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A B S T R A C T :

The structural integrity and operability of sewer pipeline systems are crucial for society’s health, urban envi
ronment, and economic stability. Advancements in computer vision (CV) have revolutionized sewer defect in
spection, offering unprecedented accuracy and efficiency in identifying and assessing pipeline failures. While 
prior reviews exist, they often lack systematic comparisons of models, detailed dataset analyses, or compre
hensive severity assessment frameworks. This paper presents a comprehensive review of CV implementations for 
sewer defect detection, location, and characterization. It thoroughly evaluates main inspection techniques, 
diverse datasets, and key performance metrics. State-of-the-art CV models and their applications are critically 
reviewed, alongside defect severity assessments and their link to maintenance strategies. Key challenges and 
limitations are identified, leading to recommendations for enhancing inspection efficiency and accuracy. The 
paper consolidates findings on methodological trends, data analysis advancements, algorithm performance 
variations, and improved severity assessment approaches.

1. Introduction

Sewer pipelines are critical elements of urban infrastructure, tasked 
with transporting wastewater from residences, businesses, and indus
trial sites to treatment facilities. These systems are vital for public 
health, preventing drinking water contamination and limiting the 
spread of waterborne diseases. They also play a crucial role in envi
ronmental protection by ensuring wastewater is adequately treated 
before being released into natural water bodies. Economically, efficient 
sewer systems support sustainable urban growth by enabling safe resi
dential, commercial, and industrial activities.

However, many sewer systems are aging and deteriorating, leading 
to frequent blockages, collapses, and overflows. These problems can 
result in significant public health risks, environmental pollution, and 
substantial economic costs due to emergency repairs and service dis
ruptions. It was reported that, more than $100 million was needed for a 
four-year program since 2018 to upgrade ageing sewer pipes and 
maintenance holes across Melbourne, Victoria [1]. Therefore, regular 
maintenance helps pipeline asset owners identify and repair defects 
early, thereby avoiding costly and disruptive failures and highlighting 
the importance of their maintenance and management.

Defects and failures in sewer pipeline systems can be broadly cat
egorised into two main types: operational and structural. Operational 
issues encompass defects directly impacting the pipeline’s functionality, 
such as root intrusion, blockages, infiltration, sediment accumulation, 
and deposits [2]. Structural problems, on the other hand, involve fail
ures that compromise the system’s structural integrity, including frac
tures, cracks, deformation, collapses, corrosion, and joint displacement 
[3].

Historically, sewer inspections have predominantly relied on manual 
methods conducted by skilled experts. These methods were labour- 
intensive, time-consuming, and often hazardous, requiring inspectors 
to enter the sewer system with specialised tools to assess pipeline con
ditions [4]. Additionally, inaccessible areas posed challenges, limiting 
the thoroughness of inspections and increasing the potential for errors. 
As a result, manual inspection of sewer pipelines was challenging, 
inefficient, and prone to errors. To address these issues, it is crucial to 
enhance the methods of sewer inspection and monitoring with less 
intervention from humans. Developing and testing technologies that 
automate sewer condition assessment are key to realising these 
improvements.

With the development of sensor technologies, closed-circuit 
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television (CCTV) systems have been widely applied for sewer inspec
tion since the last century [5,6] with high-resolution optical sensors, 
such as cameras. This inspection system obtains images or video footage 
from a robot with a mounted camera and lighting system. The robot is 
controlled and navigated by an operator at the control unit on the 
ground via cable, which is also used for transmitting power supply and 
image information of the sewer (Fig. 1). The recorded image or video 
recordings of the sewer are then visually inspected in-field or transferred 
to the office for offline condition assessment by inspectors. This 
approach has a few disadvantages, including being slow, expensive and 
prone to human errors. To address these problems, improved inspection 
techniques with less interventions from humans and more automation 
capacities must be developed.

These days, machine Learning (ML) and its specialised subfield, Deep 
Learning (DL), are transformative technologies that empower computers 
to learn from data and make data-driven conclusions or predictions. 
With the advantages of processing and analysing large quantities of 
complex data, these technologies have been applied in various fields to 
support humans without being explicitly programmed. When applied to 
visual data, these advanced learning algorithms manifest as Computer 
Vision (CV) techniques, which have been widely recognised by re
searchers and engineers as a key component of an improved inspection 
procedure for various structures including sewer pipelines [7].

Researchers have utilised CV techniques to improve methods for 
inspecting sewer defects in pipeline systems [8,9]. For instance, a high- 
efficiency object detection method for locating sewer defects was pro
posed to classify and locate two sewer categories faster and safer than 
traditional sewer inspections [9]. Furthermore, it enables real-time 
CCTV inspection, eliminating the delays and errors common in 
manual inspection while safely accessing hazardous or confined spaces 
through robotics. Despite significant advancements in the application of 
CV, several critical challenges remain unresolved such as the lack of 
standardised and publicly available datasets, which are essential for 
both practising and benchmarking purposes. Furthermore, there is a 
noticeable gap in connecting defect detection outputs with actionable 
maintenance strategies, such as assessing defect severity or integrating 
predictive maintenance systems. Addressing these gaps is essential to 
advancing the field and ensuring more practical and reliable sewer 
pipeline inspection practices.

Several review papers have endeavoured to capture these progresses. 
Published in 2019, the analysis by Moradi et al. [3] is an early and 
structured review of sewer inspection, offering a foundational under
standing of inspection modalities and automation efforts. However, the 
review lacks detailed analysis of deep learning models, benchmark 
datasets, or severity assessment frameworks. About a year later, Ray
hana et al. [10] shifted the survey focus toward robotic inspection 
platforms, providing a rich taxonomy of mobile systems and their 
sensing capacities. While this review is valuable for understanding the 
hardware landscape, it did not delve into the algorithmic aspects of 

defect detection or condition assessment, nor did it evaluate datasets or 
model performance metrics. In 2022, Li et al. [11] broadened the review 
scope, especially on the traditional and deep learning approaches. 
Although informative, the discussion remained largely descriptive and 
lacked systematic comparisons of different model architectures, as well 
as detailed analysis of dataset characteristics and severity rating 
frameworks, limiting its utility for benchmarking and reproducibility. 
The 2023 review paper by Sun et al. [12] focused more directly on the 
practical integration of deep learning with CCTV-based sewer inspec
tion, particularly in the context of urban water management. However, 
it did not provide comprehensive benchmarking of models and datasets, 
nor did it extensively explore severity assessment methods. Similar 
limitations are evident in the survey by Haurum and Moeslund [13], 
which, despite its technical depth and historical breadth, also omits 
severity assessment frameworks and standardised benchmarking across 
datasets.

To address the limitations identified in prior reviews and assist 
newcomers to the field, this paper presents a comprehensive and tech
nically rigorous synthesis of the state-of-the-art literature on vision- 
based sewer defect detection and condition assessment. It offers foun
dation and systematically evaluates CV algorithms—including latest 
model architectures—across multiple tasks such as classification, 
detection, and segmentation. It also provides a structured taxonomy of 
publicly available datasets, detailing their characteristics, annotation 
standards, and usage in benchmarking. Importantly, the paper presents 
a dedicated analysis of severity assessment frameworks as well as es
tablishes essential links between the assessment outcome and the 
decision-making process. By integrating performance metrics, dataset 
comparisons, and architectural insights, the paper aims to serve as a 
valuable reference for both researchers and practitioners. For new
comers to the field, the paper offers a clear, reproducible, and up-to-date 
roadmap to help them in navigating the rather sophisticated landscape 
of automated sewer inspection.

2. General concepts of computer vision and sewer defect 
inspection

The utilisation of CV has been widespread in sewer inspection for 
improving the speed, accuracy and safety for assessing underground 
pipelines. The advances of vision sensor technology, image processing, 
and automated analysis now allow defects to be detected, classified and 
measured with greater precision than traditional manual methods. This 
section first outlines how CV has developed in structural inspection, 
with a focus on sewer systems, and then describes how these techniques 
are applied in complete inspection frameworks that combine data 
collection, defect detection, and condition assessment to guide mainte
nance planning.

Fig. 1. CCTV-based sewer pipeline inspection with control unit and remote defect inspection.
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2.1. Computer vision in structural inspection

Since its inception in the 1960s, CV has been recognised and applied 
in the field of infrastructure condition assessment, becoming a critical 
element for automated sewer inspection and monitoring [7]. CV has 
improved the inspection method by enabling more efficient, accurate 
and safer assessment processes. High-resolution cameras and advanced 
image processing algorithms can capture and extract detailed images 
and videos of the interior of sewer pipelines. These visuals are then 
analysed to detect and classify defects such as cracks, blockages, and 
root intrusions, often with greater precision than human inspectors. By 
automating the inspection process, CV not only reduces the need for 
human intervention but also enhances the spatial resolution of the in
spections, leading to more effective maintenance and repair strategies 
[7,8,14].

Additionally, CV technology can be integrated with unmanned 
ground vehicles, allowing for rapid and thorough inspection of extensive 
sewer networks, thus ensuring the longevity and reliability of critical 
infrastructure. However, the performance of CCTV sewer inspection 
method heavily depends on the quality of dataset [15]. Factors, such as 
camera resolution, lighting conditions, focal length, zoom capabilities, 
camera stability, and environmental conditions, cause issues in image 
quality. Consequently, image processing algorithms are required to 
remove potential noise and enhance the dataset quality. Due to the 
typical environment of the pipeline systems, which often lack light and 
have high moisture levels, there are studies that applied pre-processing 
to their dataset images before conducting the condition assessments 
[16–18].

During the last two decades, advancements in CV techniques have 
been driven by ML to identify sewer defects. In the early stage, numerous 
studies have utilised traditional ML approaches to detect these defects 
[3,19–21]. By leveraging labelled datasets, these ML models can be 
trained to recognise and classify various types of defects. Over time, 
these models improve their detection capability through continuous 
learning, leading to more reliable and efficient sewer maintenance. A 
fault detection method using unsupervised ML algorithm was proposed 
by Xu et al. for anomaly detection in sewer pipeline visual inspection 
[19]. Similarly, Gedam et al. utilised a linear regression approach for 
predicting sewer pipe main conditions and applied ML in forecasting 
sewer pipe conditions [22].

More recently, DL methods have been utilised for sewer inspection to 
handle more complex and larger datasets, automatically extract features 
and improve performance. DL techniques such as Convolutional Neural 
Networks (CNNs) have applied to estimate the water level in sewer pipes 
showcasing the potential in automating the inspection processes [23]. 
Yin et al. proposed a CNN-based object detection to automate defect 
detection in real time, leveraging the advantage of DL algorithms [24]. 
These technologies not only enhance the detection and classification of 
sewer defects but also enable predictive maintenance by identifying 
potential issues before they escalate into major problems. As a result, 
sewer pipeline inspection has been transformed into a more proactive 
and data-driven field, ensuring the longevity and reliability of critical 
infrastructure.

In addition to basic defect inspection, several studies have applied 
CV techniques, enhanced by DL methods, widely in condition analysis or 
defect grading for sewer pipelines in recent years [11,19,25,26]. This 
analysis and grading process is crucial for monitoring the structural 
integrity and functionality of underground infrastructures. For instance, 
Wang & Cheng used semantic segmentation with deep dilated CNN for 
the automatic severity assessment of sewer pipe defects [25]. The inte
gration of dilated convolution and multiscale techniques with recurrent 
neural network layers has been proposed for the severity assessment of 
sewer pipeline faults by Xu et al. in 2020 [19]. However, the most recent 
defect severity assessment mainly focuses on crack or fracture defects, 
with limited studies addressing other sewer pipeline fault categories.

2.2. CV-assisted sewer defect inspection system

A sewer defect inspection framework with the support of CV involves 
several stages that contribute to the efficient assessment of sewer pipe
lines (as shown in Fig. 2). The framework starts with the data acquisition 
stage, which utilises a crawler robot to enter the pipeline and capture 
images and videos using sensing techniques, such as CCTV and Light 
Detection and Ranging (LiDAR) laser [27]. It is followed by transferring 
data to the head unit for pre-processing images and the augmentation 
stage of extracting frames from videos, enhancing the quality of images 
and expanding the dataset. Training detection model for sewer defects is 
then conducted based on the processed dataset for classifying, detecting 
and segmenting employing several image processing algorithms and 
convolutional neural networks. Next, the models are refined and vali
dated to maximise their performance. To examine the severity of defects, 
object measurement steps are done to obtain the characteristics and 
dimensions of defects in the post-processing stages. Finally, the frame
work exports faulty evidence from sewer pipelines as well as a risk 
assessment to support decision-making in inspectors’ maintenance.

The training stage for defect inspection is often the most challenging 
and resource-intensive part of the framework, encompassing tasks such 
as image classification, object detection, and object segmentation 
(Fig. 3). Detecting defects by image classification is the first and 
fundamental step, where entire images are categorised into predefined 
classes based on specific rules or ML algorithms. On the other hand, 
locating defect by object detection is the higher level, which involves 
identifying and localising multiple patterns using bounding boxes and 
confidence scores for its defect (Fig. 3). Object detection can be done 
using one-stage or two-stage algorithms, which will be discussed in the 
following section. Characterising defects by image segmentation is the 
most precise task diving images into regions corresponding to pre
defined labels. The paper discusses three segmentation approaches: 
morphological, semantic and instance segmentation. Fig. 4 summaries 
the techniques and algorithms used for each type of sewer defect 
inspection.

