
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Chakraborty, Subrata, Fidge, Colin J., Ma, Lin, & Sun, Yong (2013) M-ary
trees for combinatorial asset management decision problems. In Engi-
neering Asset Management 2011: Proceedings of the Sixth Annual World
Congress on Engineering Asset Management [Lecture Notes in Mechani-
cal Engineering], Springer, Duke Energy Center, Cincinatti, Ohio, pp. 117-
127.

This file was downloaded from: http://eprints.qut.edu.au/48411/

c© Copyright 2011 [Please consult the author]

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/978-1-4471-4993-4_11

http://eprints.qut.edu.au/view/person/Chakraborty,_Subrata.html
http://eprints.qut.edu.au/view/person/Fidge,_Colin.html
http://eprints.qut.edu.au/view/person/Ma,_Lin.html
http://eprints.qut.edu.au/view/person/Sun,_Yong.html
http://eprints.qut.edu.au/48411/
http://dx.doi.org/10.1007/978-1-4471-4993-4_11

M-ARY TREES FOR COMBINATORIAL ASSET MANAGEMENT DECISION PROBLEMS

*Chakraborty S
a
, Fidge C

a
, Ma L

b
 and Sun Y

b

a Computer Science, Faculty of Science and Technology, Queensland University of Technology, QLD 4101, Australia.

b Engineering Systems, Faculty of Built Environment and Eng, Queensland University of Technology, QLD 4101, Australia.

*Corresponding Author - Email: subrata.chakraborty@qut.edu.au, Tel: +61 7 31382442, Fax: +61 7 31381469

Abstract

A novel m-ary tree based approach is presented to solve asset management decisions which are combinatorial in
nature. The approach introduces a new dynamic constraint based control mechanism which is capable of excluding infeasible
solutions from the solution space. The approach also provides a solution to the challenges with ordering of assets decisions.

Keywords: Combinatorial decision problem, m-ary tree, brute force technique, asset management.

1. Introduction

Asset management is about finding the right balance between cost, performance and risks to any asset. Asset

management helps us to align corporate goals with maintenance spending and to draw up future asset plans (Brown and
Spare, 2004). In large organizations with a large number of assets, the task of the asset manager is a challenging one. In this
paper we focus on a combinatorial decision support problem relevant to asset maintenance. The problem concerns a group of
assets, each with multiple maintenance options, for each of which the decision maker needs to select one option. While
making these option selections the decision maker must find the combination that satisfies all technical and business
constraints best. The most obvious way to handle this problem is to generate all candidate solutions (combinations of
options) and then compare them with respect to the decision constraints. In practice, however, this simple, brute-force
algorithm is too computationally intensive for large numbers of assets or maintenance options. The number of candidate
solutions and required comparisons increases exponentially with the number of assets. In order to solve such an intractable
computational problem we need to significantly reduce the number of potential solutions to be compared by limiting the
generation of infeasible solutions.

One of the most popular tree-based approaches in management and decision analysis is the decision tree (Quinlan,
1986, 1999). Decision trees have been successfully used in asset management (Sun et al., 2010; Emerson et al., 2011). The
decision tree approach is very efficient for decision problems with small numbers of assets. However decision trees are
designed for sequentially guiding choices in order to identify a single solution, not for generating large numbers of equally-
acceptable solutions.

In the area of financial optimisation and asset-liability assessment stochastic programming models are also popular.
The stochastic programming models generally require developing a scenario tree (Kusy & Ziemba, 1986; Carino et al., 1994;
Consigli & Dempster, 1998; Kouwenberg, 2001; Yu et al., 2003). The stochastic scenario tree can be considered as similar to
the m-ary tree (Drmota, 2009).

Binary trees (Bayer and McCreight, 1972) and their variants have been an integral part of computing since the early
days. They are widely used in algorithms, programming, data structures, searching and sorting (Wirth, 1986; Binstock and
Rex, 1995; Adamson, 1996; Baldwin and Scragg, 2004). Sorted binary trees have a natural ability to work efficiently with a
large number of variables (decisions) due to their ability to rapidly partition the search space. This capacity makes the binary
tree based approach suitable to deal with combinatorial decision problems. With a binary tree each parent node has two
branches. In the case of asset management decision problems a parent node can be considered to denote an asset and each of
its branches as alternative maintenance options for that asset. In practice, however, an asset may have more than just two
maintenance options. To handle this we need to use an m-ary tree (Drmota, 2009), which is a generalization of binary trees

where a parent node has m branches.

