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Abstract
Objective. Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive
dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and
treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals
are one formof a biomarker that can reveal hidden changes in the brain during SZ.However, the EEG
signals are non-stationary in naturewith low amplitude. Therefore, extracting the hidden information
from the EEG signals is challenging.Approach.The time-frequency domain is crucial for the automatic
detection of SZ. Therefore, this paper presents the SchizoNETmodel combining theMargenau–Hill
time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous
information of EEG signals is captured in the time-frequency domain usingMH-TFD. The time-
frequency amplitude is converted to two-dimensional plots and fed to the developedCNNmodel.
Results.The SchizoNETmodel is developed using three different validation techniques, including
holdout,five-fold cross-validation, and ten-fold cross-validation techniques using three separate
public SZ datasets (Dataset 1, 2, and 3). The proposedmodel achieved an accuracy of 97.4%, 99.74%,
and 96.35%onDataset 1 (adolescents: 45 SZ and 39HC subjects), Dataset 2 (adults: 14 SZ and 14HC
subjects), andDataset 3 (adults: 49 SZ and 32HC subjects), respectively.Wehave also evaluated six
performance parameters and the area under the curve to evaluate the performance of our developed
model. Significance.The SchizoNET is robust, effective, and accurate, as it performed better than the
state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three
publicly available EEGdatasets for the automated detection of SZ.Our SchizoNETmodel can help
neurologists detect the SZ in various scenarios.

1. Introduction

Schizophrenia (SZ) is a complex, neuropsychiatric and cognitive syndrome that appears to result from a
disruption in brain development caused by hereditary or environmental factors, or both. SZ disturbs the
thinking, behaviour, and feeling of an individual. According to the reports published by theWorldHealth
Organization (WHO), about 21million people accounting for 1%of the global population are suffering fromSZ
(WHO2022). The onset of SZ typically occurs between late adolescence to the beginning of early adulthood.
It emerges earlier inmales (early 20 s—late adolescence) than in females (early 20 s—early 30 s)
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(Bromet and Fennig 1999). It is one of the top 25 leading causes of worldwide disability (Jin andMosweu 2017).
The symptoms of SZ are heterogeneous that leading to reduced quality of life and functional impairments (Jin
andMosweu 2017). It is characterized by cognitive deficits, and negative and positive symptoms (Green and
Horan 2015). The cognitive deficits involve language (difficult to understand for others), difficulty performing
routine activities, lack of attention, and trouble with thinking (deviating fromone subject to another with no
logical reason). The negative symptoms (associatedwith negative SZ) are abnormalmemorywhile the positive
symptoms (associatedwith positive SZ) are hallucinations, delusions, and confused speech (Oh et al 2019, Lai
et al 2021, Sadeghi et al 2022). The epidemiological characteristics of SZ have three lows (low visit rate, low
detection rate, and low compliance) and three highs (high disability rate, heavy disease burden, and high
recurrence rate). SZ could result in damage to various brain tissues as well asmental deterioration, resulting in
severemental disability. As a result, SZ has a negative impact on educational and occupational performance. The
possibility of death in SZ is higher than that of healthy people due to physically preventable diseases
(cardiovascular disorder, infections, andmetabolic disease) (Siuly et al 2020). Suicide attempts among SZ
patients are about 50%,with amortality rate due to suicide being about 4%–6% (Caldwell andGottesman 1990,
Hettige et al 2017). About 69%of SZ patients do not get enough care and treatment resulting in an increased
death rate, disability rate, and suicide rate (Baygin 2021). According to theWHO, timely detection of SZmay
help experts to identify the stage and severity of SZ (WHO2022). These factors demand a need for timely and
accurate detection of SZ. Various resources such as interviews, imaging, and signaling techniques have been used
to detect SZ. Interviewing by a qualified expert takes timewhich is susceptible to errors and biased in some cases
(Lloyd et al 2017). Imaging tools (magnetic resonance imaging and computed tomography) are time-
consuming,more expensive, and necessitate extra recordings (Talo et al 2019). Electroencephalogram (EEG)
signals can reveal changes in brain activity to identify various states of the brain (Khare andBajaj 2021c, Khare
et al 2022). During EEG recording, sensors placed at the appropriate location on the scalp extract secret
information about changes during SZ. In addition, researchers arewell accepted by EEG signals in the
automated identification of brain disorders such as Alzheimer’s disease, seizures, and Parkinson’s disease
(Kumar andBhuvaneswari 2012, Khare et al 2022).

2. Relatedwork

Recently,many studies have been developed to get insights into the automatic classification of SZ using EEG as a
biomarker. The summary of the existingmodels developed for SZ detection is shown in table 1.

3. Findings andmotivation

The summary of ourfindings by screening various literature is shown in table 2. It reveals thatmost of the
automated SZdetectionmodels have been developed on one EEGdataset either in a resting state or performing
some task. Also, we noted thatmodels like LSTMand 1DCNNhelp to extract Spatio-temporal information but
with reduced performances compared to 2DCNNmodels (Cho and Jang 2020, Vareka 2021). CNN allows
automatic feature extraction and classification but applying non-stationary EEG signals directly toCNNmay
not reveal desired performance. Over the last decade,manyCNNmodels have been developedwhose
architecture varied from tens to hundreds of layers. But there is no standardCNNmodel specified for a
particular application. Therefore, the selection and development of theCNNmodel depend on the user and
applications. Evenwith deepmodels like visual geometry group andResNet, the desired performance is not
obtained (Smith et al 2021). Also, these techniques involve handcrafted feature extraction, empiric selection of
tuning parameters, rigorous statistical analysis for feature selection, and user-dependent classification
techniques resulting in the lower performance ofmodels.

Therefore, from the identified research gapswe have beenmotivated to develop a SchizoNETmodel
comprised ofMargenau–Hill time-frequency distribution (MH-TFD) andCNN.TheTFDhelps to study
detailed insight into EEG signals by capturingminute details in terms of time-frequency-amplitude contents. A
CNNmodel with a simple architecture is developed usingmultiple validation techniques including holdout,
five-, and ten-fold cross-validation (FCV) techniques to extract and classify the deep features obtained from
TFD. The proposedmodel is tested and evaluated on three public EEGdatasets of SZ. Theworking steps of the
SchizoNETmodel are as follows: (i) the temporal information of EEG signals about time-frequency-amplitude
is extracted fromMH-TFD, (ii) the TFD is fed to the developedCNNmodel for automated feature extraction
and classification, (iii) different performance parameters are evaluated and compared themwith the current
state-of-the-art techniques. The contribution of the proposed SchizoNETmodel is listed as follows:
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Table 1. Summary of the existing automated SZ decisionmodels using EEG signals.