Following the defect inspection stage, condition assessment is con
ducted to evaluate the structural and operational state of sewer pipe
lines. This process is critical for maintaining the pipeline integrity and 
ensuring public safety. It requires several types of defect information 
from the inspection stage, such as defect identification (e.g. cracks, 
fractures, roots), characteristics (e.g. length, width, depth, area, orien
tation), and location. Using this data, the computers analyse the extent 
and severity of the defect and generating risk assessment reports with 
corresponding defect grades. This stage plays a vital role in supporting 
engineers and inspectors in making informed decisions about mainte
nance and repair priorities based on the potential risks to pipeline 
operation.

3. Benchmark datasets and tools

Effective sewer defect inspection depends on both the quality of the 
datasets used for training and the method applied to evaluate model 
performance. Publicly available datasets vary widely in size, resolution, 
and defect categories, making dataset benchmarking an important step 
in comparing inspection algorithms. Preprocessing and augmentation 
techniques are often required to address issues such as poor lighting, 
noise, and limited diversity in the data, ensuring models are better able 
to generalise to real inspection scenarios. Finally, performance metrics 
tailer to classification, detection, and segmentation tasks provide a 
standard basis for assessing accuracy, robustness and reliability. This 
section reviews commonly used sewer inspection datasets, outline pre
processing and augmentation approaches, and summaries the key 
evaluation metrics used in the field.
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3.1. Datasets benchmarking

To compare the performance of sewer defect inspection algorithms, 
it is essential to benchmark the dataset and evaluate its characteristics 
such as quality, diversity or robustness for model development and 
evaluation. Sewer-ML is a widely-used public dataset, with more than 

1.3 million images and 18 predefined classes [29]. It was collected by 
three different Danish companies from 2011 to 2019 and pre-processed 
by experts before being publicly released online with a wide range of 
image resolutions from 350x284 to 768x576 pixels. Another large-scale 
dataset was introduced by Meijer et al. [30] comprising approximately 
2.2 million images with 12 different defects, captured at 1040x1040 

Fig. 2. Framework of sewer defect inspection.

Fig. 3. Example of sewer pipeline crack inspection using image classification (left), object detection (middle) and image segmentation (right) [28].

Fig. 4. Hierarchy chart of sewer defect inspection with the aid of computer vision.
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resolution using 185◦ angle camera. However, this dataset is unanno
tated and requires manual labelling, which is labour-intensive. Liu et al. 
[31] proposed two different video-based datasets, QV-Pipe and CCTV- 
Pipe, for defect inspection by image classification and object detec
tion, respectively. QV-Pipe was collected by a pole-mounted camera 
from maintenance holes for rapid anomaly assessment, while CCTV-Pipe 
involved robotic crawlers capturing high-resolution footage along the 
pipeline system. Table 1 summarises the available datasets for defects in 
sewer pipelines from previous studies.

3.2. Image preprocessing and augmentation algorithms

The challenging operating condition of sewer systems, particularly 
low visibility, poor lighting, harsh and unpredictable conditions, 
significantly impact the training and performance of object detection. 
Poor illumination often results in low-quality and noisy datasets where 
defect like small cracks or subtle root intrusions are difficult to discern. 
Additionally, uneven lighting caused by water reflection and over
exposed area make an inconsistency in the image that hinders the 
model’s ability to generalise across datasets. These lighting challenges 
can lead to domain shifts, reducing the model’s accuracy when applied 

to different sewer environments. These issues can be mitigated by the 
application of image preprocessing techniques and data augmentation 
algorithms.

Image preprocessing transforms the original image into a new format 
suitable for CV models. This process includes several tasks, such as 
modifying the geometry, colour, noise reduction/filtering, and/or nor
malisation of the image. The geometry of the original image size is 
typically adjusted through resizing, cropping and scaling to meet the 
model input requirements. Colour adjustment algorithms, including 
normalisation, standardisation, noise reduction, can be applied to im
ages with the main target of minimising colour variation and enhancing 
image quality. Normalisation [39] plays a vital role in scaling pixel 
values to a standard range, such as [0, 1] or [-1, 1], to improve 
convergence of CV algorithms and ensure consistency in the dataset. On 
the other hand, standardisation [40] adjusts pixel values to have zero 
mean and unit variance, reducing bias caused by various lighting con
ditions and enhancing training stability. Additionally, noise reduction 
and filtering help remove unwanted disturbances while retaining 
essential features, like edges and texture.

In contrast to preprocessing image algorithms, image augmentation 
is a technique used in CV to artificially expand the size and diversity of a 
training dataset by applying a variety of transformations to existing 
images. These transformations include geometric changes (e.g. rotation, 
flipping, scaling, cropping, translation), photometric adjustments 
(altering brightness, contrast, saturation, and hue) and noise introduc
tion (adding Gaussian noise, blur, or perspective distortion). With the 
expanded dataset, the risk of overfitting can be reduced, while the 
robustness of the model is improved. An example of image augmentation 
algorithms is shown in Fig. 5. The key difference between image pre
processing and image augmentation lies in their purpose and applica
tion. Image preprocessing is applied to the entire dataset and thus its 
effects are reflected across all subsets, training, validation and testing. 
On the contrary, image augmentation is only applied to the training 
subset and is specially aimed at improving the generalisation ability of 
the model by exposing it to a wider range of simulated scenarios and 
environmental conditions.

3.3. Performance metrics

To evaluate the model performance in sewer pipeline inspection, 
various quantitative metrics are used to ensure reliable and accurate 
defect detection, against various challenges including the presence of 
imbalanced datasets [41]. Different tasks—such as image classification, 
object detection, and segmentation—require specific metrics that 
highlight different aspects of model effectiveness. This section reviews 
the key metrics such as Precision, Recall, Accuracy, F1 score, Intersec
tion over Union (IoU) [42], Average Precision (AP), Pixel Accuracy (PA), 
and Area Under the Receiver Operating Characteristic curve (AUC-ROC) 
[43,44]. Tools such as confusion matrix, Receiver Operating Charac
teristic curve (ROC) [45], and Precision-Recall Curve (PRC) [41], used 
for obtaining performance metrics are also discussed.

The confusion matrix is a key tool for evaluating performance in ML, 
showing counts of true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN), as illustrated in Fig. 6. In sewer pipeline 
inspection, it helps assess model accuracy in defect identification. For 
example, in the crack class, true positives occur when both prediction 
and ground truth indicate a crack, while true negatives reflect agree
ment on non-crack defects. False positives arise when a crack is incor
rectly predicted, and false negatives when an actual crack is missed.

3.3.1. Metrics for classification tasks
Precision and recall are essential metrics for evaluating a classifica

tion performance, particularly with imbalanced datasets. As shown in 
Fig. 6, precision measures the accuracy of positive predictions and is 
calculated based on elements of the confusion matrix, whereas recall, or 
sensitivity, measures the model’s ability to identify all actual positives, 

Table 1 
Benchmark datasets for sewer pipelines defects from previous studies

Ref. Names/ 
Authors

Types of Defects No. of Images 
(I) /Videos 
(V)

Resolution

[31] QV-Pipe 17 defect classes 
(undisclosed class names)

9601 (V) Not Specified

[31] CCTV- 
Pipe

16 defect classes 
(undisclosed class names)

575 (V) Not Specified

[29] Sewer- 
ML

Water levels, crack, 
breaks, collapse, surface 
damage, production 
error, and 11 additional 
defect classes

1,300,201 (I) From 350x284 
to 768x576 
pixels

[16] Hassan 
et al.

Defect longitudinal, 
debris silty, joint faulty, 
joint open, lateral 
protruding, and surface 
damage

24,137 (I) 256x256 pixels

[32] Xie et al. Normal, deposition, 
stagger, fracture, high 
water level, disjunction, 
and additional defect 
classes

42,800 (I) Not Specified

[30] Meijer 
et al.

Fissure, surface damage, 
intruding and defective 
connection, intruding 
sealing material, 
displaced joint, porous 
pipe, and 5 additional 
defect classes

2,202,582 (I) 1040x1040 
pixels

[33] Kumar 
et al.

Root intrusion, deposits, 
cracks, infiltration, 
debris, and 3 additional 
defect classes

12,000 (I) From 320x256 
to 1440x720 
pixels

[34] Li et al. Deposits settlement, joint 
offset, broken, obstacles, 
water level stag, 
deformation

18,433 (I) From 296x166 
to 1435x1054 
pixels

[35] Dang 
et al.

Crack, debris silty, faulty 
and open joint, 
protruding lateral, 
surface damage, and pipe 
broken

38,386 (I) 1280x720 
pixels

[36] Cheng 
et al.

Root, crack, infiltration, 
and deposit

1,260 (I) From 320x256 
to 1440x720 
pixels

[37] Chen 
et al.

Normal, blur, intrusion, 
deposit, and obstacle

10,000 (I) Not Specified

[38] Wang 
et al.

Crack, deposit and root 1,885 (I) 512x256 pixel
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calculated as the ratio of true positives to the total actual positives.
The F1 score, the harmonic mean of precision and recall, provides a 

balanced measure of the model performance, especially when both 
precision and recall are equally important. As shown in Eq. (1), F1 score 
is calculated based on the proportion of actual positives relative to all 
predicted and actual positive labels. Ranging from 0 (poor) to 1 
(excellent), a higher F1 score indicates a better balance between preci
sion and recall. 

F1 Score = 2*
(

Precision*Recall
Precision + Recall

)

(1) 

The ROC curve and its associated metric, AUC-ROC, are common 
tools for evaluating binary classifiers. The ROC curve plots the True 
Positive Rate (TPR) against the False Positive Rate (FPR) across 
thresholds. TPR, or recall, measures the proportion of correctly identi
fied positives, while FPR quantifies the proportion of false alarms among 

actual negatives. AUC-ROC quantifies the overall discriminatory ability 
of models, with values closer to 1 indicating superior performance. 

TPR =
TP

TP + FN
(2) 

FPR =
FP

FP + TN
(3) 

For multi-class classification problems, performance metrics can be 
extended by employing macro- and micro-averaging strategies. Micro- 
averaging calculates metrics globally by summing the true positives, 
false positives, and false negatives across all classes, giving more weight 
to larger classes. In contrast, macro-averaging computes the metric for 
each class independently and then averages these per-class results, 
treating all classes equally regardless of their size, which is particularly 
useful for imbalanced datasets common in defect detection. These 
strategies also apply to ROC and AUC-ROC evaluations, where One-vs- 
Rest (OvR) is used to compute a binary ROC curve per class. The 
macro-AUC is then obtained by averaging the per-class AUCs, while 
micro-AUC considers all predictions collectively. Sokolova and Lapalme 
[46] reviewed averaging strategies for precision, recall, and F1-score in 
multiclass, multilabel, and hierarchical classification settings. Their 
work provides a clear framework for selecting appropriate evaluation 
metrics, making it a valuable reference for newcomers to classification 
tasks.

3.3.2. Metrics for object detection tasks
For object detection tasks, Intersection over Union (IoU), also known 

as Jaccard Index, measures the overlap section between the predicted 
and ground truth labels. It is calculated as the ratio of the intersection 
(the overlap area) to the union (combined area) of the predicted and 
actual segments. As shown in Equation (4), an IoU closer to 1 indicates a 
better match. 

IoU =

∑k
j=1njj

∑k
j=1

(
nij + nji + njj

) (4) 

where njj is the number of pixels correctly classified as a class j. nij is 

Fig. 5. Examples of different augmentation algorithms

Fig. 6. Confusion matrix tools to obtain performance metrics
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the number of pixels, which are labelled as class i, but classified as class j. 
Similarly, nji is the total number of pixels labelled as class j, but classified 
as class i. In multiclass problems, mean Intersection over Union (mIoU) 
is widely used to evaluate performance across all classes [47]. It is 
computed by averaging the IoU values for each class, providing an 
overall measure of segmentation quality regardless of class imbalance.

AP is a widely used metric in object detection that summarises the 
Precision–Recall (PR) curve into a single scalar value. It corresponds to 
the area under the PR curve, where precision is plotted against recall 
across varying confidence thresholds. Higher AP values indicate better 
detection performance. For multiclass object detection, the standard 
evaluation metric is mean AP (mAP), calculated by averaging the AP 
scores across all object classes. This provides a comprehensive measure 
of overall detection performance across all defect types.

3.3.3. Metrics for segmentation tasks
PA is commonly used for semantic segmentation to measure the 

percentage of correctly classified pixels in the entire image. It is 
computed as the ratio of correctly predicted pixels to the total number of 
pixels, as shown in Eq. (5). While PA offers a general measure of per
formance, it may be less informative for imbalanced classes, where 
smaller classes may be underrepresented. To address this limitation, 
mean PA (mPA) is used, which computes the pixel accuracy separately 
for each class and then averages the results [47], as shown in Eq. (6). 
This ensures that all classes contribute equally to the final score, making 
it more reliable for evaluating performance in datasets with class 
imbalance. 

PA =

∑k

j=1
njj

∑k
j=1tj

(5) 

mPA =
1
k
∑k

j=1

njj

tj
(6) 

where njj is the number of pixels correctly classified as a class j and tj is 
the total number of pixels labelled as class j. In term of the confusion 
matrix’s four elements, njj corresponds to the true positive for class j and 
PA can also be calculated by the same equation for accuracy in Fig. 6.

