c2


 =

(
Î(0)

)
−1

f̂ , (5.5)

where
(
Î(0)

)
−1

is the generalised inverse of Î(0). The values of the first and

second derivatives of f with respect to x at the nodal points are thus computed

in terms of nodal variable values

∂̂f

∂x
= Î(1)

(
Î(0)

)
−1

f̂ = D̂1xf̂ , (5.6)

and

∂̂2f

∂x2
= Î(2)

(
Î(0)

)
−1

f̂ = D̂2xf̂ , (5.7)
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where

∂̂f

∂x
=

(
∂f(x1)

∂x
,
∂f(x2)

∂x
, · · · , ∂f(xm)

∂x

)T

,

∂̂2f

∂x2
=

(
∂2f(x1)

∂x2
,
∂2f(x2)

∂x2
, · · · , ∂

2f(xm)

∂x2

)T

,

Î(1) =




I
(1)
1 (x1) I

(1)
2 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) I

(1)
2 (x2) · · · I

(1)
m (x2) 1 0

...
...

. . .
...

...
...

I
(1)
1 (xm) I

(1)
2 (xm) · · · I

(1)
m (xm) 1 0



,

Î(2) =




g1(x1) g2(x1) · · · gm(x1) 0 0

g1(x2) g2(x2) · · · gm(x2) 0 0
...

...
. . .

...
...

...

g1(xm) g2(xm) · · · gm(xm) 0 0



,

and D̂1x, D̂2x are the first- and second-order differentiation matrices in the

physical space.

In the same manner, one can obtain the IRBFN expressions for ∂f/∂y and

∂2f/∂y2 along a vertical line.

The 1D-IRBFN approximations of derivatives at a grid point are expressed in

terms of the nodal values of f along the grid lines that go through that point.

As with finite-difference and finite-element techniques, one will gather these

approximations together to form the global matrices. This task is relatively

simple since the grid used here is regular. For example, in the case of the

Laplacian, the corresponding global matrix can be generated by means of tensor
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products

Ã = D̂2x ⊗ 1+ 1⊗ D̂2y, (5.8)

where 1 is the identity matrix of dimension of m×m. In (5.8), the grid nodes

are numbered from left to right and from bottom to top. The next task is

to impose the boundary conditions. It is straightforward to implement the

boundary conditions on the outer boundary. However, special treatments are

required when imposing the boundary conditions on the inner boundaries as

the grid nodes do not generally lie on these boundaries.

5.2.2 Imposition of the boundary conditions on the inner

boundaries

Two types of equations, namely elliptic and parabolic, with Dirichlet boundary

conditions are considered. Using 1D-IRBFNs and point collocation, the PDE

reduces to a set of algebraic equations that can be written in the following form

Ãf̃ = b̃, (5.9)

where Ã is the system matrix, f̃ the vector consisting of nodal values of f over

the whole 2D computational domain and b̃ the known vector generated by the

driving function.

This system can be rearranged for unknown values of f in the real domain as

Ã(idr, idr)f̃(idr) = b̃(idr)− Ã(idr, idb)f̃(idb)− Ã(idr, idf)f̃(idf), (5.10)

where idr, idb and idf are the sets whose elements are the indices of nodes in the

real domain, on the outer boundary and in the fictitious regions, respectively.

We assume that the solution in inner holes is known and can be described
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by polynomials of third order in one dimension. The construction of these

polynomials is presented in detail for a typical case: an x−grid line that crosses

several inner holes as shown in Figure 5.2.

xb1 = x1 xb2 = xm

x
(h1)
b1

x
(h1)
b2 x

(h2)
b1 x

(h2)
b2

Hole 1 Hole 2

Figure 5.2: Points on a grid line consist of interior points xi (◦) and boundary
points xbi (2).

Let x
(hi)
b1 and x

(hi)
b2 (i = (1, 2)) be the coordinates of the boundary points of the

ith hole on the x−grid line (Figure 5.2). We seek a function ff(x) over the

interval x
(hi)
b1 ≤ x ≤ x

(hi)
b2 in the form

f
(hi)
f (x) = ax3 + bx2 + cx+ d, (5.11)

where {a, b, c, d} are unknown values. Two schemes for determining these coef-

ficients, namely Scheme 1 and Scheme 2, are proposed.

Scheme 1: This scheme is based on function values only. The coefficients in
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(5.11) can be found through




a

b

c

d




= P−1




fb1

f
(hi)
b1

f
(hi)
b2

fb2



, (5.12)

where fb1 = f(x1), fb2 = f(xm), f
(hi)
b1 = f

(
x
(hi)
b1

)
, f

(hi)
b2 = f

(
x
(hi)
b2

)
, and

P =




x3b1 x2b1 xb1 1(
x
(hi)
b1

)3 (
x
(hi)
b1

)2

x
(hi)
b1 1

(
x
(hi)
b2

)3 (
x
(hi)
b2

)2

x
(hi)
b2 1

x3b2 x2b2 xb2 1



.

The values of f
(hi)
f at the interior nodes xi are thus computed by

f
(hi)
f (xi) = [x3i x2i xi 1]P−1




fb1

f
(hi)
b1

f
(hi)
b2

fb2



, (5.13)

where x
(hi)
b1 < xi < x

(hi)
b2 . It can be seen that there are two values of f

(hi)
f at a

grid point located within the ith hole: one associated with the x−grid line (i.e.

(5.13)) and one with the y−grid line. The nodal value of f
(hi)
f at a fictitious

point is thus taken in an average sense.

By substituting nodal values of ff within holes into (5.10) and then replacing the

boundary conditions with given values, the right hand side of (5.13) becomes

known. One can now apply linear algebra to solve the system (5.10) for the

nodal values of fr.

Scheme 2: This scheme is based on not only function values but also derivative
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values. The coefficients in (5.11) can be found through




a

b

c

d




= P−1




f
(hi)
b1

f
(hi)
b2

∂f
(hi)
b1

∂x

∂f
(hi)
b2

∂x



, (5.14)

where ∂f
(hi)
b1 /∂x = ∂f

(
x
(hi)
b1

)
/∂x, ∂f

(hi)
b2 /∂x = ∂f

(
x
(hi)
b2

)
/∂x, and

P =




(
x
(hi)
b1

)3 (
x
(hi)
b1

)2

x
(hi)
b1 1

(
x
(hi)
b2

)3 (
x
(hi)
b2

)2

x
(hi)
b2 1

3
(
x
(hi)
b1

)2

2x
(hi)
b1 1 0

3
(
x
(hi)
b2

)2

2x
(hi)
b2 1 0



.

It is noted that Scheme 2 uses local data only, i.e. the values of f and ∂f/∂x

at x
(hi)
b1 and at x

(hi)
b2 , to construct the polynomials. Derivative values need be

obtained in advance and how to compute these values will be discussed in next

section. The remaining steps of the solution procedure are similar to those for

Scheme 1.

5.3 Numerical examples

For all examples in this chapter, 1D-IRBFNs are implemented with the mul-

tiquadric (MQ) function. A grid size is taken to be the MQ width. Both

boundary-value and initial-value problems are considered to validate the present

technique.

The solution accuracy is measured by means of the discrete relative L2 norm of
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the error defined as

Ne =

√∑nip

i=1(f
e
i − fi)2√∑nip

i=1(f
e
i )

2
, (5.15)

where nip is the number of interior points in the physical domain, and f e and

f are the exact and approximate solutions, respectively.

The convergence rate of the solution with respect to grid refinement is measured

by α in

Ne(h) ≈ γhα = O(hα), (5.16)

in which α and γ are exponential model’s parameters and h the average nodal

spacing. Given a set of observations, these parameters can be found by the

general linear least squares technique.

Example 1 - A boundary-value problem

This problem is governed by Poisson equation

∂2f

∂x2
+
∂2f

∂y2
= b(x, y), (5.17)

where b(x, y) is a given function. A domain of interest is a square region,

[−0.5, 0.5] × [−0.5, 0.5], with a circular hole of radius R = 0.2 and its centre

located at position (−0.2,−0.2). This physical domain is embedded in a square

computational one that can be conveniently represented by a uniform Cartesian

grid (Figure 5.3).