In the following sections we first explain the decision problem we are concerned with in mathematical terms followed
by the details of an m-ary tree suitable for solving the problem. We then present a novel m-ary tree based approach to solve
the combinatorial asset management decision problem followed by an industry-based case study to demonstrate the
applicability of the new approach.

2. Problem Statement

The assumption is that each decision must contain one and only one maintenance option for each asset. Given a set of

assets N , each with a set of ()Nnan ..., ,2 ,1=

maintenance options, the number of possible decisions D can be

expressed as the product

∏ =
=

N

n naD
1

 (1)

The assumption is that the maintenance options for any asset are independent of the maintenance options of other

assets, i.e., the choice of one maintenance option for an asset does not constrain the options for another asset. The number of

possible decisions D includes all potential solutions including infeasible ones, i.e., options that are invalid because they
individually violate some overall constraint or because they are incompatible with other options. With a large number of

assets and maintenance actions the value of D can be astronomical. For example, consider 10 assets with 4 maintenance
actions for each and the number of possible maintenance decisions will be 410 (= 1,048,576). Generally, large organizations
make maintenance decisions for hundreds or even thousands of assets. The number of possible maintenance decisions is
extremely large by nature and it is a classic combinatorial problem. In order to find the best possible decision among all the
possible decisions we can use a simple brute force technique as follows:

Step 1: Create all possible maintenance decisions.
Step 2: Compare the candidate solutions based on some constraint like cost, time, importance, etc.
Step 3: Exclude non feasible solutions and choose one of the remaining acceptable solutions.

 In theory the above technique seems easily achievable. But it is impractical to use it to solve real life problems due to
its very high computational requirements. Furthermore, in practice decision makers are not always after the best solution,
rather they are satisfied with any solution that meets their criteria. Limited amounts of optimization testing are usually
conducted to check the validity of the chosen decision. The algorithm presented in this paper provides a solution to this
combinatorial decision problem which can:

a) Reduce the number of maintenance decisions generated.
b) Solve the issue of maintenance decision conflicts dynamically.
c) Apply various decision constraints effectively.

3. M-ary Trees

Figure 1: Binary Tree

A binary tree as shown in Figure 1 contains parent nodes (nodes with successors) and child nodes (nodes without any
successor). Binary trees are a rooted tree and recursive in nature. In a fully balanced binary tree (Baldwin and Scragg, 2004)

with tree height h , the number of leaves L can be calculated as

hL 2= (2)

Binary trees can be generalized as m-ary rooted trees where 2≥m is a fixed integer (Drmota, 2009). The number of leaves

in an m-ary tree can be obtained by modifying Equation 2 as

hmL = (3)

Equation 3 can be generalised as

i

h

i
mL ∏ =

=
1

 (4)

In an m-ary tree all the parent nodes in each level of the tree have a fixed number of child nodes m . But Equation 4 is

capable of calculating the number of leaves in a tree even if the number of child nodes is different for the parent nodes of any

particular level of the tree (m may be different for different levels of the tree).

Let us consider an asset management scenario for Equation 4. The set of assets N represents the height of the tree h

and the set of maintenance options ()Nnan ..., ,2 ,1=

represents the number of child nodes im at each level of the tree.

The number of decisions D which consists of one maintenance option for each asset can be compared with the number of

leaves L . Based on this analogy we can establish that Equation 1 represents the m-ary tree where m is variable across assets.

4. Our Approach

Step 1: Get asset list
Step 2: Get maintenance options for each asset
Step 3: Get attributes for each maintenance option
Step 4: Get filtering criteria
Step 5: Get decision constraints
Step 6: Add default maintenance option
Step 7: Filter assets
Step 8: Control solution space
Step 9: Compare decisions

The details of the approach are discussed as follows:

Step 1 - 5: Inputs
The approach requires the following inputs:

a) An asset inventory listing all assets A .

b) A set of maintenance options for each asset ()Anan ..., ,2 ,1= .

c) Attributes of each maintenance option that influence the decision outcome. Examples of attributes can be
time, cost, safety, operational significance, etc.

d) A set of asset filtering criteria F . Examples of filtering criteria can be geographical location, known
operational constraints, time of the year, etc.

e) Decision constraints C such as

a. Incompatible maintenance options.
b. Limit constraints (time, cost, resources, safety, etc.)