Similar to object detection tasks, segmentation tasks also use Inter
section over Union (IoU) and mean IoU (mIoU) as key evaluation met
rics. These metrics can be further extended to frequency-weighted IoU 
(FwIoU), which incorporates the relative frequency of each class in the 
dataset. By weighting each class’s IoU by the number of ground truth 
pixels it contains, FwIoU provides a more representative evaluation 
when the dataset contains classes with significantly different pixel 
counts, such as background versus rare defect types in sewer inspection 
tasks [47]. FwIoU can be calculated by multiplying the IoU for each class 
by the number of pixels in that class and then summing them up as Eq. 
(7). 

FwIoU =
1

∑k
j=1tj

∑k

j=1
tj

njj

nij + nji + njj
(7) 

4. Detecting defects by image classification

Detecting sewer defects by image classification is considered as the 
first level of defect inspection. The main purpose of this method is to 
identify and categorise the image under a specific label with the support 
of advanced technologies such as CV and learning algorithms. Classifi
cation algorithms are commonly divided into three categories, including 
unsupervised, semi-supervised and supervised learning algorithms.

4.1. Supervised learning algorithms

Supervised classification algorithms are trained with a labelled 
dataset categorise the image to a predefined label. Using image-label 
pairs, the models learn to recognise and remember the patterns and 
features of sewer defects. Common algorithms include Support Vector 
Machines (SVMs), which find optimal boundaries to separate defect 
categories; and Convolutional Neural Networks (CNNs), which excel at 
recognising patterns in visual data. Defect classification is typically 
approached as either binary (defect vs. no defect) or multi-class (e.g., 
crack, root, deposit, blockage).

The SVM is a popular supervised learning approach for image clas
sification, particularly from late 1990s to early 2010s. This algorithm 
works by finding an optimal hyperplane that separates classes in the 
feature space, maximising the margin between them [48]. The hyper
plane’s form varies with the number of features or classes, ranging from 
a line to a multi-dimensional plane.

Ye et al. [49] applied SVM algorithm to classify 1045 CCTV images 
from seven sewer defect types using four feature extraction methods, 
Daubechies (DBn) wavelet transform, Hu invariant moment, lateral 
Fourier transform and texture features. The SVM algorithm achieved an 
average accuracy of 0.84 for all types of defects, with 0.99 for settled. 
Yang et al. [50] compared SVM with Radial Basis Network (RBN) and 
Back-Propagation Neural Network (BPN) and two experiments with four 
defect patterns showed SVM achieving an accuracy of 60%. Zou et al. 
[51] used SVM to classify three crack types—longitudinal, circumfer
ential and multiple cracks—and integrated a histogram of oriented 
gradients (HOG) for feature extraction. Their model demonstrated a 
robust performance, with accuracy exceeding 90%.

With the advent of DL, Convolutional Neural Networks (CNNs) were 
developed from Artificial Neural Networks (ANN) and have become 
some of the most powerful and widely-used algorithms in CV tasks [52]. 
CNNs are designed to automatically learn hierarchies of features from 
raw image information through backpropagation. Their ability to handle 
complex visual data and support end-to-end learning has led to suc
cessful applications in fields such as medical imaging, agriculture, and 
structural inspection. Due to their high accuracy and robust perfor
mance. Due to superb performance, CNNs have become a standard tool 
for image classification and object detection.

Chen et al. [37] proposed a CNN-based sewer defect detection system 
combining SqueezeNet [53] and InceptionV3 [54]. After augmentation, 
SqueezeNet first identified abnormal images, which were then passed to 
InceptionV3, to detect deposition, obstacles, blur and intrusions. This 
two-stage model outperformed SVM in detection accuracy and handled 
natural pipeline scenes effectively. Similarly, Li et al. [34] introduced a 
hierarchical CNN model using ResNet18 for feature extraction, tested on 
an imbalanced dataset. It first classified images as defective or not, then 
further categorised defects into one of the total seven types, achieving a 
defect detection accuracy of 83.2%. In contrast, Kumar et al. [33] 
developed a binary CNN classification framework (Fig. 7) to categorise 
three defect types—crack, deposit and root intrusions—using a large 
sewer defect dataset of 12,000 images. The framework uses binary 
classification stages, where the number of stages depends on the number 
of defect types. Each stage produces two sub-datasets, refining the 
classification process. The highest accuracy achieved by this framework 
was 86.2%.

4.2. Unsupervised and Semi-supervised Learning Algorithms

Unsupervised and semi-supervised algorithms, unlike supervised 
algorithms, utilise the unlabelled or partially labelled dataset for feeding 
the models, respectively. Unsupervised learning focuses on detecting the 
object patterns and groups that all similar instances share together into a 
class. This method eliminates the requirement of a human in the label
ling process, which is affected negatively by several factors (e.g. tired
ness). Semi-supervised algorithms combine supervised and 
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unsupervised learning by learning from a labelled dataset and exposure 
to unlabelled information. Yang et al. [50] examined the performance of 
a RBN-based classification model, which combined both supervised and 
unsupervised algorithms for classifying pipe defect patterns. The RBN 
transforms the input image information through a hidden layer with a 
Gaussian activation function. Evaluated against SVM and BPN, RBN 
stood out for its exceptional computation efficiency and robust classi
fication accuracy, particularly in the class of broken pipe defects. While 
not achieving the best overall accuracy, RBN, with its combination of 
supervised and unsupervised algorithms, provided a highly effective and 
efficient solution for pipe defect classification.

A few other unsupervised learning algorithms were also used in 

sewer defect detection contexts. For instance, Principal Component 
Analysis (PCA) an algorithm well-known for dimensionality reduction of 
image data to facilitate exploration. Meijer et al. [55] introduced a 
three-part PCA-based framework for sewer image anomaly detection, 
responsible for feature decomposition and partial reconstruction. The 
trained model achieved an AUC-ROC of 0.946 on a smooth dataset and 
0.714 on coarse one. Fang et al. [19] found that the performance of the 
One-Class Support Vector Machine (OC-SVM) algorithm in sewer pipe
line fault detection was consistently lower than that of other anomaly 
detection methods evaluated in the study. Across multiple datasets and 
feature combinations, OC-SVM demonstrated limited effectiveness, 
particularly in handling noisy data and complex fault patterns, with the 

Fig. 7. Proposed CNN for binary classification of Kumar et al. [33].

Table 2 
Previous studies about detecting sewer defect by image classification

Ref. Year Algorithm/Model Dataset Size No. of 
Classes

Performance Comments

Supervised Learning

[50] 2008 SVM 291 Images 4 Classes Average accuracy = 0.6
- Able to classify structural defects
- Low classification accuracy

[56] 2018 Multiclass Random Forest 2,424 Images 11 Classes Overall accuracy = 0.71 - Able to classify defects in CCTV videos
- Applicable for real-time inspection

[37] 2018 CNN – SqueezeNet +
Inceptionv3

10,000 Images 4 Classes AUC-ROC = 0.93 
Average accuracy = 0.81

- Detected only obvious feature defects

[33] 2018 Binary CNN 12,000 Images 3 Classes Average accuracy = 0.86

- Image resolution from 320x256 to 1440x720 
pixels

- Unable to classify sub-pattern of main defect
- High classification accuracy

[32] 2019 Binary and Multiclass CNN 42,800 Images 6 Classes Average accuracy = 0.95 for both binary 
and multiclass

- Applicable for real-time CCTV videos
- High classification accuracy for multiple classes

[34] 2019 Multiclass CNN – Resnet18 18,333 Images 7 Classes Average accuracy = 0.83

- Image resolution from 296x166 to 1435x1054 
pixels

- Improper labels and imbalanced dataset
- Two levels classification with high- and low- 

level categories

[49] 2019 SVM 1,045 Images 7 Classes Average accuracy = 0.84
- Difficulty in detecting collapse and joint damage
- Low classification accuracy for structural 

defects

[51] 2020 SVM 1,001 Images 3 Classes Recall ≈ 0.9

- Image resolution of 320x240 pixels
- Able to classify crack sub-category in sewers
- High inference speed and recall, applicable only 

to crack pattern

[58] 2020 CNN 800 Images 2 Classes Accuracy = 0.47 – 0.96
- Low resolution and noisy images, imbalanced 

dataset

[35] 2021 CNN – Fine-tuned VGG19 38,386 Images 8 Classes Accuracy = 0.98
- Fine-tuned 19-layers CNN delivers
- High classification accuracy
- Robust in noisy and highly imbalanced dataset.

[59] 2023 CNN – RegNet+ 12,000 Images 20 Classes
F1-score = 0.98 
Accuracy = 0.98

- Image resolution of 1280x720 pixels
- High accuracy across wide range of defects

Unsupervised and Semi-supervised Learning

[50] 2008 RBN 291 Images 4 Classes Overall accuracy = 0.54
- Low classification accuracy with short 

computation time

[55] 2010 PCA

684 Images - 
Smooth 
698 Images - 
Coarse

N/A AUC-ROC = 0.946 – Smooth 
AUC-ROC = 0.714 – Coarse

- Able to classify only smooth and coarse images
- Unable to detect sewer defects.

[57] 2018 OC-SVM 7,842 Images 14 Classes
Accuracy = 0.75 – Images 
Accuracy = 0.85 - Video 
AUC-ROC = 0.76

- Applies to both images and video for 
classification

[19] 2020 OC-SVM ~11,000 Images N/A Accuracy = 0.471 (lowest) - Poor and highly varied performance
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lowest accuracy only at 0.471.

4.3. Discussion

Table 2 summarises several detecting sewer defects by image clas
sification studies from 2008 until now with many algorithms and tech
niques. Before 2018, most papers [19,50,56,57] utilised traditional ML 
algorithms (such as SVM, RBN and Random Forest) to classify sewer 
defects with low training accuracy, ranging from 0.54 to 0.75. The ac
curacy metric was improved significantly up to 0.9 when the classifi
cation model shifted towards more complex models such as multiclass 
Random Forest and various CNN architectures. The low accuracy of 
traditional ML models such as SVM and Random Forest can be explained 
by their reliance on handcrafted feature extractions. These manually 
engineered features often struggle to capture the complex and varied 
nature of sewer defects, particularly in low-quality CCTV datasets. 
Moreover, this dependence on manual feature design limits the scal
ability of such models, making it challenging to adapt them to large- 
scale and diverse datasets.

CNN models have become dominant in recent research with their 
superior ability to handle large and diversified datasets. For instance, 
the VGG19 model, with the 19-layer deep network, was fine-tuned by 
Dang et al. [35] to effectively capture intricate features of more than 
38,000 sewer defect images and achieve a near-perfect validation ac
curacy of 0.98. This depth allows the model to learn complex, hierar
chical feature representations, leading to high classification accuracy. 
Similarly, newer architectures such as RegNet+ have demonstrated 
comparable accuracy (up to 0.987) while addressing more diverse 
classification tasks involving up to 20 defect classes, making them 
suitable for real-time sewer inspection applications.

In terms of learning types, DL models with supervised learning often 
outperform unsupervised and semi-supervised learning algorithms 
because they leverage labelled datasets to learn from specific examples 
of defects. Besides accuracy, AUC-ROC was also used to evaluate the 
performance of classification models when dealing with imbalanced 
datasets in several studies [37,55,58]. CNN models that combine ar
chitectures such as SqueezeNet and InceptionV3 achieve high AUC-ROC 
values of up to 0.93, indicating strong effectiveness in distinguishing 
between defect classes. In contrast, unsupervised models like OC-SVM 
and PCA are simpler algorithms and do not benefit from labelled 
training data. As a result, they are less effective in handling fine-grained 
defect patterns (such as cracks or roots) and low-quality images, which 
was reflected in their lower AUC-ROC scores of 0.76 and 0.714, 
respectively.

Besides the development of model architecture, researchers also paid 
attention to enhancing quality and expanding datasets—from just 291 
images in an early study [50] to 42,000 images in a more recent one 
[32]. Additionally, the number of sewer defect classes was increased 
from 2 (binary classification) to 20 classes, allowing for more fine- 
grained categorisation. These enhancements have significantly 
contributed to improved model performance and generalisability. For 
example, the CNN–VGG19 model [35], trained on a dataset of 38,386 
images across eight classes, achieved near perfect validation accuracy of 
0.98. Similarly, another CNN-based study [59], trained on a 12,000 
image dataset with 20 defect classes, reported an accuracy of 0.987.

For new researchers seeking foundational studies in sewer defect 
detection by image classification, it is suggested to review the binary and 
multiclass CNN models, proposed by Xie et al. in 2019 [32], which 
focused on automatic detection and classification of sewer defects. These 
models were developed using a hierarchical DL approach to learn fea
tures progressively from general to specific, starting with binary clas
sification and advancing to detailed categorisation. Additionally, the 
models were trained and validated on a large dataset containing 42,800 
sewer pipeline images across six different classes, offering a rather 
comprehensive detection application. Another key study to consider is 
the fine-tuned VGG19 CNN model by Dang et al. [35], which stands out 

as one of the highest-performing models achieving an impressive accu
racy of 0.98. Based on the well-known VGG19 architecture, the study 
used another large dataset with over 38,000 images across 8 classes.