Two particular driving functions are considered.
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Figure 5.3: Example 1 (boundary-value problem): Domain of interest and a
typical discretisation

Case 1:

b(x, y) = −8π2(sin(3πx) cosh(πy)− cos(3πx) sinh(πy)). (5.18)

The exact solution to this case is available

f e(x, y) = sin(3πx) cosh(πy)− cos(3πx) sinh(πy), (5.19)

from which Dirichlet boundary conditions can be derived analytically.

Case 2:

b(x, y) = 0. (5.20)

Analytic solution to this case is not available. On the outer and inner bound-

aries, f = 1 and f = 0 are prescribed, respectively.
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For Case 1, Scheme 1 is employed to construct the fictitious solution over the

hole. Results of the matrix condition number and the solution accuracy are pre-

sented in Table 5.1. In terms of stability, the proposed method yields relatively

low condition numbers (e.g. about 1.0 × 103 for a grid of 66 × 66). In terms

of accuracy, errors obtained are relatively small, varying from 2.09× 10−2 (grid

of 22× 22) to 3.73× 10−3 (grid of 66× 66). Figure 5.4 displays the computed

solution using a grid of 42× 42. It can be seen that the present scheme is able

to capture a complex function.

−0.5 0 0.5
−0.5

0
0.5

−4

−3

−2

−1

0

1

2

3

4

Figure 5.4: Example 1 (boundary-value problem - Case 1): A plot of the ap-
proximate solution using a grid of 42× 42

For Case 2, Scheme 2 is employed. As mentioned earlier, one needs to have

the values of ∂f/∂x at x
(hi)
b1 and at x

(hi)
b2 in advance. An iterative procedure is

employed here for this purpose. At the beginning, these derivative values are

set to zero. Through (5.14), a function ff is obtained. By substituting nodal

values of ff into (5.10), one is able to acquire the solution fr. These ff and fr
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Table 5.1: Example 1 (boundary-value problem - Case 1): Errors of the solution
and condition numbers of the system matrix.

Grid Error Cond(A)
22× 22 2.0903× 10−2 1.1× 102

26× 26 1.3029× 10−2 1.5× 102

30× 30 1.0792× 10−2 2.0× 102

34× 34 1.0584× 10−2 2.7× 102

38× 38 1.0076× 10−2 3.4× 102

42× 42 9.1317× 10−3 4.3× 102

46× 46 8.1338× 10−3 5.1× 102

50× 50 8.0598× 10−3 6.1× 102

54× 54 7.9912× 10−3 7.1× 102

58× 58 5.6866× 10−3 8.3× 102

62× 62 6.9334× 10−3 9.4× 102

66× 66 3.7331× 10−3 1.0× 103

constitute a solution f along a grid line, from which the values of ∂f/∂x at x
(hi)
b1

and at x
(hi)
b2 are updated. This procedure is repeated a few times to pick up one

among many possible third-order polynomial representations for the fictitious

solution ff .

Figure 5.5 displays a visual comparison of the distribution of fr between the

present technique and FEM. It is noted that the FEM result is obtained using

the PDE Toolbox in MATLAB. It can be seen that the two solutions have

similar variations.
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Figure 5.5: Example 1 (boundary-value problem - Case 2): A contour plot of
fr by the 1D-IRBFN method using grid of 40× 40 (top) and FEM (bottom).
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Figure 5.6: Example 2 (boundary value problem): Discretisation by the present
1D-IRBFN method (top) and FEM (bottom)
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Example 2 - A boundary value problem

This problem is governed by Poisson equation with the driving function b(x, y) =

−1 and homogeneous Dirichlet boundary conditions. The domain of interest is

a unit square with 10 holes of radius 0.1. This example provides a good means of

testing the capability of the proposed technique in dealing with geometrically-

complex-domain problems. It is noted that multi-hole domains occur in many

practical modelling situations such as thermal conductivity for composite ma-

terials, fluid flow in porous medium and particulate flows.

In Figure 5.6, a typical discretisation of the present technique and that of FEM

are shown. The pre-processing for the present technique is much more eco-

nomical than that for FEM. Since there is no exact solution available here, we

present a visual comparison of the distribution of fr between the present tech-

nique (Scheme 1, grid of 80 × 80) and FEM (Figure 5.7). It is noted that the

FEM result is obtained using the PDE Toolbox in MATLAB. It can be seen

that the two solutions have similar behaviours.
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Figure 5.7: Example 2 (boundary value problem): A contour plot of fr by the
present 1D-IRBFN method using grid of 80× 80 (top) and FEM (bottom)
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Figure 5.8: Example 3 (initial-value problem): Domain of interest and a typical
discretisation

Example 3 - An initial-value problem

This problem is governed by the following parabolic PDE

∂f

∂t
−

(
∂2f

∂x2
+
∂2f

∂y2

)
= (1 + 2π2k2t) sin(kπx) sin(kπy), (5.21)

where k is a given number. The problem domain is the region lying between a

square of 1× 1 and a circle of radius 0.2 which are both centered at the origin

(Figure 5.8). The exact solution is given by

f e(x, y, t) = sin(kπx) sin(kπy)t, (5.22)

from which the initial solution and Dirichlet boundary conditions are derived

analytically.

The spatial discretisation is carried out using a Cartesian grid of 40× 40. Both

Scheme 1 and Scheme 2 for calculating the function ff in (5.10) are employed.
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For the latter, the values of ∂f/∂x at x
(hi)
b1 and at x

(hi)
b2 are simply taken from

the previous time level. Results of Ne for k = 2 and k = 3 using a time step of

0.1 are presented in Table 5.2, which shows that Scheme 2 gives more accurate

results than Scheme 1. Scheme 2 is thus recommended for use in practice. It is

noted that the matrix condition number is only 3.8× 102 for a grid of 40× 40.

Plots for f with two values of k at t = 1 are shown in Figure 5.9.

5.4 Concluding remarks

In this chapter, Cartesian grids and 1D-IRBFNs are incorporated into the do-

main embedding framework to solve elliptic and parabolic equations of sec-

ond order on multiply-connected domains. The preprocessing is simple as the

multiply-connected domain is converted into a rectangular one. We employ

polynomials of third order to represent the fictitious solution within holes. Two

schemes to construct polynomials are proposed. The first is based on func-

tion values while the second relies on both function and derivative values. The

system matrix is expressed in terms of the values of the field variable at grid

nodes only. The technique is validated successfully through several boundary-

value and initial-value problems. Numerical results indicate that the inclusion

of derivative values in constructing the polynomials leads to an improvement in

accuracy. In comparison with the 1D-IRBFN-based boundary fitted method,

the 1D-IRBFN-based domain embedding method is seen to be less accurate, but

appears to be more convenient for solving multiply-connected domain problems

with many moving inner holes.
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Table 5.2: Example 3 (initial-value problem): Errors of f with k = 2 and k = 3
by Scheme 1 and Scheme 2 using grid of 40×40. It is noted that a(b) represents
a× 10b.

k = 2 k = 3
Time Scheme 1 Scheme 2 Scheme 1 Scheme 2
0.2 1.4690(-3) 8.1363e(-3) 1.1299(-2) 3.9580e(-3)
0.4 1.4858(-3) 4.0864e(-3) 1.1435(-2) 3.9580e(-3)
0.6 1.4915(-3) 2.7144e(-3) 1.1481(-2) 2.5376e(-3)
0.8 1.4943(-3) 2.0333e(-3) 1.1504(-2) 1.8324e(-3)
1.0 1.4961(-3) 1.6249e(-3) 1.1518(-2) 1.4103e(-3)
1.2 1.4972(-3) 1.3527e(-3) 1.1528(-2) 1.1297e(-3)
1.4 1.4980(-3) 1.1583e(-3) 1.1534(-2) 9.2994e(-4)
1.6 1.4986(-3) 1.0125e(-3) 1.1539(-2) 7.8087e(-4)
1.8 1.4991(-3) 8.9925e(-4) 1.1543(-2) 6.6565e(-4)
2.0 1.4995(-3) 8.0867e(-4) 1.1546(-2) 5.7421e(-4)
2.2 1.4998(-3) 7.3460e(-4) 1.1549(-2) 5.0016e(-4)
2.4 1.5001(-3) 6.7292e(-4) 1.1551(-2) 4.3925e(-4)
2.6 1.5003(-3) 6.2077e(-4) 1.1553(-2) 3.8855e(-4)
2.8 1.5005(-3) 5.7610e(-4) 1.1554(-2) 3.4597e(-4)
3.0 1.5007(-3) 5.3742e(-4) 1.1555(-2) 3.1000e(-4)
3.2 1.5008(-3) 5.0361e(-4) 1.1557(-2) 2.7951e(-4)
3.4 1.5009(-3) 4.7381e(-4) 1.1558(-2) 2.5366e(-4)
3.6 1.5010(-3) 4.4735e(-4) 1.1559(-2) 2.3178e(-4)
3.8 1.5011(-3) 4.2370e(-4) 1.1559(-2) 2.1335e(-4)
4.0 1.5012(-3) 4.0244e(-4) 1.1560(-2) 1.9795e(-4)
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Figure 5.9: Example 3 (initial-value problem): Plots of the approximate solution
for two values of k using a grid of 40× 40.