Author andYear Subjects Tasks Analysis technique Classification Performance

Yin et al (2017) SZ (Negative): 14 Resting state eye closed mutual information using Shannon and joint entropy Statistical analysis —

SZ (Positive): 14
HC: 14

Alimardani et al (2018) SZ: 23 Steady state evoked potential Statistical and nonlinear features k-nearest neighbor (KNN) ACC: 91.30%

BP: 23

Hiesh et al (2013) SZ: 5 Tasks (auditory simulations) Wavelet transform (WT)with statistical (mean,minima,maxima,

and standard deviation (STD)) and nonlinear features
Support vectormachine (SVM) ACC: 88.24%

HC: 5 SEN: 89.48%

SPE: 87%

Begić et al (2000) SZ (Negative): 22 Resting state eye closed fast Fourier transform (FFT) for rhythmic analysis Statistical analysis —

SZ (Positive): 25
HC: 50

Namazi et al (2019) SZ: 45 Resting-state from adolescents Fractal dimension (FD) and approximate entropy Statistical analysis —

HC: 39

Akar et al (2016) SZ: 22 Resting state eye closed Entropy and complexity features Statistical analysis —

HC: 22

Dvey-Aharon et al (2015) SZ: 25 Tasks (stimuli of triangle) Time-frequency feature optimization-based feature extraction Linear discriminant analysis ACC: 88.7%

HC: 25 SEN: 77.4%

SPE: 100%

Parvinnia et al (2014) SZ: 13 Resting state eye open Band power, autoregressivemodel (ARM), and FD Weighted distance nearest neighbor ACC: 95.3%

HC: 18

Sabeti et al (2009) SZ: 20 Resting state eye open Higuchi dimensions, Lempel Ziv complexity, and entropy AdaBoost ACC: 90%

HC: 20

Sui et al (2014) SZ: 48 Resting state eye open Multi-set canonical correlation analysis SVM ACC: 74%

HC: 53 SEN: 72%

SPE: 75%

Phang et al (2019) SZ: 45 Resting-state from adolescents Vector-autoregressionmodel (VAM)-based directed connectivity,
and graph-theoretical complex network

Deep neural network ACC: 95%

HC: 39
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Table 1. (Continued.)

Author andYear Subjects Tasks Analysis technique Classification Performance

Piryatinska et al (2017) SZ: 45 Resting-state from adolescents ò-complexity of continuous vector functions of original EEG

signals and theirfinite differences

Random forest (RF) ACC: 85.3%

HC: 39 SEN: 88.6%

SPE: 82.6%

Singh et al (2021) SZ: 45 Resting-state from adolescents Mean spectral amplitude, spectral power andHjorth descriptors Convolutional neural network (CNN) ACC: 94.08%

HC: 39 SEN: 92.7%

SPE: 95.31%

SZ: 14 Resting state eye closed Mean spectral amplitude, spectral power andHjorth descriptors CNN ACC: 98.96%

HC: 14 SEN: 99.05%

SPE: 98.88%

Dimitriadis (2021) SZ: 45 Resting-state from adolescents Dynamic correlation of the envelope (corrEnv) SVM ACC: 100%

HC: 39 SEN: 100%

SPE: 100%

Calhas (2019) SZ: 45 Resting-state from adolescents Discrete short-time Fourier transform (DSTFT) RF ACC: 84%

HC: 39 SEN: 87%

SPE: 82%

SZ: 45 Resting-state from adolescents VAM, and partial directed coherence (PDC) CNN ACC: 91.69%

Phang et al (2020) HC: 39 SEN: 91.11%

SPE: 92.5%

Siuly et al (2020) SZ: 49 Tasks (push-button task) Empiricalmode decomposition (EMD) and statistical features SVM ACC: 89.59%

HC: 32 SEN: 89.76%

SPE: 89.32%

Krishnan et al (2020) SZ: 14 Resting state eye closed Multivariate EMD SVM ACC: 93%

HC: 14 SEN: 94%

SPE: 92%

Khare andBajaj (2021a) SZ: 49 Tasks (push-button task) Optimized variationalmode decomposition (OVMD) Optimized extreme learning

machine (OELM)
ACC: 92.93%

HC: 32 SEN: 97.15%

SPE: 91.06%
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Table 1. (Continued.)

Author andYear Subjects Tasks Analysis technique Classification Performance

Aslan andAkin (2020) SZ: 45 Resting-state from adolescents Spectrograms obtained using short time Fourier transform (STFT) CNN ACC: 95%

HC: 39 SEN: 95%

SZ: 14 Resting state eye closed STFT CNN ACC: 97%

HC: 14 SEN: 97%

Nikhil et al (2021) SZ: 14 Resting state eye closed FD, entropy, variance-based features long short-termmemory (LSTM) ACC: 99%

HC: 14 SEN: 98.9

Shalbaf et al (2020) SZ: 14 Resting state eye closed Continuouswavelet transform (CWT) ResNet-SVM ACC: 95.3%

HC: 14 SEN: 96.45%

SPE: 94.5%

Prabhakar et al (2020b) SZ: 14 Resting state eye closed Partial least squares (PLS), expectation-maximization-based principal

component

analysis (EM-PCA), nonlinear regression, and isometricmapping

(Isomap)

RF ACC: 96.77%

HC: 14 SEN: 96.77%

SPE: 96.77%

Khare et al (2020) SZ: 49 Tasks (push-button task) Empirical wavelet transform (EWT) Ensemble bagged tree (EBT) ACC: 88.7%

HC: 32 SEN: 91.13%

SPE: 89.29%

Prabhakar et al (2020a) SZ: 14 Resting state eye closed Nonlinear features SVM ACC: 89.25%

HC: 14

Oh et al (2019) SZ: 14 Resting state eye closed CNN CNN ACC: 98.07%

HC: 14 SEN: 97.32%

SPE: 98.17%

Jahmunah et al (2019) SZ: 14 Resting state eye closed Nonlinear features SVM ACC: 92.91%

HC: 14 SEN: 93.45%

SPE: 98.17%

Khare andBajaj (2021b) SZ: 49 Tasks (push-button task) Flexible tunableQwavelet transform (FTQWT) Flexible least square SVM (FLSSVM) ACC: 91.39%

HC: 32 SEN: 92.65%

SPE: 93.22%
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Table 1. (Continued.)

Author andYear Subjects Tasks Analysis technique Classification Performance

Smith et al (2021) SZ: 49 Tasks (push-button task) Smoothed pseudo-Wigner Ville distribution (SPWVD) CNN ACC: 93.36%

HC: 32 SEN: 94.25%

SPE: 92.03%

Sharma andAcharya (2020) SZ: 14 Resting state eye closed L1 norm features obtainedwith optimal wavelet KNN ACC: 99.21%

HC: 14 SEN: 98.84%

SPE: 99.42%

Sun et al (2021) SZ: 54 Resting state eye open Different rhythms using FFT and fuzzy entropy features CNN ACC: 99.22%

HC: 55

Racz et al (2020) SZ: 14 Resting state eye closed Dynamic functional connectivity (DFC) RF ACC: 89.29%

HC: 14 SEN: 78.57%

SPE: 100%

Goshvarpour andGoshvar-

pour (2020)
SZ: 14 Resting state eye closed Complexity, Higuchi FD (HFD), and Lyapunov exponents Probabilistic neural network (PNN) ACC: 100%

HC: 14 SEN: 100%

SPE: 100%

Masychev et al (2021) SC: 57 Tasks (auditory odd-ball
paradigm)

Symbolic transfer entropy (STE) SVM ACC: 92.68%

HC: 66 SEN: 92.98%

SPE: 92.42%

Ravan et al (2015) SC: 47 Tasks (auditory odd-ball
paradigm)

Brain source localization Statistical analysis —

HC: 66

Li et al (2019) SZ: 23 Visual P300 tasks Spatial pattern of network (SPN) SVM ACC: 90.48%

HC: 25 Resting state eye closed SEN: 89.47%

SPE: 91.3%

Ciprian et al (2021) SZ: 62 Resting state eye closed Effective connectivity and STE KNN ACC: 96.92%

HC: 70 SEN: 95%

SPE: 98.57%
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Table 1. (Continued.)

