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Abstract 

The degree of bending (DoB) has a profound effect on the fatigue behavior of tubular joints commonly 

found in offshore jacket structures. Probability density functions (PDFs) of the involved random variables are 

necessary for the fatigue reliability analysis of jacket structures. The objective of present research was the 

derivation of PDF for the DoB in tubular KT-joints commonly found in jacket-type platforms. A total of 243 

finite element (FE) analyses were carried out on 81 FE models of KT-joints subjected to three types of out-of-

plane bending (OPB) moment loading. Generated FE models were validated using experimental data, previous 

FE results, and available parametric equations. Based on the results of parametric FE study, a sample database 

was prepared for the DoB values. Thirteen theoretical PDFs were fitted to the developed histograms and the 

maximum likelihood (ML) method was applied to evaluate the parameters of fitted PDFs. In each case, the 

Kolmogorov-Smirnov test was used to evaluate the goodness of fit. After substituting the values of estimated 

parameters, six fully defined PDFs were presented for the DoB at the saddle positions of the central and outer 

braces in tubular KT-joints subjected to three types of OPB moment loading. 

Keywords: Tubular KT-joint, Degree of bending (DoB), Out-of-plane bending (OPB) moment loading, 

Probability density function (PDF), Weibull distribution 

 

1. Introduction 

Jacket-type offshore platforms widely used for the oil/gas production primarily consist of circular hollow 

section (CHS) members, also called tubulars. The intersection among tubulars, in which the prepared ends of 

branch members (braces) are welded onto the undisturbed surface of a main member (chord), is called a tubular 

joint (Fig. 1). As a result of the formation and propagation of cracks due to wave induced cyclic loads, tubular 

joints are susceptible to fatigue-induced damage during their service life. 

The stress-life (S-N) approach is widely used to estimate the fatigue life of a tubular joint and it is based on 

the hot-spot stress (HSS) calculation. However, the study of a large number of fatigue test results have shown 

that tubular joints of different geometry or loading type but with similar HSSs often exhibit significantly 

different numbers of cycles to failure (Connolly, 1986). Such differences are thought to be attributable to 
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changes in crack growth rate that is dependent on the through-the-thickness stress distribution which can be 

characterized by the degree of bending (DoB) defined as the ratio of bending stress to total external stress. 

Fig. 2 depicts the typical stress distribution through the chord wall of a tubular joint. Through-the-thickness 

stress field is a combination of the linear stress due to the chord wall bending and the nonlinear stress 

concentration at the weld toe due to the section change at the intersection. The nonlinear stress distribution 

around the weld toe is dependent on the weld geometry and is difficult to predict during the design stage. Since 

for a deep crack, the weld-toe stress concentration has a relatively little effect on the through-the-thickness stress 

field (Chang and Dover, 1999b), the stress distribution across the wall thickness is usually assumed to be a 

linear combination of membrane and bending stresses. Hence, the DoB can be expressed as (Chang and Dover, 

1999b): 

DoB B B

T B M

 

  
= =

+
                                                                                                                                        (1) 

where T is the total stress; and B and M are the bending and membrane stress components, respectively.  

The standard stress-life approach may be unconservative for the joints with low DoB. Results of the tubular 

joint fatigue tests conducted by Eide et al. (1993) confirmed the detrimental effect of low DoB on fatigue life. It 

was found that the experimentally measured fatigue life is significantly shorter compared to the prediction using 

the S-N curve method. According to Chang and Dover (1999b), finite element analyses of tubular joints have 

shown that typical DoB values are in the range of 0.8–0.9 for the joints used to derive the S-N curves. Smaller 

values can be considered as low DoB. For the double T specimens studied by Eide et al. (1993), a DoB of 0.69 

was measured. Hence, the current standard HSS-based S-N approach can be modified to include the effect of 

DoB in order to obtain more accurate fatigue life prediction. 

The other shortcoming of the S-N approach is that this method gives only the total life and can not be used 

to predict the fatigue crack growth and the remaining life of cracked joints. For the fatigue analysis of cracked 

joints, fracture mechanics (FM) should be used. The accurate determination of the SIF is the key for FM 

calculations. Owing to the complexities introduced by the structural geometry and the nature of the local stress 

fields, it is impossible to calculate the SIFs analytically. This problem is often tackled by using the simplified 

models, such as the flat plate solution and methods based on the T-Butt weight function with an appropriate load 

shedding model. In order to use these simplified SIF models to calculate the remaining fatigue life of tubular 

joints, the information is required again on the distribution of through-the-thickness stress acting on the 

anticipated crack path, which can be characterized by the DoB. Thus, the DoB is an important input parameter 

for the calculation of fatigue crack growth in tubular welded joints. 

Under any specific loading condition, the DoB value along the weld toe of a tubular joint is mainly 

determined by the joint geometry. To study the behavior of a tubular joint and to easily relate this behavior to 

the geometrical characteristics of the joint, a set of dimensionless geometrical parameters has been defined. Fig. 

1 depicts a tubular KT-joint with the geometrical parameters τ, γ, β, α, and αB for chord and brace diameters: D 

and d, and their corresponding wall thicknesses: T and t, and lengths: L and l. Critical positions along the weld 

toe of the central and outer braces for the calculation of the DoB values in a tubular joint, i.e. saddle, crown, toe, 

and heel have been shown in Fig. 1.  
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Since early 1990s, a number of research works has been devoted to the study of the DoB in simple tubular 

connections such as X- and K-joints. However, for tubular joints having more complex geometry such as KT-

joints which are quite common in steel offshore structures, the DoB has not been comprehensively investigated.  

In a deterministic fatigue analysis, limiting assumptions should be made on numerous input parameters some 

of which exhibit considerable scatter. Consequently, deterministic analyses usually result in conservative 

designs. This fact emphasizes the significance of reliability-based fatigue analysis and design methods in which 

the key parameters of the problem can be modeled as random variables. The fundamentals of fatigue reliability 

assessment, if properly applied, can provide immense insight into the fatigue performance and safety of the 

structural system. Regardless of the method used for the reliability-based fatigue analysis and design of offshore 

structures, the probabilistic and statistical measures of the DoB are required as input parameters. The DoB 

shows considerable scatter highlighting the significance of deriving its governing probability distribution 

function.  

In the present research, initially, available literature on the DoB was surveyed (Sect. 2). Afterwards, a total 

of 243 finite element (FE) analyses were carried out on 81 FE models of tubular KT-joints which are among the 

most common joint types in jacket-type oil/gas production platforms. FE analyses were conducted under three 

types of out-of-plane bending (OPB) loads as shown in Fig. 3. Generated FE models were validated using the 

existing experimental data, FE results, and parametric equations. Based on a parametric FE investigation, a 

sample database was created for the DoB (Sect. 3); and density histograms were generated for respective 

samples (Sect. 4). Thirteen theoretical PDFs were fitted to the developed histograms and the maximum 

likelihood (ML) method was applied to evaluate the parameters of fitted PDFs (Sect. 5). In each case, the 

Kolmogorov-Smirnov test was used to assess the goodness of fit (Sect. 6). Finally, a probability distribution 

model was proposed for the DoB; and after substituting the values of estimated parameters, six fully defined 

PDFs were presented for the DoB at the saddle positions of the central and outer braces in tubular KT-joints 

subjected to three types of OPB moment loading (Sect. 7). 

