
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Chakraborty, Subrata, Fidge, Colin J., Ma, Lin, & Sun, Yong (2013) M-ary
trees for combinatorial asset management decision problems. In Engi-
neering Asset Management 2011: Proceedings of the Sixth Annual World
Congress on Engineering Asset Management [Lecture Notes in Mechani-
cal Engineering], Springer, Duke Energy Center, Cincinatti, Ohio, pp. 117-
127.

This file was downloaded from: http://eprints.qut.edu.au/48411/

c© Copyright 2011 [Please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/978-1-4471-4993-4_11

http://eprints.qut.edu.au/view/person/Chakraborty,_Subrata.html
http://eprints.qut.edu.au/view/person/Fidge,_Colin.html
http://eprints.qut.edu.au/view/person/Ma,_Lin.html
http://eprints.qut.edu.au/view/person/Sun,_Yong.html
http://eprints.qut.edu.au/48411/
http://dx.doi.org/10.1007/978-1-4471-4993-4_11


M-ARY TREES FOR COMBINATORIAL ASSET MANAGEMENT DECISION PROBLEMS  
  

 

*Chakraborty S 
a
, Fidge C 

a
, Ma L 

b
 and Sun Y 

b
 
 

 

a  Computer Science, Faculty of Science and Technology, Queensland University of Technology, QLD 4101, Australia. 
 

b  Engineering Systems, Faculty of Built Environment and Eng, Queensland University of Technology, QLD 4101, Australia. 
 
 

*Corresponding Author - Email: subrata.chakraborty@qut.edu.au, Tel: +61 7 31382442, Fax: +61 7 31381469 
 
 

Abstract 
  

A novel m-ary tree based approach is presented to solve asset management decisions which are combinatorial in 
nature.  The approach introduces a new dynamic constraint based control mechanism which is capable of excluding infeasible 
solutions from the solution space. The approach also provides a solution to the challenges with ordering of assets decisions. 
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1. Introduction 
 
Asset management is about finding the right balance between cost, performance and risks to any asset.  Asset 

management helps us to align corporate goals with maintenance spending and to draw up future asset plans (Brown and 
Spare, 2004).  In large organizations with a large number of assets, the task of the asset manager is a challenging one.  In this 
paper we focus on a combinatorial decision support problem relevant to asset maintenance.  The problem concerns a group of 
assets, each with multiple maintenance options, for each of which the decision maker needs to select one option.  While 
making these option selections the decision maker must find the combination that satisfies all technical and business 
constraints best.  The most obvious way to handle this problem is to generate all candidate solutions (combinations of 
options) and then compare them with respect to the decision constraints.  In practice, however, this simple, brute-force 
algorithm is too computationally intensive for large numbers of assets or maintenance options.  The number of candidate 
solutions and required comparisons increases exponentially with the number of assets.  In order to solve such an intractable 
computational problem we need to significantly reduce the number of potential solutions to be compared by limiting the 
generation of infeasible solutions.  

One of the most popular tree-based approaches in management and decision analysis is the decision tree (Quinlan, 
1986, 1999).  Decision trees have been successfully used in asset management (Sun et al., 2010; Emerson et al., 2011).  The 
decision tree approach is very efficient for decision problems with small numbers of assets.  However decision trees are 
designed for sequentially guiding choices in order to identify a single solution, not for generating large numbers of equally-
acceptable solutions. 

In the area of financial optimisation and asset-liability assessment stochastic programming models are also popular. 
The stochastic programming models generally require developing a scenario tree (Kusy & Ziemba, 1986; Carino et al., 1994; 
Consigli & Dempster, 1998; Kouwenberg, 2001; Yu et al., 2003).  The stochastic scenario tree can be considered as similar to 
the m-ary tree (Drmota, 2009).  