Author andYear Subjects Tasks Analysis technique Classification Performance

Liu et al (2017) SZ: 10 Resting state eye closed Statistical features SVM ACC: 91.16%

HC: 10

Kumar et al (2023) SZ: 45 Resting-state from adolescents Correlation-based feature selection (CBFS) AdaBoost ACC: 92.85%

HC: 39 SEN: 93.3%

SPE: 92.3%

SZ: 14 Resting state eye closed CBFS AdaBoost ACC: 99.36%

HC: 14 SEN: 99.2%

SPE: 99.4%

Aydemir et al (2022) SZ: 14 Resting state eye closed Cyclic group of prime order pattern KNN ACC: 99.82%

HC: 14 SEN: 99.84%

SPE: 99.81%

Siuly et al (2022) SZ: 49 Tasks (push-button task) Average filtering GoogLeNet and SVM ACC: 98.84%

HC: 32 SEN: 99.02%

SPE: 98.58%

Baygin et al (2023) SZ: 49 Tasks (push-button task) TunableQwavelet transform (TQWT) KNN ACC: 95.84%

HC: 32 SEN: 97.01%

SPE: 94.06%

*HC (Healthy control)
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• To the best of our knowledge, we are the first group to develop automated SZ detection on three EEGdatasets.
Therefore, the SchizoNETmodel has good generalization ability on different datasets.

• Visual inspection of EEG signals is very tedious and prone to human error. Hence, the study of temporal and
spatial information of EEG signals about time-frequency amplitude is performed byMH-TFD.

Table 2. Summary offindings obtained from the state-of-the-art techniques.

Parameters Findings Advantages Limitations

Dataset

Signals The available studies havemostly

explored EEG signal analysis

either in a resting state with eyes

closed/open orwith tasks

The acquisition of EEG is fast,

portable, and non-invasive

SZmay attack individuals at any

age affecting their auditory and

motor abilities. Therefore, it is

desired to study EEG signals

acquired during resting and

tasks. Butmodels tested on one

dataset do not guarantee

desired performance with

others

Signal analysis

Direct feature analysis Extraction of statistical features

and nonlinear features requires

the selection of scaling para-

meters. Nonlinear (FD,
entropy, ARM, andHjorth

parameters) and statistical fea-
tures are affected by noise

Extracting features directly

eliminates additional signal

analysis tools

The extraction of features directly

fromEEG signals fails tofind

representative information. The

performance of the system is

degraded due to noise and inap-

propriate selection of scaling

range

Frequency analysis (FFT,
filtering, STFT,DSTFT)
and rhythm separation

EEG signals are composed of

multi-frequency bands that

help to study the changes in

EEGduring SZ

Allows the analysis of exact fre-

quency contents of EEG

whichmay help to reveal hid-

den characteristics during SZ

Frequency domain analysis pro-

vides analysis of exact frequency

content but fails to reveal at

what time the frequency con-

tents occurred. Also, it suffers

time-frequency localization and

sharpfilter boundaries. DSTFT

and STFT assume signals to be

stationary and require a choice

of window (type and length)

Nonlinear decomposition

(EWT, optimal wavelet,

TQWT,CWT, EMD

andMEMD)

Nonlinear decomposition extracts

instantaneous information

about time-frequency. It

requires to define the basis

functionwithwhich the signal

is represented

It decomposes the signal into

multicomponent that pro-

vide representative char-

acteristics of the signals

EMDandMEMDare exper-

imental and lackmathematical

modelling. EWT, optimal

wavelet, andCWT require tun-

ing parameters to getmulti-

bands

Decision-making

Machine learning (SVM,

KNN, decision tree,

ensemble, neural net-

works, etc.)

Machine learningmodels require

tuning of hyperparameters and

selection of kernel

Decision-making is fast. Avail-

ability of differentmodels

with distinct cost functions

An inappropriate selection of

hyperparameters and kernels

may result in decreased perfor-

mance or overfitting

Deep learning (LSTM,

CNN, auto encoder,

etc.)

Themodels like LSTMand 1D

CNNnecessitate the extraction

of Spatiotemporal information

but have degraded perfor-

mances when compared to 2D

or image-basedCNNmodels

Enables simultaneous extrac-

tion of features and classifi-

cation. The vast availability

ofmodels

No standardmodel is available for

decision-making. Somemodels

are so deep that require a large

number of training time and

learning parameters. CNN

allows automatic feature extrac-

tion and classification but

applying non-stationary EEG

signals directly to CNNmaynot

reveal desired performance
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• Traditional techniques require extensive parameter tuning, the selection of handcrafted features is time-
consuming, and the appropriate choice of classifiers is difficult. Therefore, we developed a simple CNN
architecture using fewer layers and tested it withmultiple validation techniques to evaluate performance
metrics (PM).

The paper is structured as sections 1 and 2 presented the introduction and relatedwork. Findings of literature
andmotivation are covered in section 3, and details aboutmaterials andmethods are covered in section 4.
Results are presented in section 5, performance comparisonwith current state-of-the-art is provided in section 6,
a discussion is covered in section 7, and conclusions are given in section 8.

4.Materials andmethods

The steps of the proposed SchizoNETmodel involve details of EEGdatasets, the extraction of simultaneous
temporal and spatial information usingMH-TFD, automatic feature extraction and classification using the
CNNmodel. The schematic of the SchizoNET is shown infigure 1.

4.1.Datasets
The proposedmethod uses three publicly available EEGdatasets to test the SchizoNETmodel. The first dataset is
acquired fromadolescents during resting state, the second dataset is comprised of resting-state EEG acquired
fromadults, and the third dataset is recorded during the press button task. The demographic details of these
datasets are discussed below and presented in table 3.

4.1.1. Dataset 1
The EEGdataset of LomonosovMoscow StateUniversity has 84 adolescent subjects (Borisov et al 2005, Sergey
andGorbachevskaya). The resting-state eyes-closed EEGdata is captured for 1minute from16 channels (T3, T4,
T5, T6, F7, F3, F4, F8, P3, Pz, P4, C3, Cz, C4,O1, andO2 referenced to coupled ear electrodes). The SZ patients
(including schizotypical, childhood SZ, and schizoaffective disorders)were diagnosed as per SZ diagnostic
criteria F20, F21, and F25 of the International Classification ofDiseases-10 (ICD-10) ofMental and Behavioural
Disorders, set by the International Statistical Classification ofDiseases andRelatedHealth Problems. Specialists
of theMentalHealth ResearchCenter have confirmed the diagnoses of SZ patients. Patients did not undergo any
chemotherapy during the examination at theMentalHealth ResearchCenter. It is noted that only artefact-free
EEG recordings are used for the analysis.

Figure 1. Schematic representation of the proposed SchizoNETmodel.
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4.1.2. Dataset 2
Dataset 2 comprises 14 subjects with paranoid SZ hospitalized at the Institute of Psychiatry andNeurology in
Warsaw, Poland, and 14HC subjects (Olejarczyk and Jernajczyk 2017). All patientsmet the ICD-10 criteria for
paranoid SZ (F20). The criteria for inclusion of SZ subjects: are ICD-10 diagnosis F20, aminimummedication
washout period of seven days, and aminimumage of 18. Exclusion criteria: organic brain pathology, presence of
a generalmedical condition, pregnancy, first episode of SZ, and neurological diseases. The EEGwas recorded for
15minutes in an eyes-closed resting-state condition. The 19-channel (P3, Fp1, Fp2, Pz, C4, F7, F3, Fz, P4, C3,
Cz, F4, F8,O1,O2, T3, T4, T5, T6)EEGmontage built in-accordance to international 10–20 systemwas used.