5. Locating defects by object detection

While image classification is concerned with assigning a single label 
to an entire image, object detection advances further by identifying and 
localising multiple objects within an image, thereby enabling the defects 
to be located based on pre-defined classes. The detection outputs include 
bounding boxes, the class labels and confidence scores. Recent pro
gresses in DL has rapidly advanced object detection, making it a major 
research focus. Applications span various fields, including security 
cameras [60–62], self-driving vehicles [63–65], pest detection [66–68], 
and healthcare [69–71]. Object detection is complex due to the need for 
both categorisation and localisation, leading to the development of one- 
stage and two-stage detection architectures. One-stage detection 
models, such as Single-Shot Multibox Detection (SSD) [72], You Only 
Look Once (YOLO) [73], RetinaNet [74], and CornerNet [75] perform 
classification and localisation in a single step, offering faster inference 
suitable for real-time use. Two-stage models like Region-based Con
volutional Neural Network (R-CNN) [76], Fast R-CNN [77] and Faster R- 
CNN [78] first generate region proposals, then refine and classify them, 
achieving higher accuracy but at slower speed. This section reviews 
most notable studies in both approaches.

5.1. Single Shot Multibox Detector (SSD)

In 2016, Liu et al. [72] introduce introduced SSD, as a new object 
detection method using a single deep neural network. This version of 
SSD employed VGG-16 as the backbone for initial feature extraction (as 
Fig. 8), followed by auxiliary convolutional layers that capture multi- 
scale features through progressive downsample. This structure enables 
efficient detection of objects with varying sizes and aspect ratios. Pre
dictions are made at the detection layers, returning bounding boxes and 
confidence scores, refined using Non-Maximum Suppression (NMS). T 
SSD’s inference speed and performance have been validated on several 
public datasets, such as PASCAL VOC and COCO, showing strong results.

In sewer pipeline inspection, Kumar et al. [9] applied SSD to detect 
defects in 3,800 CCTV images, covering eight defect types with resolu
tions ranging from 720x576 to 1,507x720. The SSD model has been 
compared with other DL models, including YOLOv3 and Faster-RCNN. 
To improve detection speed, the authors replaced the original VGG-16 
backbone with MobileNet, following the approach by Howard et al. 
[79], which slightly reduced accuracy. The modified SSD model ach
ieved a detection speed of 33 ms and a mean average precision (mAP) of 
54.4%, both lower than the other models. Similarly, Wang et al. [80] 
examined SSD on a smaller dataset, with image processing applied 
before training, and also found its performance inferior, reinforcing the 
findings by Kumar et al. [9].

In a 2023 study, Shen et al. [81] proposed an improved object 
detection algorithm for sewer pipeline inspection called Enhanced 
Feature Extraction SSD (EFE-SSD), targeting four defect types. Built on 
the original SSD with a VGG-16 backbone, the model integrates a 
Receptive Field Block (RFB) to improve feature extraction, an enhanced 
ECA attention mechanism to adjust channel weights, and replaces the 
cross-entropy loss with Focal Loss to address class imbalance during 
training. EFE-SSD achieved a mean average precision (mAP) of 92.2%, 
outperforming several state-of-the-art models, including Faster R-CNN, 
YOLO, and RetinaNet.

5.2. You Only Look Once (YOLO)

Similar to SSD, YOLO is an object detection algorithm that frames 
detection as a single regression problem, straight from image pixels to 
bounding box coordinates and class probabilities just by a single pass 
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[73]. It is a pioneering DL framework designed with an outstanding 
efficiency and speed in detecting objects within images and videos [82]. 
YOLO accomplishes this by dividing the media information into a grid 
and predicting bounding boxes and class probabilities directly without 
the need for region proposals and post-processing steps. Over time, 
YOLO has evolved through eleven versions, each introducing enhance
ments to improve performance and showcasing the model’s iterative 
progression and continuous refinement [83,84]. Several variants have 
also been developed, such as YOLO-LITE optimised for non-GPU device 
[85] and YOLOv3-SPP with the addition of a Spatial Pyramid Pooling 
(SPP) layer to improve the detection of objects at different scales [86]. 
Among the many versions, YOLOv2, YOLOv3, and YOLOv5 are most 
commonly used in sewer pipeline inspection due to their robust per
formance and adaptability to diverse defect types.

5.2.1. YOLOv2
YOLOv2 is a fully convolutional network that processes input images 

and reduces them to an output grid with a resolution that is 32 times 
smaller than the original input resolution [87]. The model uses Darknet- 
19 as its backbone, a deep convolutional neural network consisting of 19 
convolutional layers and five max-pooling layers. YOLOv2 utilises an
chor boxes for improved bounding box prediction and applies batch 
normalisation to all convolutional layers to enhance training stability 
and performance.

Zhou et al. [88] evaluated YOLOv2 for automated locating sewer 
defects, comparing its accuracy and inference speed with the Faster R- 
CNN model, using the same dataset, system, and hyperparameters. 
Despite stable training times as dataset size increased from 10% to 
100%, YOLOv2 achieved lower accuracy, highlighting the trade-off 
between detection accuracy and computational efficiency. In another 
study, Situ et al. [89] applied transfer learning to YOLOv2 by replacing 
the Darknet-19 (Fig. 9) by eleven pre-trained CNNs. The study [89] 
found that InceptionV3 delivered the best performance with a mean 

average precision (mAP) of 0.71, while InceptionResNetV2 yielded the 
lowest precision and speed. The author concluded that CNNs with fewer 
convolutional layers and parameters achieved better performance, 
highlighting the importance of selecting appropriate feature extraction 
models for an early version of YOLO.

5.2.2. YOLOv3
YOLOv3 represents a significant evolution from its predecessors, 

introducing notable improvements in object detection capabilities. Un
like YOLOv2, it adopts a residual network architecture based on 
Darknet-53 [90]. This increases depth and complexity through 53 con
volutional layers and residual connections (often referred to as cross- 
layer summation). A key enhancement is the integration of a multi- 
scale prediction mechanism, similar in principle to a Feature Pyramid 
Network (FPN), enabling predictions at three different scales (as show in 
Fig. 10). This is achieved by combining semantically rich, low-resolution 
features from deeper layers with high-resolution, detailed ones from 
shallower layers through upsampling and concatenation [91]. YOLOv3 
also employs a total of nine pre-determined anchor boxes, which are 
strategically assigned to these three different prediction feature maps 
based on their sizes, improving detection accuracy for large, medium, 
and small objects.

Based on YOLOv3, several studies have proposed automated sewer 
pipeline object detection for use with CCTV images and video footage 
[9,24,92]. Kumar et al. [92] have proposed a YOLOv3 framework with 
the integration of 5 CNN layers before the detection stage for classifi
cation. A dataset with 1800 images were sorted out for the training of 
locating defect model using the YOLOv3 model, yielding a high average 
precision of 71% with an IoU threshold of 0.2. In another study [9], 
Kumar et al. employed the same YOLOv3 model without adding 5 CNN 
layers for classification. The authors used an extension dataset of 3800 
images and achieved a higher mean average precision of 75.2% on the 
validation dataset with the same IoU threshold. Furthermore, a range 

Fig. 8. Single shot multibox detector architecture.

Fig. 9. Architecture of YOLOv2.
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value of IoU thresholds, from 0.2 to 0.5, were also experimented using 
the same models and found that the AP of the YOLOv3 model decreased 
dramatically from 70.8% to 58.9% for root defect class. In comparison, 
Yin et al. [24] applied the original YOLOv3 model and achieved a higher 
mAP of 85.37% across seven sewer defects and an inference speed of 33 
frames per second (or 30 ms/image) for real-time applications. Later, 
Tan et al. [28] modified YOLOv3 method by improving the loss function 
to Generalised Intersection Over Union (GIoU) and incorporating mosaic 
augmentation and refined bounding box prediction, achieving faster 
training convergence and peak mAP of 92% at an IoU threshold of 0.6. 
The improved YOLOv3 also demonstrated an efficient inference speed of 
5.7 ms/image.

5.2.3. YOLOv5
YOLOv5, introduced in 2020 by Ultralytics, significantly advanced 

the YOLO series through an end-to-end solution [95]. This version is 
known for its lightweight architectures and ease of implementation, 
with configurations from small to extra-large models. The model em
ploys a robust Darknet-based feature extraction network, integrating 
combined elements of the Cross Stage Partial Path Aggregation network 
(CSP-PAN) [93,94] to form CSP-Darknet53 backbone. CSP-PAN im
proves gradient flow and reduces computational complexity by dividing 
and merging feature maps through a cross-stage hierarchy. Additionally, 
Spatial Pyramid Pooling Fast (SPPF) aids the model in handling varying 
input image sizes and scales [95]. YOLOv5 also incorporates several 
modern techniques, such as auto-learning bounding box anchors, mosaic 
data augmentation, and hyperparameter evolution, boosting object 
detection precision.

Zekuan et al. [96] trained and tested the original YOLOv5 with 4660 
images across five sewer defects. It achieved an mAP of 0.87 at an IoU 
threshold of 0.5, though this dropped to 0.69 when the threshold varied 
from 0.5 to 0.9. The authors also proposed a modified YOLOv5 incor
porating multiple attention mechanisms into the backbone and replac
ing the neck network by a Weighted Bi-directional Feature Pyramid 
Network (BiFPN) [97]. The modified model has shown its advantages by 
increasing mAP to 0.88 at an IoU threshold of 0.5, and achieving an mAP 
of 0.72 across IoU thresholds ranging from 0.5 to 0.9. In another study 
[98], Situ et al. developed a real-time YOLOv5 model, employing 
transfer learning and channel pruning techniques to reduce computa
tional complexity and memory usage. Channel pruning reduced the 
model parameters by 81% and operations by 48.8%. Despite these re
ductions, the mAP for sewer defect inspection remained high at 92.3% 
for the small YOLOv5 and 91.8% for the pruned small YOLOv5 models. 
Additionally, the inference speed significantly improved, decreasing 
from 7.9 to 5.2 ms/image.

5.2.4. YOLOv7 to YOLOv11
With the new architectural innovations, YOLOv7 marked a signifi

cant milestone in the YOLO family by enabling faster inference and 

higher accuracy than earlier versions. It utilised an extended Efficient 
Layer Aggregation Network (ELAN) to restructure the computational 
block and optimise the learning ability without increasing computa
tional resources [99]. This version also incorporates model scaling, re- 
parameterisation techniques and auxiliary head learning to enhance 
performance in real-time object detection tasks. YOLOv8, developed by 
Ultralytics in 2023, introduced a complete redesign with a focus on 
modularity, anchor-free detection, and an updated loss function. It also 
offers cutting-edge accuracy and detection speed with new features and 
optimisations suitable for various detection tasks. In 2024, several per
formance tests were conducted for these YOLO models or their modified 
architectures (e.g. lightweight versions) using sewer datasets 
[100–102].

YOLOv9 built upon these foundations by integrating advanced 
backbone architectures and introducing two key innovations – Pro
grammable Gradient Information (PGI) and Generalised Efficient Layer 
Aggregation Network (GELAN) – to improve training effectiveness and 
reduce information loss across network layers [103]. PGI preserves 
input information for more reliable gradient computation, while GELAN 
provides a lightweight yet powerful architecture using only standard 
convolutions. Building on this, YOLOv10 addresses shortcomings in pre- 
processing and model architecture while enhancing performance for 
edge deployment by significantly reducing the model size and compu
tational cost without sacrificing accuracy. YOLOv11 continues this 
evolution by introducing a more efficient architecture with improved 
feature extraction and attention mechanisms such as Cross Stage Partial 
with Kernel Size 2 (C3K2), Spatial Pyramid Feature Fusion (SPFF) and 
Cross-Stage Partial Self-Attention (C2PSA). It integrates dynamics 
computation strategies and improved quantisation support, making it 
well-suited for real-time applications on resource-constrained hardware 
while maintaining competitive detection accuracy. Additionally, 
YOLOv11 achieves higher accuracy with fewer parameters and supports 
a broad range of tasks across diverse deployment environments.

5.3. Two-stage detection

Advancements in this area were mainly built upon the foundational 
R-CNN model by Ross et al. [76]. R-CNN initially utilised CNNs for 
detection via selective search for region proposal and feature extraction, 
but its multi-stage pipeline was computationally inefficient. Fast R-CNN 
improved this by introducing Region of Interest (RoI) pooling and 
integrating classification and regression into a single network [77]. 
Faster R-CNN improved upon Fast R-CNN by incorporating a Region 
Proposal Network (RPN) directly into the Fast R-CNN framework [78], 
as shown in Fig. 11. As a result, it can significantly accelerate the 
detection process and enable end-to-end training. This integration en
ables end-to-end training and significantly accelerates the detection 
process. Input images are first passed through a backbone CNN to extract 
features and generate a feature map. The RPN then slides a small 

Fig. 10. Feature pyramid network and YOLOv3 architectures.
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network over this map to generate region proposals and objectness 
scores, before the proposals are refined through fully connected layers 
for classification and localisation. This two-stage architecture allows 
Faster R-CNN to achieve high accuracy, making it a preferred choice 
over single-stage detectors like SSD or YOLO when accuracy is more 
critical than speed.

Faster R-CNN was evaluated in a few comparative studies including 
[9,88]. In [9], this model was trained with 3420 images and compared 
with YOLOv3 and SSD achieving the highest accuracy with mAP0.2 of 
76.2% on validation and 71.8% with testing dataset. Zhou et al. [88] 
used a smaller dataset of 610 images covering five sewer defect types 
and found that Faster R-CNN achieved outperformed YOLOv2 in accu
racy, though with slower detection speed. Another study [36] explored 
the impact of dataset size, architecture, and hyperparameters on per
formance. A modified Faster R-CNN trained on a four-defect dataset 
from CCTV videos achieved an mAP of 83%, a 20% improvement over 
the original setup, with an inference speed of 9.434 frames per second 
(or 106 ms/image).

