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Abstract

Objective. Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive
dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and
treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals
are one form of a biomarker that can reveal hidden changes in the brain during SZ. However, the EEG
signals are non-stationary in nature with low amplitude. Therefore, extracting the hidden information
from the EEG signals is challenging. Approach. The time-frequency domain is crucial for the automatic
detection of SZ. Therefore, this paper presents the SchizoNET model combining the Margenau—Hill
time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous
information of EEG signals is captured in the time-frequency domain using MH-TFD. The time-
frequency amplitude is converted to two-dimensional plots and fed to the developed CNN model.
Results. The SchizoNET model is developed using three different validation techniques, including
holdout, five-fold cross-validation, and ten-fold cross-validation techniques using three separate
public SZ datasets (Dataset 1, 2, and 3). The proposed model achieved an accuracy of 97.4%, 99.74%,
and 96.35% on Dataset 1 (adolescents: 45 SZ and 39 HC subjects), Dataset 2 (adults: 14 SZand 14 HC
subjects), and Dataset 3 (adults: 49 SZ and 32 HC subjects), respectively. We have also evaluated six
performance parameters and the area under the curve to evaluate the performance of our developed
model. Significance. The SchizoNET is robust, effective, and accurate, as it performed better than the
state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three
publicly available EEG datasets for the automated detection of SZ. Our SchizoNET model can help
neurologists detect the SZ in various scenarios.

1. Introduction

Schizophrenia (SZ) is a complex, neuropsychiatric and cognitive syndrome that appears to result from a
disruption in brain development caused by hereditary or environmental factors, or both. SZ disturbs the
thinking, behaviour, and feeling of an individual. According to the reports published by the World Health
Organization (WHO), about 21 million people accounting for 1% of the global population are suffering from SZ
(WHO 2022). The onset of SZ typically occurs between late adolescence to the beginning of early adulthood.

It emerges earlier in males (early 20 s—late adolescence) than in females (early 20 s—early 30 s)
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(Bromet and Fennig 1999). Itis one of the top 25 leading causes of worldwide disability (Jin and Mosweu 2017).
The symptoms of SZ are heterogeneous that leading to reduced quality of life and functional impairments (Jin
and Mosweu 2017). Itis characterized by cognitive deficits, and negative and positive symptoms (Green and
Horan 2015). The cognitive deficits involve language (difficult to understand for others), difficulty performing
routine activities, lack of attention, and trouble with thinking (deviating from one subject to another with no
logical reason). The negative symptoms (associated with negative SZ) are abnormal memory while the positive
symptoms (associated with positive SZ) are hallucinations, delusions, and confused speech (Oh et al 2019, Lai
etal 2021, Sadeghi et al 2022). The epidemiological characteristics of SZ have three lows (low visit rate, low
detection rate, and low compliance) and three highs (high disability rate, heavy disease burden, and high
recurrence rate). SZ could result in damage to various brain tissues as well as mental deterioration, resulting in
severe mental disability. As a result, SZ has a negative impact on educational and occupational performance. The
possibility of death in SZ is higher than that of healthy people due to physically preventable diseases
(cardiovascular disorder, infections, and metabolic disease) (Siuly et al 2020). Suicide attempts among SZ
patients are about 50%, with a mortality rate due to suicide being about 4%—6% (Caldwell and Gottesman 1990,
Hettige et al 2017). About 69% of SZ patients do not get enough care and treatment resulting in an increased
death rate, disability rate, and suicide rate (Baygin 2021). According to the WHO, timely detection of SZ may
help experts to identify the stage and severity of SZ (WHO 2022). These factors demand a need for timely and
accurate detection of SZ. Various resources such as interviews, imaging, and signaling techniques have been used
to detect SZ. Interviewing by a qualified expert takes time which is susceptible to errors and biased in some cases
(Lloyd et al 2017). Imaging tools (magnetic resonance imaging and computed tomography) are time-
consuming, more expensive, and necessitate extra recordings (Talo et al 2019). Electroencephalogram (EEG)
signals can reveal changes in brain activity to identify various states of the brain (Khare and Bajaj 2021¢, Khare
etal 2022). During EEG recording, sensors placed at the appropriate location on the scalp extract secret
information about changes during SZ. In addition, researchers are well accepted by EEG signals in the
automated identification of brain disorders such as Alzheimer’s disease, seizures, and Parkinson’s disease
(Kumar and Bhuvaneswari 2012, Khare et al 2022).

2. Related work

Recently, many studies have been developed to get insights into the automatic classification of SZ using EEG as a
biomarker. The summary of the existing models developed for SZ detection is shown in table 1.

3. Findings and motivation

The summary of our findings by screening various literature is shown in table 2. It reveals that most of the
automated SZ detection models have been developed on one EEG dataset either in a resting state or performing
some task. Also, we noted that models like LSTM and 1D CNN help to extract Spatio-temporal information but
with reduced performances compared to 2D CNN models (Cho and Jang 2020, Vareka 2021). CNN allows
automatic feature extraction and classification but applying non-stationary EEG signals directly to CNN may
not reveal desired performance. Over the last decade, many CNN models have been developed whose
architecture varied from tens to hundreds of layers. But there is no standard CNN model specified for a
particular application. Therefore, the selection and development of the CNN model depend on the user and
applications. Even with deep models like visual geometry group and ResNet, the desired performance is not
obtained (Smith et al 2021). Also, these techniques involve handcrafted feature extraction, empiric selection of
tuning parameters, rigorous statistical analysis for feature selection, and user-dependent classification
techniques resulting in the lower performance of models.

Therefore, from the identified research gaps we have been motivated to develop a SchizoNET model
comprised of Margenau—Hill time-frequency distribution (MH-TFD) and CNN. The TED helps to study
detailed insight into EEG signals by capturing minute details in terms of time-frequency-amplitude contents. A
CNN model with a simple architecture is developed using multiple validation techniques including holdout,
five-, and ten-fold cross-validation (FCV) techniques to extract and classify the deep features obtained from
TFD. The proposed model is tested and evaluated on three public EEG datasets of SZ. The working steps of the
SchizoNET model are as follows: (i) the temporal information of EEG signals about time-frequency-amplitude
is extracted from MH-TFD, (ii) the TFD is fed to the developed CNN model for automated feature extraction
and classification, (iii) different performance parameters are evaluated and compared them with the current
state-of-the-art techniques. The contribution of the proposed SchizoNET model is listed as follows:
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Table 1. Summary of the existing automated SZ decision models using EEG signals.