Binary trees (Bayer and McCreight, 1972) and their variants have been an integral part of computing since the early 
days.  They are widely used in algorithms, programming, data structures, searching and sorting (Wirth, 1986; Binstock and 
Rex, 1995; Adamson, 1996; Baldwin and Scragg, 2004).  Sorted binary trees have a natural ability to work efficiently with a 
large number of variables (decisions) due to their ability to rapidly partition the search space.  This capacity makes the binary 
tree based approach suitable to deal with combinatorial decision problems.  With a binary tree each parent node has two 
branches.  In the case of asset management decision problems a parent node can be considered to denote an asset and each of 
its branches as alternative maintenance options for that asset.  In practice, however, an asset may have more than just two 
maintenance options.  To handle this we need to use an m-ary tree (Drmota, 2009), which is a generalization of binary trees 

where a parent node has m branches.  

In the following sections we first explain the decision problem we are concerned with in mathematical terms followed 
by the details of an m-ary tree suitable for solving the problem.  We then present a novel m-ary tree based approach to solve 
the combinatorial asset management decision problem followed by an industry-based case study to demonstrate the 
applicability of the new approach. 

 



2. Problem Statement 
 
The assumption is that each decision must contain one and only one maintenance option for each asset. Given a set of 

assets N , each with a set of ( )Nnan  ..., ,2 ,1=
 

maintenance options, the number of possible decisions D  can be 

expressed as the product 
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The assumption is that the maintenance options for any asset are independent of the maintenance options of other 

assets, i.e., the choice of one maintenance option for an asset does not constrain the options for another asset.  The number of 

possible decisions D  includes all potential solutions including infeasible ones, i.e., options that are invalid because they 
individually violate some overall constraint or because they are incompatible with other options.  With a large number of 

assets and maintenance actions the value of D can be astronomical.  For example, consider 10 assets with 4 maintenance 
actions for each and the number of possible maintenance decisions will be 410 (= 1,048,576).  Generally, large organizations 
make maintenance decisions for hundreds or even thousands of assets.  The number of possible maintenance decisions is 
extremely large by nature and it is a classic combinatorial problem.  In order to find the best possible decision among all the 
possible decisions we can use a simple brute force technique as follows: 

 
Step 1: Create all possible maintenance decisions. 
Step 2: Compare the candidate solutions based on some constraint like cost, time, importance, etc. 
Step 3: Exclude non feasible solutions and choose one of the remaining acceptable solutions. 

 
 In theory the above technique seems easily achievable.  But it is impractical to use it to solve real life problems due to 
its very high computational requirements.  Furthermore, in practice decision makers are not always after the best solution, 
rather they are satisfied with any solution that meets their criteria.  Limited amounts of optimization testing are usually 
conducted to check the validity of the chosen decision.  The algorithm presented in this paper provides a solution to this 
combinatorial decision problem which can: 
 

a) Reduce the number of maintenance decisions generated. 
b) Solve the issue of maintenance decision conflicts dynamically.  
c) Apply various decision constraints effectively. 

 
 

3. M-ary Trees 
 

 
 
 
 
 
 
 

Figure 1: Binary Tree 
 

A binary tree as shown in Figure 1 contains parent nodes (nodes with successors) and child nodes (nodes without any 
successor).  Binary trees are a rooted tree and recursive in nature.  In a fully balanced binary tree (Baldwin and Scragg, 2004) 

with tree height h , the number of leaves L  can be calculated as  

 
hL 2=                                                                                                                                                                             (2) 

 

Binary trees can be generalized as m-ary rooted trees where 2≥m is a fixed integer (Drmota, 2009).  The number of leaves 

in an m-ary tree can be obtained by modifying Equation 2 as 
 

hmL =                                                                                                                                                                            (3) 

 
Equation 3 can be generalised as 
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In an m-ary tree all the parent nodes in each level of the tree have a fixed number of child nodes m .  But Equation 4 is 

capable of calculating the number of leaves in a tree even if the number of child nodes is different for the parent nodes of any 

particular level of the tree ( m may be different for different levels of the tree). 

Let us consider an asset management scenario for Equation 4.  The set of assets N represents the height of the tree h  

and the set of maintenance options ( )Nnan  ..., ,2 ,1=
 
represents the number of child nodes im  at each level of the tree.  