5.4. Alternative algorithms

Before the advent of CNN for object detection, manual image pro
cessing algorithms —such as feature extraction and rule-based logi
c—were used to detect and classify objects. These rule-based algorithms 
relied on predefined criteria rather than learning from data, involving 
steps like noise reduction, thresholding, and edge detection for seg
mentation. While simple and interpretable, they lacked scalability and 
adaptability. In 2014, Halfawy et al. [104] developed a rule-based 
model to identify root intrusion in sewer pipes, achieving 86% accu
racy. Another study [105] proposed an eight-step method to detect 
sewer cracks on low-resolution images, using threshold optimisation by 
image processing and crack detection.

In 2020, Facebook introduced Detection Transformer (DETR) [106] 
a novel object detection model that rely on complex anchor mechanisms 
and post-processing steps, this model leverages the power of the trans
former from common natural language processing (NLP). The DETR 
utilises the CNN network as a backbone for the encoder section to pro
cess the feature maps, capturing global context and relationships across 
the entire image. On the other hand, its decoder used learned object 
queries to attend to these encoded features, iteratively refining predic
tion for bounding boxes and class labels. With the appearance of DETR, 
Dang et al. [107] have modified and developed a DefectTR to localise 
and classify sewer defects on 47,100 images covering 10 defect types. 
The authors have found that the original DETR model achieved a mAP of 
56.2% with an inference time of 83 ms/image, while their modified 
DefectTR model achieved a mAP and detection speed of 60.2% and 85 
ms/image, respectively.

5.5. Discussion

Table 3 summaries of previous studies and research about locating 
defect by object detection in sewer pipeline systems. The reviewed pa
pers and research have been generated in the last decade using two main 
methods, which are traditional and DL algorithms. In comparison to DL 
methods, traditional locating defect algorithms [104,105,108] from 
2014 to 2019 achieved lower detection accuracy (0.84 – 0.89) with 
slower speeds of one frame per second (or 1000 ms/image). In contrast, 
DL models (SSD, YOLO, Faster R-CNN and transformer) from 2018 on
ward illustrated significant improvements in both detection accuracy 
(consistent mAP score above 0.9) and speed (average of 58.3 ms/image), 
which can be explained by the ability of deep neural networks to 
automatically learn complex features, as opposed to manual features 
used in traditional methods. Mainly, the convolutional layers in DL are 
utilised to identify spatial features in the images for better feature 
extraction.

Kumar et al. paper [9] in 2018 found that the Faster R-CNN model 
achieved higher accuracy than one-stage detection models (SSD and 
YOLO) by 22%. This is because Faster R-CNN first generates a region 
proposal, then refines its proposal and classifies it into objects. On the 
other hand, a one-stage model makes prediction of object location and 
classification directly in one stage, which sacrifice prediction accuracy 
for inference speed. However, over time, the modified one-stage 
detection Sewer-YOLO-Slim model [81,100] in 2024 has outperformed 
the Faster R-CNN model with a mAP of 0.93. That accuracy value was 
almost achieved by the EFE-SSD [81] and Pruned YOLOv5s [98] with a 
fast detection speed. YOLOv3 with GIoU and Mosaic [28] also achieved 
the third fastest detection speed in the comparison of 5.7 ms/image, 
which is about 200 times faster than the traditional methods and about 
20 times faster than some of the earlier DL models. The most recent 
YOLO models [101,102] also achieved good detection accuracy of 0.86 
in average, with one model also delivering the fastest detection speed at 
3.83 ms/image for sewer pipeline defects On the other hand, there is a 
trade-off between mean average precision and inference speed, such as 
DefectTR [107] with a lower mAP of 0.6 and a fast inference time of 55 
ms/image.

Dataset and hyperparameter differences are also factors that affect 
the performance of locating sewer defect. According to Table 3, the 
CCTV footage and image resolution vary widely across different studies, 
from 224x224 pixels to 1500x720 pixels. The higher resolution images 
contain more pixels, allowing for capture of finer features, which is 
crucial for detecting small defects, such as cracks or roots. As a result, 
the higher resolution trends of recent studies helped the detection model 
in feature extraction, defect localisation, and potentially higher detec
tion accuracy.

In all DL models, configuration hyperparameters play a vital role in 

Fig. 11. Architecture of faster R-CNN [78].
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Table 3 
Previous studies about identifying and locating sewer defect by object detection

Ref. Year Algorithm/Model Dataset 
Size

Hyperparameter Performance Comments

Traditional Object Detection

[104] 2014
SVM with Histogram of 
Oriented Gradients (HOG)

1,000 
Images Not Specified

Accuracy = 0.86 
Speed = 1 s/image

- Image resolution of 320x240 pixels.
- Model detected only root defects

[108] 2018 Image Processing Algorithms
2 CCTV 
Videos Not Specified

Accuracy = 0.84-1 
Speed = 1 s/image

- Inconsistent accuracy
- Low performance metrics

[105] 2019
Rule-based and Image 
Processing Algorithms

200 
Images Not Specified

Accuracy = 0.89 
Speed = 1 s/image

- Image resolution of 240x320 pixels
- Detected only crack defects. Capable of defining crack 

characteristics
Deep Learning Models without Modification

[36] 2018 Faster R-CNN with ZF network 
as backbone

3,000 
Images

Not Specified
mAP = 0.83 
Speed = 106 ms/ 
image

- Image resolution of 224x224 pixels
- Detected multiple defects with high accuracy
- Slow inference speed

[92] 2019 YOLOv3 with additional of 5 
CNN layers

1,800 
Images

Not Specified
mAP = 0.71 @ IoU =
0.2 
Speed = 28 ms/image

- Image resolution of 512x512 pixels
- Integrated 5 CNN layers for classification prior to detection. 

Applied to fracture defects with a low confidence threshold 
(0.2)

[9] 2020

SSD

3,800 
Images

Not Specified

mAP = 0.544 @ IoU =
0.2 
Speed = 33 ms/image

- Image resolution of 1500x720 pixels
- Applied only to intrusion root and deposit defects, not 

structural defects.
- Validated and tested on real-time CCTV video
- Detected defects with a high accuracy rate (51/56)

YOLOv3
mAP = 0.745 @ IoU =
0.2 
Speed = 57 ms/image

Faster R-CNN

mAP = 0.762 @ IoU =
0.2 
Speed = 110 ms/ 
image

[24] 2020 YOLOv3 3,664 
Images

Batch size of 64 
Learning rate of 
0.0001

mAP = 0.85 
Speed = 30 ms/image

- Image resolution of 416x416 pixels
- Detected multiple defects with high average accuracy. Lowest 

detection accuracy with crack and root defects

[88] 2022

Faster R-CNN
610 
Images

SGDM optimizer 
Batch size of 8 
Learning rate of 
0.001

Not Specified

- Image resolution of 256x256 pixels
- Able to detect multiple defects
- Faster R-CNN achieved higher prediction accuracy than 

YOLOv2
YOLOv2

Deep Learning Models with Modification

[109] 2021
Strengthened Regional 
Proposal Network with VGG16 
as backbone

2,000 
Images

SGDM optimizer, 
Batch size of 8 
Learning rate of 
0.0005

mAP = 0.51 
Speed = 153 ms/ 
image

- Image resolution of 600x480 pixels
- Low mean average precision and slow inference speed for 

detecting multiple sewer defects

[28] 2021 Improved YOLOv3 with GIoU 
and Mosaic

3,000 
Images

ADAM optimizer 
Batch size of 16 
Cosine learning 
rate

mAP = 0.92 @ GIoU =
0.92 
Speed = 5.7 ms/image

- Image resolution of 416x416 pixels
- Improved architecture aided faster converge and reduced 

training time + High accuracy with fast detection for four 
common defects.

[96] 2022 YOLOv5 – TB 2,333 
Images

Batch size of 32 
Learning rate of 
0.01

mAP = 0.88 @ IoU =
0.5

- Image resolution of 640x640 pixels
- Modified YOLOv5 improved detection accuracy

[89] 2023
YOLOv2 with pre-trained CNN 
as backbone

1,200 
Images

SGM optimizer 
Batch size of 3 
Learning rate of 
0.001

Best mAP = 0.71 for 
InceptionV3 backbone

- Image resolution of 256x256 pixels
- Compared detection accuracy of several CNN backbones for 

YOLOv2 in transfer learning.
- Modified backbone achieved better accuracy than other 

models

[81] 2023 EFE-SSD 4,000 
Images

Not Specified mAP = 0.92 @ IoU =
0.5

- Image resolution of 300x300 pixels
- Achieved higher accuracy compared to the original SSD and 

mainstream networks

[98] 2024 Pruned YOLOv5s 2,000 
Images

ADAM optimizer 
Batch size of 16 
Learning rate of 
0.001

mAP = 0.918 
Speed = 5.2 ms/image

- Image resolution of 640x640 pixels
- Achieved high mean average precision with a 20.6% 

reduction in model size

[102] 2024

YOLOv8
5,000 
Images

SGM optimizer 
Momentum of 0.9 
Learning rate of 
0.001

mAP = 0.85 - Image resolution of 608x608 pixels
- Fused recursive feature boosting and squeeze-and-excitation 

attention improved accuracy and stability though not 
significantly compared to original YOLOv8

YOLOv8 ++ mAP = 0.87

[100] 2024 Sewer-YOLO-Slim
6,368 
Images

Batch size of 16 
Learning rate of 
0.001 
Weight decay of 
0.0005

mAP = 0.93 @ IoU =
0.5

- Image resolution of 416x416 pixels
- Reconstructed lightweight model from the YOLOv7-tiny with 

60.2% and 60.0% reduction in model size and parameters, 
respectively

- Deployed on edge devices aided by TensorRT achieving 15.3 
ms/image speed

[101] 2024 RLL-YOLOv8 4,030 
Images

SGD optimizer 
Batch size of 32 
Momentum of 
0.937 
Learning rate of 
0.01

mAP = 0.862 @ IoU =
0.5 
Speed = 3.83 ms/ 
image

- Image resolution of 352x228 pixels
- Lightweight model with enhanced feature extraction 

(including handling multi-scale features)

(continued on next page)
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controlling the process of training and validation. Alongside the dataset 
and the model’s architecture, hyperparameters are one of the most 
critical factors that critically influence the model’s performance. 
Hyperparameters consist of several variables, such as learning rate, 
momentum, epochs, batch size, optimiser, activation functions, L1/L2 
regularisation, learning rate schedule, etc. However, this section only 
discusses batch size, learning rate, and optimiser, which have been 
published in reviewed papers and summarised in Table 3. Firstly, the 
batch size is the number of training data samples processed together in 
one iteration of the training process. Particularly, the iteration is a single 
pass of all samples in the forward or backward directions. In the 
reviewed papers, the batch size varies from 3 to 64, which is based on 
the computing resources, as a larger batch size will require more 
memory. However, in the most recent studies from 2021 until now, 
researchers intentionally choose small batch size values (ranging from 3 
to 16), which is explained by a more complex model’s architecture or 
high-resolution image dataset.

Secondly, the learning rate is a hyperparameter that regulates the 
step size at each data sample pass of the optimisation process. It de
termines how quickly and slowly the neural network weights are 
adjusted concerning the loss gradient. A high value of learning rate re
sults in significant updates to the weights and allows faster learning with 
a risk of overshooting or missing features. Conversely, a low value of the 
learning rate can make the model converge more precisely, but it re
quires more training time and computing resources to reach an optimal 
solution. Similar with the batch size, the chosen learning rate of 
reviewed studies in Table 3 shows some significant differences, ranging 
from 0.0001 to 0.01, with the most popular learning rate of 0.001 in 3 
papers [88,89,98]. Instead of a predefined learning rate, there is a DL 
model proposed by Tan et al. [28] with a cosine learning rate schedule. 
In detail, their model started with a very large learning rate and then 
decreased dramatically to a value near 0 before increasing the learning 
rate again.

Optimiser selection is very important in DL, because it fine-tunes the 
neural network parameters such as weights and learning rate during the 
training process to reduce the losses. Optimisers are divided into two 
main types of non-adaptive and adaptive. Non-adaptive includes Sto
chastic Gradient Descent (SGD) and Momentum, which adjust the 
weights of model with the fixed learning rate from the initial to the end 
of the training, so the weight’s step size is constant for the whole training 
process. On the other hand, the learning rate of adaptive optimisers is 
scheduled and adjusted based on the training process, resulting in more 
efficient training and better performance in the DL model. The typical 
adaptive optimiser includes Adaptive moment Estimation (Adam), Root 
Mean Square (RMSprop), and Adaptive Gradient Descent (Adagrad). 
The most popular optimisers for sewer defect inspection are SGD and 
Adam based on several studies from 2020-2024. However, in the recent 
study of Dang et al. [103], the authors utilised the LaProp optimiser with 
the separation of momentum and adaptivity and returned a faster 
training speed and better stability than the Adam optimiser.