Chapter 6

1D-integrated-RBFN calculation

of particulate suspension flows

In this chapter, 1D-IRBFN methods are applied for the numerical prediction of

bulk properties of particulate suspensions under simple shear conditions. The

suspending fluid is Newtonian and the suspended particles are rigid. Results

obtained are compared well with those based on finite elements in the literature.
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6.1 Introduction

Figure 6.1: A particle-fluid system

Particulate suspensions, which involve transport of rigid particles suspended in

a fluid medium, occur in many industrial processes such as slurries, colloids,

fluidised beds, etc. Due to their great structural and physical variety, the use

of experiments to determine the macroscopic rheological properties of these

multiphase materials was seen to be impractical (Phan-Thien and Kim, 1994).

However, it may be possible to employ numerical simulations to predict the

bulk properties of multiphase materials. Various numerical models have been

proposed. Among them are direct numerical simulations (DNSs) which have

received a great deal of attention. In DNSs, the fundamental equations for par-

ticles (Newton-Euler equation) and a fluid (Navier-Stokes equation) are solved

in a direct and fully-coupled manner. Two main advantages of DNSs are that

(i) they can handle particles of different shapes and sizes as well as any type

of fluid; and (ii) hydrodynamic forces and moments can be calculated directly
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from the fluid flow. Difficulties faced by DNSs include (i) a very large number

of particles is typically required for a proper simulation; and (ii) the fluid do-

main is of very complex shape due to the presence of particles and the change

of their positions with time. Based on the fluid-phase solver employed, DNSs

can be classified into two categories. In the first category, a mesh follows the

movement of the particles, i.e. a moving mesh is used. Methods based on the

Arbitrary Lagrangian-Eulerian (ALE) moving mesh approach proposed by Hu

et al. (1992) are widely used, (e.g. Hu, 1995; Huang et al., 1997; Huang et al.,

1998). In the second category, a mesh covers the whole domain and is indepen-

dent of the position of particles, i.e. a fixed mesh is used. Methods based on

the fictitious domain approach proposed by Glowinski et al. (1998) are widely

employed, (e.g. Hwang et al., 2004; Patankar et al., 2000; Singh et al., 2000).

Hwang et al. (2004) incorporated sliding bi-periodic frames, introduced by Lees

and Edwards (1972) for molecular dynamics, into the simulation of particulate

flows. This concept allows the modelling of suspension systems with infinite

numbers of particles to be conducted through a small number of particles in a

representative reference sliding frame. The computational fluid domain is thus

small with bi-periodic conditions on the frame and no-slip conditions on the

surfaces of the particles.

In recent years, RBFN-based methods, which are extremely easy to implement

and capable of achieving a high level of accuracy using a relatively-small number

of nodes, have been successfully applied to solve complex problems encountered

in engineering, (e.g. Šarler et al., 2004; Šarler, 2005; Šarler et al., 2010; Gerace

et al., 2009; Kosec and Šarler, 2008a,b; Orsini et al., 2009; Divo and Kassab,

2005, 2006, 2007, 2008; Pepper and Sarler, 2005; Zahab et al., 2009; Yao et al.,

2011 and the references therein). In this chapter, we report a new numerical

method based on 1D integrated RBFNs and point collocation in the context

of boundary fitted Cartesian grids and sliding bi-periodic frames for the direct

simulation of flows of Newtonian-based particulate systems.
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The remainder of the chapter is organised as follows. Section 6.2 gives a brief

review of the governing equations and the concept of sliding frames. In Sec-

tion 6.3, the proposed numerical procedure is described. Numerical results are

presented in Section 6.4. Section 6.5 concludes the chapter.

6.2 Governing equations and sliding frames con-

cept

6.2.1 Governing equations

Let Π be the entire computational domain, including the interior regions occu-

pied by the particles. Let Pi(t) and ∂Pi(t) be the region and its boundary of the

ith particle of time t, where i = (1, 2, · · · , N) and N is the number of particles

(Figure 6.1).

Fluid motion: The laws of mass and momentum conservation for an incom-

pressible fluid lead to

∇ · u = 0, (6.1)

ρf
Du

Dt
= ∇ · σ, (6.2)

where u is the velocity vector, ρf the density of the fluid, σ the total stress

tensor, and D[.]/Dt the material derivative defined as

D[.]

Dt
=
∂[.]

∂t
+ (u ·∇)[.]. (6.3)
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For a Newtonian fluid, the total stress tensor is given by

σ = −pI + 2ηD, (6.4)

where p is the hydrodynamic pressure, I the unit tensor, η the viscosity, and D

the strain rate tensor defined as

D =
1

2
[∇u+ (∇u)T ]. (6.5)

In the case of 2D problems, the ψ − ω formulation has been widely employed

because of its simplicity. The governing equations (6.1), (6.2) and (6.4) can be

rewritten as follows.

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (6.6)

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
, (6.7)

where ψ is the stream function, ω the vorticity, Re the Reynolds number, and

u and v the components of u, which are defined in terms of the stream function

as

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

The given velocity boundary conditions can be transformed into two boundary

conditions on the stream function and its normal derivative

ψ = γ,
∂ψ

∂n
= ξ,

where n is the direction normal to the boundary, and γ and ξ prescribed func-

tions.
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Figure 6.2: Shear bi-periodic frames.
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Particle motion: Consider an ith particle. The motion of the particle can be

described by the Newton-Euler equations

Mi
dUi

dt
= Fi, (6.8)

Ii
dΩi

dt
= Ti, (6.9)

whereMi, Ii,Ui andΩi are the mass, inertia tensor, translational velocity vector

of the mass centre and angular velocity vector of the ith particle, respectively,

and Fi and Ti the force and torque vectors acting on the ith particle.

The force and torque vectors can be computed from the fluid flow as

Fi =

∮

∂Pi(t)

σ · nds, (6.10)

Ti =

∮

∂Pi(t)

r× (σ · n) ds, (6.11)

where r is the position vector, n the outward unit vector normal to the boundary

∂Pi and ds the length of an infinitesimal part of ∂Pi.

Non-slip boundary conditions on the interface between the fluid and the ith

particle are given by

u = Ui +Ωi × r, (6.12)

where

Ui =
dXi

dt
,

Ωi =
dΘi

dt
,

in which Xi is the position vector of the mass center and Θi the orientation of
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the ith particle. In terms of the stream function, (6.12) becomes

∂ψ

∂y
= Ui − Ωiy (6.13)

∂ψ

∂x
= −Vi − Ωix, (6.14)

where Ui and Vi are the two components of U and Ωi the magnitude of Ωi.

6.2.2 Sliding bi-periodic frames concept

Consider a particulate flow of very large domain under simple shear conditions

in the x direction. One possible way to make such a large problem tractable is to

simplify it using the concept of sliding bi-periodic frames. The problem domain

can be divided into a set of identical sliding frames of width L and height H

(Figure 6.2). Each frame translates along the shear direction at its own average

velocity. Rows of frames slide relatively to one another by an amount ∆ = γ̇Ht,

where γ̇ is the given shear rate, H height of the frame and t shear time (Hwang

et al., 2004).