Appropriate place for the insertion of Figs. 1−3 

2. Literature survey 

2.1. Deterministic analysis of the DoB 

Morgan and Lee (1998b) derived mean and design equations for DoB values at critical positions in axially 

loaded tubular K-joints from a previously established FE database of 254 joints. Design equations met all the 

acceptance criteria recommended by the UK DoE (1995).  

Chang and Dover (1999b) carried out a series of systematic thin-shell FE analyses for 330 tubular X- and 

DT-joints typically found in offshore structures under six different types of loading. Based on the results of 

nearly 2000 FE analyses, a set of parametric equations was developed to calculate the DoB at critical positions.  

Lee and Bowness (2002) proposed an engineering methodology for estimating SIF solutions for semi-

elliptical weld-toe cracks in tubular joints. The methodology uses the T-butt solutions proposed previously by 

the authors in conjunction with the stress concentration factors (SCFs) and the DoB values in uncracked tubular 

joints.  

Shen and Choo (2012) determined the SIFs for a grouted tubular joint. They found that the fatigue strength 

of a grouted joint may be lower than that of as-welded joint, because when normalized with the HSS, the shape 

factor of grouted joint is higher than that of original as-welded joint due to the reduction in the DoB caused by 
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the presence of in-filled grout in the chord. For grouted tubular joints, it is essential to consider the effect of the 

DoB in practical fatigue assessment using HSS approach.  

Ahmadi et al. (2015) performed a set of parametric stress analyses on 81 K-joint FE models subjected to 

two different types of in-plane bending (IPB) loads. Analysis results were used to present general remarks on 

the effect of geometrical parameters on the DoB values at the toe and heel positions; and a new set of DoB 

parametric equations was developed. Ahmadi and Asoodeh (2016) analyzed 81 K-joint FE models subjected to 

two types of OPB loading. Results were used to study the geometrical effects on the DoB at the saddle position; 

and two new DoB design formulas were proposed.  

Ahmadi and Asoodeh (2015) studied the DoB in uniplanar tubular KT-joints of jacket structures subjected 

to axial loads. Their study was limited to the central brace DoB values and no design equation was proposed for 

the DoB along the weld toe of the outer braces. Also, IPB and OPB loadings were not included. 

Ahmadi and Amini Niaki (2019) studied the degree of bending in two-planar tubular DT-joints under axial 

and bending loads. They developed a set of parametric equations to predict the DoB values at the saddle and 

crown positions. 

Ahmadi and Zavvar (2020) investigated the DoB in offshore tubular KT-joints under the axial, IPB, and 

OPB loads. Ahmadi et al. (2020) studied the effects of geometrical parameters on the DoB in multi-planar 

tubular XT-joints subjected to axial loading. Ahmadi and Alizadeh Atalo (2021) investigated the geometrical 

effects on the DoB of multi-planar tubular KK-joints in jacket substructure of offshore wind turbines. 

2.2. Probabilistic analysis of the DoB 

Ahmadi and Ghaffari (2015a) developed probability distribution models for the DoB and SIF values in 

axially-loaded tubular K-joints. Ahmadi and Ghaffari (2015b) proposed a set of probability density functions for 

the DoB in tubular X-joints subjected to four types of bending loads including two types of IPB and two types 

of OPB moment loading. Ahmadi (2019) conducted a probabilistic analysis on the DoB in axially-loaded 

tubular KT-joints of offshore structures. Ahmadi et al. (2019) developed a probability distribution model for the 

degree of bending in tubular KT-joints of offshore structures subjected to IPB moment loadings. 

2.3. Remarks 

Based on the above discussion, it can be concluded that:  

1. Despite the comprehensive research carried out on the study of SCFs and SIFs in tubular joints (e.g. 

Efthymiou (1988), Hellier et al. (1990), Morgan and Lee (1998a), Chang and Dover (1999), Shao (2007), Shao 

et al. (2009), Lotfollahi-Yaghin and Ahmadi (2010), Ahmadi et al. (2011), Lotfollahi-Yaghin and Ahmadi 

(2011), Ahmadi and Lotfollahi-Yaghin (2012), Ahmadi et al. (2013), and Ahmadi and Zavvar (2016) for SCFs; 

and Shao and Lie (2005) and Shao (2006) for SIFs, among many others), the research works on the DoB in 

tubular joints are scarce and the studied joint types are limited to simple connections. Although tubular KT-

joints are commonly found in steel offshore structures, the DoB in such joints has not been comprehensively 

investigated.  

2. Results of research works reported in the literature are mostly suitable for deterministic analyses and 

there is no probability density function available for the DoB values to be used in reliability-based fatigue 

analysis and design of KT-joints subjected to OPB moment loading. 
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3. Preparation of the DoB sample database 

3.1. Details of FE modeling and analysis 

FE-based software package ANSYS Ver. 11 was used in the present research for the FE modeling and 

analysis of tubular KT-joints subjected to OPB loadings in order to extract the DoB values for the probabilistic 

study. 

3.1.1. Modeling of the weld profile 

Accurate modeling of the weld profile is one of the important factors affecting the accuracy of the DoB 

results. In the present research, the welding size along the brace-to-chord intersection satisfies the AWS D 1.1 

(2002) specifications. The weld sizes at the crown, saddle, toe, and heel positions can be determined as follows:  
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(2) 

The parameters used in Eq. (2) are defined in Fig. 4. As an example, the weld profiles generated for the 

central and outer braces of the joint model SKTJ1 (α = 16, αB = 8, ζ = 0.3, τ = 0.4, β = 0.4, γ = 12, θ = 30˚) are 

shown in Fig. 5.  For details of the weld profile modeling according to AWS D 1.1 (2002), the reader is referred 

to Lie et al. (2001) and Ahmadi et al. (2012).  

Appropriate place for the insertion of Figs. 4 & 5 

3.1.2. Definition of boundary conditions 

The chord end fixity conditions in offshore tubular joints may range from almost fixed to almost pinned 

with generally being closer to almost fixed (Wordsworth and Smedley, 1978). In practice, the value of the 

parameter α in over 60% of tubular joints is in excess of 20 and it is bigger than 40 in 35% of the joints 

(Smedley and Fisher, 1991). Changing the end restraint from fixed to pinned results in a maximum increase of 

15% in the HSS at crown position for the joints with α = 6; and this increase reduces to only 8% for α = 8 

(Morgan and Lee, 1998b). In the view of the fact that the effect of chord end restraints is only significant for 

joints with α < 8 and high β and γ values, which do not commonly occur in practice, both chord ends were 

assumed to be fixed, with the corresponding nodes restrained. 

Under each of the three considered loading conditions, only an appropriate portion of the entire tubular KT-

joint is required to be modeled. The reason is the symmetry in geometry, material properties, and chord-end 

boundary conditions of the joint, as well as loading symmetry/antisymmetry. This allowed us to consider a 

reduced FE problem instead of the actual one. Thus, the order of the global stiffness matrix and total number of 

stiffness equations were reduced and computer solution time was substantially decreased. Table 1 and Fig. 6 

describe the required portion to be modeled for each load case. Appropriate symmetric/antisymmetric boundary 

conditions were defined for the nodes located on the symmetry/antisymmetry planes.  