To compare the performance of YOLOv8 models, Lv et al. [101] 
selected a portion of the Sewer-ML dataset for training and initial 
evaluation. The models range in size from Nano to Extra-Large, corre
sponding to parameter sizes from approximately 3.2 million to 68.2 
million. Table 4 illustrates the trade-off between model size, accuracy 
(mAP and F1 score) and computational cost (Floating-Point Operations 

Per Second - FLOPs). The YOLOv8 Nano model, with the smallest 
number of parameters and lowest computational demand (8.9 GFLOPs), 
achieved mAP of 82.1 % and F1 score of 84.3%, making it well-suited for 
deployment in highly resource-constrained environments such as 
embedded edge devices. The Small and Medium variants offered modest 
improvements in accuracy (mAP of 83.3% and 83.1%, respectively) and 
may be suitable for systems with moderate resources, balancing effi
ciency and performance. YOLOv8 Large and Extra-Large models ach
ieved the highest detection accuracy. However, these gains came at a 
significant increase in computational cost, particularly for Extra-Large 
model, which required 257.8 GFLOPs. Such models are more appro
priate for high-performance computing environments where max
imising detection accuracy is priority. Overall, this comparison 
highlights that while larger models can yield slightly better perfor
mance, the improvements may not justify the increased computational 
burden in many practical scenarios.

Table 5 compares a comparative study by Liu et al. [100] of recent 
lightweight YOLO models—including tiny or nano variants from 
YOLOv7 to YOLOv11. The comparison reflects the growing trend and 
demand for deploying models on embed systems, where computational 
efficiency and smaller model sizes are crucial. YOLOv9 small achieves 
the highest detection accuracy with a mAP of 93.4%, but at the cost of 
increased parameters (7.17 M) and computation (26.7 GFLOPs), making 
it less ideal for real-time embedded applications. In contrast, YOLOv11 
Nano and YOLOv10 Nano represent a strong trade-off between perfor
mance and efficiency, with mAP scores of 90.5% and 91.1%, respec
tively, while maintaining very low parameter counts (2.58M and 2.27M) 
and minimal computational demands (6.3 and 6.5 GFLOPs). These 
models are particularly well-suited for deployment on embedded or 
edge devices, where resources are limited but real-time defect detection 
remains critical. This progression illustrates a clear focus in recent YOLO 
versions toward optimising models for practical, resource-aware appli
cation in fields.

For the beginners in object detection with sewer defects, the study by 
Kumar et al. [9] is recommended, as it compares three popular models: 

Table 3 (continued )

Ref. Year Algorithm/Model Dataset 
Size 

Hyperparameter Performance Comments

Transformer-Based Object Detection

[107] 2022 DefectTR
47,100 
Images

LaProp optimizer 
Batch size of 4 
Learning rate of 
0.0001

mAP = 0.6 
Speed = 85 ms/image

- Outperformed other networks (SSD, YOLOv4, Faster R-CNN) 
in mAP

- Achieved higher inference speed than SSD and YOLOv4 
models.

Table 4 
Examine the performance of all YOLOv8 models on the portions of Sewer-ML 
dataset [101]

Model Parameters (M) mAP50 F1 FLOPs (Giga)

YOLOv8 Nano 3.2 82.1 84.3 8.9
YOLOv8 Small 11.2 83.3 82.7 28.6
YOLOv8 Medium 25.9 83.1 84.1 79.3
YOLOv8 Large 43.7 82.8 82.8 165.2
YOLOv8 Extra-large 68.2 83.9 83.3 257.8

Table 5 
Comparison of lightweight YOLO models in newest version on Sewer Defect 
Image [100]

Model Parameters (M) mAP FLOPs (G)

YOLOv7 Tiny 6.03 92.0 13.2
YOLOv8 Nano 3.00 92.8 8.2
YOLOv9 Small 7.17 93.4 26.7
YOLOv10 Nano 2.27 91.1 6.5
YOLOv11 Nano 2.58 90.5 6.3
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SSD, YOLOv3, and Faster R-CNN, offering a clear introduction to object 
detection and their speed-accuracy trade-offs. Following this, Situ et al. 
[89] provides insights into transfer learning-based YOLO networks and 
the feature extraction processes of various CNN backbones, aiding in 
identifying optimal feature extraction CNNs for sewer defect local
isation. For instance, deeper backbones like ResNet are highly effective 
for detecting fine-grained defects such as cracks. Their depth, enhanced 
by residual connections, allows them to capture subtle patterns and 
learn complex representations. ResNet also generalises well across 
diverse, noisy, or low-visibility datasets, further boosting crack detec
tion performance [110]. In contrast, simpler backbones like MobileNet 
prioritise efficient processing, making them ideal for real-time tasks or 
resource-constrained environments. This efficiency enables quick 
detection of larger, less detailed objects like root intrusions, which don’t 
require the fine-grained analysis needed for cracks. Darknet, the back
bone used in YOLO models, strikes a balance between speed and feature 
extraction capability [83,111]. Optimized for real-time performance 
with reasonable accuracy, it excels at detecting larger, irregular objects 
like root intrusions where rapid processing is key. While its shallower 
depth compared to ResNet allows faster image processing, it may sac
rifice fine-grained detail, making it less ideal for detecting small, subtle 
defects like cracks. Nevertheless, Darknet’s speed and balanced accuracy 
make it a strong choice for systems requiring quick decisions in dynamic, 
real-time sewer inspections.

For studies focusing on specific defect types, newcomers can explore 
research tailored to particular objects. For structural defects like cracks 
or deformations in sewer systems, fine-tuned models with high- 
resolution feature mapping, such as Faster R-CNN or U-Net, are ideal 
as they excel at detecting narrow, elongated structures. Conversely, 
operational defect detection (e.g., root intrusion, deposit, settlement) 
might benefit from real-time approaches like YOLO, which effectively 
handle irregularly shaped and dynamic objects. Exploring these re
sources helps beginners understand which models best address the 
distinct challenges of different sewer defect types.

6. Characterising defects by image segmentation

Characterising defects by image segmentation algorithms plays a 
crucial role in predicting defect categories and providing pixel-level 
location information with precise shapes, which is essential for sewer 
condition assessment. The complexity of image segmentation arises 
from the need to accurately classify each pixel while also distinguishing 
between different instances of the same defect type. Researchers have 
developed several segmenting models for sewer pipeline defects based 
on different algorithms, including morphological segmentation [112], 
semantic segmentation [113], and instance segmentation [114]. 
Morphological segmentation, an early computer vision technique, le
verages image processing and mathematical morphology to quickly 
isolate and enhance features. While efficient and relatively simple, its 
rigid nature limits its effectiveness with complex and varied image 
structures. In contrast, deep learning-based segmentation (semantic or 
instance) provides superior accuracy and adaptability. By learning from 
extensive labelled datasets, these methods usually excel at handling 
intricate and diverse features, making them more robust for modern 
imaging challenges.

6.1. Morphological segmentation

Morphological segmentation is a technique in image processing that 
utilises mathematical morphology to analyse object structure, primarily 
manipulating shapes and features in binary and grayscale images [115]. 
Key operations include erosion (shrinking objects), dilation (expanding 
objects), and their combinations: opening (erosion then dilation) and 
closing (dilation then erosion). The top-hat transform (original minus 
opened) highlights small bright elements, while the bottom-hat trans
form (closed minus original) emphasises small dark elements [116,117]. 

In 2009, Yang et al. integrated the opening operation with Otsu’s 
technique for automated sewer defect diagnosis [118]. However, the 
method proved ineffective, accurately segmenting only 62 of 291 de
fects. Poor performance was attributed to issues like camera pose, 
lighting, sewage, and unsmoothed CCTV footage notations.

In another research, Su et al. [112] proposed MSED, a morphological 
segmentation model for sewer pipe defects based on edge detection, 
which offers more precise segmentation. MSED was tested against a 
diverse dataset of pipe defects (e.g., fractures, debris, holes) and out
performed the opening top-hat operation (OTHO) for specific defects 
like broken pipes and holes. Later on, Su et al. [117] compared MSED, 
OTHO and closing bottom-hat operation (CBHO) on 20 vitrified clay 
pipe images (from 10-minute CCTV video) showed MSED excelled at 
crack detection, while OTHO outperformed it for open joint defects.

6.2. Semantic segmentation

Semantic segmentation is a core CV task that involves assigning a 
semantic label to every image pixel, providing a detailed, pixel-level 
understanding of a scene. Unlike image classification or object detec
tion, which offer broad labels or bounding boxes, semantic segmentation 
precisely delineates distinct objects and regions. Several segmentation 
architectures have been adapted for sewer defect inspection, including 
the Fully Convolutional Network (FCN), DilaSeg, U-Net, SegNet, and 
Deeplab, each with unique characteristics.

FCN [119] was foundational, transforming the traditional CNN ar
chitecture to produce dense, pixel-wise predictions by replacing fully 
connected layers by convolutional ones and and utilising skip connec
tions to combine multi-resolution features. DilaSeg is, on the other hand, 
a deep convolutional neural network developed for semantic segmen
tation that uses dilated convolutions and multi-scale dilated convolu
tions to address spatial information loss and improve feature map 
resolution, especially for objects of varying scales. Wang et al. [25] 
compared the performance of these two models on sewer defects, and 
found that FCNs yielded 18% lower mean Pixel Accuracy (mPA) and 
22% lower mean Intersection over Union (mIoU) than DilaSeg. Subse
quently, Wang et al. [38] proposed DiLaSeg-CRF, integrating a dense 
Conditional Random Field (CRF) module. By converting recurrent 
neural network (RNN) layers into CNN operations, CRF improved the 
accuracy and inference speed of the standard DilaSeg model (Fig. 12). 
This modification improved standard DilaSeg’s accuracy and inference 
speed, increasing mIoU by 32% over FCNs and 20% over DilaSeg in pipe 
defect datasets.

Based on the FCN concept, Ronneberger et al. [120] developed U-Net 
in 2015 for biomedical image segmentation, featuring a symmetric 
encoder-decoder architecture with skip connections. These connections 
link corresponding encoder and decoder layers, preserving spatial in
formation and fine details. For sewer defect characterisation, Pan et al. 
[113] introduced PipeUNet in 2020, using U-Net as a backbone due to its 
rapid convergence. They enhanced it with a Feature Reuse and Attention 
Mechanism (FRAM) block in skip connections and focal loss to handle 
imbalanced datasets. To improve the feature extraction process, the 
FRAM block is located before the skip connection between the encoder 
and decoder parts. In 2024, Li et al. [121] developed PipeTransUnet, a 
modified U-Net architecture, for semantic segmentation and severity 
quantification in sewer pipes. This method incorporated a hybrid 
Transformer model and a ResNet50 backbone for efficient feature 
extraction, along with Channel Attention Module (CAM) and Position 
Attention Module (PAM) [122]. Both PipeUNet and PipeTransUnet 
demonstrated significant advantages over the base U-Net, achieving 
5.95% and 45.95% higher mIoU, respectively.

With a similar encoder-decoder architecture, SegNet was designed 
for semantic segmentation for autonomous driving and medical imaging 
by Badrinarayanan et al. [123]. Its encoder uses 13 convolutional layers 
from VGG16 for feature extraction. The decoder upsamples features to 
full resolution using pooling indices from the encoder, maintaining 
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spatial information and improving computational efficiency. He et al. 
[124] examined SegNet with a VGG16 backbone for automated sewer 
pipeline defect classification and segmentation. They employed histo
gram equalisation, weighting, and augmentation to improve accuracy 
and address dataset imbalance. The model achieved PA of 80.89% and 
mean IoU of 0.68.

DeepLab, developed by Chen et al. [125], is a notable semantic 
segmentation model combining atrous convolution, deep CNNs, and a 
fully connected CRF. Atrous convolution expands the receptive field 
without losing resolution, capturing multi-scale context effectively. The 
CRF refines output boundaries. Subsequent improvements of DeepLab 
led to DeepLabV3 and DeepLabV3+ [126]. These versions refined the 
encoder-decoder framework with Atrous Spatial Pyramid Pooling 
(ASPP), atrous separable convolutions, and batch normalisation, while 
removing CRFs. This significantly boosted accuracy and multi-scale 
context capture on datasets like PASCAL VOC 2012. DeepLabV3+
models have been applied in two sewer defect inspection studies 
[26,127]. These studies tested the model on diverse sewer datasets, 
consistently achieving high pixel accuracy exceeding 90%. Dang et al. 
[127] also investigated the impact of various backbones on Deep
LabV3+ performance, identifying ResNet152 as as the optimal backbone 
for sewer datasets.

6.3. Instance segmentation

Instance segmentation extends semantic segmentation by not only 
categorising each pixel but also differentiating individual instances 
within the same class; each object of a predefined class is uniquely 
segmented (Fig. 13). Algorithms are typically one-shot or detection- 
based. One-shot methods, like SSDs in object detection, identify and 
segment instances in a single network pass, offering faster training for 
real-time applications. Popular one-shot networks include Mask R-CNN 
and YOLACT. Mask R-CNN [128] extends Faster R-CNN with a mask 
prediction branch, detecting objects via bounding boxes and then seg
menting their boundaries. YOLACT [129] focuses on real-time seg
mentation by combining one-shot methods with a novel mask 
generation approach. Ma et al. [130] utilised YOLACT to propose Pipe- 
Yolact-Edge, a real-time instance segmentation system for sewer pipe
line defects. Trained on 1,403 images, the model achieved a high mean 

Average Precision (mAP) of approximately 92% on both a high- 
performance server and an embedded Jetson TX2 device for on-site in
spection. While accuracy remained high, inference speed on the 
embedded device was significantly lower than the server.