The number of decisions D  which consists of one maintenance option for each asset can be compared with the number of 

leaves L .  Based on this analogy we can establish that Equation 1 represents the m-ary tree where m is variable across assets. 

 
  

4. Our Approach  
 
Step 1: Get asset list 
Step 2: Get maintenance options for each asset 
Step 3: Get attributes for each maintenance option 
Step 4: Get filtering criteria 
Step 5: Get decision constraints 
Step 6: Add default maintenance option 
Step 7: Filter assets 
Step 8: Control solution space 
Step 9: Compare decisions 

 
 
The details of the approach are discussed as follows: 
 

Step 1 - 5: Inputs 
The approach requires the following inputs: 

a) An asset inventory listing all assets A . 

b) A set of maintenance options for each asset ( )Anan  ..., ,2 ,1= . 

c) Attributes of each maintenance option that influence the decision outcome.  Examples of attributes can be 
time, cost, safety, operational significance, etc. 

d) A set of asset filtering criteria F .  Examples of filtering criteria can be geographical location, known 
operational constraints, time of the year, etc. 

e) Decision constraints C  such as  

a. Incompatible maintenance options. 
b. Limit constraints (time, cost, resources, safety, etc.) 

 

Step 6: Add default maintenance option 
 
 In this stage a default maintenance option is added to each asset. The default option is considered as ‘No Action’ for 
the asset. It has no cost associated with it and it does not require any time or any other resources. The key benefit is that it 
allows reaching all possible solutions without creating multiple tree structures for making asset decisions in different order. 
  
 
 

 

  

 

 

 
 

Figure 2: Three assets with two options each 
  
  Considering Figure 2, which shows the potential search space generated when sequentially making decisions for an 
inventory containing 3 assets. If we want to make a decision consisting of options from assets A2 and A3, we must make a 
decision for asset A1 as well. The only way to make any decision with options from A2 and A3 only and not with A1 is to 
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restructure the tree with starting node being A2 or A3. Thus to reach all possible decision scenarios we may need to develop 
multiple tree structures. The addition of the default option to each asset provides access paths to all possible solutions without 
the need to create several tree structures for each possible ordering of the assets. Figure 3 shows the improvement from Figure 
2 that is capable of providing access to all possible decisions. X represents the default option. When selected, it indicates that 
no initially given option will be selected for that asset and yet it will provide access to other asset options to the lower levels 
of the tree. 
 
  
  
 
 
 
 

Figure 3: Three assets with two options and added default option 

 

 

Step 7: Filter Assets 

 From the asset inventory A , the set of assets N relevant to current decision making  can be filtered based on given 

filtering criteria F as the elements x for which the filtering criteria are true, i.e., 
 

)}(|{ xFAxxN ∧∈=                                                                                                                                              (5) 

 
Step 8: Control Solution Space 

The complete solution space contains all the possible decisions (combinations of maintenance options for each asset) 

D , i.e., all the paths from the root of the state space tree to its leaves.  The control stage is a directed search through the 

complete solution space D  excluding branches consisting of infeasible decisions.  This process dynamically reduces the 

solution space by not generating infeasible decisions and their offspring.  The set of feasible decisions d  can be obtained as 

the set of elements x for which the decision criteria hold, i.e. 
 

)}(|{ xCDxxd ∧∈=                                                                                                                                               (6) 

 

Step 9: Compare Decisions 

 The comparison is essentially a sorting operation for the set of feasible decisions d based on comparison criteria which 

may include control criteria thresholds.  Due to the dynamic control applied in Step 2 the number of comparisons required 
can reduce significantly depending on the decision problem. 
 

5. Case Analysis 
In this section we present a small example to demonstrate the potential gains provided by our approach. 