Appropriate place for the insertion of Table 1 and Fig. 6 
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3.1.3. Generation of the FE mesh  

ANSYS element type SOLID95 was used in the present research to model the chord, braces, and the weld 

profiles. These elements have compatible displacements and are well-suited to model curved boundaries. The 

element is defined by 20 nodes having three degrees of freedom per node and may have any spatial orientation. 

Using this type of 3-D brick elements, the weld profile can be modeled as a sharp notch. This method will 

produce more accurate and detailed stress distribution near the intersection in comparison with a shell analysis.  

In order to guarantee the mesh quality, a sub-zone mesh generation method was used during the FE 

modeling. In this method, the tubular KT-joint was divided into several sub-zones according to the 

computational requirements. The mesh of each sub-zone was then generated separately and the meshing of the 

joint was finally completed by merging the meshes of the sub-zones. Quality and quantity of the mesh can be 

feasibly controlled by this method and badly distorted elements can be avoided. The mesh generated by this 

method for a tubular KT-joint is shown in Fig. 7.  

In the present paper, nodal stresses were used to extract the HSSs. When ANSYS solves for the stresses, it 

does so on an element-by-element basis. Unless otherwise prompted, ANSYS will solve for the stresses at the 

Gauss points and extrapolate to the nodes. However, many elements share nodes. Thus, ANSYS averages the 

nodal stresses computed from each of the adjacent elements. If the mesh is sufficiently small, the averaged 

stresses will not be very different from the un-averaged stresses. In fact, there will be no big difference among 

stresses at a common node computed from adjacent elements. Hence, if one observes in the plot of un-averaged 

stresses that the stress changes drastically from a specific element to the next one, the generated mesh is not 

small enough. In the present research, the mesh generated for the critical zones such as the extrapolation region 

was sufficiently fine to avoid such problem. 

It is explained in Sect. 3.1.4 that the geometric stresses perpendicular to the weld toe are required to be 

calculated in order to determine the DoB at the weld toe position based on Eq. (1). As shown in Fig. 8a, to 

extract the geometric stresses perpendicular to the weld toe, the region near the weld toe was meshed finely. The 

width of this region is discussed in Sect. 3.1.4. 

In order to make sure that the results of the FE analysis are not affected by the inadequate quality or the size 

of the generated mesh, convergence test was conducted and meshes with different densities were used in this 

test, before generating the 81 models. Based on the results of convergence test, the number of elements through 

the chord and brace thickness was 2 (Fig. 8b); the number of elements on the surface, base, and back of the weld 

profile was 2 (Fig. 8c); the number of elements along the ½ of entire brace-to-chord intersection was selected to 

be 10 and 15 for the central and outer braces, respectively (Fig. 8d); and the number of elements inside the 

extrapolation region was selected to be 16 (Fig. 8a).  

Appropriate place for the insertion of Figs. 7 & 8 

3.1.4. Analysis procedure and extraction of DoB values 

In order to determine the DoB values in a tubular joint, static analysis of the linearly elastic type is suitable. 

The Young’s modulus and Poisson’s ratio were taken to be 207 GPa and 0.3, respectively. 

In order to determine the weld-toe DoB values, according to Eq. (1), bending and membrane stress 

components should be known. These components can be calculated as follows (Shao, 2004): 

2

O I
B

 


−
=                                                                                                                                                        (3) 
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M

 


+
=                                                                                                                                                       (4) 

where O and I  are the hot-spot stresses (HSSs) at the weld toe on the outer and inner surfaces of the chord, 

respectively.  

Eqs. (1), (3), and (4) lead to the following relation for the DoB based on the HSSs: 

1
DoB 1

2

I

O





 
= − 

 
                                                                                                                                                (5) 

To determine the HSSs, the stress at the weld-toe position should be extracted from the stress field outside 

the region influenced by the local weld-toe geometry. The location from which the stresses have to be 

extrapolated, called extrapolation region, depends on the dimensions of the joint and on the position along the 

intersection. According to the recommendations of IIW-XV-E (1999), the first extrapolation point should be at a 

distance of 0.4T from the weld toe, and the second point must be 1.0T further from the first point (Fig. 9a). The 

HSS is obtained by the linear extrapolation of the geometric stresses at these two points to the weld toe. 

To extract and extrapolate the stresses perpendicular to the weld toe, as shown in Fig. 8a, the region 

between the weld toe and the second extrapolation point was meshed in such a way that each extrapolation point 

was placed between two nodes located in its immediate vicinity. These nodes are located on the element-

generated lines which are perpendicular to the weld toe ( X⊥ direction in Fig. 9b).   

At an arbitrary node inside the extrapolation region, the stress component in the direction perpendicular to 

the weld toe can be calculated, through the transformation of primary stresses in the global coordinate system, 

using the following equation: 

( )2 2 2
1 1 1 1 1 1 1 1 12N x y z xy yz zxl m n l m m n n l      ⊥ = + + + + +                                                                                (6) 

where a  and ab  (a, b = x, y, z) are components of the stress tensor which can be extracted from ANSYS 

analysis results; and 1l , 1m , and 1n  are transformation components. 

At the saddle, crown, toe, and heel positions, Eq. (6) is simplified as: 

2 2
1 1 1 12N x y xyl m l m   ⊥ = + +    (Saddle)     ;     N z ⊥ =   (Crown, Toe, and Heel)                                        (7) 

Transformation components can be obtained as follows: 

( ) ( )1 cos , /w nl X x x x ⊥= = −  ; ( ) ( )1 cos , /w nm X y y y ⊥= = −  

( ) ( ) ( )
2 2 2

w n w n w nx x y y z z = − + − + −             

(8) 

(9) 

where X⊥ is the direction perpendicular to the weld toe (Fig. 9b); x, y, and z are the axes of global Cartesian 

coordinate system; (xn , yn , zn) and (xw , yw , zw) are coordinates of the considered node inside the extrapolation 

region and its corresponding node at the weld toe position, respectively; and   is the distance between the weld 

toe and the considered node inside the extrapolation region. 

The stress at an extrapolation point is obtained as follows: 

( )1 2
2 2

1 2

N N
E N

 
  

 
⊥ ⊥

⊥ ⊥

−
=  − +

−
                                                                                                                 (10) 
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where Ni⊥  (i = 1 and 2) is the nodal stress in the immediate vicinity of the extrapolation point in a direction 

perpendicular to the weld toe (Eq. (7)); i (i = 1 and 2) is obtained by Eq. (9); and Δ equals to 0.4T and 1.4T for 

the first and second extrapolation points, respectively (Fig. 9b). 

The extrapolated stress at the weld toe position, HSS, is calculated by the following equation: 

1 21.4 0.4W E E  ⊥ ⊥ ⊥= −                                                                                                                                    (11) 

where 1E⊥  and 2E⊥  are the stresses at the first and second extrapolation points in the direction perpendicular 

to the weld toe, respectively (Eq. (10)). 