Detection-based instance segmentation operates in two stages: first 
detecting objects, then segmenting them, often utilising separate net
works for each task. For example, SOLOv2 simplifies the segmentation 
task by converting it into a classification problem and segments the 
instance based on its spatial location within the grid [131]. Li et al. 
[114] proposed Pipe-SOLO to enhance SOLOv2 for underground sewer 
defects. This robust model integrates a Res2Net-Mish-BN-101 module 
into its backbone and EBiFPN in its neck section. Tested on a dataset of 
3,888 images across six types of defects, Pipe-SOLO outperformed 
existing methods like SOLOv2, Mask R-CNN, and MS R-CNN.

6.4. Discussion

Table 6 summarises eleven studies from 2009 to date on sewer 
pipeline defect characterisation using image segmentation techniques. 
These models share some hyperparameters similar to object detection 
models including learning rate, optimiser, and batch size, along with 
additional ones like momentum and weight decay. Learning rates typi
cally range from 0.0001 to 0.01, with 0.01 being the most common, 
though recent papers lean towards smaller values for fine-tuning and 
preventing missed optimal model features. Batch sizes vary from 4 to 16, 
with 8 being prevalent; larger batch sizes require more memory but 
yield more stable gradient estimates. Like in object detection, SGDM and 
Adam are common optimizers in image segmentation. SGDM introduces 
Momentum (consistently 0.9 in reviewed papers), which accelerates 
training and affects convergence speed and stability. High Momentum 
often necessitates a lower learning rate and larger batch size. To prevent 
overfitting, L2 regularisation (weight decay) was utilised for a few 
models [25,113,130] with two values of 0.9 and 0.005. This adds a 
proportional sum of squared weights to the loss function, directly con
trolling the strength of this penalty to help the model generalise better 
by discouraging overly large weights.

The datasets used in sewer pipeline defect characterisation studies 
show a clear trend: they have grown significantly in size and diversity. 
Datasets now range from as few as 100 images with two defect types 

Fig. 12. Example of defect characterisation by Wang et al. [38].

Fig. 13. Example of semantic and instance segmentation.
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[117] to up to 6,300 images [132]. Notably, the number of distinct 
defect classes has expanded from 2-3 to 10, a comprehensive scope 
introduced by Dang et al. in 2023 [127] which is also one of the most 
diverse datasets to date. Overall, this expansion indicates a move to
wards models that can handle a wider array of real-world sewer defects. 
Nevertheless, image resolutions varied widely, from 224x224 to 
1280x720 pixels, reflecting a lack of standardisation.

Sewer defect segmentation models commonly use mIoU to assess the 
overlap between predicted and ground truth masks, with higher values 
indicating more precise boundaries. Table 6 shows mIoU ranging from 

0.53 to 0.86. The highest mIoU (0.86) was achieved by integrating 
StyleGAN3, an advanced generative adversarial network, with Deep
labV3+ and leveraging MobileNetv2 [133], highlighting the benefit of 
combining models for lightweight and accurate defect recognition. The 
improved DilaSeg-CRF achieved the second-best mIoU of 0.85 in 
conjunction with a rapid inference speed of 107 ms/image. The addition 
of the CRF module minimised limitation of the original model, partic
ularly in the difficult sewer environments with unclear defect bound
aries. DeepLabV3+ with a Resnet50 backbone achieved the lowest mIoU 
value, highlighting its limitations in detecting smaller, less frequent 

Table 6 
Previous studies on characterising sewer defect using image segmentation

Ref. Year Algorithm/Model Dataset 
Size

No. of 
Classes

Hyperparameter Performance Comment

Morphological Segmentation
[118] 2009 Otsu’s technique 291 

Images
3 Classes N/A 69/291 of 

successful 
segmented

- Low accuracy and not effective for detecting fractures

[117] 2014 MSED – Edge detection 100 
Images

2 Classes N/A N/A - Only robust in detecting open joints and cracks.

Instance Segmentation
[114] 2022 Pipe_SOLO-Res2Net- 

Mish-BN-101
3,888 
Images

6 Classes SGDM optimizer 
Learning rate – 
0.01 
Momentum – 0.9

mAP = 0.593 
Min loss = 0.11 
Speed = 66.7 ms/ 
image

- Size from 640x480 to 1280x720.
- Lower average precision due to low quality dataset.
- Unable to test on video or real-time CCTV

[130] 2022 Pipe-Yolact-Edge 4,209 
Images

3 Classes Batch size - 8 
Learning rate – 
0.0005 
Momentum – 0.9 
Weight decay – 
0.005

mAP = 0.926 
Speed = 24.2 ms/ 
image

- Image resolution of 320x256 to 1440x720.
- High prediction accuracy and fast detection speed.
- Stimulation severe environmental conditions

Semantic Segmentation

[25] 2019 DilaSeg
1,510 
Images

N/A

Learning rate – 
0.01 
Momentum – 0.9 
Weight decay – 
0.005 
Iteration – 50,000

mAP = 0.81 
mIoU = 0.74 
FwIoU = 0.92 
Speed = 270 ms/ 
image

- High detection accuracy but slow in detection speed.
- Ability to detect on real-time CCTV inspection

[38] 2019 DilaSeg-CRF 1,885 
Images

3 Classes

SGD optimizer 
Learning rate – 
0.001 
Batch size – 6

mPA = 0.92 
mIoU = 0.85 
FwIoU = 0.97 
Speed = 107 ms/ 
image

- Higher detection accuracy and inference speed than 
original DilaSeg model.

[113] 2020 PipeUNet
3,654 
Images 4 Classes

Adam optimizer 
Learning rate – 
0.0001 
Weight decay – 0.9 
Epoch - 200

mIoU = 0.76 
Speed = 31.25 ms/ 
image

- Image resolution of 256x256 pixels.
- Better accuracy for single defect characterisation than 

multi-defect

[124] 2022
SegNet – backbone 
VGG16

700 
Images 7 Classes

Batch size - 4 
Learning rate – 
0.01 
Momentum – 0.9 
Epoch - 90

mPA = 0.8 
mIoU = 0.61 
BFScore = 0.73

- Image resolution of 360x480 pixels.
- High mean pixel accuracy but low in detection accuracy 

results.

[26] 2022
DeeplabV3+ – 
Resnet50

600 
Images 5 Classes Batch size – 8

PA = 0.9 
mIoU = 0.53 
FwIoU = 0.84 
F1 = 0.55

- Image resolution of 512x512 pixels.
- High pixel accuracy and able to integrate with defect 

severity analysis, but low detection accuracy

[127] 2023
DeeplabV3+ – 
Resnet152

3,699 
Images

10 
Classes

Batch size – 16 
Learning rate – 
0.01 
Momentum – 0.9 
Epoch – 80

mPA = 0.98 
mIoU = 0.69 
Speed = 38.5 ms/ 
image

- Image resolution of 512x512 pixels.
- High mean pixel accuracy and fast detection speed, while 

the detection accuracy is low.

[121] 2024
PipeTransUNet 
–Resnet50

1,700 
Images 8 Classes

Batch size – 12 
Learning rate – 
0.001 
Epoch – 1,500

mIoU = 0.72 
mPA = 0.85 
FwIoU = 0.91

- Image resolution of 224x224 pixels.
- Outperformance other CNN semantic segmentation. 

Integrated with defect severity assessment

[132] 2024
Enhance Feature 
Pyramid Network

6,300 
Images 9 Classes

Adam optimizer 
Learning rate – 
0.001

mIoU = 0.77 
FwIoU = 0.78 
F1 = 0.86

- Trained on imbalance-aware dataset
- mIoU was improved by 13.8%, while the model 

parameter is reduced by 96.04%

[133] 2025 Improved DeeplabV3+
–MobileNetv2

1,795 
Images

5 Classes Batch size – 4 
Epoch – 300

mIoU = 0.86 
mPA = 0.92 
Speed = 79.7 ms/ 
image

- Image resolution of 512x512 pixels
- Using StyleGAN3 for enhancing sewer defect dataset
- Modified model increased the segmentation speed and 

accuracy of 31% and 20%, respectively, compared to 
original model
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defects and handling imbalanced datasets.
For semantic segmentation, Frequency Weighted IoU (FwIoU) was 

utilised to represent the importance of each class based on its pixel 
frequency in the dataset, thus emphasising classes with higher pixel 
counts. Subsequently, in imbalanced dataset, it adjusts the contribution 
of each class based on their frequency for a more balanced model 
evaluation. This metric was reported in five papers [26,38,108,121,132] 
with high FwIoU values ranging from 0.78 to 0.97, indicating a good 
performance for common defect classes (such as large cracks or root 
intrusions). Some models achieved high FwIoU, such as DilaSeg-CRF 
and PipeTransUNet, generalise better across different defect classes, 
maintaining high accuracy even in the face of dataset imbalances due to 
their multi-scale processing capabilities.

Another essential metric in comparing segmentation models is 
inference speed. The fastest models, with inference speed of less than 40 
ms/image, are Pipe-Yolact-Edge, PipeUnet and DeeplabV3+, which 
might be suitable for real-time capability. These models strike a balance 
between speed and accuracy, with Pipe-YOLACT-Edge achieving a high 
mAP of 0.926 and PipeUNet reaching a respectable mIoU of 0.76. In 
contrast, DilaSeg and DilaSeg-CRF in 2019 are the two slowest models, 
with inference speeds of 3.70 and 9.35 images/second, respectively. The 
increased complexity in their feature extraction processes and post- 
processing explains this slower inference time, making them better 
suited for offline analysis rather than real-time application.

Pixel accuracy (PA) metric, was another metric used to evaluate 
segmentation accuracy, demonstrating the corrected classified pixels to 
the total number of pixels in an image. As shown in the table, all re
ported PA values exceed 0.8, indicating consistently high pixel-level 
accuracy across sewer defect segmentation models. However, there is 
a limitation with the PA metric, which does not consider the class 
imbalance of the dataset, so it is challenging to depend on this metric to 
compare the models.

For newcomers to this research area, the PipeUNet model proposed 
by Pan et al. in 2020 [113] is a strong suggestion for exploration. It has a 
relatively simple architecture based on U-Net, which is the most popular 
model for image segmentation due to its effectiveness and ease of 
implementation. Furthermore, the model achieves a good balance be
tween segmentation accuracy and inference speed, which demonstrates 
practical usability without requiring extensive computational resources, 
making it accessible for newcomers. PipeUNet provides a practical 
introduction to segmentation model in sewer inspection, allowing a new 
user to gain confidence with straightforward model before exploring 
more complex architectures, such as SegNet with backbone of VGG16 
network [124] and DilaSeg [25].

7. Severity assessment and decision-making process

Severity assessment is a crucial step in sewer inspection, providing 
early maintenance insights after defect characterisation. Traditionally 
reliant on expert judgment, this process is slow and error prone. Recent 
studies have introduced ML methods to automate severity evaluation 
based on country-specific standards.

The Pipeline Assessment and Certification Program (PACP), devel
oped by NASSCO, is a widely adopted standard for assessing sewer 
pipeline defects [134]. It standardises sewer condition assessment and 
reporting, ensuring consistent inspections and providing reliable criteria 
and information for management and maintenance decisions. PACP 
utilises a comprehensive grading system to classify two main defects, 
including structural defects and operational and maintenance (O&M) 
defects. The severity conditions of defects are evaluated based on scale 
from 1 to 5, meaning minor to major defects (as shown in Table 7). 
Several studies [80,107,127,135] have utilised NASSCO’s PACP for their 
guidance in defect severity examination in a sewer pipeline system. 
Dang et al. [107] proposed an automated framework for transformer 
segmentation of sewer defects and severity assessment. The assessment 
decision was made based on the zone of influence (ZOI) with the mean 

attention weight from the feature map combined with defect scores from 
PACP. In another study, Dang et al. [127] also applied PACP to grading 
the severity of the defects. Additionally, their system has the ability to 
count the number of sewer faults and locate their coordinates along the 
pipeline.

Besides the PACP standard, another popular standard for visual in
spection and condition assessment of stormwater and sewer systems is 
German EN 13508-2 for European countries. Daher et al. [135] intro
duced a defect-based condition assessment model using fuzzy hierar
chical evidential reasoning, combing standards, including NASSCO’s 
PACO and German EN 13508-2. There are two datasets with four and 
seven defect types utilised in this study. The overall condition of a defect 
is evaluated scored defect severity on a scale from 1 (minor) to 5 (severe) 
using fuzzy membership function and hierarchical reasoning. The model 
achieved a mean absolute error of 0.643, reflecting good overall pre
dictive accuracy and low average error across both datasets, though 
some inaccuracy remained in precise severity prediction.

For the pipeline system in China, Jia et al. [136] proposed a defect 
condition assessment model (DSA-APC) with two diverse defect datasets 
based on automated pipe calibration and aligned with the Mainland 
China CJJ 181-2012 standard, which employs a severity scoring system 
from 1 to 4. The condition of a defect is evaluated based on the area ratio 
between the defect and the cross-sectional area of pipeline. Depending 
on the defect types, structural or operational, the severity level and 
scores are different and matched based on the area ratio (as Table 8). 
The proposed model has been tested on a ten-defects dataset and ach
ieved high accuracy and mean absolute deviation of 86.73% and 2.008, 
respectively.