Author and Year Subjects Tasks Analysis technique Classification Performance
Yinetal (2017) SZ (Negative): 14 Resting state eye closed mutual information using Shannon and joint entropy Statistical analysis —
SZ (Positive): 14
HC: 14
Alimardani et al (2018) SZ:23 Steady state evoked potential Statistical and nonlinear features k-nearest neighbor (KNN) ACC:91.30%
BP:23
Hiesh etal (2013) SZ:5 Tasks (auditory simulations) Wavelet transform (WT) with statistical (mean, minima, maxima, Support vector machine (SVM) ACC: 88.24%
and standard deviation (STD)) and nonlinear features
HC:5 SEN: 89.48%
SPE: 87%
Begic et al (2000) SZ (Negative): 22 Resting state eye closed fast Fourier transform (FFT) for rhythmic analysis Statistical analysis —
SZ (Positive): 25
HC: 50
Namazietal (2019) SZ:45 Resting-state from adolescents Fractal dimension (FD) and approximate entropy Statistical analysis —
HC:39
Akar etal (2016) SZ:22 Resting state eye closed Entropy and complexity features Statistical analysis —
HC:22
Dvey-Aharon et al (2015) SZ:25 Tasks (stimuli of triangle) Time-frequency feature optimization-based feature extraction Linear discriminant analysis ACC: 88.7%
HC: 25 SEN:77.4%
SPE: 100%
Parvinnia et al (2014) SZ:13 Resting state eye open Band power, autoregressive model (ARM), and FD Weighted distance nearest neighbor ACC:95.3%
HC:18
Sabeti et al (2009) SZ:20 Resting state eye open Higuchi dimensions, Lempel Ziv complexity, and entropy AdaBoost ACC:90%
HC: 20
Suietal (2014) SZ:48 Resting state eye open Multi-set canonical correlation analysis SVM ACC:74%
HC: 53 SEN:72%
SPE: 75%
Phangetal (2019) SZ:45 Resting-state from adolescents ~ Vector-autoregression model (VAM)-based directed connectivity, Deep neural network ACC:95%
and graph-theoretical complex network
HC: 39
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Table 1. (Continued.)

Authorand Year Subjects Tasks Analysis technique Classification Performance
Piryatinska et al (2017) SZ:45 Resting-state from adolescents e-complexity of continuous vector functions of original EEG Random forest (RF) ACC: 85.3%
signals and their finite differences
HC: 39 SEN: 88.6%
SPE: 82.6%
Singh et al (2021) SZ:45 Resting-state from adolescents Mean spectral amplitude, spectral power and Hjorth descriptors Convolutional neural network (CNN) ACC:94.08%
HC: 39 SEN:92.7%
SPE: 95.31%
SZ:14 Resting state eye closed Mean spectral amplitude, spectral power and Hjorth descriptors CNN ACC:98.96%
HC: 14 SEN: 99.05%
SPE: 98.88%
Dimitriadis (2021) SZ:45 Resting-state from adolescents ~ Dynamic correlation of the envelope (corrEnv) SVM ACC:100%
HC: 39 SEN: 100%
SPE: 100%
Calhas (2019) SZ:45 Resting-state from adolescents ~ Discrete short-time Fourier transform (DSTFT) RF ACC: 84%
HC: 39 SEN:87%
SPE: 82%
SZ:45 Resting-state from adolescents ~ VAM, and partial directed coherence (PDC) CNN ACC:91.69%
Phang et al (2020) HC: 39 SEN:91.11%
SPE: 92.5%
Siuly et al (2020) SZ:49 Tasks (push-button task) Empirical mode decomposition (EMD) and statistical features SVM ACC: 89.59%
HC: 32 SEN: 89.76%
SPE: 89.32%
Krishnan et al (2020) SZ:14 Resting state eye closed Multivariate EMD SVM ACC:93%
HC: 14 SEN: 94%
SPE: 92%
Khare and Bajaj (2021a) SZ:49 Tasks (push-button task) Optimized variational mode decomposition (OVMD) Optimized extreme learning ACC:92.93%
machine (OELM)
HC: 32 SEN:97.15%

SPE: 91.06%
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Table 1. (Continued.)

Authorand Year Subjects Tasks Analysis technique Classification Performance
Aslan and Akin (2020) SZ:45 Resting-state from adolescents Spectrograms obtained using short time Fourier transform (STFT) CNN ACC:95%
HC: 39 SEN:95%
SZ:14 Resting state eye closed STFT CNN ACC:97%
HC: 14 SEN:97%
Nikhil et al (2021) SZ:14 Resting state eye closed FD, entropy, variance-based features long short-term memory (LSTM) ACC:99%
HC: 14 SEN:98.9
Shalbaf et al (2020) SZ:14 Resting state eye closed Continuous wavelet transform (CWT) ResNet-SVM ACC:95.3%
HC: 14 SEN: 96.45%
SPE: 94.5%
Prabhakar et al (2020b) SZ:14 Resting state eye closed Partial least squares (PLS), expectation-maximization-based principal RF ACC:96.77%
component
analysis (EM-PCA), nonlinear regression, and isometric mapping
(Isomap)
HC: 14 SEN:96.77%
SPE: 96.77%
Khare et al (2020) SZ:49 Tasks (push-button task) Empirical wavelet transform (EWT) Ensemble bagged tree (EBT) ACC: 88.7%
HC: 32 SEN:91.13%
SPE: 89.29%
Prabhakar et al (2020a) SZ:14 Resting state eye closed Nonlinear features SVM ACC: 89.25%
HC: 14
Ohetal (2019) SZ:14 Resting state eye closed CNN CNN ACC:98.07%
HC: 14 SEN:97.32%
SPE:98.17%
Jahmunah et al (2019) SZ:14 Resting state eye closed Nonlinear features SVM ACC:92.91%
HC: 14 SEN:93.45%
SPE:98.17%
Khare and Bajaj (2021b) SZ:49 Tasks (push-button task) Flexible tunable Q wavelet transform (FTQWT) Flexible least square SVM (FLSSVM) ACC:91.39%
HC: 32 SEN: 92.65%

SPE: 93.22%
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Table 1. (Continued.)

Authorand Year Subjects Tasks Analysis technique Classification Performance
Smith etal (2021) SZ:49 Tasks (push-button task) Smoothed pseudo-Wigner Ville distribution (SPWVD) CNN ACC:93.36%
HC: 32 SEN: 94.25%
SPE: 92.03%
Sharma and Acharya (2020) SZ:14 Resting state eye closed L1 norm features obtained with optimal wavelet KNN ACC:99.21%
HC: 14 SEN:98.84%
SPE: 99.42%
Sunetal (2021) SZ:54 Resting state eye open Different rhythms using FFT and fuzzy entropy features CNN ACC:99.22%
HC: 55
Raczet al (2020) SZ:14 Resting state eye closed Dynamic functional connectivity (DFC) RF ACC: 89.29%
HC: 14 SEN:78.57%
SPE: 100%
Goshvarpour and Goshvar- SZ:14 Resting state eye closed Complexity, Higuchi FD (HED), and Lyapunov exponents Probabilistic neural network (PNN) ACC:100%
pour (2020)
HC: 14 SEN: 100%
SPE: 100%
Masychevetal (2021) SC: 57 Tasks (auditory odd-ball Symbolic transfer entropy (STE) SVM ACC:92.68%
paradigm)
HC: 66 SEN:92.98%
SPE: 92.42%
Ravaneral (2015) SC: 47 Tasks (auditory odd-ball Brain source localization Statistical analysis —
paradigm)
HC: 66
Lietal (2019) S7:23 Visual P300 tasks Spatial pattern of network (SPN) SVM ACC:90.48%
HC: 25 Resting state eye closed SEN: 89.47%
SPE:91.3%
Ciprian etal (2021) SZ:62 Resting state eye closed Effective connectivity and STE KNN ACC:96.92%
HC:70 SEN:95%

SPE: 98.57%
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Table 1. (Continued.)