If the considered nodes in the calculations of Eqs. (7)−(11) are located on the outer surface of the chord, the 

value of W⊥  obtained from Eq. (11) is used as O in Eq. (5); and if the considered nodes are located on the 

inner surface of the chord, the result of Eq. (11) is equivalent to I which is required for the calculation of the 

DoB in Eq. (5). 

To facilitate the calculation of DoB values, above formulation was implemented in a macro file developed 

by the ANSYS parametric design language (APDL). The input data required to be provided by the user of the 

macro file are the chord thickness, label number of the node located at the weld toe, and the label numbers of the 

nodes inside the extrapolation region. These nodes can be introduced using the graphic user interface (GUI). 

Appropriate place for the insertion of Fig. 9 

3.1.5. Verification of the FE modeling 

As far the authors can tell, there is no experimental data available in the literature on the DoB values in 

tubular KT-joints. However, previous research works offer some experimental data, FE results, and parametric 

equations that can be used to validate the FE model developed in the present study. 

3.1.5.a. Comparison with experimental data for the HSS 

According to Eq. (5), DoB is a function of O and I  that are the HSSs at the weld toe on the outer and 

inner surfaces of the chord, respectively. Hence, if the proposed FE model could predict the HSS accurately, 

then undoubtedly it is capable of resulting in accurate DoB values. 

To verify the developed FE modeling procedure, a validation FE model was generated and its results were 

compared with the results of experimental tests carried out by the first author on a KT-joint (Figs. 10 and 11). 

Details of the test setup and program presented by Ahmadi (2012) are not repeated here for the sake of brevity. 

Results of verification process are presented in Table 2. It can be seen that there is a good agreement 

between the results of present FE model and experimental data; and the average difference is about 10%. Hence, 

developed FE model can be considered to be accurate enough to provide valid results. 

Appropriate place for the insertion of Figs. 10 & 11 and Table 2 

3.1.5.b. Comparison with available DoB parametric equations and FE results 

A set of FE parametric studies have been conducted by Morgan and Lee (1998b), Ahmadi et al. (2015), and 

Ahmadi and Asoodeh (2016) for the prediction of DoB values in tubular K-joints under the axial, IPB, and OPB 

loadings, respectively. Results of these studies were used in the present research to validate the developed FE 

model. In order to so, three K-joint FE models were generated having typical geometrical characteristics (Table 

3) and they were analyzed under the axial, IPB, and OPB loadings shown in Fig. 12. Geometrical properties of 

the axially-loaded FE model were selected based on the data provided by HSE OTH 354 (1997) for a steel 
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specimen tested to determine the SCFs; and geometrical properties of the IPB- and OPB-loaded FE models were 

selected in accordance with the validity range of the FE study conducted by Ahmadi et al. (2015) and Ahmadi 

and Asoodeh (2016). 

The method of geometrical modeling (introducing the chord, braces, and weld profiles), the mesh 

generation procedure (including the selection of element type and size), analysis method, and the method of 

DoB extraction are identical for the validating models and the KT-joint models used for the parametric study. 

Hence, the verification of DoB values derived from validating FE models with the results of equations proposed 

by Morgan and Lee (1998b), FE results of Ahmadi et al. (2015), and FE results of Ahmadi and Asoodeh (2016) 

lends some support to the validity of DoB values derived from the KT-joint FE models. 

Results of verification process are presented in Table 4. It can be seen that there is a good agreement among 

the results of present FE model and equations proposed by Morgan and Lee (1998b), FE results of Ahmadi et al. 

(2015), and FE results of Ahmadi and Asoodeh (2016). The average difference is less than 10%. Hence, 

generated FE models can be considered to be accurate enough to provide valid results. 

Appropriate place for the insertion of Fig. 12 and Tables 3 & 4 

3.2. Details of parametric study 

Altogether, 243 stress analyses were carried out on 81 FE models using ANSYS Ver. 11 to investigate the 

effects of dimensionless geometrical parameters on the DoB values at the saddle positions of the central and 

outer braces in tubular KT-joints subjected to three different types of OPB moment loading (Fig. 3)  

Different values assigned to the parameters β, γ, τ, and θ have been presented in Table 5. These values cover 

the practical ranges of the dimensionless parameters typically found in tubular joints of offshore jacket 

structures. Providing that the gap between the braces is not very large, the relative gap (ζ = g / D) has no 

considerable effect on the stress and strain distribution. The validity range for this statement is 0.2 ≤ ζ ≤ 0.6 

(Lotfollahi-Yaghin and Ahmadi, 2010). Hence, a typical value of ζ = 0.3 was designated for all joints. 

Sufficiently long chord greater than six chord diameters (i.e. α ≥ 12) should be used to ensure that the stresses at 

the brace/chord intersection are not affected by the chord’s boundary conditions (Efthymiou, 1988). The brace 

length has no effect on the HSSs when the parameter αB is greater than a critical value (Chang and Dover, 

1999a). According to Chang and Dover (1996), this critical value is about 6. In the present study, in order to 

avoid the effect of short brace length, a realistic value of αB = 8 was selected for all joints.  

The 81 generated models span the following ranges of geometrical parameters:   

0.4 ≤ β ≤ 0.6 

(12) 
12 ≤ γ ≤ 24 

0.4 ≤ τ ≤ 1.0 

30˚ ≤ θ ≤ 60˚ 

Appropriate place for the insertion of Table 5 

3.3. Organization of the DoB samples 

The DoB values extracted from the results of 243 FE analyses were organized as six samples for further 

statistical and probabilistic analyses. Samples 1−3 included the DoB values at the saddle position of the central 

brace under the 1st−3rd OPB loading conditions, respectively; while samples 4−6 included the DoB values at the 

saddle position of the outer brace under the 1st−3rd OPB loading conditions, respectively. Values of the size (n), 



International Journal of Coastal, Offshore & Environmental Engineering  

ACCEPTED MANUSCRIPT ‒ Online-First Version ‒ Available Online: March 11, 2024 

 

 10 

mean (μ), standard deviation (σ), coefficient of skewness (α3), and coefficient of kurtosis (α4) for these samples 

are listed in Table 6.  

The value of α3 for the sample 4, that included the outer-brace DoB values under the 1st OPB load case, is 

positive which means that the probability distribution for this sample is expected to have a longer tail on the 

right, which is toward increasing values, than on the left. However, the value of α3 for the other samples is 

negative meaning that the probability distribution for these samples is expected to have a longer tail on the left, 

which is toward decreasing values, than on the right. 

The value of α4 for the sample 5, that included the outer-brace DoB values under the 2nd OPB load case, is 

greater than three meaning that the probability distribution is expected to be sharp-peak (leptokurtic) for this 

sample; while the value of α4 for the other DoB samples is smaller than three which means that for these 

samples, the probability distribution is expected to be mild-peak (platykurtic).  

Appropriate place for the insertion of Table 6 

4. Application of the Freedman-Diaconis rule to generate the density histograms 

To generate a density histogram, the range of data (R) is divided into a number of classes and the number of 

occurrences in each class is counted and tabulated. These are called frequencies. Then, the relative frequency of 

each class can be obtained through dividing its frequency by the sample size. Afterwards, the density is 

calculated for each class through dividing the relative frequency by the class width. The width of classes is 

usually made equal to facilitate interpretation.  