4.1.3. Dataset 3
It is obtained fromKaggle which contains EEG signals of 81 subjects (button–tone https://www.kaggle.com/

broach/button-tone-sz n.d.). The diagnosis criteria for SZ patients were by the StructuredClinical Interview for
DSM-IV. Subjects of both groups i.e. SZ andHC,were age, handedness (right), and gender-matched. Exclusion
criteria for SZ included no dependence on substances for the past yearwhile forHC subjects no history of
substance dependence, current or past history of having afirst-degree relative with a psychotic disorder, or
DSM-IVAxis I disorder. The datawere band-pass filtered between 0.5 and 15Hz and a baseline was corrected at
−0.6 to−0.5 s. The EEG epochswere artefact rejected for voltages exceeding±100μV at all scalp sites. The
details about the dataset and acquisition steps can be found in Ford et al (2013). From the previous studies it has
been found that pressing a button to generate a tone immediately is helpful in the detection of SZ andHChence,
it is used for analysis in the current work (Khare et al 2020, Siuly et al 2020, Smith et al 2021). The examples of
EEG signals forHC and SZ subjects forDatasets 1, 2, and 3 are shown infigure 2.

4.2.Margenau–Hill time-frequency distribution (MH-TFD)
The information provided by signals about frequency-domain and time-domain components helps to study the
characteristics of any signal. Since time-based representations use the entire frequency span inwhich the signal is
defined, they ignore some hidden characteristics alongwith frequency. Similar limitations are also true to
frequency-based representations (Advanced Time-Frequency Signal and SystemAnalysis 2016). To address this,
transformations based onTFD are the best way to represent a time-dependent spectrumof non-stationary EEG
signals. The linear TFD like STFT andwavelets uses awindow to localize behaviour in time and frequency. But to
satisfy theHeisenberg-Gabor inequality, the resolution in time-frequency of this transformation is limited by
localizingwindow parameters like duration and bandwidth. The choice of smaller time duration results in
greater bandwidth and vice versa due to a compromise between time and frequency in linear TFD (Advanced
Time-Frequency Signal and SystemAnalysis 2016). TheCWT-based TFR requires an appropriate selection of
motherwavelet; which is again tedious. TheMH-TFDhelps to overcome the limitation of linear TFD as it does
not use localizingwindows orwavelet selection.MH-TFDuses autocorrelation of a signal rather thanwindows
thus, it does not restrict resolutions in time frequency.MH-TFDprovides better representation and decomposes
EEG signal components into TFD. The time-frequency representation obtained usingMH-TFD is denoted by

Table 3.Details of the datasets used.

Features
Values

Dataset 1 Dataset 2 Dataset 3

Total subjects 84 28 81

HC 39 14 32

SZ 45 14 49

Males (SZ) — 7 26

Females (SZ) — 7 6

Males (HC) — 7 41

Females (HC) — 7 8

Mean age (SZ) 12 years 3months 28.1 ± 3.7 years 38.37 ± 13.91 years

Mean age (HC) 12 years 3months 27.75 ± 3.15 years 40.02 ± 13.48 years

Mean age (Male SZ) — 27.9 ± 3.3 years 40.21 ± 12.93 years

Mean age (MaleHC) — 26.8 ± 2.9 years 38.15 ± 12.97 years

Mean age (Female SZ) — 28.3 ± 4.1 years 39 ± 16.98 years

Mean age (FemaleHC) — 28.7 ± 3.4 years 39.33 ± 18.91 years

EEG segment 60 s 25 s 3 s

No. of segments 1344 21 702 493 824

No. of channels 16 19 64

Sampling Freq. (Hz) 128 250 1024
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equation (1) (Hatami et al 2016)
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where y(. ) denotes the signal to be analyzed, t and f represents time and frequency, ∗ denotes complex conjugate
pair, and the kernel function is denoted by exp jptn . The above-mentioned equation can be simplified as (Hatami
et al 2016)

MH t f Real y t Y f, exp , 3y
j ft2( ) ( ( ) ( )) ( )= p- *

whereY( f ) is the Fourier transformof y(t). But,MH-TFDproduces interference called cross-termswhich
interrupts the readability of the signal when analyzing it inmulti-components. These cross-terms generate non-
identical components that severely distort the signals. The cross-term formulation of a signal is denoted as
(Hatami et al 2016)
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where the two-component of a signal is denoted by yi and ykwith a cross-term CTy y,i k
. The cross-term in the time

and frequency domain can beminimized by using a kernel function.MH-TFDuses time and frequency cross-
term reduction kernels with a provision offlexible length tominimize the cross-termof a signal. Due to this
reason,MH-TFD is a suitable choice for obtaining the time-frequency representation of a signal. The EEG
segments of three datasets with all channels are converted to TFD image. For dataset 1, 60 s of EEG segment
(7680 samples) are transformed into TFD image usingMHTFD. Similarly, for datasets 2 and 3, we have used 25 s
(6250 samples) and 3 s (3072 samples) of EEG segments are converted to TFD. Therefore, for datasets 1, 2, and 3
we have obtained 1344, 21 702, and 49 3824TFD images, respectively. These TFD images of all the channels are
fed to theCNNmodel for the detection of SZ fromHCEEG segments. The typical TFDof an SZ andHCEEG
signals obtained byMH-TFDon three datasets are shown infigure 3. The TFD indicates that the energy content
of EEG for SZ andHC is dominant in a lower frequency range.

4.3. Convolutional neural network (CNN)
The 2DTFDobtained usingMH-TFD is fed to aCNNmodel. It is an automated tool that enables the extraction
and classification of deep features. Convolutional, pooling, dropout, dense, softmax, and classification layers are
themain building blocks of CNN. The extraction of deep features is controlled by convolution, pooling, and
dropout layers while the classification is done through dense, softmax, and output (classification) layers. The

Figure 2.Typical EEG signals used: (a) SZ (dataset 1), (b)HC (dataset 1), (c) SZ (dataset 2), (d)HC (dataset 2), (e) SZ (dataset 3), and (f)
HC (dataset 3).
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convolutional layer is the heart of the CNNmodel comprised offilters (kernels) that aremoved along the tensor
(image) in afixed length called stride. Convolutions of kernel and tensor are evaluated to obtain output feature
maps. Zero paddings are applied to keep image size while non-linearity in the network is added using the
activation function. The pooling layer reduces the dimension of the output featuremaps by keeping the number
of input and outputmaps unaltered. A dense layer is followed by a pooling layer which transforms a 2Dmatrix to
1D and assigns some scores to the deep features extracted from the preceded layers. The softmax layer allocates
the probability using some algorithms to each feature score. Finally, the classification layer assigns the output
class to featuremaps. In addition, a CNNmodel also uses a normalization layer to bring all the featuremaps to
the same scale which helps regularization, avoiding overfitting. A dropout layer deactivates some of the neurons
in the network to lessen generalization error and overfitting.