Author and Year Subjects Tasks Analysis technique Classification Performance
Liuetal (2017) SZ:10 Resting state eye closed Statistical features SVM ACC:91.16%
HC: 10
Kumar et al (2023) SZ:45 Resting-state from adolescents Correlation-based feature selection (CBFS) AdaBoost ACC:92.85%
HC: 39 SEN:93.3%
SPE:92.3%
SZ:14 Resting state eye closed CBFS AdaBoost ACC:99.36%
HC: 14 SEN:99.2%
SPE: 99.4%
Aydemir et al (2022) SZ:14 Resting state eye closed Cyclic group of prime order pattern KNN ACC:99.82%
HC: 14 SEN:99.84%
SPE: 99.81%
Siuly et al (2022) SZ:49 Tasks (push-button task) Average filtering GoogLeNetand SVM ACC:98.84%
HC: 32 SEN:99.02%
SPE: 98.58%
Baygin et al (2023) SZ:49 Tasks (push-button task) Tunable Q wavelet transform (TQWT) KNN ACC:95.84%
HC: 32 SEN:97.01%
SPE: 94.06%
“HC (Healthy control)
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Table 2. Summary of findings obtained from the state-of-the-art techniques.

SKKhare etal

Parameters Findings Advantages Limitations
Dataset
Signals The available studies have mostly The acquisition of EEG is fast, SZ may attack individuals at any

explored EEG signal analysis portable, and non-invasive
either in a resting state with eyes

closed/open or with tasks

age affecting their auditory and
motor abilities. Therefore, it is
desired to study EEG signals
acquired during resting and
tasks. But models tested on one
dataset do not guarantee
desired performance with
others

Signal analysis

Direct feature analysis

Extraction of statistical features Extracting features directly

and nonlinear features requires eliminates additional signal
the selection of scaling para- analysis tools
meters. Nonlinear (FD,

entropy, ARM, and Hjorth

parameters) and statistical fea-

tures are affected by noise

The extraction of features directly
from EEG signals fails to find
representative information. The
performance of the system is
degraded due to noise and inap-
propriate selection of scaling
range

Frequency analysis (FFT,
filtering, STFT, DSTFT)
and rhythm separation

EEG signals are composed of
multi-frequency bands that
help to study the changes in
EEG during SZ

Allows the analysis of exact fre-
quency contents of EEG
which may help to reveal hid-
den characteristics during SZ

Frequency domain analysis pro-
vides analysis of exact frequency
content but fails to reveal at
what time the frequency con-
tents occurred. Also, it suffers
time-frequency localization and
sharp filter boundaries. DSTFT
and STFT assume signals to be
stationary and require a choice
of window (type and length)

Nonlinear decomposition
(EWT, optimal wavelet,
TQWT, CWT, EMD

Nonlinear decomposition extracts

instantaneous information
about time-frequency. It

It decomposes the signal into
multicomponent that pro-
vide representative char-

EMD and MEMD are exper-
imental and lack mathematical
modelling. EWT, optimal

and MEMD) requires to define the basis acteristics of the signals wavelet, and CWT require tun-
function with which the signal ing parameters to get multi-
is represented bands
Decision-making
Machine learning (SVM, Machine learning models require Decision-making is fast. Avail- An inappropriate selection of

KNN, decision tree,
ensemble, neural net-
works, etc.)

tuning of hyperparameters and

selection of kernel

ability of different models
with distinct cost functions

hyperparameters and kernels
may result in decreased perfor-
mance or overfitting

Deep learning (LSTM,
CNN, auto encoder,
etc.)

The models like LSTM and 1D

CNN necessitate the extraction
of Spatiotemporal information

but have degraded perfor-

mances when compared to 2D
or image-based CNN models

Enables simultaneous extrac-

tion of features and classifi-
cation. The vast availability
of models

No standard model is available for
decision-making. Some models
are so deep that require a large
number of training time and
learning parameters. CNN
allows automatic feature extrac-
tion and classification but
applying non-stationary EEG
signals directly to CNN may not
reveal desired performance

+ To the best of our knowledge, we are the first group to develop automated SZ detection on three EEG datasets.
Therefore, the SchizoNET model has good generalization ability on different datasets.

+ Visual inspection of EEG signals is very tedious and prone to human error. Hence, the study of temporal and
spatial information of EEG signals about time-frequency amplitude is performed by MH-TED.
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Figure 1. Schematic representation of the proposed SchizoNET model.

+ Traditional techniques require extensive parameter tuning, the selection of handcrafted features is time-
consuming, and the appropriate choice of classifiers is difficult. Therefore, we developed a simple CNN
architecture using fewer layers and tested it with multiple validation techniques to evaluate performance
metrics (PM).

The paper is structured as sections 1 and 2 presented the introduction and related work. Findings of literature
and motivation are covered in section 3, and details about materials and methods are covered in section 4.
Results are presented in section 5, performance comparison with current state-of-the-art is provided in section 6,
adiscussion is covered in section 7, and conclusions are given in section 8.

4. Materials and methods

The steps of the proposed SchizoNET model involve details of EEG datasets, the extraction of simultaneous
temporal and spatial information using MH-TFD, automatic feature extraction and classification using the
CNN model. The schematic of the SchizoNET is shown in figure 1.

4.1. Datasets

The proposed method uses three publicly available EEG datasets to test the SchizoNET model. The first dataset is
acquired from adolescents during resting state, the second dataset is comprised of resting-state EEG acquired
from adults, and the third dataset is recorded during the press button task. The demographic details of these
datasets are discussed below and presented in table 3.

4.1.1. Dataset 1

The EEG dataset of Lomonosov Moscow State University has 84 adolescent subjects (Borisov et al 2005, Sergey
and Gorbachevskaya). The resting-state eyes-closed EEG data is captured for 1 minute from 16 channels (T3, T4,
T5,T6, F7, F3, F4, F8, P3, Pz, P4, C3, Cz, C4, O1, and O2 referenced to coupled ear electrodes). The SZ patients
(including schizotypical, childhood SZ, and schizoaffective disorders) were diagnosed as per SZ diagnostic
criteria F20, F21, and F25 of the International Classification of Diseases-10 (ICD-10) of Mental and Behavioural
Disorders, set by the International Statistical Classification of Diseases and Related Health Problems. Specialists
of the Mental Health Research Center have confirmed the diagnoses of SZ patients. Patients did not undergo any
chemotherapy during the examination at the Mental Health Research Center. It is noted that only artefact-free
EEG recordings are used for the analysis.
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Table 3. Details of the datasets used.
Values

Features

Dataset 1 Dataset 2 Dataset 3
Total subjects 84 28 81
HC 39 14 32
SZ 45 14 49
Males (SZ) — 7 26
Females (SZ) — 7 6
Males (HC) — 7 41
Females (HC) — 7 8
Mean age (SZ) 12 years 3 months 28.1 £ 3.7 years 38.37 & 13.91 years
Mean age (HC) 12 years 3 months 27.75 £ 3.15years 40.02 £ 13.48 years
Mean age (Male SZ) — 27.9 £ 3.3 years 40.21 £ 12.93 years
Mean age (Male HC) — 26.8 & 2.9 years 38.15 £ 12.97 years
Mean age (Female SZ) — 28.3 £ 4.1years 39 £ 16.98 years
Mean age (Female HC) — 28.7 £ 3.4 years 39.33 + 18.91 years
EEG segment 60s 25s 3s
No. of segments 1344 21702 493 824
No. of channels 16 19 64
Sampling Freq. (Hz) 128 250 1024