Table 9 summarises research into defect severity assessment for 
sewer pipelines in recent years. Most studies rely on visual inspection 
data and apply factors such as defect area, pixel count, fuzzy logic, or 
attention mechanisms to estimate severity levels. Widely adopted stan
dards like PACP, EN 13508-2, and CJJ 181-2012 form the basis for 
grading and categorising defect severity, typically on scales ranging 
from 1 (minor) to 5 (severe).

Several studies in the table use area ratios and pixel measurements to 
quantify defect severity. While this approach provides a simple and 
direct way to assess the physical extent of defects, it lacks the ability to 
account for structural significance, defect orientation, or spatial context. 
Consequently, these methods often miss minor but critical defects or 
misclassify severity, especially for complex conditions like cracks or 
deformations.

8. Research challenges and future directions

This section first summarises common challenges of researching into 
sewer defect inspection using vision data such as CCTV. It then outlines 
future directions in the field, offering potential solutions to current 
challenges and ways to enhance inspection efficiency.

8.1. Research challenges

First, various datasets have been used as described in the previous 
sections but challenges remain due to their limited public availability 

Table 7 
NASSCO’s PACP defect grade categories

Grading 
Level

Severity Actions

1 Minor defects No immediate action required
2 Minor defects Minimal deterioration, unlikely to worsen
3 Moderate defects Deterioration or failure may occur in the 

future
4 Significant 

defects
Likely to deteriorate further and require 
attention

5 Severe defects Immediate attention required
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and significant difference in image resolution and quality, causing bar
riers in making fair comparisons. These problems often stem from the 
harsh pipeline environments, characterised by high water level, debris 
and limited lighting. These conditions often result in low-quality images 
with significant noise and low contrast, which can affect the perfor
mance of inspection models. Such variability affects the performance of 
CV algorithms, reducing both their accuracy and generalisability.

Second, it is well known that choosing the right capture resolution is 
crucial for model performance. High-resolution images contain more 
details and textures, beneficial for inspecting small defects like roots or 
cracks, but require more storage and may need down-sampling to satisfy 
the model requirements. Conversely, low-resolution images may miss 
fine details. Future research should compare down-sampled high-reso
lution images with native low-resolution images to propose a 

standardised resolution for sewer defect inspection.
Next, most sewer defect inspection tasks rely on supervised learning, 

which are requires large amounts of labelled datasets for effective model 
training. This reliance poses a significant challenge in this domain, as 
many current datasets are unannotated or partially annotated, requiring 
manual annotation processes that are labour-intensive, time-consuming, 
and prone to human error. Furthermore, the manual annotation not only 
increases the likelihood of inconsistencies in the labels but also limits the 
scalability of data preparation, particularly for large-scale inspection 
projects. On the other hand, imbalanced datasets also pose a problem in 
which certain defect types may occur frequently and dominate the 
dataset. This problem can lead to biased models that perform well on the 
majority classes but fail to detect minor defect types.

Lastly, assessing defect severity based on area and pixel-to- 

Table 8 
Defect severity assessment table proposed by Jia et al. [136]

Structural Defects Ploss (%) Level Score Operational Defects Ploss (%) Level Score

Crack (CK) ≤ 10 1 0.5 Deposit (DP) ≤ 20 1 0.5
(10, 25] 2 2 (20,40] 2 2
(25, 60] 3 5 (40,60] 3 5
> 60 4 10 > 60 4 10

Deformation (DF) ≤ 10 1 0.5 Obstacle (OBS) ≤ 15 1 0.5
(10, 25] 2 2 (15,25] 2 2
(25, 60] 3 5 (25,50] 3 5
> 60 4 10 > 50 4 10

Corrosion (CR) ≤ 10 1 0.5 Root (RT) ≤ 15 1 0.5
(10, 50] 2 2 (15,25] 2 2
> 50 3 5 (25,50] 3 5
- - - > 50 4 10

Side branch (SB) ≤ 10 1 0.5 Encrustation (ER) ≤ 15 1 0.5
(10, 30] 2 2 (15,25] 2 2
> 30 3 5 (25,50] 3 5
- - - > 50 4 10

Penetration (PT) ≤ 10 1 0.5 Broken wall (BW) ≤ 15 1 0.5
(10, 30] 2 2 (15,25] 2 2
> 30 3 5 (25,50] 3 5
- - - > 50 4 10

Table 9 
Previous studies/research about sewer defect severity assessment

Ref. Year Factors of Severity Assessment Standard Dataset Grading Performance Comments

[137] 2018

- Probability of failure based on CCTV 
inspection report and Dynamic 
Bayesian Belief Network (DBN)

- Consequence of failure based on total 
costs resulting from failures

Fuzzy inference 
system of Sugeno

Not Specified
Minor – 
Major: 1 – 3

Not Specified
The maintenance decision will be made 
based on the cost benefit analysis and 
risk analysis matrix.

[135] 2021
- Fuzzy membership functions
- Hierarchical evidential reasoning

NASSCO – 
PACP1, 
German EN 
13508-2

Dataset 1: 4 
defects 
Dataset 2: 7 
defects

Best – 
Worst: 
1 – 5

MAE2= 0.643
Inaccuracy prediction severity of 
defects

[80] 2021
- Area ratio between defect and cross 

section area
- Severity scores

NASSCO – PACP Not Specified
Best – 
Worst: 
1 – 5

Deviation =
3.06%

Missed some minor defect in severity 
assessment

[26] 2022
- Area ratio between defect and cross- 

section area
- Number of pixels in area of defect

Not Specified 600 images with 
5 defects

Best – 
Worst: 
1 – 4

Accuracy =
70%

Not accurate for crack defects. Not 
quantify the locations and directions of 
cracks

[107] 2022
- Zone of influence (ZOI) based on mean 

attention weight feature map
- Defect grade based on PACP

NASSCO – PACP
47,100 images 
with 10 defects

Best – 
Worst: 
1 – 5

Not Specified Unable to make maintenance decision.

[127] 2023 - Counting number of defects
- Located defects along the pipeline

NASSCO – PACP 3699 images 
with 10 defects

Best – 
Worst: 
1 – 5

Not Specified
Not examine the severity of defect. 
Counting number of defects and report 
its location in pipeline

[136] 2023 - Area ratio between defect and cross- 
section area

Mainland China 
– CJJ 181-2012

Dataset 1: 13 
videos with 18 
defects 
Dataset 2: 1,3633 
images - 10 
defects

Best – 
Worst: 
1 – 4

Accuracy =
86.73% 
Deviation =
2.008%

Ability to replace manual assessment 
and get rid of human factors. 
Low accuracy for structural defects 
(crack, deformations, etc.)

1 NASSCO - PACP: National Association of Sewer Service Companies – Pipeline Assessment Certificate Program.
2 MAE: Mean Absolute Error.
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dimension ratio without considering defect geometry can be inaccurate. 
For example, inspectors cannot determine the type or impact of a crack 
based solely on area ratio. More comprehensive defect information, such 
as material properties and geometric context, is needed. High-quality 
capturing techniques like LiDAR, X-ray, or laser scanner can supple
ment datasets with 3D mapping and surface profiling.

8.2. Future directions

There are potential solutions and future directions to address the 
limitations and challenges in current sewer pipeline defect inspection: 

• Image Resolution and Quality: Implementing a uniform image 
capturing technique, including specific resolutions for CCTV videos 
or images and lighting requirements, is essential. High-resolution 
cameras and scanners can provide clear, detailed textures and ac
curate colours. Image stabilisation can also reduce noise, increase 
contrast, and correct distortions.

• Standardised Evaluation Metrics: Unifying and standardising evalua
tion metrics will facilitate easier comparisons between different in
spection tasks and models. More attention should be paid to the 
metrics for multiclass problems, as these are generally more complex 
than those for binary scenarios.

• Detection Models: Recent research on defect classification and 
detection, primarily from 2018 to 2023, has significantly advanced 
the field but often have difficulty to address newer, more complex 
defects found in sewer pipeline systems. To overcome this limitation, 
recent models, such as YOLOv7 and YOLOv8, with their enhanced 
feature extraction capabilities and improved detection accuracy, 
have been deployed in field applications. Besides, generative AI 
models like GANs and diffusion models can also address these 
problems of generating synthetic, high-quality images of diverse and 
underrepresented defect types, which can result in enhancing dataset 
diversity and robustness. The recent YOLO versions, from version 9 
to 11, should also be examined in field for sewer pipeline conditions.

• Segmentation Models: While semantic segmentation models are 
commonly used in sewer pipeline inspection, they often lack gran
ularity needed to differentiate and analyse individual defects. Future 
research should focus on advancing instance segmentation models, 
not only to identify but also to locate and outline specific instances of 
each defect class, enabling more detailed assessments and facilitating 
targeted maintenance strategies.

• Learning Models: Most current inspection models rely on supervised 
learning, necessitating the exploration and development of semi- 
supervised, self-supervised or unsupervised learning models to 
reduce the need for manual defect annotation. It allows model to 
learn useful feature representations from unlabelled data, thereby 
reducing the need for labour-intensive annotation and improving 
generalisability.

• Edge Computing: Edge computing enables real-time, on-site sewer 
inspection by deploying AI models on compact, high-performance 
devices like Nvidia Jetson or Google Coral [138]. This approach 
processes data locally, eliminating the need for large data transfer to 
centralised servers and reducing latency. To fully leverage the ben
efits of edge computing, the development of lightweight deep 
learning model is essential. These models are specifically optimised 
for low-power, resource-constrained environments while maintain
ing high detection performance. By enabling immediate inspection 
and analysis, the edge computing enhances efficiency, supports real- 
time decision-making and facilitates autonomous inspection 
workflows.

• Defect Severity Assessment: More precise measures of defects, such as 
size, depth, and shape, are needed for accurate assessment. High- 
resolution 3D imaging techniques can provide this critical spatial 
information. Furthermore, a standardised approach to quantify the 
severity of sewer defect should be developed and adopted nationally 

or internationally to ensure consistency, improve comparability, and 
support informed decision-making in sewer infrastructure 
management.

9. Conclusions

This paper presented a comprehensive review of the current state of 
sewer pipeline defect inspection utilising the CV technology. It focused 
on three primary categories of vision-based methods: detecting defects 
by image classification, locating defects by object detection, and char
acterising defects by image segmentation. In response to limitations 
identified in earlier reviews, this study provided a more comprehensive 
and technically detailed synthesis, including a critical analysis of in
spection algorithms, benchmarking datasets, and condition assessment 
methodologies.

One of the key contributions of this study is the identification of 
several important findings in the application of CV into sewer pipeline 
defect inspection: 

• A clear trend in sewer defect inspection methodologies was identi
fied, transitioning from traditional image processing (before 2015) to 
ML (mainly between 2015 and 2018) and then DL (from 2018 on
wards). DL methods currently dominate automated defect detection 
and characterisation while improving detection performance. There 
is a growing emphasis on deploying real-time detection systems on 
embedded systems and robots.

• The differences between various sewer defect datasets are identified, 
focusing on key factors such as resolution, dataset size, diversity of 
defects, capturing devices. Many image processing and augmenta
tion algorithms to improve the quality of datasets were also 
described.

• Various inspection algorithms and evaluated their performance 
metrics for each level of sewer defect inspection in different cate
gories of image classification, object detection and image 
segmentation.

• Current automated severity assessment methodologies and defect 
grading system were reviewed, as outlined in guidelines and stan
dards. This process is expected to play an essential role in automated 
decision-making of repair and maintenance.

Furthermore, several research gaps and challenges in current CV- 
aided inspection systems have been identified, along with future di
rections to address these issues and enhance overall system perfor
mance. These include: 

• There are issues with dataset availability and credibility, such as a 
lack of labelled datasets, inconsistencies in pixel accuracy, and 
insufficient diversity in sewer defect classes. Challenges also exist in 
defect severity assessment due to a lack of high-quality information, 
such as 3D data and surface profiling.

• There also exist inconsistencies in setting up hyperparameters and 
performance metrics, creating difficulties to conduct fair compari
sons between studies. Reducing these inconsistencies can provide a 
more level playing field and higher research productivity for scholars 
and practitioners.

• Challenges in severity assessment require further investigations to 
enhance the algorithms and achieve better detection performance.

While significant progress has been made, considerable challenges 
and opportunities persist for future research aimed at developing more 
reliable and efficient automated inspection systems. This paper, through 
its systematic review of various CV models, datasets, and performance 
metrics, offers tailored insights and recommendations designed to guide 
researchers, especially newcomers, in addressing these opportunities 
and advancing the field of sewer inspection applications.

Ultimately, the insights garnered from this systematic review 
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underscore the transformative potential of CV in elevating the efficiency 
and objectivity of sewer defect inspection. Beyond academic advance
ments, the practical adoption of these technologies holds profound im
plications for urban infrastructure management, enabling proactive 
maintenance, mitigating costly failures, and significantly enhancing 
public health and environmental protection by preventing sewage leaks 
and pollution. There is a continued need for concerted efforts from re
searchers, industry practitioners, and policymakers to foster collabora
tive initiatives, standardise data collection and evaluation protocols, and 
invest in robust, scalable solutions that can seamlessly integrate into 
existing operational frameworks, thereby accelerating the transition 
towards smarter, more resilient sewer systems not just in developed 
countries but also around the globe.
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