Various CNNmodels are developedwith different combinations of layers which vary from application to
application and user to user. Some useCNNmodels with fever layers while others use denseCNNmodels
composed of hundreds of layers (Alom et al 2018). Evenwith different configurations of CNNmodels and

Figure 3.Typical TFDplots obtained: (a) SZ and (b)HZ; (i)Dataset 1, (ii)Dataset 2, and (iii)Dataset 3.
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multiple trials, the desired performance is not achieved. Also, there is no standardmodel available for this
application due to a lack of prior (Wolpert 1996). Therefore, a CNNmodel is developedwith five convolutions,
three pooling, three dense, and one output layer. In addition, the developedmodel uses rectified linear unit
(Relu) as an activation function to increase non-linearity, amax-pooling layer to reduce the dimensionality of
the featuremap, a dropout of 50%, and batch normalization layers to reduce overfitting. The summary of the
proposedCNNmodel is shown in table 4.

5. Results

Traditionalmachine learning techniques require extensive statistical analysis for selecting handcraftedmethods
and features.Moreover, a precise selection of the classifier and its parameters is time-consuming and does not
guarantee performance success. Thus, the SchizoNETmodel is developed for the automatic detection of SZ.
Three public datasets comprised of push-button tasks and resting-state EEG signals are employed for testing the
SchizoNETmodel. The EEG epochs are transformed into time-frequency representation usingMH-TFD. For
reducing the cross-termof TFD, theKaiser time and frequencywindowof lengths 31 and 63 are used. Obtained
TFD is converted into images and fed to theCNNmodel. The learning rate is 10−04, the bias andweight learning
factor are bothfixed at 10, the adaptivemoment estimation optimizer is used to scale the learning rate of each
weight, the batch size is 64, the total number of epochs is 60, and the frequency of validation is 50. All the
parameters are selected empirically andmaintained uniformly throughout the experimentation.

TheDLmodels often offer very high performance; however, their stability is uncertain. Therefore, to verify
the stability of our developedmodel, we have performed holdout (80%data used for training and 20%data used
for testing),five-FCV, and ten-FCV techniques. The accuracy (ACC) obtained for each dataset using the

Table 4. Summary of hyperparameters used for the proposedCNNmodel.

Layer Type KS FS OS LP OP

0 Input — — — — —

1 Conv2D 9 × 9 96 73 × 73 23 424 Str = 3

(Relu)
2 BatchNorm — — 73 × 73 384 —

3 MaxPool — — 36 × 36 0 Str = 2

PS= 3

4 Conv2D 5 × 5 256 32 × 32 614 656 Str = 1

(Relu)
5 BatchNorm — — 32 × 32 1024 —

6 MaxPool — — 15 × 15 0 Str = 2

PS= 3

7 Conv2D 3 × 3 384 13 × 13 885 120 Str = 1

(Relu)
8 Conv2D 3 × 3 384 11 × 11 1327 488 Str = 1

(Relu)
9 Conv2D 3 × 3 256 9 × 9 884 992 Str = 1

(Relu)
10 MaxPool — — 4 × 4 0 Str = 2

PS= 2

11 Dense — — 4096 16 781 312 HN = 4096

(Relu)
12 DropOut — — 4096 0 Rate = 0.5

13 BatchNorm — — 4096 16 384 —

14 Dense — — 4096 16 781 312 HN = 4096

(Relu)
15 DropOut — — 4096 0 Rate = 0.5

16 BatchNorm — — 4096 16 384 —

17 Dense — — 192 786 624 HN = 192

(Relu)
18 DropOut — — 192 0 Rate = 0.5

19 BatchNorm — — 192 768 —

20 Dense — — 2 386 HN = 2

(Softmax)

KS-kernel size, FS-filter size, OS-output size, LP-learning parameters, OP-other parameters, Str-

stride, PS-pool size.
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aforementioned validation techniques is shown in table 5. The results show that the ACC for holdout validation
in all the datasets is highest because it is not averaged, while it is slightly reduced in the case ofmulti-foldCV
techniques.

The SchizoNETmodel is evaluated bymeasuring six performancemeasures: ACC,Cohen’s Kappa (Kappa),
precision (PRC), sensitivity (SEN), specificity (SPE), and F-1measure. As ourmodel is tested on balanced and
unbalanced datasets, we have chosen the above-mentioned performancemeasures. Table 6 shows the
performancemeasures obtained using holdout, five-FCV, and ten-FCVwith our SchizoNETmodel forDatasets
1, 2, and 3. The result shows that our developed SchizoNETmodel provides high performance on all three
datasets and validation techniques. Thus, the results of tables 5 and 6 confirm the robustness of our SchizoNET
model to obtain high performance in different validation scenarios for all three datasets. This confirms that our
model has generatedmore distinct deep features to accurately categorize SZ andHCEEG segments. Figure 4
depicts plot of accuracy and loss versus iteration obtained for training, testing and validation phases of proposed
SchizoNET.

Amodel with higher accuracy and higher variation from itsmean value does notmake a significance. As a
result, the STD fromamean value of each PM is evaluated tomeasure the effectiveness of the SchizoNET.
Table 7 provides the variation of STD andmargin of error (MoE) obtained for each PM for a 95% confidence
interval (CI). The table shows that themodel got very little STD from themean for each PM.Ondataset 1, F-1
provides the lowest STDof±0.63while the highest is±1.43 for Kappa. For dataset 2, SEN achieved the highest
STDof±0.44while PRCprovided theminimumSTDof±0.13. Finally, on dataset 3, the least STDof±0.68 is
provided for F-1, whereas the highest is±2.46 for SPE. TheMoE obtained using 95%CI on all datasets reveals
that PMon each fold during ten-FCV shows no significant variance, indicating that the SchizoNETmethod is
reliable and effective.

To getmore insight into the SchizoNETmodel, the percentage confusionmatrix is evaluated for three
datasets using ten-FCV as shown in table 8. It can be evident from table 8 that 98.33%of SZ and 96.31%ofHC
EEG signals are identified correctly in their corresponding classes for Dataset 1.OnDataset 2, 99.89%of SZ and
99.56%ofHCEEG signals, and onDataset 3, 98.02%of SZwhile 93.86%ofHCEEG signals are correctly
classified. The proposed SchizoNETmodel has the highest and least classification rate for SZ signals is 99.89%
and 98.02%.

Further, we have evaluated receiver operating characteristics (ROC) and area under the curve (AUC) for our
SchizoNETmodel, as shown infigure 5. It is evident that our developedmodel provided theAUCof 97.69%,
99.99%, and 96.52% for dataset 1, 2, and 3, respectively. This shows that our developedmodel accurately
performs binary classification of SZ andHC.

6. Performance comparison

The performance of the SchizoNET is evaluated further by comparing it with current state-of-the-art
techniques. Tables 9, 10, and 11 shows the performance comparison of the SchizoNETmodel on dataset 1, 2,
and 3, respectively.

Table 5.Accuracy (%) obtained using various validation techniques
with our proposed SchizoNET.

Validation technique Dataset 1 Dataset 2 Dataset 3

Holdout 98.14 99.95 97.95

Five-FCV 97.47 99.9 97.44

Ten-FCV 97.4 99.74 96.35

Table 6.Performancemeasures obtained for SchizoNETusing different validation techniques.