5.1 Case Description 
 A large Australian power generating corporation currently maintains thousands of assets as part of their regular 
operation.  They often face the challenge of deciding which assets to maintain, when to maintain them, and how several assets 
can be grouped together for maintenance.  The major constraints and issues they must consider include available maintenance 
time, costs, and remaining time for safe operation, resource availability, and operational criticality.  
 In order to illustrate the approach, we will solve a much downsized version of the actual decision problem.  The 
solution will be obtained by applying a single decision constraint.  The inputs to the algorithm are as follows: 

a) The asset inventory listing all available assets A  which contains several thousand assets. 

b) The set of available maintenance options for each asset ( )Anan  ..., ,2 ,1=  whose number varies for 

different assets.  The operational criticality of each asset is also available. 
c) The available attributes of each maintenance option that influence the decision outcome.  The most 

significant attributes considered are cost, safety and time. 

d) The set of asset filtering criteria F .  Major filtering is done based on operational area segments in the 
plant and available major downtime. 

e) Decision constraints C  such as  

1) Incompatible maintenance constraints: Not considered currently. 
2) Limiting constraints: Cost and time limits are available. 
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5.2 Solution using the algorithm 

 
 Steps 1-6 were applied to get all the required inputs and to add the default option for each asset. The default option is 
denoted as option 1 for each asset. 
 

 

Step 7: Filter Assets 

Based on the power plant segmentation we were able to filter the asset inventory.  The filtered asset set N  contains a 

few hundred assets. For the sake of this example, let us assume that we were able to subdivide one of the plant segments into 
a much smaller area consisting of just 4 assets.  Each asset has 3 maintenance options including the default option added 
using Step 6.  The related cost attributes of each option are presented in Table 1. 
 

Table 1: Assets, maintenance options and cost 

Asset Maintenance Option (O) Cost ($ 100k) 

A1 

1 0 

2 10 

3 40 

A2 

1 0 

2 5 

3 15 

A3 

1 0 

2 18 

3 30 

A4 

1 0 

2 20 

3 35 

 

Step 8: Control 
  
 
 
 
 
 
 

Figure 4: Tree for complete solution space 
 

With 4 assets having 3 maintenance options each, if we apply the brute force technique we will be generating 81 
decisions as shown in Figure 4.  The decisions and associated costs are listed in Table 2 which is our complete solution space 
for this decision problem. 

Table 2: Decisions and cost 

Decision Asset Options Cost ($ 100k)  Decision Asset Options Cost ($ 100k) 