Because frames have similar solutions, only one frame is considered. If particles

in a frame are ignored, it can be seen that the velocity profile is linear

u = u0 + γ̇y, (6.15)

v = 0, (6.16)

where the origin of the x− y coordinate system is located at the centre of the

frame; u0 the translation velocity of the frame and −H/2 ≤ y ≤ H/2. With

the presence of particles, one has

u = û+ u0 + γ̇y, (6.17)

v = v̂, (6.18)
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where û and v̂ are the perturbations from the linear profile.

Since the solution is continuous across sliding frames, the following bi-periodic

boundary conditions for the velocity u and the traction τ can be applied to

each frame

u(−L/2, y, t) = u(L/2, y, t), −H/2 ≤ y ≤ H/2, (6.19)

τ (−L/2, y, t) = τ (L/2, y, t), −H/2 ≤ y ≤ H/2, (6.20)

for the two vertical faces, and

u(x,−H/2, t) = u(x+ γ̇Ht,H/2, t) + (γ̇H, 0)T , −L/2 ≤ x ≤ L/2,

(6.21)

τ (x,−H/2, t) = τ (x+ γ̇Ht,H/2, t), −L/2 ≤ x ≤ L/2,

(6.22)

for the two horizontal faces.

6.3 Proposed numerical procedure

In this chapter, we propose a numerical procedure based on IRBFNs and slid-

ing frames for the simulation of particulate suspensions under simple shear

conditions. The fluid domain in a reference frame is simply discretised using a

Cartesian grid nx×ny . Let Γ1,Γ2,Γ3 and Γ4 be the sides of the reference frame

(Figure 6.3). IRBFNs are employed on each grid line to represent the field

variables ψ and ω (one-dimensional IRBFNs). Sliding bi-periodic boundary

conditions are presently implemented by means of point collocation rather than

the Lagrange multipliers used in (Hwang et al., 2004). The proposed procedure

combines strengths of three approaches, namely IRBFNs (high-order accuracy),

Cartesian grids (easy preprocessing) and the sliding bi-periodic frames concept



6.3 Proposed numerical procedure 151

(infinite number of particles). To our best knowledge, this is a first attempt to

use RBFs for the analysis of shear particulate flows. In the following, details are

presented for the three constituent components of the proposed procedure. 1D-

IRBFNs are first described. Sliding bi-periodic boundary conditions are then

expressed in terms of the stream function and implemented with IRBFs and

point collocation. Finally, suitable formulas and their IRBFN implementation

are presented for computing the boundary values on the particles.

Γ1

Γ2

Γ3

Γ4

Figure 6.3: A reference frame and its typical Cartesian-grid discretisation.

x1 x2 xq

xb1 xb2

Figure 6.4: Nodal points on a grid line consisting of interior points xi (◦) and
boundary points xbi (2).
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6.3.1 1D-IRBFNs

Consider a grid line that can be bounded by two faces of the frame, the bound-

aries of two particles, or the boundary of the particle and the frame. Assume a

grid line in the x direction and let f be the field variable. IRBFNs are employed

to approximate f . The construction procedure is as follows.

Second-order derivative of f along a grid line can be decomposed into RBFs

∂2f(x)

∂x2
=

m∑

i=1

wigi(x) =
m∑

i=1

wiI
(2)
i (x), (6.23)

where m is the number of RBFs, {gi(x)}mi=1 ≡
{
I
(2)
i (x)

}m
i=1

the set of RBFs,

{wi}mi=1 the set of weights to be found and f represents ψ and ω. Approximate

expressions for the first-order derivative and the field variable are then obtained

through integration

∂f(x)

∂x
=

m∑

i=1

wiI
(1)
i (x) + c1, (6.24)

f(x) =

m∑

i=1

wiI
(0)
i (x) + c1x+ c2, (6.25)

where I
(1)
i (x) =

∫
I
(2)
i (x)dx and I

(0)
i (x) =

∫
I
(1)
i (x)dx. In this study, IRBFNs

are implemented with the multiquadric (MQ) function and one thus has

I
(2)
i (x) =

√
(x− ci)2 + a2i , (6.26)

I
(1)
i (x) =

(x− ci)

2
A+

a2i
2
B, (6.27)

I
(0)
i (x) =

(−a2i
3

+
(x− ci)

2

6

)
A+

a2i (x− ci)

2
B, (6.28)

where ci and ai are the centre and the width of the ith MQ, respectively, A =
√

(x− ci)2 + a2i , and B = ln
(
(x− ci) +

√
(x− ci)2 + a2i

)
. The grid size h is

chosen as the RBF width ai. The set of collocation points {xi}mi=1 is taken to

be the same as the set of centres {ci}mi=1.



6.3 Proposed numerical procedure 153

As shown in Figure 6.4, a grid line contains two sets of nodal points. The first

set consists of q interior points that are also the grid nodes (regular nodes). The

function values at the interior points ({xi}qi=1) are unknown. The second set

consists of the two nodes xb1 and xb2 which are generated by the intersection of

the grid line and the boundaries.

Collocating (6.25) at the nodal points yields




f̂

f(xb1)

f(xb2)


 = Î(0)




ŵ

c1

c2


 , (6.29)

where

f̂ = (f(x1), f(x2), · · · , f(xq))T ,

ŵ = (w1, w2, · · · , wm)T ,

Î(0) =




I
(0)
1 (x1) I

(0)
2 (x1) · · · I

(0)
m (x1) x1 1

I
(0)
1 (x2) I

(0)
2 (x2) · · · I

(0)
m (x2) x2 1

...
...

. . .
...

...
...

I
(0)
1 (xq) I

(0)
2 (xq) · · · I

(0)
m (xq) xq 1

I
(0)
1 (xb1) I

(0)
2 (xb1) · · · I

(0)
m (xb1) xb1 1

I
(0)
1 (xb2) I

(0)
2 (xb2) · · · I

(0)
m (xb2) xb2 1




,

m = q + 2.

Solving (6.29) for the coefficient vector, including the two integration constants,

results in




ŵ

c1

c2


 =

(
Î(0)

)
−1




f̂

f(xb1)

f(xb2)


 , (6.30)

where
(
Î(0)

)
−1

is the generalised inverse of Î(0).
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Making use of (6.30), the values of the first and second derivatives of f at the

interior points are computed in terms of nodal variable values




∂f(x1)
∂x

∂f(x2)
∂x
...

∂f(xq)
∂x




= Î(1)
(
Î(0)

)
−1




f̂

f(xb1)

f(xb2)


 , (6.31)

and




∂2f(x1)
∂x2

∂2f(x2)
∂x2

...

∂2f(xq)
∂x2




= Î(2)
(
Î(0)

)
−1




f̂

f(xb1)

f(xb2)


 , (6.32)

where

Î(1) =




I
(1)
1 (x1) I

(1)
2 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) I

(1)
2 (x2) · · · I

(1)
m (x2) 1 0

...
...

. . .
...

...
...

I
(1)
1 (xq) I

(1)
2 (xq) · · · I

(1)
m (xq) 1 0



,

and

Î(2) =




g1(x1) g2(x1) · · · gm(x1) 0 0

g1(x2) g2(x2) · · · gm(x2) 0 0
...

...
. . .

...
...

...

g1(xq) g2(xq) · · · gm(xq) 0 0



.

It can be seen from (6.31) and (6.32) that Dirichlet conditions at xb1 and xb2

are incorporated into the IRBFN approximations. Depending on how a grid

line is bounded, the boundary points xb1 and xb2 have particular locations. For

example, one has (xb1 ∈ Γ2 and xb2 ∈ Γ4) if a grid line is bounded by the two

vertical faces of the frame, and (xb1 ∈ Γ2 and xb2 ∈ ∂Pi) if the bounding surfaces
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are the left face and the ith particle boundary.

In the same manner, one can obtain the IRBFN expressions for a y−grid line.