Care should be exercised in the choice of the number of classes (nc). Too few will cause an omission of some 

important features of the data; too many will not give a clear overall picture because there may be high 

fluctuations in the frequencies. One of the widely accepted rules to determine the number of classes is the 

Freedman-Diaconis rule expressed as follows (Kottegoda and Rosso, 2008):  

( )
( )

1/3

2 IQR
c

R n
n =  (13) 

where R is the range of sample data, n is the sample size, and IQR is the interquartile range calculated as: 

3 1IQR Q Q= −  (14) 

where Q1 is the lower quartile which is the median of the lower half of the data; and likewise, Q3 is the upper 

quartile that is the median of the upper half of the data. 

Density histograms of generated samples are shown in Fig. 13. This figure shows that, as it was expected 

from the values of α3 and α4 in Table 6, the right tail is longer than the left one in the histogram of sample 4; 

while in the histograms of other samples, the left tail is longer. Moreover, the histogram of sample 5 is 

leptokurtic; while the histograms of other samples are platykurtic    

Appropriate place for the insertion of Fig. 13 

5. PDF fitting based on the maximum likelihood method 

Thirteen different PDFs were fitted to the density histograms to assess the degree of fitting of various 

distributions to the DoB samples. In each case, distribution parameters were estimated using the maximum 

likelihood (ML) method. Results are given in Table 7. The ML procedure is an alternative to the method of 

moments. As a means of finding an estimator, statisticians often give it preference. For a random variable X with 
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a known PDF, fX (x), and observed values x1, x2, . . . , xn, in a random sample of size n, the likelihood function of 

ω, where ω represents the vector of unknown parameters, is defined as: 

( )
1

( )
n

X i

i

L f x    
=

=  (15) 

The objective is to maximize L(ω) for the given data set. It is done by taking m partial derivatives of L(ω), 

where m is the number of parameters, and equating them to zero. Then the maximum likelihood estimators 

(MLEs) of the parameter set ω can be found from the solutions of equations. In this way the greatest probability 

is given to the observed set of events, provided that the true form of the probability distribution is known.  

Appropriate place for the insertion of Table 7 

6. Assessing the goodness-of-fit based on the Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov goodness-of-fit test is a nonparametric test that relates to the cumulative 

distribution function (CDF) of a continuous variable. The test statistic, in a two-sided test, is the maximum 

absolute difference (which is usually the vertical distance) between the empirical and hypothetical CDFs. For a 

continuous variate X, let x(1), x(2), … , x(n) represent the order statistics of a sample of the size n, that is, the 

values arranged in increasing order. The empirical or sample distribution function Fn(x) is a step function. This 

gives the proportion of values not exceeding x and is defined as: 

Fn (x) = 0,           For  x < x(1) 

          = k / n,       For  x(k) ≤ x < x(k + 1)             k = 1, 2, …, n – 1 

          = 1,            For  x ≥ x(n) 

(16) 

Empirical distribution functions for generated DoB samples have been shown in Fig. 14. 

Let F0(x) denote a completely specified theoretical continuous CDF. The null hypothesis H0 is that the true 

CDF of X is the same as F0(x). That is, under the null hypothesis: 

  1 )()( Prlim 0 ==
→

xFxFn
n

 (17) 

The test criterion is the maximum absolute difference between Fn(x) and F0(x), formally defined as: 

0sup ( ) ( )n n
x

d  F x F x= −  (18) 

Theoretical continuous CDFs fitted to the empirical distribution functions of generated DoB samples have 

been shown in Fig. 15. 

A large value of this statistic (dn) indicates a poor fit. Hence, acceptable values should be known. The critical 

values Dn,ξ for large samples, say n > 35, are (1.3581 / n ) and (1.6276 / n ) for ξ = 0.05 and 0.01, respectively 

(Kottegoda and Rosso, 2008) where ξ is the significance level. 

Results of the Kolmogorov-Smirnov test for the six prepared samples are given in Tables 8−13. It is evident 

in these tables that the Weibull distribution has the smallest dn value for samples 2, 3, and 5; while the Beta 

distribution has the smallest dn for samples 1 and 6; and the Generalized Extreme Value distribution has the 

smallest dn value for sample 4. Hence, they are the best-fitted distributions for the corresponding DoB samples 

(Fig. 16). 

Appropriate place for the insertion of Figs. 14−16 and Tables 8−13 

7. Proposed probability distribution model for the DoB 

The best-fitted distributions for the generated DoB samples were introduced in Sect. 6. According to the 

results of the Kolmogorov-Smirnov test (Tables 8−13), it can be seen that the best-fitted distributions for the six 
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studied samples include three different models: Weibull, Beta, and Generalized Extreme Value distributions. 

The diversity of the best-fitted probability models derived for the studied DoB values may practically result in 

the confusion and difficulty of their application for the fatigue reliability analysis and design. Hence, reducing 

the number of distribution types proposed for the DoB values might be a good idea. In order to do so, the top 

three distribution functions for each DoB sample were identified (Table 14). The aim was to propose a single 

probability model to cover all the DoB samples.  

After surveying the data presented in Table 14, the Weibull model is proposed as the governing probability 

distribution function for the DoB values. The difference between the test statistics of the proposed distribution 

and the best-fitted one for each sample is presented in Table 15. Using the information presented in these tables, 

the analyst is able to make a choice, based on the engineering judgment, between the best-fitted and the 

proposed probability models for each of the studied cases. 

Appropriate place for the insertion of Tables 14 & 15 

The PDF of the Weibull distribution is expressed as: 

𝑓𝑋(𝑥|𝑎, 𝑏) =
𝑏

𝑎
 (

𝑥

𝑎
)

𝑏−1

𝑒−(𝑥 𝑎⁄ )𝑏
 (19) 

After substituting the values of estimated parameters from Table 7, following probability density functions 

are proposed for the DoB values in tubular KT-joints subjected to the three considered OPB load cases defined 

in Fig. 3:  

Saddle position of the central brace−1st OPB loading condition: 

𝑓𝑋(𝑥) = 27.29252 (
𝑥

0.78642
)

20.46330

𝑒−(𝑥 0.78642⁄ )21.46330
 (20) 

Saddle position of the central brace−2nd OPB loading condition: 

𝑓𝑋(𝑥) = 22.55725 (
𝑥

0.77905
)

16.57320

𝑒−(𝑥 0.77905⁄ )17.57320
 (21) 

Saddle position of the central brace−3rd OPB loading condition: 

𝑓𝑋(𝑥) = 28.21154 (
𝑥

0.82176
)

22.18300

𝑒−(𝑥 0.82176⁄ )23.18300
 (22) 

Saddle position of the outer brace−1st OPB loading condition: 

𝑓𝑋(𝑥) = 11.69078 (
𝑥

0.76943
)

7.99524

𝑒−(𝑥 0.76943⁄ )8.99524
 (23) 

Saddle position of the outer brace−2nd OPB loading condition: 

𝑓𝑋(𝑥) = 18.30804 (
𝑥

0.79607
)

13.57450

𝑒−(𝑥 0.79607⁄ )14.57450
 (24) 

Saddle position of the outer brace−3rd OPB loading condition: 

𝑓𝑋(𝑥) = 14.79428 (
𝑥

0.74517
)

10.02430

𝑒−(𝑥 0.74517⁄ )11.02430
 (25) 

where X denotes the DoB as a random variable and x represents its values. 