4.1.2. Dataset 2

Dataset 2 comprises 14 subjects with paranoid SZ hospitalized at the Institute of Psychiatry and Neurology in
Warsaw, Poland, and 14 HC subjects (Olejarczyk and Jernajczyk 2017). All patients met the ICD-10 criteria for
paranoid SZ (F20). The criteria for inclusion of SZ subjects: are ICD-10 diagnosis F20, a minimum medication
washout period of seven days, and a minimum age of 18. Exclusion criteria: organic brain pathology, presence of
a general medical condition, pregnancy, first episode of SZ, and neurological diseases. The EEG was recorded for
15 minutes in an eyes-closed resting-state condition. The 19-channel (P3, Fp1, Fp2, Pz, C4, F7, F3, Fz, P4, C3,
Cz,F4,F8,01,02,T3, T4, T5, T6) EEG montage built in-accordance to international 10-20 system was used.

4.1.3. Dataset 3

It is obtained from Kaggle which contains EEG signals of 81 subjects (button—tone https://www.kaggle.com/
broach/button-tone-szn.d.). The diagnosis criteria for SZ patients were by the Structured Clinical Interview for
DSM-IV. Subjects of both groups i.e. SZ and HC, were age, handedness (right), and gender-matched. Exclusion
criteria for SZ included no dependence on substances for the past year while for HC subjects no history of
substance dependence, current or past history of having a first-degree relative with a psychotic disorder, or
DSM-1V Axis I disorder. The data were band-pass filtered between 0.5 and 15 Hz and a baseline was corrected at
—0.6to —0.5 s. The EEG epochs were artefact rejected for voltages exceeding 100 4V at all scalp sites. The
details about the dataset and acquisition steps can be found in Ford et al (2013). From the previous studies it has
been found that pressing a button to generate a tone immediately is helpful in the detection of SZ and HC hence,
itis used for analysis in the current work (Khare et al 2020, Siuly et al 2020, Smith et al 2021). The examples of
EEG signals for HC and SZ subjects for Datasets 1, 2, and 3 are shown in figure 2.

4.2. Margenau—Hill time-frequency distribution (MH-TFD)

The information provided by signals about frequency-domain and time-domain components helps to study the
characteristics of any signal. Since time-based representations use the entire frequency span in which the signal is
defined, they ignore some hidden characteristics along with frequency. Similar limitations are also true to
frequency-based representations (Advanced Time-Frequency Signal and System Analysis 2016). To address this,
transformations based on TFD are the best way to represent a time-dependent spectrum of non-stationary EEG
signals. The linear TFD like STFT and wavelets uses a window to localize behaviour in time and frequency. But to
satisfy the Heisenberg-Gabor inequality, the resolution in time-frequency of this transformation is limited by
localizing window parameters like duration and bandwidth. The choice of smaller time duration results in
greater bandwidth and vice versa due to a compromise between time and frequency in linear TFD (Advanced
Time-Frequency Signal and System Analysis 2016). The CWT-based TFR requires an appropriate selection of
mother wavelet; which is again tedious. The MH-TFD helps to overcome the limitation of linear TFD as it does
not use localizing windows or wavelet selection. MH-TFD uses autocorrelation of a signal rather than windows
thus, it does not restrict resolutions in time frequency. MH-TFD provides better representation and decomposes
EEG signal components into TFD. The time-frequency representation obtained using MH-TFD is denoted by
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Figure 2. Typical EEG signals used: (a) SZ (dataset 1), (b) HC (dataset 1), (c) SZ (dataset 2), (d) HC (dataset 2), (¢) SZ (dataset 3), and (f)
HC (dataset 3).

equation (1) (Hatami et al 2016)

MH},(t, f) — Real(ﬂ expjﬂ” eXPjZm/(s—t) o
¥ (S + %)y*(s - %)exp*f“ff dsdrdz/) )

where y(. ) denotes the signal to be analyzed, tand frepresents time and frequency, * denotes complex conjugate
pair, and the kernel function is denoted by exp/™™ . The above-mentioned equation can be simplified as (Hatami
etal2016)

MH,(t, f) = Real(y (t)exp 72" Y*(f)), )

where Y(f) is the Fourier transform of y(¢). But, MH-TFD produces interference called cross-terms which
interrupts the readability of the signal when analyzing it in multi-components. These cross-terms generate non-
identical components that severely distort the signals. The cross-term formulation of a signal is denoted as
(Hatami et al 2016)

CT,, (t, ) = Real(‘ﬁ. exp/mT expi?m—H 4)

™\ . T T T
B O G R G A O | ®
exp 2" dsdrdv), 6)

where the two-component of a signal is denoted by y;and y, with a cross-term CT,, ,, . The cross-term in the time
and frequency domain can be minimized by using a kernel function. MH-TFD uses time and frequency cross-
term reduction kernels with a provision of flexible length to minimize the cross-term of a signal. Due to this
reason, MH-TFD is a suitable choice for obtaining the time-frequency representation of a signal. The EEG
segments of three datasets with all channels are converted to TFD image. For dataset 1, 60 s of EEG segment
(7680 samples) are transformed into TFD image using MHTFD. Similarly, for datasets 2 and 3, we have used 25 s
(6250 samples) and 3 s (3072 samples) of EEG segments are converted to TFD. Therefore, for datasets 1,2, and 3
we have obtained 1344, 21 702, and 49 3824 TFD images, respectively. These TFD images of all the channels are
fed to the CNN model for the detection of SZ from HC EEG segments. The typical TFD of an SZ and HC EEG
signals obtained by MH-TFD on three datasets are shown in figure 3. The TFD indicates that the energy content
of EEG for SZ and HC is dominant in a lower frequency range.

4.3. Convolutional neural network (CNN)

The 2D TFD obtained using MH-TFD is fed to a CNN model. It is an automated tool that enables the extraction
and classification of deep features. Convolutional, pooling, dropout, dense, softmax, and classification layers are
the main building blocks of CNN. The extraction of deep features is controlled by convolution, pooling, and
dropout layers while the classification is done through dense, softmax, and output (classification) layers. The
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Figure 3. Typical TFD plots obtained: (a) SZ and (b) HZ; (i) Dataset 1, (ii) Dataset 2, and (iii) Dataset 3.
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convolutional layer is the heart of the CNN model comprised of filters (kernels) that are moved along the tensor
(image) in a fixed length called stride. Convolutions of kernel and tensor are evaluated to obtain output feature
maps. Zero paddings are applied to keep image size while non-linearity in the network is added using the
activation function. The pooling layer reduces the dimension of the output feature maps by keeping the number
of input and output maps unaltered. A dense layer is followed by a pooling layer which transforms a 2D matrix to
1D and assigns some scores to the deep features extracted from the preceded layers. The softmax layer allocates
the probability using some algorithms to each feature score. Finally, the classification layer assigns the output
class to feature maps. In addition, a CNN model also uses a normalization layer to bring all the feature maps to
the same scale which helps regularization, avoiding overfitting. A dropout layer deactivates some of the neurons

in the network to lessen generalization error and overfitting.