6.3.2 Sliding bi-periodic boundary conditions

The continuity of the stream function and the vorticity across two adjacent

sliding frames leads to the following periodic boundary conditions (Anderson

et al., 2006)

ψ(−L/2, y, t) = ψ(L/2, y, t), −H/2 ≤ y ≤ H/2, (6.33)

∂ψ

∂x
(−L/2, y, t) = ∂ψ

∂x
(L/2, y, t), −H/2 ≤ y ≤ H/2, (6.34)

ω(−L/2, y, t) = ω(L/2, y, t), −H/2 ≤ y ≤ H/2, (6.35)

∂ω

∂x
(−L/2, y, t) = ∂ω

∂x
(L/2, y, t), −H/2 ≤ y ≤ H/2, (6.36)

for the two vertical faces and

ψ(x,−H/2, t) = ψ(x+ γ̇Ht,H/2, t), −L/2 ≤ x ≤ L/2, (6.37)

∂ψ

∂y
(x,−H/2, t) = ∂ψ

∂y
(x+ γ̇Ht,H/2, t) + γ̇H, −L/2 ≤ x ≤ L/2,

(6.38)

ω(x,−H/2, t) = ω(x+ γ̇Ht,H/2, t), −L/2 ≤ x ≤ L/2, (6.39)

∂ω

∂y
(x,−H/2, t) = ∂ω

∂y
(x+ γ̇Ht,H/2, t), −L/2 ≤ x ≤ L/2, (6.40)

for the two horizontal faces.

Consider the stream function ψ. The values of ψ are unknown not only at the

interior points (xi, yj) with 2 ≤ i ≤ nx − 1 and 2 ≤ j ≤ ny − 1 but also at the

boundary points of the reference frame (−L/2, yj), (L/2, yj), (xi,−H/2) and

(xi, H/2) with 1 ≤ j ≤ ny and 2 ≤ i ≤ nx − 1. There are 2ny + 2(nx − 2)

unknowns for the latter, leading to nip + 2ny + 2(nx − 2) unknowns in total,
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where nip is the number of interior points. Apart from collocating the governing

equation for ψ at the interior points, one also needs to generate 2ny + 2(nx −
2) extra equations which can be achieved by using the bi-periodic boundary

conditions (6.33), (6.34), (6.37) and (6.38). Details are as follows.

ψ(−L/2, yj)− ψ(L/2, yj) = 0, 1 ≤ j ≤ ny, (6.41)

∂ψ

∂x
(−L/2, yj)−

∂ψ

∂x
(L/2, yj) = 0, 1 ≤ j ≤ ny, (6.42)

ψ(xi,−H/2)− ψ(xi + γ̇Ht,H/2) = 0, 2 ≤ i ≤ nx − 1, (6.43)

∂ψ

∂y
(xi,−H/2)−

∂ψ

∂y
(xi + γ̇Ht,H/2)− γ̇H = 0, 2 ≤ i ≤ nx − 1, (6.44)

where the time variable t is left out for the sake of simplicity.

In (6.41)-(6.44), one needs to express ∂ψ(L/2, yj)/∂x, ∂ψ(−L/2, yj)/∂x, ∂ψ(xi,−H/2)/∂y,
ψ(xi + γ̇Ht,H/2) and ∂ψ(xi + γ̇Ht,H/2)/∂y in terms of nodal values of ψ.

For ∂ψ(±L/2, yj)/∂x, the following IRBFN expressions are obtained by collo-

cating (6.24) at x = ±L/2 and then making use of (6.30)

∂ψ

∂x
(L/2, yj) = [I

(1)
1 (L/2), · · · , I(1)m (L/2), 1, 0]

(
Î(0)

)
−1




ψ̂

ψ(xb1, yj)

ψ(L/2, yj)


 ,

(6.45)

∂ψ

∂x
(−L/2, yj) = [I

(1)
1 (−L/2), · · · , I(1)m (−L/2), 1, 0]

(
Î(0)

)
−1




ψ̂

ψ(−L/2, yj)
ψ(xb2, yj)


 .

(6.46)

Similarly, one can obtain

∂ψ

∂y
(xi,−H/2) = [I

(1)
1 (−H/2), · · · , I(1)m (−H/2), 1, 0]

(
Î(0)

)
−1




ψ̂

ψ(xi,−H/2)
ψ(xi, yb2)


 .
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(6.47)

For ψ(xi + γ̇Ht,H/2), collocating (6.25) at xi + γ̇Ht and then making use of

(6.30) lead to

ψ(x̄, H/2) = [I
(0)
1 (x̄i), · · · , I(0)m (x̄i), x̄i, 1]

(
Î(0)

)
−1




ψ̂

ψ(−L/2, H/2)
ψ(L/2, H/2)


 , (6.48)

where x̄i = xi+ γ̇Ht. The process of deriving the IRBFN expression for ∂ψ(xi+

γ̇Ht,H/2)/∂y is similar to that for ψ(xi + γ̇Ht,H/2).

Sliding bi-periodic boundary conditions for the vorticity are also obtained in a

similar fashion.

6.3.3 Boundary conditions on the particles’ boundaries

Boundary conditions for the stream function

The values of the stream function ψ on the boundary of each particle Pi are

constant due to no-slip condition at the particle surface. Particles have their

own boundary values of ψ which are unknown. To find these unknowns, Lewis

(1979) suggested using the condition that the pressure is a single-valued function

on the boundary of a particle. This condition can be mathematically described

as

∮

∂Pi

∂p

∂s
ds =

∮

∂Pi

∇p · d~s = 0, (6.49)
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where p is the pressure and s the arc length. In the Cartesian coordinate system,

(6.49) becomes

∮
∂p

∂x
dx+

∮
∂p

∂y
dy = 0. (6.50)

The pressure gradient ∇p can be obtained from the momentum equations in

the primitive variable form. By replacing u = ∂ψ/∂y and v = −∂ψ/∂x, one
can express the components of ∇p in terms of the stream function and its

derivatives.

Boundary conditions for the vorticity

Figure 6.5: A curved boundary of the particle: arclength, and unit normal and
tangential vectors.

The values of the vorticity on ∂Pi can be computed via

ω =
∂2ψ

∂x2
+
∂2ψ

∂y2
, x ∈ ∂Pi. (6.51)

The handling of (6.51) thus involves the evaluation of second-order derivatives

of the stream function in both x and y directions. Unfortunately, the boundary

points on ∂Pi do not generally coincide with the grid nodes and hence they lie



6.3 Proposed numerical procedure 159

on either x− or y−grid lines. In (Le-Cao et al., 2009), the following formulae

were proposed

ω =

[
1 +

(
tx
ty

)2
]
∂2ψ

∂x2
− tx
t2y

∂2ψ

∂x∂s
+

1

ty

∂2ψ

∂y∂s
, x ∈ ∂Pi, (6.52)

for the x−grid lines, and

ω =

[
1 +

(
ty
tx

)2
]
∂2ψ

∂y2
− ty
t2x

∂2ψ

∂y∂s
+

1

tx

∂2ψ

∂x∂s
, x ∈ ∂Pi, (6.53)

for the y−grid lines. In (6.52) and (6.53), tx and ty are the x and y components

of the unit tangential vector and ∂(.)/∂s represents the derivative of (.) on ∂Pi

which is known (Figure 6.5). The boundary conditions for the vorticity are thus

written in terms of the second derivative of ψ with respect to x or y only.

In the case that the ith particle is of circular shape of radius Ri and rotates

about the centre of the reference frame at the angular velocity Ωi. Expressions

for computing tx, ty, ∂
2ψ/∂x∂s and ∂2ψ/∂y∂s become

tx =
−y√
x2 + y2

, (6.54)

ty =
x√

x2 + y2
, (6.55)

∂2ψ

∂x∂s
=

1

Ri
Ωiy, (6.56)

∂2ψ

∂y∂s
= − 1

Ri
Ωix. (6.57)

Substitution of (6.54)-(6.57) into (6.52) and (6.53) yields

ω =

[
1 +

(y
x

)2
]
∂2ψ

∂x2
+

[(y
x

)2

− 1

]
Ωi, x ∈ ∂Pi, (6.58)

ω =

[
1 +

(
x

y

)2
]
∂2ψ

∂y2
+

[(
x

y

)2

− 1

]
Ωi, x ∈ ∂Pi. (6.59)

The IRBFN implementation of (6.50) is straightforward, while special treat-
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ments are required in handling (6.52)-(6.53) and (6.58)-(6.59). For the latter,

normal derivative boundary conditions for the stream function, i.e. ∂ψ/∂n,

need be incorporated into expressions (6.52), (6.53), (6.58) and (6.59). Since

ψ and ∂ψ/∂n are known from the previous iteration, one can easily obtain the

values of ∂ψ/∂x and ∂ψ/∂y on ∂Pi. The proposed procedure imposes ∂ψ/∂n,

i.e. ∂ψ/∂x and ∂ψ/∂y, using the constants of integration. On an x−grid line,

one needs to incorporate ∂ψ/∂x into ∂2ψ/∂x2, while on a y−grid line, ∂ψ/∂y

is incorporated into ∂2ψ/∂y2. Because these two processes are similar, details

are given here for an x−grid line only, e.g. the one with xb1 ∈ Γ2 and xb2 ∈ ∂Pi.