Validation
Holdout Five-FCV Ten-FCV

Performance Dataset: 1 Dataset: 2 Dataset: 3 Dataset: 1 Dataset: 2 Dataset: 3 Dataset: 1 Dataset: 2 Dataset: 3

ACC 98.14 99.95 97.95 97.47 99.89 97.44 97.40 99.74 96.35

SEN 97.93 99.96 97.58 97.25 99.87 97.02 96.85 99.64 95.95

SPE 98.39 99.95 98.53 97.73 99.92 98.10 98.04 99.87 96.97

Kappa 94.80 99.90 95.73 94.90 99.80 94.66 94.72 99.48 92.37

PRC 98.61 99.96 99.03 98.06 99.93 98.75 98.33 99.89 98.02

F-1 98.27 99.96 98.30 97.65 99.90 97.88 97.59 99.77 96.97
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6.1.Dataset: 1
Themodel developed by Piryatinska et al (2017) operated on continuous vector functions obtained from
ò-complexity to obtain the features classified using RF and SVMclassifiers. Theirmodel achieved the highest
ACCof 89.3%, an average ACCof 85.3%, SENof 88.6%, and SPE of 82.6%using the RF classifier. Calhas (2019)
usedDSTFT-based analysis of EEG signals to extract time-frequency-amplitude features. These features are
given toCNNand different classifiers like KNN, SVM,XGBoost, RF, andNaive Bayes. TheDSTFT andRF
classifier combination has obtained the highest ACCof 84%, SPE of 82%, and SENof 87%. Singh et al (2021)
usedfiltering and FFT-based rhythm separation. Different features combiningHjorth parameters (mobility,
complexity, and activity), spectral power, andmean spectral amplitude have been extracted from the delta, beta,
gamma, alpha, and theta rhythms. These features are classified using deep learning classifiers like CNNand

Figure 4.Plot of accuracy and loss versus iteration obtained for training, testing and validation phases of SchizoNET.

Table 7. STD frommean andMoE for 95%CI obtained for the SchizoNETmodel.

PM
Dataset 1 Dataset 2 Dataset 3

μ ± STD MoE μ ± STD MoE μ ± STD MoE

ACC 97.40 ± 0.68 ± 0.42 99.74 ± 0.22 ± 0.14 96.35 ± 0.69 ± 0.43

SEN 96.85 ± 1.11 ± 0.68 99.64 ± 0.44 ± 0.275 95.95 ± 1.55 ± 0.96

SPE 98.04 ± 0.80 ± 0.49 99.87 ± 0.15 ± 0.09 96.97 ± 2.46 ± 1.52

Kappa 94.72 ± 1.44 ± 0.85 99.48 ± 0.40 ± 0.28 92.37 ± 1.38 ± 0.86

PRC 98.33 ± 0.70 ± 0.43 99.89 ± 0.13 ± 0.08 98.02 ± 2.27 ± 1.41

F-1 97.59 ± 0.63 ± 0.39 99.77 ± 0.20 ± 0.12 96.97 ± 0.68 ± 0.42

Table 8.Percentage confusionmatrix obtained for SchizoNETmodel.

Dataset
Dataset 1 Dataset 2 Dataset 3

Class SZ HC SZ HC SZ HC

SZ 708 12 11 882 12 289 076 5836

HC 23 601 43 9765 12 208 186 704

15

Physiol.Meas. 44 (2023) 035005 SKKhare et al



Figure 5. Summary of ROC andAUC curves obtained for SchizoNET: (i)Dataset 1, (ii)Dataset 2, and (iii)Dataset 3.

Table 9. Summary of performance (%) comparisonwith existing state-of-the-artmethods developed usingDataset: 1.

Author Feature extractor Classifier (validation) ACC SEN SPE PRC F-1

Piryatinska et al (2017) ò-complexity RF (10 FCV) 85.3 88.6 82.6 — —

Calhas (2019) DSTFT RF (5 FCV) 84 87 82 — —

Singh et al (2021) FFT-based rhythms CNN (Holdout) 94.08 92.7 95.31 — 93.62

Phang et al (2020) TF-domainVAM CNN (5 FCV) 91.69 91.11 92.5 94.14 —

Aslan andAkin (2020) STFT VGG-16 (Holdout) 95 95 — 95 95

Kutepov et al (2020) Nonlinear features Statistical analysis — — — — —

Dimitriadis (2021) FI and corrEnv SVM (5 FCV) 100 100 100 — —

Kumar et al (2023) CBFS AdaBoost (10 FCV) 92.85 93.3 92.3 — —

SchizoNET MH-TFD CNN (Holdout) 98.14 97.93 98.39 98.61 98.27

CNN (5 FCV) 97.47 97.25 97.73 98.06 97.65

CNN (10 FCV) 97.4 96.85 98.04 98.33 97.59

Table 10. Summary of performance (%) comparisonwith existing state-of-the-artmethods developed usingDataset: 2.

Author Feature extractor Classifier ACC SEN SPE PRC F-1 Kappa

Oh et al (2019) CNN CNN (10 FCV) 98.07 97.32 98.17 98.45 — —

Jahmunah et al (2019) Nonlinear features SVM-RBF

(10 FCV)
92.91 93.45 92.22 93.6 — —

Singh et al (2021) FFT-based rhythms CNN (Holdout) 98.96 99.05 98.88 — 98.87 —

Krishnan et al (2020) Multivariate EMD SVM-RBF

(10 FCV)
93 94 92 92.71 93.04 —

Aslan andAkin (2020) STFT VGG-16

(Holdout)
97 97 — 97 97 —

Shalbaf et al (2020) CWT ResNet-SVM

(10 FCV)
95.3 96.45 94.5 — — —

Buettner et al (2020) FFT RF (10 FCV) 96.77 96.77 96.77 96.77 96.77 93.55

Prabhakar et al (2020b) EM-PCA, PLS, and

Isomap

RF (Holdout) 98.77 — — — — —

Prabhakar et al (2020a) Nonlinear features SVM-RBF

(10 FCV)
89.85 — — — — —

Sharma andAcharya (2020) Optimal wavelet KNN (10 FCV) 99.21 98.84 99.42 99.05 — —

Nikhil et al (2021) Nonlinear features LSTM (Holdout) 99 98.9 — 99.2 99 —

Kumar et al (2023) CBFS AdaBoost

(10 FCV)
99.36 99.2 99.4 — — —

Racz et al (2020) DFC RF (LOSO) 89.29 78.57 100 78.57 — —

Aydemir et al (2022) Complexity andHFD KNN (10 FCV) 99.82 99.84 99.81 — — —

Goshvarpour andGoshvar-

pour (2020)
Nonlinear features PNN (Holdout) 100 100 100 — — —

SchizoNET MH-TFD CNN (Holdout) 99.95 99.96 99.95 99.96 99.96 99.9

CNN (5 FCV) 99.89 99.87 99.92 99.93 99.90 99.8

CNN (10 FCV) 99.74 99.64 99.87 99.89 99.77 99.48
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LSTMmodels. The spectral features classified using theCNN-based deep learningmodel have obtained the
highest ACCof 94.08%, SEN, F-1measure, and SPE of 92.7%, 93.62%, and 95.31%, respectively. Phang et al
(2020) examined direct connectivity estimated fromEEG to capture brain network during SZ. VARmodel-
based time-domain, PDC-based frequency-domain, and the network topology-based complex network
measures for spatial features and their combination have been using the connectomeCNNmodel. Theirmodel
achieved the highest ACCof 91.69%, SENof 91.11%, SPE of 92.5%, and PRCof 94.14%.Aslan andAkin (2020)
developed an automatedmodel based on the spectrograms of EEG signals obtained using STFT and the visual
geometry group (VGG-16) to classify deep features has obtained anACC, SEN, PRC, and F-1 of 95%.Kutepov
et al (2020) extracted nonlinear features and performed its statistical analysis to determine significant differences
during SZ fromHC subjects. Dimitriadis (2021) developed a hybridmodel that analyzed relative power
spectrumbased onWelch’s algorithm alongwith probability distribution offlexibility index (FI) and SVM
classifier has achieved anACC, SEN, and SPE of 100%using corrEnv features. Kumar et al (2023) used a
histogramof local variance, symmetrically weighted local binary patterns, and correlation-based feature
selection (CBFS)with anAdaboost classifier. Theirmodel obtained 92.85%, 93.3%, and 92.3%of ACC, SEN,
and SPE, respctively with thirteen features. The SchizoNETmodel developed usingMH-TFD-based time-
frequency representationwith theCNNmodel has obtained the highest ACC, SEN, SPE, PRC, and F-1 using
different validation techniques which is higher than all state-of-the-artmodels implemented on dataset 1.