Various CNN models are developed with different combinations of layers which vary from application to
application and user to user. Some use CNN models with fever layers while others use dense CNN models
composed of hundreds of layers (Alom et al 2018). Even with different configurations of CNN models and
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Table 4. Summary of hyperparameters used for the proposed CNN model.

Layer Type KS FS oS Lp op
0 Input — — — — —
Conv2D 9x%x9 96 73 X 73 23424 Str=3
(Relu)
2 BatchNorm — — 73 x 73 384 —
3 MaxPool — — 36 x 36 0 Str=2
PS=3
4 Conv2D 5x5 256 32 x 32 614 656 Str=1
(Relu)
5 BatchNorm — — 32 x 32 1024 —
6 MaxPool — — 15 x 15 0 Str=2
PS=3
7 Conv2D 3x3 384 13 x 13 885120 Str=1
(Relu)
8 Conv2D 3x3 384 11 x 11 1327 488 Str=1
(Relu)
9 Conv2D 3x3 256 9x%x9 884 992 Str=1
(Relu)
10 MaxPool — — 4 x4 0 Str=2
PS=2
11 Dense — — 4096 16 781 312 HN = 4096
(Relu)
12 DropOut — — 4096 0 Rate = 0.5
13 BatchNorm — — 4096 16 384 —
14 Dense — — 4096 16 781 312 HN = 4096
(Relu)
15 DropOut — — 4096 0 Rate = 0.5
16 BatchNorm — — 4096 16 384 —
17 Dense — — 192 786 624 HN =192
(Relu)
18 DropOut — — 192 0 Rate = 0.5
19 BatchNorm — — 192 768 —
20 Dense — — 2 386 HN =2
(Softmax)

KS-kernel size, FS-filter size, OS-output size, LP-learning parameters, OP-other parameters, Str-
stride, PS-pool size.

multiple trials, the desired performance is not achieved. Also, there is no standard model available for this
application due to alack of prior (Wolpert 1996). Therefore, a CNN model is developed with five convolutions,
three pooling, three dense, and one output layer. In addition, the developed model uses rectified linear unit
(Relu) as an activation function to increase non-linearity, a max-pooling layer to reduce the dimensionality of
the feature map, a dropout of 50%, and batch normalization layers to reduce overfitting. The summary of the
proposed CNN model is shown in table 4.

5. Results

Traditional machine learning techniques require extensive statistical analysis for selecting handcrafted methods
and features. Moreover, a precise selection of the classifier and its parameters is time-consuming and does not
guarantee performance success. Thus, the SchizoNET model is developed for the automatic detection of SZ.
Three public datasets comprised of push-button tasks and resting-state EEG signals are employed for testing the
SchizoNET model. The EEG epochs are transformed into time-frequency representation using MH-TFD. For
reducing the cross-term of TFD, the Kaiser time and frequency window of lengths 31 and 63 are used. Obtained
TFD is converted into images and fed to the CNN model. The learning rate is 10~ °*, the bias and weight learning
factor are both fixed at 10, the adaptive moment estimation optimizer is used to scale the learning rate of each
weight, the batch size is 64, the total number of epochs is 60, and the frequency of validation is 50. All the
parameters are selected empirically and maintained uniformly throughout the experimentation.

The DL models often offer very high performance; however, their stability is uncertain. Therefore, to verify
the stability of our developed model, we have performed holdout (80% data used for training and 20% data used
for testing), five-FCV, and ten-FCV techniques. The accuracy (ACC) obtained for each dataset using the
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Table 5. Accuracy (%) obtained using various validation techniques
with our proposed SchizoNET.

Validation technique Dataset 1 Dataset 2 Dataset 3
Holdout 98.14 99.95 97.95
Five-FCV 97.47 99.9 97.44
Ten-FCV 97.4 99.74 96.35

Table 6. Performance measures obtained for SchizoNET using different validation techniques.

Holdout Five-FCV Ten-FCV
Validation

Performance Dataset: 1 Dataset: 2 Dataset: 3 Dataset: 1 Dataset: 2 Dataset: 3 Dataset: 1 Dataset: 2 Dataset: 3

ACC 98.14 99.95 97.95 97.47 99.89 97.44 97.40 99.74 96.35
SEN 97.93 99.96 97.58 97.25 99.87 97.02 96.85 99.64 95.95
SPE 98.39 99.95 98.53 97.73 99.92 98.10 98.04 99.87 96.97
Kappa 94.80 99.90 95.73 94.90 99.80 94.66 94.72 99.48 92.37
PRC 98.61 99.96 99.03 98.06 99.93 98.75 98.33 99.89 98.02
F-1 98.27 99.96 98.30 97.65 99.90 97.88 97.59 99.77 96.97

aforementioned validation techniques is shown in table 5. The results show that the ACC for holdout validation
in all the datasets is highest because it is not averaged, while it is slightly reduced in the case of multi-fold CV
techniques.

The SchizoNET model is evaluated by measuring six performance measures: ACC, Cohen’s Kappa (Kappa),
precision (PRC), sensitivity (SEN), specificity (SPE), and F-1 measure. As our model is tested on balanced and
unbalanced datasets, we have chosen the above-mentioned performance measures. Table 6 shows the
performance measures obtained using holdout, five-FCV, and ten-FCV with our SchizoNET model for Datasets
1,2,and 3. The result shows that our developed SchizoNET model provides high performance on all three
datasets and validation techniques. Thus, the results of tables 5 and 6 confirm the robustness of our SchizoNET
model to obtain high performance in different validation scenarios for all three datasets. This confirms that our
model has generated more distinct deep features to accurately categorize SZ and HC EEG segments. Figure 4
depicts plot of accuracy and loss versus iteration obtained for training, testing and validation phases of proposed
SchizoNET.

A model with higher accuracy and higher variation from its mean value does not make a significance. As a
result, the STD from a mean value of each PM is evaluated to measure the effectiveness of the SchizoNET.

Table 7 provides the variation of STD and margin of error (MoE) obtained for each PM for a 95% confidence
interval (CI). The table shows that the model got very little STD from the mean for each PM. On dataset 1, F-1
provides the lowest STD of +-0.63 while the highest is +-1.43 for Kappa. For dataset 2, SEN achieved the highest
STD of +0.44 while PRC provided the minimum STD of £0.13. Finally, on dataset 3, the least STD of +-0.68 is
provided for F-1, whereas the highest is +2.46 for SPE. The MoE obtained using 95% CI on all datasets reveals
that PM on each fold during ten-FCV shows no significant variance, indicating that the SchizoNET method is
reliable and effective.

To get more insight into the SchizoNET model, the percentage confusion matrix is evaluated for three
datasets using ten-FCV as shown in table 8. It can be evident from table 8 that 98.33% of SZ and 96.31% of HC
EEG signals are identified correctly in their corresponding classes for Dataset 1. On Dataset 2, 99.89% of SZ and
99.56% of HC EEG signals, and on Dataset 3, 98.02% of SZ while 93.86% of HC EEG signals are correctly
classified. The proposed SchizoNET model has the highest and least classification rate for SZ signals is 99.89%
and 98.02%.