The system for the conversion of the RBF space into the physical space (6.29)

now takes the form




ψ̂

ψ(xb1)

ψ(xb2)

∂ψ
∂x
(xb2)




=


 Î(0)

B







ŵ

c1

c2


 , (6.60)

where the conversion matrix is of dimensions (m+ 1)× (m+ 2) and

B =
[
I
(1)
1 (xb2), I

(1)
2 (xb2), · · · , I(1)m (xb2), 1, 0

]
.

Using (6.60), one obtains the following from (6.23) (in which f ≡ ψ and x ≡ xb2)

∂2ψ

∂x2
(xb2) = [g1(xb2), g2(xb2), · · · , gm(xb2), 0, 0]


 Î(0)

B




−1




ψ̂

ψ(xb1)

ψ(xb2)

∂ψ
∂x
(xb2)



.

(6.61)

Since the conversion matrix in (6.60) is not over-determined, the IRBFN approx-

imation for ∂2ψ(xb2)/∂x
2 satisfies ∂ψ/∂x at x = xb2 identically. This imposition

shows a clear advantage of IRBFNs over the usual differentiated approximations.
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Substituting (6.61) into (6.52), one is able to obtain the boundary conditions

on ∂Pi for the vorticity equation. It is noted that given ∂ψ/∂x and ∂ψ/∂y on

∂Pi, the terms ∂2ψ/∂x∂s and ∂2ψ/∂y∂s in (6.52) and (6.53) are known.

6.4 Numerical examples

In this section, the proposed procedure is validated through three examples. The

first example examines the performance of the present technique in the imple-

mentation of sliding bi-periodic boundary conditions of the frame. The second

example investigates the accuracy of the present technique in the handling of

boundary conditions that are similar to those on the particles’ boundaries. In

the third example, the proposed method is applied to simulate a shear flow of

a Newtonian-based particulate system, which is modelled by one particle sus-

pended in a sliding rectangular frame. For all numerical examples, the problem

domain is discretised using a uniform Cartesian grid. The interior points that

fall very close to the curved/irregular boundary (within a distance of h/8, h -

the grid size) are removed from the set of nodal points.

6.4.1 Example 1: Sliding bi-periodic boundary condi-

tions

In this example, the 1D-IRBFN implementation of shear bi-periodic boundary

conditions is validated. The test problem is governed by

∂2ψ

∂x2
+
∂2ψ

∂y2
= b(x, y). (6.62)

The domain of interest is the region lying between a circle of radius 1/2 and a

square of dimensions 2 × 2 which are both centered at the origin. The exact
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solution is

ψ(x, y) = sin(π(x− γ̇yt)) sin(πy), (6.63)

from which the driving function b(x, y) in (6.62) and the Dirichlet boundary

conditions on the hole can be easily derived. The value of γ̇ is set to 1. This

problem is taken from (Anderson et al., 2006).

The accuracy of an approximation scheme is measured by means of the discrete

relative L2 norm of the error defined as

Ne =

√∑M
i=1(ψ

e
i − ψi)2√∑M

i=1(ψ
e
i )

2

, (6.64)

where M is the number of unknown nodal values of ψ, and ψe and ψ are the

exact and approximate solutions, respectively. Another important measure is

the convergence rate α of the solution with respect to grid refinement

Ne(h) ≈ γhα = O(hα), (6.65)

in which α and γ are exponential model’s parameters. Given a set of ob-

servations, these parameters can be found by the general linear least squares

technique.
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Table 6.1: Example 1 (sliding bi-periodic boundary conditions): Errors of the
solution and condition numbers of the system matrix denoted by Cond(A). It
is noted that h is the spacing (grid size).

Grid Ne Cond(A)
12× 12 3.1078× 10−3 1.6× 103

22× 22 4.9660× 10−4 5.1× 103

32× 32 1.5234× 10−4 1.8× 104

42× 42 6.6599× 10−5 2.2× 104

52× 52 3.6510× 10−5 5.2× 104

62× 62 1.9881× 10−5 5.9× 104

O(h2.94)
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Figure 6.6: Example 1 (sliding bi-periodic boundary conditions): Contour plots
of the approximate and exact solutions at different time values. The two plots
are indistinguishable.
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Figure 6.7: Example 2 (rotating cylinder): geometry.

A number of grids, namely (12 × 12, 22 × 22, · · · , 62 × 62), are employed for

the convergence study. Results concerning the condition number of the system

matrix, denoted by cond(A), and the error Ne at t = 0 are listed in Table

6.1. It can be seen that the present system matrix has relatively-low condition

numbers and the solution converges fast at the rate of 2.94.

Contour plots for ψ at several values of the shear time t, namely (0, 0.5, 0.75, 1),

using a grid of 42×42 are shown in Figure 6.6. Exact solutions are also included.

The two solutions are indistinguishable.

6.4.2 Example 2: A rotating circular cylinder
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Re = 100

Re = 200

Re = 500

Figure 6.8: Example 2 (rotating cylinder): Velocity vector field (left) and vor-
ticity field (right) for the flow at Re = 100, 200 and 500.
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Table 6.2: Example 2 (rotating cylinder): Comparison of the stream-function
value at the inner cylinder, ψwall, between the present technique (grid of 36×36)
and finite difference technique for several values of Re.

Re 100 200 500
ψwall

Present 0.4637 0.4632 0.4550
(Lewis, 1979) 0.4577 0.4539 0.4465

In this test problem, the 1D-IRBFN implementation of boundary conditions of

particles is validated through the simulation of the flow of a Newtonian fluid

shown in Figure 6.7. The inner cylinder rotates at a unit angular velocity while

the outer cylinder is stationary. The value of ψ on the outer wall is simply set

to zero, while the value of ψ on the inner wall is considered as an unknown,

denoted by ψwall. The flow is governed by (6.6) and (6.7) and subject to the

boundary conditions

ψ =
∂ψ

∂x
=
∂ψ

∂y
= 0,

on the outer cylinder and

ψ = ψwall,
∂ψ

∂x
= −x, ∂ψ

∂y
= −y,

on the inner cylinder. Using (6.58) and (6.59) with Ω = 1, the vorticity bound-

ary conditions on the rotating cylinder can be computed by

ω =

[
1 +

(y
x

)2
]
∂2ψ

∂x2
+

[(y
x

)2

− 1

]
,

ω =

[
1 +

(
x

y

)2
]
∂2ψ

∂y2
+

[(
x

y

)2

− 1

]
.

The value of ψwall is found using the single-valued pressure condition as dis-

cussed earlier.
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The flow is simulated with R = 0.25 and L = 1.0 using a uniform grid of

36 × 36. Several values of the Reynolds number, namely (100, 200, 500), are

considered. Results concerning ψwall obtained by the proposed technique and

the finite-difference technique (Lewis, 1979) are presented in Table 6.2, showing

a good agreement. Plots for the velocity vector and vorticity fields for the case

of Re = {100, 200, 500} are given in Figure 6.8.