Developed PDFs, shown in Fig. 17, can be adapted in the fatigue reliability analysis and design of OPB-

loaded tubular KT-joints commonly found in offshore jacket structures. 

Appropriate place for the insertion of Fig. 17 
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8. Conclusions 

A total of 243 FE analyses were carried out in the present research on 81 models of KT-joints subjected to 

three types of OPB moment loading. Generated FE models were validated using experimental data, previous FE 

results, and available parametric equations. FE analysis results were used to develop a set of PDFs for the DoB 

in OPB-loaded KT-joints. Based on the results of parametric FE study, a sample database was prepared for the 

DoB values and density histograms were generated for respective samples based on the Freedman-Diaconis rule. 

Thirteen theoretical PDFs were fitted to the developed histograms and the ML method was applied to evaluate 

the parameters of fitted PDFs. In each case, the Kolmogorov-Smirnov test was used to evaluate the goodness of 

fit. Finally, the Weibull model was proposed as the governing probability distribution function for the DoB. 

After substituting the values of estimated parameters, six fully defined PDFs were presented for the DoB at the 

saddle positions of the central and outer braces in tubular KT-joints subjected to three types of OPB moment 

loading. 
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Fig. 1. (a) Tubular KT-joints in a jacket structure during the fabrication, (b) Close view of a welded tubular KT-joint, (c) 

Geometrical notation for a tubular KT-joint, (d) Critical positions along the weld toe of central and outer braces 

 
 

 
 
 

Fig. 2. Through-the-thickness stress distribution in a tubular joint 



 

 

 
 
 

Fig. 3. Three applied OPB moment loading conditions 

 

 

 
 
 

Fig. 4. Weld dimensions: (a) Crown position, (b) Saddle position  

 

 

 
 
 

Fig. 5. Simulated weld profile: (a) Central brace, (b) Outer brace 

 

 



 
 
 

Fig. 6. Appropriate portion of the entire tubular KT-joint required to be modeled for each load case based on Table 1: (a) ½, (b) ¼  

 

 
 

Fig. 7. Generated mesh for a tubular KT-joint using the sub-zone method 
 



 
 

Fig. 8. The mesh density of: (a) Extrapolation region, (b) Chord and brace members, (c) Weld profile, (d) Brace-to-chord 

intersection 

 

 



 
 

Fig. 9. (a) Extrapolation method recommended by IIW-XV-E (1999), (b) Interpolations and extrapolations necessary to compute 

the DoB value based on the HSSs at the weld toe 

 
 
 
 
 

 
 
 

Fig. 10. Geometrical characteristics of tested tubular KT-joint specimen (unit: mm) 

 

 

Dimensionless geometrical parameters:  
τ = 0.60, γ = 16.25, β = 0.41, ζ = 0.31, α = 12.31  



 
 
 

Fig. 11. Test setup: (a) View of the test rig and KT-joint specimen, (b) Strain gauges attached along the brace-to-chord 

intersection, (c) Connecting the strain gauges to the data logger 

 
 

 
 

Fig. 12. Load cases for FE model validation: (a) Balanced axial loading studied by Morgan and Lee (1998b), (b) Balanced IPB 

loading studied by Ahmadi et al. (2015), (c) Balanced OPB loading studied by Ahmadi and Asoodeh (2016) 

 

 



 
 
 

Fig. 13. Density histograms generated for the DoB samples: (a) Sample 1 (Saddle position of the central brace−1st OPB loading 

condition), (b) Sample 2 (Saddle position of the central brace−2nd OPB loading condition), (c) Sample 3 (Saddle position of the 

central brace−3rd OPB loading condition), (d) Sample 4 (Saddle position of the outer brace−1st OPB loading condition), (e) 

Sample 5 (Saddle position of the outer brace−2nd OPB loading condition), (f) Sample 6 (Saddle position of the outer brace−3rd 

OPB loading condition) 

(c) (d) 

(a) (b) 

(e) (f) 



 
 
 

Fig. 14. Empirical cumulative distribution functions for generated DoB samples: (a) Sample 1 (Saddle position of the central 

brace−1st OPB loading condition), (b) Sample 2 (Saddle position of the central brace−2nd OPB loading condition), (c) Sample 3 

(Saddle position of the central brace−3rd OPB loading condition), (d) Sample 4 (Saddle position of the outer brace−1st OPB 

loading condition), (e) Sample 5 (Saddle position of the outer brace−2nd OPB loading condition), (f) Sample 6 (Saddle position of 

the outer brace−3rd OPB loading condition) 

(c) (d) 

(a) (b) 

(e) (f) 



 
 
 

Fig. 15. Theoretical continuous CDFs fitted to the empirical CDFs of generated DoB samples: (a) Sample 1 (Saddle position of 

the central brace−1st OPB loading condition), (b) Sample 2 (Saddle position of the central brace−2nd OPB loading condition), (c) 

Sample 3 (Saddle position of the central brace−3rd OPB loading condition), (d) Sample 4 (Saddle position of the outer brace−1st 

OPB loading condition), (e) Sample 5 (Saddle position of the outer brace−2nd OPB loading condition), (f) Sample 6 (Saddle 

position of the outer brace−3rd OPB loading condition) 

(a) (b) 

(c) (d) 

(e) (f) 



 
 
 

Fig. 16. The best-fitted distributions according to the Kolmogorov-Smirnov test: (a) Sample 1 (Saddle position of the central 

brace−1st OPB loading condition), (b) Sample 2 (Saddle position of the central brace−2nd OPB loading condition), (c) Sample 3 

(Saddle position of the central brace−3rd OPB loading condition), (d) Sample 4 (Saddle position of the outer brace−1st OPB 

loading condition), (e) Sample 5 (Saddle position of the outer brace−2nd OPB loading condition), (f) Sample 6 (Saddle position of 

the outer brace−3rd OPB loading condition) 

(c) (d) 

(a) (b) 

(e) (f) 



 
 
 

Fig. 17. Proposed PDFs for generated DoB samples: (a) Sample 1 (Saddle position of the central brace−1st OPB loading 

condition), (b) Sample 2 (Saddle position of the central brace−2nd OPB loading condition), (c) Sample 3 (Saddle position of the 

central brace−3rd OPB loading condition), (d) Sample 4 (Saddle position of the outer brace−1st OPB loading condition), (e) 

Sample 5 (Saddle position of the outer brace−2nd OPB loading condition), (f) Sample 6 (Saddle position of the outer brace−3rd 

OPB loading condition) 

(c) (d) 

(a) (b) 

(e) (f) 



Table 1. Appropriate portion of an entire tubular KT-joint required to be modeled for each load case 

Load case (Fig. 3) Required portion to be modeled 

1st OPB moment loading condition ¼ (Fig. 6b) 

2nd OPB moment loading condition ¼ (Fig. 6b) 

3rd OPB moment loading condition ½ (Fig. 6a) 

 
 

Table 2. Results of FE model verification based on experimental data 

Loading Position 
HSS value of the chord’s outer surface O  (MPa) 