Step 6: Add default maintenance option

 In this stage a default maintenance option is added to each asset. The default option is considered as ‘No Action’ for
the asset. It has no cost associated with it and it does not require any time or any other resources. The key benefit is that it
allows reaching all possible solutions without creating multiple tree structures for making asset decisions in different order.

Figure 2: Three assets with two options each

 Considering Figure 2, which shows the potential search space generated when sequentially making decisions for an
inventory containing 3 assets. If we want to make a decision consisting of options from assets A2 and A3, we must make a
decision for asset A1 as well. The only way to make any decision with options from A2 and A3 only and not with A1 is to

1

1

1 1

1

1 1

2

2

2 2 2

2

2

A1

A3

A2

restructure the tree with starting node being A2 or A3. Thus to reach all possible decision scenarios we may need to develop
multiple tree structures. The addition of the default option to each asset provides access paths to all possible solutions without
the need to create several tree structures for each possible ordering of the assets. Figure 3 shows the improvement from Figure
2 that is capable of providing access to all possible decisions. X represents the default option. When selected, it indicates that
no initially given option will be selected for that asset and yet it will provide access to other asset options to the lower levels
of the tree.

Figure 3: Three assets with two options and added default option

Step 7: Filter Assets

 From the asset inventory A , the set of assets N relevant to current decision making can be filtered based on given

filtering criteria F as the elements x for which the filtering criteria are true, i.e.,

)}(|{ xFAxxN ∧∈= (5)

Step 8: Control Solution Space

The complete solution space contains all the possible decisions (combinations of maintenance options for each asset)

D , i.e., all the paths from the root of the state space tree to its leaves. The control stage is a directed search through the

complete solution space D excluding branches consisting of infeasible decisions. This process dynamically reduces the

solution space by not generating infeasible decisions and their offspring. The set of feasible decisions d can be obtained as

the set of elements x for which the decision criteria hold, i.e.

)}(|{ xCDxxd ∧∈= (6)

Step 9: Compare Decisions

 The comparison is essentially a sorting operation for the set of feasible decisions d based on comparison criteria which

may include control criteria thresholds. Due to the dynamic control applied in Step 2 the number of comparisons required
can reduce significantly depending on the decision problem.

5. Case Analysis
In this section we present a small example to demonstrate the potential gains provided by our approach.

5.1 Case Description
 A large Australian power generating corporation currently maintains thousands of assets as part of their regular
operation. They often face the challenge of deciding which assets to maintain, when to maintain them, and how several assets
can be grouped together for maintenance. The major constraints and issues they must consider include available maintenance
time, costs, and remaining time for safe operation, resource availability, and operational criticality.
 In order to illustrate the approach, we will solve a much downsized version of the actual decision problem. The
solution will be obtained by applying a single decision constraint. The inputs to the algorithm are as follows:

a) The asset inventory listing all available assets A which contains several thousand assets.

b) The set of available maintenance options for each asset ()Anan ..., ,2 ,1= whose number varies for

different assets. The operational criticality of each asset is also available.
c) The available attributes of each maintenance option that influence the decision outcome. The most

significant attributes considered are cost, safety and time.

d) The set of asset filtering criteria F . Major filtering is done based on operational area segments in the
plant and available major downtime.

e) Decision constraints C such as

1) Incompatible maintenance constraints: Not considered currently.
2) Limiting constraints: Cost and time limits are available.

X

X

X X

X X

X X X X X X X

A1

A2

A3

5.2 Solution using the algorithm

 Steps 1-6 were applied to get all the required inputs and to add the default option for each asset. The default option is
denoted as option 1 for each asset.

Step 7: Filter Assets

Based on the power plant segmentation we were able to filter the asset inventory. The filtered asset set N contains a

few hundred assets. For the sake of this example, let us assume that we were able to subdivide one of the plant segments into
a much smaller area consisting of just 4 assets. Each asset has 3 maintenance options including the default option added
using Step 6. The related cost attributes of each option are presented in Table 1.