6.4.3 Example 3: Shear suspension flow

In this example, a single particle of radius R is suspended freely at the center of

the reference sliding bi-periodic frame of dimensions 1× 1. The fluid domain is

the region lying between the particle and the frame boundary (Figure 6.9). The

fluid is Newtonian and moves under a shear rate γ̇ = 1. This configuration can

represent the system of an infinite number of particles as described in Figure

6.10. It can be seen that the initial configuration is reproduced after the time

period K = 1/γ̇. The inertia of the particle and fluid are ignored. This problem

was studied using the fictitious-domain/finite-element method in (Hwang et al.,

2004). The governing equations for the motion of a fluid thus reduce to

∂2ψ

∂x2
+
∂2ψ

∂y2
= ω, (6.66)

∂2ω

∂x2
+
∂2ω

∂y2
= 0. (6.67)
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Figure 6.9: Example 3 (shear suspension): A reference frame (top) and its
discretisation (bottom).
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The boundary conditions for the frame are bi-periodic and determined through

(6.33)-(6.40), while the boundary conditions for the particle are computed using

(6.50), (6.58) and (6.59). However, as only one particle is considered, the value

of ψ on ∂P is simply set to 0. The stress tensor can be written in terms of the

stream function and pressure as

σ =




(
−p+ 2 ∂2ψ

∂x∂y

) (
∂2ψ
∂y2

− ∂2ψ
∂x2

)
(
∂2ψ
∂y2

− ∂2ψ
∂x2

) (
−p + 2 ∂2ψ

∂x∂y

)

 . (6.68)

Conventionally, the interacting hydrodynamic force and moment are first calcu-

lated from the fluid flow, and the movement of the particle is then determined

from these force and moment using the Newton-Euler equations. Because the

inertia of the particle is neglected and there is no external force acting on the

particle, the hydrodynamic force and torque are zero (force free and torque

free). It can be seen that the particle rotates about the frame centre at the

angular velocity Ω and does not translate relative to the frame, i.e. U = 0 and

V = 0. One thus only needs to use the torque-free condition to determine the

value of Ω

T =

∫

∂P

r× (σ · n) ds = 0. (6.69)

The reader is referred to (Hwang et al., 2004) for further details. Substitution

of (6.68) into (6.69) yields

∮
(x2 − y2)

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
ds = 0. (6.70)

In this study, a new way of obtaining Ω is proposed. On the particle boundary

(Figure 6.5), one can have

∂f

∂s
=
∂f

∂x
tx +

∂f

∂y
ty, (6.71)

where f is a generic function, and s, tx and ty are defined as before. By replacing
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f = ∂ψ/∂x, (6.71) becomes

∂2ψ

∂s∂x
=
∂2ψ

∂x2
tx +

∂2ψ

∂y∂x
ty. (6.72)

Since U = 0 and V = 0, (6.13) and (6.14) reduce to

∂ψ

∂y
= −Ωy, (6.73)

∂ψ

∂x
= −Ωx. (6.74)

Substituting (6.73) and (6.74) into (6.72) and making use of tx = −y/R and

ty = x/R give

Ω = −∂
2ψ

∂x2
. (6.75)

Similarly, by replacing f = ∂ψ/∂y, one has

Ω = −∂
2ψ

∂y2
. (6.76)

These conditions (6.75) and (6.76) can be used as an alternative to (6.70). In

practice, (6.75) and (6.76) are applied to the boundary points of the particle

on the x− and y−grid lines, respectively, from which the angular velocity is

derived in an average sense.
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(a) t = 0

(b) t = K/2

Figure 6.10: Example 3 (shear suspension): Problem description with two in-
stances during a period of shearing.
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Figure 6.11: Example 3 (shear suspension): Profile of the angular velocity over
the period K.
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For each shear interval, the solution procedure is as follows.

1. Guess the distribution of ω and ψ.

2. Discretise (6.66) and (6.67) using 1D-IRBFNs. The two system matrices

arising from the discretisation of the Laplace operator are identical and

remain unchanged during the iterative process.

3. Impose the sliding bi-periodic boundary conditions for ψ and ω on the

frame.

4. Derive computational boundary conditions for ω on ∂P .

5. Solve (6.66) for ω and (6.67) for ψ.

6. Compute Ω from (6.75) and (6.76).

7. Check the following convergence measure

CM =

√
∑nip

i=1

(
ψ

(k)
i − ψ

(k−1)
i

)2

√
∑nip

i=1

(
ψ

(k)
i

)2
< ǫ,

where nip is the number of interior points, k the current iteration and ǫ

the tolerance. In this study, ǫ is taken to be 10−12.

8. If not, relax the field solution

ψ
(k)
i = αψ

(k)
i + (1− α)ψ

(k−1)
i ,

where α is a given number (0 < α < 1), and repeat from step 4. Otherwise,

stop the computation and save the results.

The particle’s radius R is considered in the range of 0.15 to 0.42. Simulations

are carried out using Cartesian grids whose densities vary from 50×50 to 72×72.

Denser grids are used for larger values of R.



6.4 Numerical examples 175

t = 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

t = 0.3

 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.12: Example 3 (shear suspension): Streamlines and iso-vorticity lines
at the shear time of 0 and 0.3.
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Figure 6.11 shows the variation of Ω with respect to the shear time for several

values of R over the period K. It can be seen that the profile of Ω is symmetric

about the vertical line t = K/2. The largest value of Ω occurs when the frames

line up in the vertical direction (Figure 6.10a). Furthermore, the fluctuation of

Ω is an increasing function of R, indicating stronger hydrodynamic interaction

between particles at shorter range. In Figure 6.12, the distribution of ψ and

ω over a reference frame are multiplied to produce the ψ and ω fields on the

original large domain, where the sliding bi-periodic boundary conditions are

clearly observed.

Prediction of the bulk material properties

Following the work of Hwang et al. (2004), the bulk stress can be computed by

〈σ〉 = 1

A

∫

Γ

xτ Tds, (6.77)

where Γ = Γ1 ∩ Γ2 ∩ Γ3 ∩ Γ4 and A is the area of the frame domain, x the

position vector and τ the traction vector. In terms of ψ, (6.77) takes the form

〈σxy〉 =
1

A

∫

Γ

ytxds =

∫

Γ1

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
dy, (6.78)

〈σxx〉 =
1

A

∫

Γ

xtxds =

∫

Γ2

(
−p + ∂2ψ

∂x∂y

)
dy +

∫

Γ3

x

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
dx

−
∫

Γ1

x

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
dx, (6.79)

〈σyy〉 =
1

A

∫

Γ

ytyds =
1

2

∫

Γ3

(
−p + ∂2ψ

∂x∂y

)
dx− 1

2

∫

Γ1

(
−p + ∂2ψ

∂x∂y

)
dx,

(6.80)

where the pressure on Γ2 and Γ1 are computed using

p =

∫

Γ2

∂p

∂y
dy = −

∫

Γ2

(
∂3ψ

∂x3
+

∂3ψ

∂y2∂x

)
dy,

p =

∫

Γ1

∂p

∂x
dx =

∫

Γ1

(
∂3ψ

∂y3
+

∂3ψ

∂x2∂y

)
dx,
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and the pressure on Γ3 is derived from the pressure on Γ1 and the sliding periodic

condition.

Results for the bulk shear stress 〈σxy〉 and the normal stress difference 〈σxx−σyy〉
are plotted in Figure 6.13 and 6.14. When the distance from a given particle in

a sliding layer to the nearest particle in an adjacent layer is maximum (Figure

6.10b), the bulk shear stress becomes maximum and the bulk normal stress

difference becomes minimum. Both the bulk shear and normal stress difference

become larger when the particle radius increases and they oscillate with the

period K.

The bulk shear viscosity can be obtained by taking the time average of the bulk

shear stress over the period K (Hwang et al., 2004),

〈η〉
η

=
1

K

∫ K

0

〈σxy〉dt. (6.81)

In Figure 6.15, 〈η〉/η is plotted against the solid area fraction φ (φ = πR2). In

the case of dilute suspensions with circular disks, the bulk shear viscosity can

be computed by 〈η〉 = (1 + 2φ)η (Hwang et al., 2004). The dilute suspension

results are also plotted in Figure 6.15. It can be seen that the present model

produces larger values of 〈η〉/η than the dilute model. This looks reasonable as

the present simulations take the interaction between the particles into account

and the dilute result is only valid for small φ.