Difference 
Present FE model Experimental test (Ahmadi, 2012) 

Axial 
Saddle 5.48 5.89 6.96% 

Crown 2.94 3.38 13.02% 

 
 

Table 3. Geometrical properties of the tubular K-joint specimen used for the verification of FE models 

Loading Joint ID D (mm) τ β γ α θ ζ 

Axial JISSP 3.3 (HSE OTH 354, 1997) 508 1.0 0.5 20.3 12.6 45˚ 0.15 

IPB KJ-1 (Ahmadi et al., 2015) 500 0.4 0.4 12.0 12.0 30˚ 0.15 

OPB KJ-1 (Ahmadi and Asoodeh, 2016) 500 0.4 0.4 12.0 12.0 30˚ 0.15 

 
 

Table 4. Results of the FE model verification based on available parametric equations/FE results 

Loading Position 
DoB values 

Difference 
Present FE model Available data 

Axial 

(Fig. 12a) 

Saddle 0.6666 0.5529 (Morgan and Lee (1998b) Eq. (3d)) 20.56% 

Toe 0.8727 0.8989 (Morgan and Lee (1998b) Eq. (3f)) 2.91% 

Heel 0.7728 0.6997 (Morgan and Lee (1998b) Eq. (3b)) 10.45% 

IPB  

(Fig. 12b) 
Toe 0.5991 

0.5742  

(Ahmadi et al. (2015) FE model) 
4.16% 

OPB 

(Fig. 12c) 
Saddle 0.8920 

0.8045  

(Ahmadi and Asoodeh (2016) FE model) 
10.87% 

 

Table 5. Values assigned to each dimensionless parameter 

Parameter Definition Value(s) 

β d/D 0.4, 0.5, 0.6 

γ D/2T 12, 18, 24 

τ t/T 0.4, 0.7, 1.0 

θ  30˚, 45˚, 60˚ 

ζ g/D 0.3 

α 2L/D 16 

αB 2l/d 8 



Table 6. Statistical measures of the generated DoB samples at the saddle positions of central and outer braces under the 

OPB loadings (LC: loading condition) 

Statistical 
measure 

DoB samples 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Central brace, 
1st OPB LC 

Central brace, 
2nd OPB LC 

Central brace, 
3rd OPB LC 

Outer brace, 
1st OPB LC 

Outer brace, 
2nd OPB LC 

Outer brace, 
3rd OPB LC 

n 

μ 

σ 

α3 

α4 

81 

0.7677 

0.0406 

-0.2557 

2.4892 

81 

0.7554 

0.0534 

-0.5833 

2.7189 

81 

0.8031 

0.0406 

-0.3283 

2.2563 

81 

0.7300 

0.0858 

0.5302 

1.5652 

81 

0.7672 

0.0684 

-0.9654 

4.0385 

81 

0.7112 

0.0774 

-0.2877 

1.9325 

 
 
 
Table 7. Estimated parameters for PDFs fitted to the density histograms of DoB samples at the saddle positions of 

central and outer braces under the OPB loadings 

Fitted PDF Parameters 

Estimated values 
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Central brace, 
1st OPB LC 

Central brace, 
2nd OPB LC 

Central brace, 
3rd OPB LC 

Outer brace, 
1st OPB LC 

Outer brace, 
2nd OPB LC 

Outer brace, 
3rd OPB LC 

Beta a 
b 

83.8823 
25.3897 

50.743 
16.4367 

78.3375 
19.2069 

17.5857 
6.47731 

31.1492 
9.46798 

24.5695 
9.97889 

Birnbaum-Saunders β0 
γ0 

0.766573 
0.0531083 

0.753467 
0.0722212 

0.802076 
0.0508064 

0.725243 
0.114098 

0.763867 
0.0940614 

0.706875 
0.111056 

Extreme Value μ 
σ 

0.787314 
0.0364656 

0.780396 
0.0433962 

0.822556 
0.0351623 

0.774508 
0.0841897 

0.798101 
0.0530766 

0.748376 
0.0656653 

Gamma a 
b 

357.355 
0.00214815 

195.681 
0.00386053 

390.627 
0.00205595 

75.8396 
0.00962509 

118.292 
0.00648605 

82.8304 
0.00858664 

Generalized Extreme 
Value 

k 
σ 
μ 

-0.391922 
0.042301 
0.755539 

-0.646434 
0.0598337 
0.746487 

-0.435386 
0.0428433 
0.791866 

0.481081 
0.0472531 
0.676441 

-0.559969 
0.0737407 
0.752732 

-0.531689 
0.0840801 
0.693635 

Inverse Gaussian μ 
λ 

0.767654 
271.979 

0.755432 
144.644 

0.803111 
310.928 

0.729963 
55.8902 

0.767247 
86.5272 

0.711235 
57.4896 

Log-logistic μ 
σ 

-0.263184 
0.0305197 

-0.277077 
0.0408412 

-0.217255 
0.0295985 

-0.332146 
0.069967 

-0.259053 
0.0499815 

-0.338664 
0.0659058 

Lognormal μ 
σ 

-0.265816 
0.0534228 

-0.283023 
0.0726227 

-0.220543 
0.05111 

-0.321369 
0.114712 

-0.269179 
0.0944668 

-0.346802 
0.111631 

Nakagami μ 
߱ 

90.0914 
0.590922 

49.9548 
0.573497 

98.5318 
0.646616 

18.8403 
0.54012 

30.8618 
0.593291 

21.232 
0.511776 

Normal μ 
σ 

0.767654 
0.0406125 

0.755432 
0.0534259 

0.803111 
0.0406088 

0.729963 
0.0858191 

0.767247 
0.0684187 

0.711235 
0.0774278 

Rayleigh b 0.543563 0.535489 0.568602 0.519673 0.544652 0.505854 

Rician s 
σ 

0.76659 
0.0403892 

0.753555 
0.0531614 

0.802094 
0.040383 

0.724892 
0.0855907 

0.764204 
0.0681317 

0.707009 
0.0771814 

Weibull a 
b 

0.786417 
21.4633 

0.779049 
17.5732 

0.821756 
23.183 

0.76943 
8.99524 

0.796071 
14.5745 

0.745173 
11.0243 

 
 
 
 



Table 8. Results of the Kolmogorov-Smirnov goodness-of-fit test for DoB sample 1 (Central brace−1st OPB LC) 

Fitted distribution Test statistic (dn) 
Critical value (Dn,ξ) Test result 

ξ = 0.05 ξ = 0.01 ξ = 0.05 ξ = 0.01 

Beta 0.037064 

0.1509 0.180844444 

Accept Accept 

Birnbaum-Saunders 0.062642 Accept Accept 

Extreme Value 0.067938 Accept Accept 

Gamma 0.058971 Accept Accept 

Generalized Extreme Value 0.042086 Accept Accept 

Inverse Gaussian 0.062647 Accept Accept 

Log-logistic 0.054059 Accept Accept 

Lognormal 0.062892 Accept Accept 

Nakagami 0.05544 Accept Accept 

Normal 0.052209 Accept Accept 

Rayleigh 0.537469 Reject Reject 

Rician 0.051817 Accept Accept 

Weibull 0.058837 Accept Accept 

 