6.2.Dataset: 2
Oh et al (2019)used a deepCNNmodel to automatically extract and classify has obtained anACC, SEN, SPE,
and PRCof 98.07%, 97.32%, 98.17%, and 98.45%. Jahmunah et al (2019) developed a nonlinear-based feature
extractor combining entropy (Renyi, permutation, Tsallis, Kolmogorov-Sinai, and Shannon), activity, Hjorth
andKolmogorov complexity,mobility, largest Lyapunov exponent, and bispectrum to obtain recurrence plots.
These features classified using an SVMclassifierwith radial basis function (RBF) kernel have achieved anACC,
SEN, SPE, and PRCof 92.91%, 93.45%, 92.22%, and 93.6%. The temporal, frequency and spectral feature-based
model developed by Singh et al (2021) using FFT-based rhythms combinedwith theCNNmodel has achieved an
ACCof 98.96%, SPE, F-1, and SENof 98.88%, 98.87%, and 99.05%.Krishnan et al (2020) explored the utility of
MEMD to obtain instantaneous amplitude and frequency-basedmode functions. Several entropy-based
features are extracted from thesemode functions and selected using recursive feature selection. Theirmethod
has obtained the highest ACCof 93%, SENof 94%, SPE of 92%, PRC and F-1 of 92.71%, and 93.04%Cwith all
feature-set classified using radial basis function kernel of SVMclassifier. Aslan andAkin (2020) developed an
automatedmodel based on the spectrograms of EEG signals obtained using STFT and the visual geometry group
(VGG-16) to classify deep features has produced anACC, SEN, PRC, and F-1 of 97%. Shalbaf et al (2020)
explored the scalogram analysis using CWT to extract simultaneous time-frequency information fromEEG
signals. The scalogram is fed to a deep ResNetmodel to extract deep features. Using an SVMclassifier, their
hybridmodel achieved anACC, SEN, and SPE of 95.30%, 96.45%, and 94.50%. Buettner et al (2020) used
analysis of spectra fromdifferent EEG rhythms extracted using FFT. These rhythms have been given to RF
classifier and obtained anACC, SEN, SPE, PRC, and F-1 of 96.77%, andKappa of 93.55%. Prabhakar et al
(2020b) extracted EM-PCA, PLS, and Isomap-based features fromEEG signals. The statistically significant
features have been selected using optimization and classifiedwith differentmachine learning techniques. Their

Table 11. Summary of performance (%) comparisonwith existing state-of-the-artmethods developed usingDataset: 3.

Author Feature extractor Classifier (Validation) ACC SEN SPE PRC F-1 Kappa

Zhang (2019) Statistical features (2) RF (10 FCV) 80.15 — — — — 56.44

Statistical features (5) RF (10 FCV) 80.67 — — — — 58.25

Statistical features (8) RF (10 FCV) 81.1 — — — — 59.3

Siuly et al (2020) EMD SVM (10 FCV) 89.59 89.76 89.32 93.21 91.45 78.17

Khare et al (2020) EWT EBT (10 FCV) 88.7 91.13 89.29 83.78 — —

Khare andBajaj (2021b) FTQWT FLSSVM (10 FCV) 91.39 92.65 93.22 95.57 93.06 —-

Khare andBajaj (2021a) OVMD OELM (10 FCV) 92.93 97.15 91.06 93.94 94.07 85.32

Siuly et al (2022) Average filtering GoogLeNet (Holdout) 95.09 93.81 97.02 97.95 95.83 —

Baygin et al (2023) TQWT KNN 95.84 97.01 94.06 96.11 —- —-

Smith et al (2021) SPWVD CNN (10 FCV) 93.36 94.25 92.03 94.66 94.5 —

STFT CNN (10 FCV) 79.17 — — — — —

CWT CNN (10 FCV) 90.64 — — — — —

SchizoNET MH-TFD CNN (Holdout) 97.95 97.58 98.53 99.03 98.3 95.73

CNN (5 FCV) 97.44 97.02 98.1 98.75 97.88 94.66

CNN (10 FCV) 96.35 95.95 96.97 98.02 96.97 92.37

17

Physiol.Meas. 44 (2023) 035005 SKKhare et al



model obtained an average ACCof 98.77%. In anothermethod, Prabhakar et al (2020a) extractedHurst
exponent, largest Lyapunov exponent, Hjorth exponents, detrended fluctuation analysis, sample entropy,
recurrence quantification analysis, fractal dimension, Kolmogorov, and Lampel Ziv complexity features. The
features selected using black hole optimization have obtained amaximumACCof 89.85%when classifiedwith
the SVM-RBF classifier. Sharma andAcharya (2020)developed an automatedmodel using an optimal two-band
orthogonal wavelet filter bank called optimal root-mean-squared frequency spread.Multiple L1-norm-based
features have been extracted and classified using aKNNclassifier to obtain 99.21%, 98.84%, 99.42%, and
99.05%of ACC, SEN, SPE, and PRC.Nikhil et al (2021) combined handcraftedKatz FD (KFD) and approximate
entropy, alongwith the time-domainmeasure of variance values features an LSTMnetwork. Theirmethod has
obtained anACC and F-1 of 99%, PRCof 99.2%, and SENof 98.9%, respectively. Kumar et al (2023) obtained
the ACC, SEN, and SPE of 99.36%, 99.2%, and 99.4%usingCBFS andAdaBoost classifier. Racz et al (2020) used
DFC andRF classifier to extract and classify dynamic connectivity features. They obtained anACC, SEN, and
SPE of 89.29%, 78.57%, and 100%, respectively with leave one subject out (LOSO) validation. Aydemir et al
(2022) used the analysis of the complexity andHFD features to classify it with theKNNclassifier and reported an
ACC, SEN, and SPE of 99.82%, 99.84%, and 99.81%, respectively. Goshvarpour andGoshvarpour (2020) used
analysis of nonlinear features with PNNclassifier to obtain a performance (ACC, SEN, and SPE) of 100%.Our
developed SchizoNETmodel has obtained anACC, SEN, SPE, PRC, F-1, andKappa of 99.74%, 99.64%,
99.87%, 99.89%, 99.77%, and 99.48%, respectively which is higher than all using ten-FCV state-of-the-art
techniques implemented on dataset 2.