Table 1: Assets, maintenance options and cost

Asset Maintenance Option (O) Cost ($ 100k)

A1

1 0

2 10

3 40

A2

1 0

2 5

3 15

A3

1 0

2 18

3 30

A4

1 0

2 20

3 35

Step 8: Control

Figure 4: Tree for complete solution space

With 4 assets having 3 maintenance options each, if we apply the brute force technique we will be generating 81
decisions as shown in Figure 4. The decisions and associated costs are listed in Table 2 which is our complete solution space
for this decision problem.

Table 2: Decisions and cost

Decision Asset Options Cost ($ 100k) Decision Asset Options Cost ($ 100k)

D1 A11 A21 A31 A41 0 D18 A12 A23 A33 A41 55

D2 A11 A21 A32 A41 18 D19 A13 A21 A31 A41 40

D3 A11 A21 A33 A41 30 D20 A13 A21 A32 A41 58

D4 A11 A22 A31 A41 5 D21 A13 A21 A33 A41 70

D5 A11 A22 A32 A41 23 D22 A13 A22 A31 A41 45

D6 A11 A22 A33 A41 35 D23 A13 A22 A32 A41 63

D7 A11 A23 A31 A41 15 D24 A13 A22 A33 A41 75

D8 A11 A23 A32 A41 33 D25 A13 A23 A31 A41 55

D9 A11 A23 A33 A41 45 D26 A13 A23 A32 A41 73

D10 A12 A21 A31 A41 10 D27 A13 A23 A33 A41 85

D11 A12 A21 A32 A41 28 D28 A11 A21 A31 A42 20

D12 A12 A21 A33 A41 40 D29 A11 A21 A32 A42 38

D13 A12 A22 A31 A41 15 D30 A11 A21 A33 A42 50

D14 A12 A22 A32 A41 33 D31 A11 A22 A31 A42 25

D15 A12 A22 A33 A41 45 D32 A11 A22 A32 A42 43

D16 A12 A23 A31 A41 25 D33 A11 A22 A33 A42 55

D17 A12 A23 A32 A41 43 D34 A11 A23 A31 A42 35

A1

A2

A3

A4

D35 A11 A23 A32 A42 63 D59 A11 A22 A32 A43 68

D36 A11 A23 A33 A42 65 D60 A11 A22 A33 A43 70

D37 A12 A21 A31 A42 30 D61 A11 A23 A31 A43 50

D38 A12 A21 A32 A42 58 D62 A11 A23 A32 A43 68

D39 A12 A21 A33 A42 60 D63 A11 A23 A33 A43 80

D40 A12 A22 A31 A42 35 D64 A12 A21 A31 A43 45

D41 A12 A22 A32 A42 53 D65 A12 A21 A32 A43 63

D42 A12 A22 A33 A42 65 D66 A12 A21 A33 A43 75

D43 A12 A23 A31 A42 45 D67 A12 A22 A31 A43 50

D44 A12 A23 A32 A42 63 D68 A12 A22 A32 A43 68

D45 A12 A23 A33 A42 75 D69 A12 A22 A33 A43 80

D46 A13 A21 A31 A42 60 D70 A12 A23 A31 A43 70

D47 A13 A21 A32 A42 78 D71 A12 A23 A32 A43 78

D48 A13 A21 A33 A42 90 D72 A12 A23 A33 A43 90

D49 A13 A22 A31 A42 65 D73 A13 A21 A31 A43 75

D50 A13 A22 A32 A42 83 D74 A13 A21 A32 A43 93

D51 A13 A22 A33 A42 95 D75 A13 A21 A33 A43 105

D52 A13 A23 A31 A42 65 D76 A13 A22 A31 A43 80

D53 A13 A23 A32 A42 93 D77 A13 A22 A32 A43 98

D54 A13 A23 A33 A42 105 D78 A13 A22 A33 A43 110

D55 A11 A21 A31 A43 35 D79 A13 A23 A31 A43 90

D56 A11 A21 A32 A43 53 D80 A13 A23 A32 A43 108

D57 A11 A21 A33 A43 65 D81 A13 A23 A33 A43 120

D58 A11 A22 A31 A43 40

To apply our new approach let us assume we have a budget limit of $3,000,000. Our constraint here is the cost

constraint for control purposes. Based on this constraint if we start generating the tree we will only generate the non circled
region as shown in Figure 5. The decisions that are excluded from this control phase without even generating them are
circled in red. The feasible decisions generated are listed in Table 3.