D1 A11 A21 A31 A41 0  D18 A12 A23 A33 A41 55 

D2 A11 A21 A32 A41 18  D19 A13 A21 A31 A41 40 

D3 A11 A21 A33 A41 30  D20 A13 A21 A32 A41 58 

D4 A11 A22 A31 A41 5  D21 A13 A21 A33 A41 70 

D5 A11 A22 A32 A41 23  D22 A13 A22 A31 A41 45 

D6 A11 A22 A33 A41 35  D23 A13 A22 A32 A41 63 

D7 A11 A23 A31 A41 15  D24 A13 A22 A33 A41 75 

D8 A11 A23 A32 A41 33  D25 A13 A23 A31 A41 55 

D9 A11 A23 A33 A41 45  D26 A13 A23 A32 A41 73 

D10 A12 A21 A31 A41 10  D27 A13 A23 A33 A41 85 

D11 A12 A21 A32 A41 28  D28 A11 A21 A31 A42 20 

D12 A12 A21 A33 A41 40  D29 A11 A21 A32 A42 38 

D13 A12 A22 A31 A41 15  D30 A11 A21 A33 A42 50 

D14 A12 A22 A32 A41 33  D31 A11 A22 A31 A42 25 

D15 A12 A22 A33 A41 45  D32 A11 A22 A32 A42 43 

D16 A12 A23 A31 A41 25  D33 A11 A22 A33 A42 55 

D17 A12 A23 A32 A41 43  D34 A11 A23 A31 A42 35 

A1 

A2 

A3 

A4 



D35 A11 A23 A32 A42 63  D59 A11 A22 A32 A43 68 

D36 A11 A23 A33 A42 65  D60 A11 A22 A33 A43 70 

D37 A12 A21 A31 A42 30  D61 A11 A23 A31 A43 50 

D38 A12 A21 A32 A42 58  D62 A11 A23 A32 A43 68 

D39 A12 A21 A33 A42 60  D63 A11 A23 A33 A43 80 

D40 A12 A22 A31 A42 35  D64 A12 A21 A31 A43 45 

D41 A12 A22 A32 A42 53  D65 A12 A21 A32 A43 63 

D42 A12 A22 A33 A42 65  D66 A12 A21 A33 A43 75 

D43 A12 A23 A31 A42 45  D67 A12 A22 A31 A43 50 

D44 A12 A23 A32 A42 63  D68 A12 A22 A32 A43 68 

D45 A12 A23 A33 A42 75  D69 A12 A22 A33 A43 80 

D46 A13 A21 A31 A42 60  D70 A12 A23 A31 A43 70 

D47 A13 A21 A32 A42 78  D71 A12 A23 A32 A43 78 

D48 A13 A21 A33 A42 90  D72 A12 A23 A33 A43 90 

D49 A13 A22 A31 A42 65  D73 A13 A21 A31 A43 75 

D50 A13 A22 A32 A42 83  D74 A13 A21 A32 A43 93 

D51 A13 A22 A33 A42 95  D75 A13 A21 A33 A43 105 

D52 A13 A23 A31 A42 65  D76 A13 A22 A31 A43 80 

D53 A13 A23 A32 A42 93  D77 A13 A22 A32 A43 98 

D54 A13 A23 A33 A42 105  D78 A13 A22 A33 A43 110 

D55 A11 A21 A31 A43 35  D79 A13 A23 A31 A43 90 

D56 A11 A21 A32 A43 53  D80 A13 A23 A32 A43 108 

D57 A11 A21 A33 A43 65  D81 A13 A23 A33 A43 120 

D58 A11 A22 A31 A43 40     

 
To apply our new approach let us assume we have a budget limit of $3,000,000.  Our constraint here is the cost 

constraint for control purposes.  Based on this constraint if we start generating the tree we will only generate the non circled 
region as shown in Figure 5.  The decisions that are excluded from this control phase without even generating them are 
circled in red.  The feasible decisions generated are listed in Table 3. 
 
 
 
 
 
 

 
 
 

Figure 5: Decision tree using new algorithm 
 
 

Table 3: Feasible decisions and cost 
 

Decision Asset Options Cost (AUD in 100,000) 

D1 A11 A21 A31 A41 0 

D2 A11 A21 A32 A41 18 

D3 A11 A21 A33 A41 30 

D4 A11 A22 A31 A41 5 

D5 A11 A22 A32 A41 23 

D7 A11 A23 A31 A41 15 

D10 A12 A21 A31 A41 10 

D11 A12 A21 A32 A41 28 

D13 A12 A22 A31 A41 15 

D16 A12 A23 A31 A41 25 

D28 A11 A21 A31 A42 20 

D31 A11 A22 A31 A42 25 

D37 A12 A21 A31 A42 30 
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Step 9: Compare decisions 
 An appropriate sorting technique can be used to find the best decision among the feasible solutions.  Comparing 
Tables 2 and 3 we can see that if we use the brute force technique we will end up comparing 27 decisions to each other.  On 
the other hand with the new algorithm we need to compare only the 10 feasible decisions.  This certainly reduces the 
computational burden. 
 
 

6. Conclusion: 
 
The new approach proposed in this paper can be of practical use in the case of asset management decision problems 

where a large number of assets are involved.  The dynamic control does require some additional computations but the 
benefits far outweigh this extra effort by eliminating large numbers of infeasible decisions without even assessing them.  
Performance of the algorithm is dependent on the shape of the tree and the proportion of infeasible solutions.  Decision 
problems with higher numbers of infeasible solutions will achieve better efficiency with this algorithm.  Further comparative 
studies are being carried out to understand the actual computational efficiency of the algorithm. 
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