Further, we have evaluated receiver operating characteristics (ROC) and area under the curve (AUC) for our
SchizoNET model, as shown in figure 5. It is evident that our developed model provided the AUC 0f 97.69%,
99.99%, and 96.52% for dataset 1, 2, and 3, respectively. This shows that our developed model accurately
performs binary classification of SZ and HC.

6. Performance comparison

The performance of the SchizoNET is evaluated further by comparing it with current state-of-the-art
techniques. Tables 9, 10, and 11 shows the performance comparison of the SchizoNET model on dataset 1, 2,
and 3, respectively.
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Figure 4. Plot of accuracy and loss versus iteration obtained for training, testing and validation phases of SchizoNET.

Table 7. STD from mean and MoE for 95% CI obtained for the SchizoNET model.

Dataset 1 Dataset 2 Dataset 3
PM
u =+ STD MoE w=+ STD MoE u =+ STD MoE

ACC 97.40 + 0.68 + 0.42 99.74 + 0.22 +0.14 96.35 + 0.69 +0.43
SEN 96.85 + 1.11 + 0.68 99.64 + 0.44 +0.275 95.95 + 1.55 +0.96
SPE 98.04 + 0.80 +0.49 99.87 £ 0.15 + 0.09 96.97 + 2.46 +1.52
Kappa 94.72 + 1.44 + 0.85 99.48 + 0.40 +0.28 92.37 + 1.38 + 0.86
PRC 98.33 £+ 0.70 +0.43 99.89 + 0.13 +0.08 98.02 + 2.27 + 1.41
F-1 97.59 £ 0.63 +0.39 99.77 £ 0.20 +0.12 96.97 + 0.68 +0.42

Table 8. Percentage confusion matrix obtained for SchizoNET model.

Dataset 1 Dataset 2 Dataset 3

Dataset

Class SZ HC SZ HC SZ HC

SZ 708 12 11882 12 289 076 5836

HC 23 601 43 9765 12 208 186 704

6.1. Dataset: 1

The model developed by Piryatinska et al (2017) operated on continuous vector functions obtained from
e-complexity to obtain the features classified using RF and SVM classifiers. Their model achieved the highest
ACC 0f 89.3%, an average ACC of 85.3%, SEN of 88.6%, and SPE of 82.6% using the RF classifier. Calhas (2019)
used DSTFT-based analysis of EEG signals to extract time-frequency-amplitude features. These features are
given to CNN and different classifiers like KNN, SVM, XGBoost, RF, and Naive Bayes. The DSTFT and RF
classifier combination has obtained the highest ACC of 84%, SPE of 82%, and SEN of 87%. Singh et al (2021)
used filtering and FFT-based rhythm separation. Different features combining Hjorth parameters (mobility,
complexity, and activity), spectral power, and mean spectral amplitude have been extracted from the delta, beta,
gamma, alpha, and theta rhythms. These features are classified using deep learning classifiers like CNN and
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Figure 5. Summary of ROC and AUC curves obtained for SchizoNET: (i) Dataset 1, (ii) Dataset 2, and (iii) Dataset 3.
Table 9. Summary of performance (%) comparison with existing state-of-the-art methods developed using Dataset: 1.
Author Feature extractor Classifier (validation) ACC SEN SPE PRC F-1
Piryatinska et al (2017) e-complexity RF (10 FCV) 85.3 88.6 82.6 — —
Calhas (2019) DSTFT RF (5 FCV) 84 87 82 — —
Singhetal (2021) FFT-based rhythms CNN (Holdout) 94.08 92.7 95.31 — 93.62
Phang et al (2020) TF-domain VAM CNN (5FCV) 91.69 91.11 92.5 94.14 —
Aslan and Akin (2020) STFT VGG-16 (Holdout) 95 95 — 95 95
Kutepov et al (2020) Nonlinear features Statistical analysis — — — — —
Dimitriadis (2021) Fland corrEnv SVM (5 FCV) 100 100 100 — —
Kumar et al (2023) CBES AdaBoost (10 FCV) 92.85 93.3 92.3 — —
SchizoNET MH-TFD CNN (Holdout) 98.14 97.93 98.39 98.61 98.27
CNN (5FCV) 97.47 97.25 97.73 98.06 97.65
CNN (10 FCV) 97.4 96.85 98.04 98.33 97.59
Table 10. Summary of performance (%) comparison with existing state-of-the-art methods developed using Dataset: 2.
Author Feature extractor Classifier ACC SEN SPE PRC F-1 Kappa
Ohetal (2019) CNN CNN (10 ECV) 98.07 97.32  98.17 98.45 — —
Jahmunah ef al (2019) Nonlinear features SVM-RBF 9291 9345 92.22 93.6 — —
(10 FCV)
Singh etal (2021) FFT-based rhythms CNN (Holdout) 98.96  99.05  98.88 — 98.87 —
Krishnan et al (2020) Multivariate EMD SVM-RBF 93 94 92 92.71  93.04 —
(10FCV)
Aslan and Akin (2020) STFT VGG-16 97 97 — 97 97 —
(Holdout)
Shalbaf et al (2020) CWT ResNet-SVM 95.3 96.45 94.5 — — —
(10 FCV)
Buettner et al (2020) FFT RE (10 FCV) 96.77  96.77  96.77  96.77  96.77 93.55
Prabhakar et al (2020b) EM-PCA, PLS, and RF (Holdout) 98.77 — — — — —
Isomap
Prabhakar et al (2020a) Nonlinear features SVM-RBF 89.85 — — — — —
(10FCV)
Sharma and Acharya (2020) Optimal wavelet KNN (10 FCV) 99.21  98.84  99.42  99.05 — —
Nikhil eral (2021) Nonlinear features LSTM (Holdout) 99 98.9 — 99.2 99 —
Kumar et al (2023) CBFS AdaBoost 99.36 99.2 99.4 — — —
(10 FCV)
Raczetal (2020) DEC RF (LOSO) 89.29 7857 100 7857  — —
Aydemir et al (2022) Complexity and HFD KNN (10 ECV) 99.82  99.84  99.81 — — —
Goshvarpour and Goshvar- Nonlinear features PNN (Holdout) 100 100 100 — — —
pour (2020)
SchizoNET MH-TFD CNN (Holdout) 99.95 99.96 99.95 99.96 99.96 99.9
CNN (5 FCV) 99.89 99.87 9992 9993 99.90 99.8
CNN (10 FCV) 99.74 99.64 99.87 99.89 99.77 99.48
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Author Feature extractor Classifier (Validation) ACC SEN SPE PRC F-1 Kappa
Zhang (2019) Statistical features (2) RF (10 FCV) 80.15 — — — — 56.44
Statistical features (5) RF (10 FCV) 80.67 — — — — 58.25
Statistical features (8) RF (10 FCV) 81.1 — — — — 59.3
Siuly etal (2020) EMD SVM (10 FCV) 89.59 89.76 89.32 93.21 91.45 78.17
Khare et al (2020) EWT EBT (10 FCV) 88.7 91.13 89.29 83.78 — —
Khare and Bajaj (2021b) FTQWT FLSSVM (10 FCV) 91.39 92.65 93.22 95.57 93.06 —
Khare and Bajaj (2021a) OVMD OELM (10 FCV) 92.93 97.15 91.06 93.94 94.07 85.32
Siuly et al (2022) Average filtering GoogLeNet (Holdout) ~ 95.09  93.81 97.02 9795  95.83 —
Baygin et al (2023) TQWT KNN 95.84 97.01 94.06 96.11 — —
Smith et al (2021) SPWVD CNN (10 FCV) 93.36 94.25 92.03 94.66 94.5 —
STFT CNN (10 FCV) 79.17 — — — — —
CWT CNN (10 FCV) 90.64 — — — — —
SchizoNET MH-TFD CNN (Holdout) 97.95 97.58 98.53 99.03 98.3 95.73
CNN (5FCV) 97.44 97.02 98.1 98.75 97.88 94.66
CNN (10 FCV) 96.35 95.95 96.97 98.02 96.97 92.37