Figure 5: Decision tree using new algorithm

Table 3: Feasible decisions and cost

Decision Asset Options Cost (AUD in 100,000)

D1 A11 A21 A31 A41 0

D2 A11 A21 A32 A41 18

D3 A11 A21 A33 A41 30

D4 A11 A22 A31 A41 5

D5 A11 A22 A32 A41 23

D7 A11 A23 A31 A41 15

D10 A12 A21 A31 A41 10

D11 A12 A21 A32 A41 28

D13 A12 A22 A31 A41 15

D16 A12 A23 A31 A41 25

D28 A11 A21 A31 A42 20

D31 A11 A22 A31 A42 25

D37 A12 A21 A31 A42 30

A1

A2

A3

A4

Step 9: Compare decisions
 An appropriate sorting technique can be used to find the best decision among the feasible solutions. Comparing
Tables 2 and 3 we can see that if we use the brute force technique we will end up comparing 27 decisions to each other. On
the other hand with the new algorithm we need to compare only the 10 feasible decisions. This certainly reduces the
computational burden.

6. Conclusion:

The new approach proposed in this paper can be of practical use in the case of asset management decision problems

where a large number of assets are involved. The dynamic control does require some additional computations but the
benefits far outweigh this extra effort by eliminating large numbers of infeasible decisions without even assessing them.
Performance of the algorithm is dependent on the shape of the tree and the proportion of infeasible solutions. Decision
problems with higher numbers of infeasible solutions will achieve better efficiency with this algorithm. Further comparative
studies are being carried out to understand the actual computational efficiency of the algorithm.

References:

1. Adamson, I T. (1996) Data structures and algorithms: a first course. London, New York: Springer.
2. Baldwin, D and Scragg, G. (2004) Algorithms and Data Structures: The Science of Computing. Hingham, MA,

USA: Charles River Media.
3. Bayer, R and McCreight, E. (1972) Organization and maintenance of large ordered indexes. Acta Informatica, 1 (3),

173–189.
4. Binstock, A and Rex J. (1995) Practical algorithms for programmers. Reading, Mass: Addison-Wesley.
5. Brown, RE Spare, JH. (2004) Asset management, risk, and distribution system planning. Power Systems Conference

and Exposition, 2004. IEEE PES, 3, 1681- 1686.
6. Carino, DR, Kent, T, Myers, DH, Stacey, C, Watanabe, K & Ziemba, WT. (1994) Russell-Yasuda Kasai model: an

asset-liability model for a Japanese insurance company using multi-stage stochastic programming. Interfaces, 24 (1),
29-.

7. Consigli, G & Dempster, M A H. (1998) Dynamic stochastic programming for asset-liability management. Annals of
Operations Research, 81(), 131-.

8. Drmota, M (2009). Random Trees. Dordrecht: Springer Vienna.
9. Emerson, D., Nayak, R., Weligamage, J. and Piyatrapoomi, N. (2011). Identifying differences in wet and dry road

crashes using data mining. In J Mathew et al. (Eds.) Engineering Asset Management and Infrastructure
Sustainability: Proceedings of the Fifth World Congress on Engineering Asset Management (WCEAM 2010,
Brisbane). London: Springer-Verlag London Ltd.

10. Kouwenberg, R. (2001) Scenario generation and stochastic programming models for asset liability management.
European Journal of Operational Research, 134 (2), 279-

11. Kusy, M & Ziemba, W. (1986) A bank asset and liability management model. Operations Research, 34(3), 356-.
12. Quinlan, J R. (1986) Induction of decision trees, Machine Learning, (1), 81-106
13. Quinlan, J R (1999). Simplifying decision trees. International Journal of Human-Computer Studies, 51 (2), 497-.
14. Sun, Y, Ma, L, & Fidge, C. (2010) Using decision trees in economiser repair decision making. Proceedings of 2010

Prognostics & System Health Management Conference. Macau, China: IEEE, p.MU3037, 2010.
15. Wirth, N. (1986) Algorithms and data structures. Englewood Cliffs, N.J.: Prentice-Hall.
16. Yu, L-Y, Ji, X-D & Wang, S-Y. (2003) Stochastic programming models in financial optimization: A survey,

Advanced Modeling and Optimization, 5 (1), 1–26.