 
Table 9. Results of the Kolmogorov-Smirnov goodness-of-fit test for DoB sample 2 (Central brace−2nd OPB LC) 

Fitted distribution Test statistic (dn) 
Critical value (Dn,ξ) Test result 

ξ = 0.05 ξ = 0.01 ξ = 0.05 ξ = 0.01 

Beta 0.053679 

0.1509 0.180844444 

Accept Accept 

Birnbaum-Saunders 0.077326 Accept Accept 

Extreme Value 0.055918 Accept Accept 

Gamma 0.073774 Accept Accept 

Generalized Extreme Value 0.074024 Accept Accept 

Inverse Gaussian 0.077331 Accept Accept 

Log-logistic 0.085566 Accept Accept 

Lognormal 0.078659 Accept Accept 

Nakagami 0.070295 Accept Accept 

Normal 0.068202 Accept Accept 

Rayleigh 0.493954 Reject Reject 

Rician 0.066999 Accept Accept 

Weibull 0.044443 Accept Accept 
 

 

 

 
 
 
 
 
 
 



Table 10. Results of the Kolmogorov-Smirnov goodness-of-fit test for DoB sample 3 (Central brace−3rd OPB LC) 

Fitted distribution Test statistic (dn) 
Critical value (Dn,ξ) Test result 

ξ = 0.05 ξ = 0.01 ξ = 0.05 ξ = 0.01 

Beta 0.067545 

0.1509 0.180844444 

Accept Accept 

Birnbaum-Saunders 0.092254 Accept Accept 

Extreme Value 0.064634 Accept Accept 

Gamma 0.088717 Accept Accept 

Generalized Extreme Value 0.06155 Accept Accept 

Inverse Gaussian NaN - - 

Log-logistic 0.079358 Accept Accept 

Lognormal 0.092476 Accept Accept 

Nakagami 0.085312 Accept Accept 

Normal 0.082165 Accept Accept 

Rayleigh 0.55144 Reject Reject 

Rician 0.081804 Accept Accept 

Weibull 0.056591 Accept Accept 

 

 
Table 11. Results of the Kolmogorov-Smirnov goodness-of-fit test for DoB sample 4 (Outer brace−1st OPB LC) 

Fitted distribution Test statistic (dn) 
Critical value (Dn,ξ) Test result 

ξ = 0.05 ξ = 0.01 ξ = 0.05 ξ = 0.01 

Beta 0.224171 

0.1509 0.180844444 

Reject Reject 

Birnbaum-Saunders 0.206744 Reject Reject 

Extreme Value 0.219902 Reject Reject 

Gamma 0.209594 Reject Reject 

Generalized Extreme Value 0.142567 Accept Accept 

Inverse Gaussian 0.206712 Reject Reject 

Log-logistic 0.174796 Reject Accept 

Lognormal 0.205375 Reject Reject 

Nakagami 0.212667 Reject Reject 

Normal 0.214063 Reject Reject 

Rayleigh 0.509188 Reject Reject 

Rician 0.215154 Reject Reject 

Weibull 0.216249 Reject Reject 
 

 

 

 

 
 
 
 
 



Table 12. Results of the Kolmogorov-Smirnov goodness-of-fit test for DoB sample 5 (Outer brace−2nd OPB LC) 

Fitted distribution Test statistic (dn) 
Critical value (Dn,ξ) Test result 

ξ = 0.05 ξ = 0.01 ξ = 0.05 ξ = 0.01 

Beta 0.065113 

0.1509 0.180844444 

Accept Accept 

Birnbaum-Saunders 0.102539 Accept Accept 

Extreme Value 0.047145 Accept Accept 

Gamma 0.096362 Accept Accept 

Generalized Extreme Value 0.058205 Accept Accept 

Inverse Gaussian 0.102564 Accept Accept 

Log-logistic 0.078209 Accept Accept 

Lognormal 0.101889 Accept Accept 

Nakagami 0.09224 Accept Accept 

Normal 0.086714 Accept Accept 

Rayleigh 0.460019 Reject Reject 

Rician 0.087179 Accept Accept 

Weibull 0.045182 Accept Accept 

 

 
Table 13. Results of the Kolmogorov-Smirnov goodness-of-fit test for DoB sample 6 (Outer brace−3rd OPB LC) 

Fitted distribution Test statistic (dn) 
Critical value (Dn,ξ) Test result 

ξ = 0.05 ξ = 0.01 ξ = 0.05 ξ = 0.01 

Beta 0.076427 

0.1509 0.180844444 

Accept Accept 

Birnbaum-Saunders 0.115719 Accept Accept 

Extreme Value 0.083631 Accept Accept 

Gamma 0.108138 Accept Accept 

Generalized Extreme Value 0.078263 Accept Accept 

Inverse Gaussian 0.115763 Accept Accept 

Log-logistic 0.089855 Accept Accept 

Lognormal 0.115307 Accept Accept 

Nakagami 0.10101 Accept Accept 

Normal 0.093426 Accept Accept 

Rayleigh 0.469984 Reject Reject 

Rician 0.093443 Accept Accept 

Weibull 0.0851 Accept Accept 

 

 

 
 
 
 
 
 
 
 



Table 14. Best-fitted distributions for the DoB samples at the saddle positions of the central and outer braces based on 

the results of the Kolmogorov-Smirnov test 

Best-fitted 
distributions 

                                                                                    DoB samples 
Sample 1 

Central brace, 
1st OPB LC 

Sample 2 
Central brace, 
2nd OPB LC 

Sample 3 
Central brace, 
3rd OPB LC 

Sample 4 
Outer brace, 
1st OPB LC 

Sample 5 
Outer brace, 
2nd OPB LC 

Sample 6 
Outer brace, 
3rd OPB LC 

#1 Beta Weibull Weibull Generalized 
Extreme Value Weibull Beta 

#2 
Generalized 

Extreme 
Value 

Beta Generalized 
Extreme Value - Extreme Value Generalized 

Extreme Value 

#3 Rician Extreme Value Extreme Value - Generalized 
Extreme Value Extreme Value 

 
 
 
Table 15. Comparison of the test statistics for the proposed and the best-fitted distributions based on the results of the 

Kolmogorov-Smirnov test 

 

         Test statistic 
Sample 1 

Central brace, 
1st OPB LC 

Sample 2 
Central brace, 
2nd OPB LC 

Sample 3 
Central brace, 
3rd OPB LC 

Sample 4 
Outer brace, 
1st OPB LC 

Sample 5 
Outer brace, 
2nd OPB LC 

Sample 6 
Outer brace, 
3rd OPB LC 

Best-fitted 
distribution 

0.037064 
(Beta) 

0.044443 
(Weibull) 

0.056591 
(Weibull) 

0.142567 
(Generalized 

Extreme Value) 

0.045182 
(Weibull) 

0.076427 
(Beta) 

Proposed 
distribution 

0.058837 
(Weibull) 

0.044443 
(Weibull) 

0.056591 
(Weibull) 

- 
(Weibull) 

0.045182 
(Weibull) 

0.0851 
(Weibull) 

Difference 58.74% 0% 0% - 0% 11.35% 
 