LSTM models. The spectral features classified using the CNN-based deep learning model have obtained the
highest ACC 0f 94.08%, SEN, F-1 measure, and SPE 0f 92.7%, 93.62%, and 95.31%, respectively. Phang et al
(2020) examined direct connectivity estimated from EEG to capture brain network during SZ. VAR model-
based time-domain, PDC-based frequency-domain, and the network topology-based complex network
measures for spatial features and their combination have been using the connectome CNN model. Their model
achieved the highest ACC 0f91.69%, SEN 0f 91.11%, SPE 0f 92.5%, and PRC 0f 94.14%. Aslan and Akin (2020)
developed an automated model based on the spectrograms of EEG signals obtained using STFT and the visual
geometry group (VGG-16) to classify deep features has obtained an ACC, SEN, PRC, and F-1 of 95%. Kutepov
etal (2020) extracted nonlinear features and performed its statistical analysis to determine significant differences
during SZ from HC subjects. Dimitriadis (2021) developed a hybrid model that analyzed relative power
spectrum based on Welch’s algorithm along with probability distribution of flexibility index (FI) and SVM
classifier has achieved an ACC, SEN, and SPE of 100% using corrEnv features. Kumar et al (2023) used a
histogram oflocal variance, symmetrically weighted local binary patterns, and correlation-based feature
selection (CBFS) with an Adaboost classifier. Their model obtained 92.85%, 93.3%, and 92.3% of ACC, SEN,
and SPE, respctively with thirteen features. The SchizoNET model developed using MH-TFD-based time-
frequency representation with the CNN model has obtained the highest ACC, SEN, SPE, PRC, and F-1 using
different validation techniques which is higher than all state-of-the-art models implemented on dataset 1.

6.2. Dataset: 2

Ohetal (2019) used a deep CNN model to automatically extract and classify has obtained an ACC, SEN, SPE,
and PRC 0f 98.07%, 97.32%, 98.17%, and 98.45%. Jahmunah et al (2019) developed a nonlinear-based feature
extractor combining entropy (Renyi, permutation, Tsallis, Kolmogorov-Sinai, and Shannon), activity, Hjorth
and Kolmogorov complexity, mobility, largest Lyapunov exponent, and bispectrum to obtain recurrence plots.
These features classified using an SVM classifier with radial basis function (RBF) kernel have achieved an ACC,
SEN, SPE, and PRC 0£92.91%, 93.45%, 92.22%, and 93.6%. The temporal, frequency and spectral feature-based
model developed by Singh et al (2021) using FFT-based rhythms combined with the CNN model has achieved an
ACC 0f98.96%, SPE, F-1, and SEN 0f 98.88%, 98.87%, and 99.05%. Krishnan et al (2020) explored the utility of
MEMD to obtain instantaneous amplitude and frequency-based mode functions. Several entropy-based
features are extracted from these mode functions and selected using recursive feature selection. Their method
has obtained the highest ACC 0f 93%, SEN of 94%, SPE 0f 92%, PRC and F-1 0f 92.71%, and 93.04%C with all
feature-set classified using radial basis function kernel of SVM classifier. Aslan and Akin (2020) developed an
automated model based on the spectrograms of EEG signals obtained using STFT and the visual geometry group
(VGG-16) to classify deep features has produced an ACC, SEN, PRC, and F-1 0f 97%. Shalbaf et al (2020)
explored the scalogram analysis using CWT to extract simultaneous time-frequency information from EEG
signals. The scalogram is fed to a deep ResNet model to extract deep features. Using an SVM classifier, their
hybrid model achieved an ACC, SEN, and SPE of 95.30%, 96.45%, and 94.50%. Buettner et al (2020) used
analysis of spectra from different EEG rhythms extracted using FFT. These rhythms have been given to RF
classifier and obtained an ACC, SEN, SPE, PRC, and F-1 0f 96.77%, and Kappa of 93.55%. Prabhakar et al
(2020b) extracted EM-PCA, PLS, and Isomap-based features from EEG signals. The statistically significant
features have been selected using optimization and classified with different machine learning techniques. Their
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model obtained an average ACC of 98.77%. In another method, Prabhakar et al (2020a) extracted Hurst
exponent, largest Lyapunov exponent, Hjorth exponents, detrended fluctuation analysis, sample entropy,
recurrence quantification analysis, fractal dimension, Kolmogorov, and Lampel Ziv complexity features. The
features selected using black hole optimization have obtained a maximum ACC of 89.85% when classified with
the SVM-RBF classifier. Sharma and Acharya (2020) developed an automated model using an optimal two-band
orthogonal wavelet filter bank called optimal root-mean-squared frequency spread. Multiple L1-norm-based
features have been extracted and classified usinga KNN classifier to obtain 99.21%, 98.84%, 99.42%, and
99.05% of ACC, SEN, SPE, and PRC. Nikhil et al (2021) combined handcrafted Katz FD (KFD) and approximate
entropy, along with the time-domain measure of variance values features an LSTM network. Their method has
obtained an ACC and F-1 0f 99%, PRC 0f 99.2%, and SEN of 98.9%, respectively. Kumar et al (2023) obtained
the ACC, SEN, and SPE 0f99.36%, 99.2%, and 99.4% using CBFS and AdaBoost classifier. Racz et al (2020) used
DFC and RF classifier to extract and classify dynamic connectivity features. They obtained an ACC, SEN, and
SPE 0f 89.29%, 78.57%, and 100%, respectively with leave one subject out (LOSO) validation. Aydemir et al
(2022) used the analysis of the complexity and HFD features to classify it with the KNN classifier and reported an
ACC, SEN, and SPE 0f 99.82%, 99.84%, and 99.81%, respectively. Goshvarpour and Goshvarpour (2020) used
analysis of nonlinear features with PNN classifier to obtain a performance (ACC, SEN, and SPE) of 100%. Our
developed SchizoNET model has obtained an ACC, SEN, SPE, PRC, F-1, and Kappa 0f 99.74%, 99.64%,
99.87%, 99.89%, 99.77%, and 99.48%, respectively which is higher than all using ten-FCV state-of-the-art
techniques implemented on dataset 2.