The observations presented above are similar to those reported in (Hwang et al.,

2004). Since the finite-element results were presented in graph, we are not able

to reproduce them here. However, numerical results by the two techniques

appear to be of comparable values, judging from the graphical presentations.
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Figure 6.13: Example 3 (shear suspension): Variations of the bulk shear stresses
over the period K.
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Figure 6.14: Example 3 (shear suspension): Variations of the bulk normal stress
difference over the period K.
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Figure 6.15: Example 3 (shear suspension): Computed bulk viscosity. Analytic
results for the dilute case are also included.
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6.5 Concluding remarks

In this chapter, a new computational procedure based on 1D-IRBFNs is devel-

oped for the simulation of 2D particulate flows under simple shear conditions.

Sliding bi-periodic frames are applied to reduce the large domain to a small

one. For the fluid component, the governing equations are taken in the stream-

function - vorticity formulation and the multiply-connected domain is simply

discretised using a Cartesian grid. For the particle component, a new efficient

way, based on direct point-wise calculations rather than line/surface integrals,

is proposed to compute the angular velocity. Three examples concerning sliding

bi-periodic conditions, particle-like boundary conditions and shear particulate

suspensions modelled by one particle in each frame are simulated successfully.

The presently predicted bulk properties are in good agreement with those by

the fictitious-domain/finite-element method.



Chapter 7

Conclusion

This chapter concludes the thesis. We will briefly summarise research contribu-

tions of the project and also present some suggestions for improvement.
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7.1 Research contributions

The outcome of the present research project is the successful development of

accurate and efficient numerical methods based on Cartesian grids and 1D-

IRBFNs for the simulation of heat and viscous flows defined on two-dimensional

multiply-connected domains. Significant applications of the proposed methods

include the simulation of natural convection flows and the prediction of mate-

rial properties of particulate flows. Research works in this project are briefly

outlined below.

Development of 1D-IRBFNs for solving heat transfer problems in

multiply-connected domains

This research work has been presented in Chapter 2. A multiply-connected

domain is simply discretised by a Cartesian grid, in which all boundaries are

represented by sets of points that are generated by the intersections between the

grid lines and the boundaries. We employ IRBFNs in one dimension on each

grid line to approximate the field variable and point collocation to discretise

the governing equation. Advantages of the proposed method include (i) very

economical preprocessing (Cartesian grids for multiply-connected domains); (ii)

high order of accuracy (RBFNs); (iii) avoidance of the reduction in convergence

rate caused by differentiation (integral formulation); (iv) accurate imposition of

Neumann boundary conditions (integration constants); and (v) achievement of

some degree of local approximation (IRBFNs in one dimension). The proposed

method is validated successfully through the solution of second-order elliptic and

parabolic equations. Numerical results show that high rates of convergence with

respect to grid refinement are obtained and condition numbers of the system

matrix are relatively low, e.g. in the range of O(101) to O(103) for grids with

densities of 12× 12 to 62× 62, respectively.

Development of 1D-IRBFNs for discretising the stream-function -



7.1 Research contributions 184

vorticity (ψ − ω) formulation in multiply-connected domains

This research work has been presented in Chapter 3. The Navier-Stokes equa-

tions are employed in the ψ − ω formulation. We devise a new formula to

compute a boundary condition for ω on an irregular boundary. It should be

emphasised that the boundary vorticity formula requires information about ψ

on one grid line only. The accuracy of the proposed technique is demonstrated

through several linear and non-linear problems, including natural convection in

annuli between circular-circular and square-circular cylinders. Results obtained

by the present 1D-IRBFN technique are compared well with numerical data

available in the literature.

Development of 1D-IRBFNs for discretising the stream-function (ψ)

formulation in multiply-connected domains

This research work has been presented in Chapter 4. The Navier-Stokes equa-

tions are employed in the ψ formulation. We employ 1D-IRBFNs of order 4 and

utilise the integral constants to incorporate double boundary conditions into the

approximations. Formulas for computing mixed derivatives in irregular regions

using 1D-IRBFNs are derived in the Cartesian system. We use the condition

that the pressure is a single-valued function of position to find the values of ψ

at inner boundaries. To verify the proposed technique, simulations of buoyancy

flows in several annuli of various shapes are carried out. High Rayleigh-number

solutions are achieved and they are in good agreement with previously published

numerical data.

Incorporation of 1D-IRBFNs into the domain embedding framework

This research work has been presented in Chapter 5. The multiply-connected

domain is now transformed into a simply-connected one. Solutions over interior

holes are assumed to be represented by third-order polynomials. These poly-

nomials are constructed to satisfy the boundary conditions. Several boundary-
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value and initial-value problems are considered. Preliminary results indicate

that this method is more suitable for the handling of problems with moving

interior holes.

Application of 1D-IRBFNs for the prediction of material properties

This research work has been presented in Chapter 6, which seems to be a first

RBFN report on the prediction of macro properties of particulate suspensions.

The concept of sliding bi-periodic frames is adopted. We impose sliding bi-

periodic boundary conditions in the collocation form and use a direct point-wise

way to calculate the angular velocity of a rigid particle in a reference frame.

Bulk properties are predicted numerically and they agree well with those by the

finite-element method.

7.2 Suggested work

The following works are suggested for possible further developments

• The 1D-IRBFN discretisation methods lead to matrices that are not as

sparse as those yielded through FDMs and FVMs. To improve the sparse-

ness of the matrix, one possible way is to introduce domain decompositions

into the methods.

• The 1D-IRBFN boundary fitted methods are presently developed for the

simulation of 2D fluid flows governed by the ψ − ω and ψ formulations.

Extension of the methods to the discretisation of the velocity - pressure

(u− p) or velocity - vorticity (u−ω) formulations is possible. Such u− p

and u− ω formulations are known to suit 3D problems.

• The 1D-IRBFN domain embedding techniques are seen to be more effi-

cient in solving multiply-connected domain problems with moving inte-

rior boundaries (e.g. particulate suspensions). More accurate imposition
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of the inner boundary conditions can be achieved by using T-splines and

infinitely smooth functions over fictitious subregions.

• 1D-IRBFNs are presently formulated for the direct simulation of particu-

late shear flows modelled by one particle in a reference frame. Extension

of this formulation to a more sophisticated model, i.e. two or more parti-

cles in a reference frame, is possible. In this case, one needs to pay extra

attention to deal with collision among rigid particles.
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Kosec, G. and Šarler, B. (2009). Solution of phase change problems by colloca-

tion with local pressure correction, CMES: Computer Modeling in Engineer-

ing & Sciences 47(2): 191–216.



REFERENCES 194

Kuehn, T. and Goldstein, R. (1976). An experimental and theoretical study

of natural convection in the annulus between horizontal concentric cylinders,

Journal of Fluids Mechanics 74(4): 695–719.

Ladd, A. J. C. (1994). Numerical simulations of particulate suspensions via a

discretized Boltzmann equation. I. Theoretical foundation, Journal of Fluid

Mechanics 271: 285–309.

Lan, C. W. (1994). Newton’s method for solving heat transfer, fluid flow and in-

terface shapes in a floating molten zone, International Journal for Numerical

Methods in Fluids 19(1): 41–65.

Layton, W. and Lenferink, W. (1995). Two-level Picard and modified Picard

methods for the Navier-Stokes equations, Applied Mathematics and Compu-

tation 69(2-3): 263–274.

Le-Cao, K., Mai-Duy, N. and Tran-Cong, T. (2009). An effective integrated-

RBFN Cartesian-grid discretization for the stream function-vorticity-

temperature formulation in nonrectangular domains, Numerical Heat Trans-

fer, Part B: Fundamentals 55(6): 480–502.

Le, H. and Moin, P. (1991). An improvement of fractional step methods for the

incompressible Navier-Stokes equations, Journal of Computational Physics

92(2): 369–379.

Lees, A. W. and Edwards, S. F. (1972). The computer study of transport

processes under extreme conditions, Journal of Physics C: Solid State Physics

5(15): 1921.
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Vertnik, R. and Šarler, B. (2006). Meshless local radial basis function collocation

method for convective-diffusive solid-liquid phase change problems, Interna-

tional Journal of Numerical Methods for Heat and Fluid Flow 16(5): 617–640.
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