6.3.Dataset: 3
Zhang (2019) used a combination of different statistical features to classify SZ andHC subjects using anRF
classifier. Themodel developed has obtained the highest ACC and kappa of 81.81%and 59.3%using eight
features. Khare et al (2020) used EWT-based analysis to extract various statistical features from the decomposed
components. Among different classification techniques, the highest ACC, SEN, SPE, and PRCof 88.7%,
91.13%, 89.29%, and 83.78%have been obtainedwith the ensemble Bagged tree (EBT) classifier. Siuly et al
(2020) developed an EMD-based automatic identification of SZwhich provides instantaneous amplitude and
frequency information about EEG signals. Different statisticalmeasures obtained from themodes have been
classified using an SVMclassifierwith anACCof 89.59%, PRCof 83.78%, SENof 91.13%, and SPE of 89.29%.
Khare andBajaj (2021b)used the Fisher score-based channel selection technique and FTQWT to extract the
subbands of EEG signals. Five statistically significant features selected by theKruskalWallis test have been
classified using the FLSSVMclassifier. Their self-learnedmodel achieved the performance values of ACC, SEN,
SPE, PRC, and F-1 of 91.39%, 92.65%, 93.22%, 95.57%, and 93.06% respectively for the fourth subband. In
anothermethod, Khare andBajaj (2021a) developed an optimizedmodel combiningOVMDandOELM
classifier. The features of decomposedmodes are selected using statistical analysis and classified using theOELM
classifier. Theirmodel has obtained the highest performance for SEN, SPE, Kappa, ACC, F-1, and PRC values of
97.15%, 91.06%, 85.32%, 92.93%, 94.07%, and 93.94% in the thirdmode due to chaotic behaviour. Smith et al
(2021) extracted simultaneous information about time-frequency representations (TFR) fromEEG signals using
SPWVD, STFT, andCWT. TheTFRhas been transformed into images and fed to theCNNmodel. Theirmethod
has obtained anACCof 93.36%, SENof 94.25%, SPE of 92.03%, PRCof 94.66%, and F-1 of 94.5%using
SPWVD-based TFRwhile anACCof 79.17% and 90.64%has been achievedwith spectrograms and scalograms
techniques. Siuly et al (2022) usedfiltering and deep learning feature extraction and classification using
GoogLeNet. They obtained anACC, SEN, and SPE of 95.09%, 93.81%, and 97.02%, respectively with holdout
validation usingGoogLeNet classifier and 98.84%, 99.02%, and 98.58%using SVMclassifier. Baygin et al
(2023) used iterative TQWT-based feature extractor combinedwithKNNclassifier to detect SZ. They obtained
anACC, SEN, SPE, and PRCof 95.84%, 97.01%, 94.06%, and 96.11%, respectively withCz channel. The
proposedmethod combinesMH-TFD and theCNNmodel has obtained anACC, SEN, SPE, PRC, F-1, and
Kappa of 96.35%, 95.95%, 96.97%, 98.02%, 96.97%, and 92.37%using the ten-FCV technique. Our developed
model has obtained 97.95%, 97.58%, and 98.53%of ACC, SEN, and SPE, respectively with holdout validation.
The performance of the SchizoNETmodel is higher than all state-of-the-art with different validation techniques
developed on dataset 3 confirming thatMH-TFD can capture the subtle details from the EEG signals.

7.Discussion

Themethods developed using nonlinear features require tuning ofmultiple parameters and showing degraded
performance due to different noise and artefacts. FFT-based techniques analyze the EEG signals in the time-
frequency domain. Still, time-based representations of a signal use the entire frequency span over which it is
defined andmay ignore some hidden characteristics alongwith frequency. Similar drawbacks are also true for
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frequency-based representations resulting in poor time-frequency localization. The analysis of EEG signals
using STFT assumes the signal to be stationary over a duration, and also requires the selection of length and type
of window. The discrete wavelet transform-based techniques decompose a signal into subbands by selecting a
motherwavelet and decomposition level that are difficult tofind. The EMD-based decomposition extracts
instantaneous information regarding amplitude and frequency but lacksmathematicalmodelling and suffers
frommodemixing. The TFDprovided by STFT andCWT requires to satisfyHeisenberg-Gabor inequality, due
towhich the resolution in time-frequency of this transformation is limited by localizingwindowparameters like
duration and bandwidth. The TFDobtained using SPWVDrequires kernel function and its length as
parameters. Improper choice of these parametersmay produce severe distortion in the TFR. These
shortcomings result in overlapping information about SZ andHCEEG signals that degrade the system
performance. SomeCNN-based classificationmodels use single-fold fixed-length training and testing sets that
might produce an overfittedmodel.Moreover,many studies are limited to a single EEGdata evaluationwhich
does not guarantee similar performance on other or different EEGdatasets of the same problem.Our proposed
SchizoNETmodel combinesMH-TFD andCNN for automatic time-frequency-amplitude feature extraction
and classification. TheMH-TFDdoes not require any choice of awindow but uses the autocorrelation of signals
to be analyzed. In addition, the problemof cross-term is overcome due to the use of cross-term reduction
window in frequency and time domain. This enables the extraction ofmore hidden information fromEEG
signals which reflect representative and distinguishable characteristics of it. TheCNNmodel enables automatic
classification to detect SZ andHCEEG signals. The evaluation of SchizoNETon three different EEGdatasets of
SZ developed using holdout,five-FCV, and ten-FCVhas provided the highest performance over existing state-
of-the-art techniques onmost of the datasets. It is evident from tables 9, 10, and 11 that this is the first study to
develop a novel DLmodel which can be used for all three public datasets and yield the highest performance. In
addition, our developedmodel is simple as it has only five convolutional layers compared to benchmarkCNN
models like AlexNet, VGG-16, andResNet-50 (Smith et al 2021). Also, our SchizoNETmodel requires fewer
learning parameters i.e. about 42.8million compared to existing AlexNet (approx. 61million) andVGG-16
(approx. 138million)parameters (Smith et al 2021). Themerits of our developed SchizoNETmodel are as
follows:

• Robust: the SchizoNETmodel is robust because it is developed using three different EEGdatasets.

• Accurate and stable: the developedmodel reported the highest andmost consistent performance with
holdout and cross-validation techniques.

• Simple and effective: ourmodel is simple (only five convolutional layers) and has fewer learning parameters
than benchmarkCNNmodels.

The limitations of our proposedmodel are given below:

• In our used three datasets, the number of subjects used in each dataset is too few to explore the LOSO
validation technique.

• Ourwork does not localize the region of SZ.

8. Conclusion

The proposed SchizoNETmodel combinesMH-TFD andCNN to automatically detect SZ patients using EEG
signals. The TFDgenerated byMH-TFDhas provided excellent resolution, hidden information, and detailed
insight into EEG signals due to a reduction in cross-term. The TFDhas facilitated theCNNmodel to extract
deep features that drastically reducedmanual efforts. The simple architecture of the proposedCNNmodel has
drastically improved the systemperformancewith fewer learnable parameters. Our developedmodel correctly
identified 99.74%of SZ signals, the highest among current state-of-the-art techniques. Thus, the proposed
SchizoNETmodel is robust, effective, accurate, and versatile as it obtained the highest performancematrices on
three EEGdatasets. Also, the designedmodel can detect SZ in a resting state, evoked potential, and tasks related
to EEG acquisition. Our SZmodel ismore generalized as it does not require any feature engineering and can
automatically extract and classify features. The limitation of ourmodel is that it has not been developed using
LOSO cross-validation due to the fewer subjects in each of the three datasets. In the future, wewill develop a
subject-based and channel-wise SZ detectionmodel by usingmore subjects in each class.
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