6.3. Dataset: 3

Zhang (2019) used a combination of different statistical features to classify SZ and HC subjects usingan RF
classifier. The model developed has obtained the highest ACC and kappa of 81.81% and 59.3% using eight
features. Khare et al (2020) used EWT-based analysis to extract various statistical features from the decomposed
components. Among different classification techniques, the highest ACC, SEN, SPE, and PRC of 88.7%,
91.13%, 89.29%, and 83.78% have been obtained with the ensemble Bagged tree (EBT) classifier. Siuly et al
(2020) developed an EMD-based automatic identification of SZ which provides instantaneous amplitude and
frequency information about EEG signals. Different statistical measures obtained from the modes have been
classified using an SVM classifier with an ACC of 89.59%, PRC of 83.78%, SEN 0f 91.13%, and SPE of 89.29%.
Khare and Bajaj (2021b) used the Fisher score-based channel selection technique and FTQWT to extract the
subbands of EEG signals. Five statistically significant features selected by the Kruskal Wallis test have been
classified using the FLSSVM classifier. Their self-learned model achieved the performance values of ACC, SEN,
SPE, PRC, and F-1 0f91.39%, 92.65%, 93.22%, 95.57%, and 93.06% respectively for the fourth subband. In
another method, Khare and Bajaj (2021a) developed an optimized model combining OVMD and OELM
classifier. The features of decomposed modes are selected using statistical analysis and classified using the OELM
classifier. Their model has obtained the highest performance for SEN, SPE, Kappa, ACC, F-1, and PRC values of
97.15%, 91.06%, 85.32%, 92.93%, 94.07%, and 93.94% in the third mode due to chaotic behaviour. Smith et al
(2021) extracted simultaneous information about time-frequency representations (TFR) from EEG signals using
SPWVD, STFT, and CWT. The TFR has been transformed into images and fed to the CNN model. Their method
has obtained an ACC 0f 93.36%, SEN of 94.25%, SPE of 92.03%, PRC of 94.66%, and F-1 of 94.5% using
SPWVD-based TFR while an ACC 0f 79.17% and 90.64% has been achieved with spectrograms and scalograms
techniques. Siuly et al (2022) used filtering and deep learning feature extraction and classification using
GoogLeNet. They obtained an ACC, SEN, and SPE 0f 95.09%, 93.81%, and 97.02%, respectively with holdout
validation using GoogLeNet classifier and 98.84%, 99.02%, and 98.58% using SVM classifier. Baygin et al
(2023) used iterative TQWT-based feature extractor combined with KNN classifier to detect SZ. They obtained
an ACC, SEN, SPE, and PRC 0f 95.84%, 97.01%, 94.06%, and 96.11%, respectively with Cz channel. The
proposed method combines MH-TFD and the CNN model has obtained an ACC, SEN, SPE, PRC, F-1, and
Kappa 0f 96.35%, 95.95%, 96.97%, 98.02%, 96.97%, and 92.37% using the ten-FCV technique. Our developed
model has obtained 97.95%, 97.58%, and 98.53% of ACC, SEN, and SPE, respectively with holdout validation.
The performance of the SchizoNET model is higher than all state-of-the-art with different validation techniques
developed on dataset 3 confirming that MH-TFD can capture the subtle details from the EEG signals.

7. Discussion

The methods developed using nonlinear features require tuning of multiple parameters and showing degraded
performance due to different noise and artefacts. FFT-based techniques analyze the EEG signals in the time-
frequency domain. Still, time-based representations of a signal use the entire frequency span over which it is
defined and may ignore some hidden characteristics along with frequency. Similar drawbacks are also true for
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frequency-based representations resulting in poor time-frequency localization. The analysis of EEG signals
using STFT assumes the signal to be stationary over a duration, and also requires the selection of length and type
of window. The discrete wavelet transform-based techniques decompose a signal into subbands by selecting a
mother wavelet and decomposition level that are difficult to find. The EMD-based decomposition extracts
instantaneous information regarding amplitude and frequency but lacks mathematical modelling and suffers
from mode mixing. The TFD provided by STFT and CWT requires to satisfy Heisenberg-Gabor inequality, due
to which the resolution in time-frequency of this transformation is limited by localizing window parameters like
duration and bandwidth. The TFD obtained using SPWVD requires kernel function and its length as
parameters. Improper choice of these parameters may produce severe distortion in the TFR. These
shortcomings result in overlapping information about SZ and HC EEG signals that degrade the system
performance. Some CNN-based classification models use single-fold fixed-length training and testing sets that
might produce an overfitted model. Moreover, many studies are limited to a single EEG data evaluation which
does not guarantee similar performance on other or different EEG datasets of the same problem. Our proposed
SchizoNET model combines MH-TFD and CNN for automatic time-frequency-amplitude feature extraction
and classification. The MH-TFD does not require any choice of a window but uses the autocorrelation of signals
to be analyzed. In addition, the problem of cross-term is overcome due to the use of cross-term reduction
window in frequency and time domain. This enables the extraction of more hidden information from EEG
signals which reflect representative and distinguishable characteristics of it. The CNN model enables automatic
classification to detect SZ and HC EEG signals. The evaluation of SchizoNET on three different EEG datasets of
SZ developed using holdout, five-FCV, and ten-FCV has provided the highest performance over existing state-
of-the-art techniques on most of the datasets. It is evident from tables 9, 10, and 11 that this is the first study to
develop a novel DL model which can be used for all three public datasets and yield the highest performance. In
addition, our developed model is simple as it has only five convolutional layers compared to benchmark CNN
models like AlexNet, VGG-16, and ResNet-50 (Smith et al 2021). Also, our SchizoNET model requires fewer
learning parameters i.e. about 42.8 million compared to existing AlexNet (approx. 61 million) and VGG-16
(approx. 138 million) parameters (Smith et al 2021). The merits of our developed SchizoNET model are as
follows:

+ Robust: the SchizoNET model is robust because it is developed using three different EEG datasets.

+ Accurate and stable: the developed model reported the highest and most consistent performance with
holdout and cross-validation techniques.

+ Simple and effective: our model is simple (only five convolutional layers) and has fewer learning parameters
than benchmark CNN models.

The limitations of our proposed model are given below:

+ Inour used three datasets, the number of subjects used in each dataset is too few to explore the LOSO
validation technique.

+ Our work does not localize the region of SZ.

8. Conclusion

The proposed SchizoNET model combines MH-TFD and CNN to automatically detect SZ patients using EEG
signals. The TFD generated by MH-TFD has provided excellent resolution, hidden information, and detailed
insight into EEG signals due to a reduction in cross-term. The TFD has facilitated the CNN model to extract
deep features that drastically reduced manual efforts. The simple architecture of the proposed CNN model has
drastically improved the system performance with fewer learnable parameters. Our developed model correctly
identified 99.74% of SZ signals, the highest among current state-of-the-art techniques. Thus, the proposed
SchizoNET model is robust, effective, accurate, and versatile as it obtained the highest performance matrices on
three EEG datasets. Also, the designed model can detect SZ in a resting state, evoked potential, and tasks related
to EEG acquisition. Our SZ model is more generalized as it does not require any feature engineering and can
automatically extract and classify features. The limitation of our model is that it has not been developed using
LOSO cross-validation due to the fewer subjects in each of the three datasets. In the future, we will develop a
subject-based and channel-wise SZ detection model by using more subjects in each class.
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