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Take home message 

• A pilot simulation and field study demonstrated potential for machine vision to estimate in-
season soil and leaf nitrogen status using cameras and image analysis for real-time sensing and 
control 

• The modelled soil and leaf nitrogen were estimated with >80% accuracy using machine vision-
detectable crop features estimated in combination with known underlying soil variability  

• Further trials will evaluate and refine the machine vision system at the Future Farm core sites 

Aim 

This aim of this research was to identify how machine vision could complement and be incorporated 
with soil sampling and other sensing technologies in a more automated nitrogen sensing system.  

Introduction 

Nitrogen management is vital to maximise agricultural crop yields. Nitrogen requirements can vary 
spatially over fields because of different soil properties and crop conditions. Nitrogen status is 
typically assessed using soil testing, grain protein levels and paddock history and applied prior to 
sowing. This pre-season nitrogen application sets approximately 80% of the average yield outcome. 
In-season top-up nitrogen is typically applied in high rainfall zones and irrigated crops which 
contribute to the remainder of the average yield outcome. In-season nitrogen status can be 
agronomically assessed from tiller counts, stand appearance and plant structure in some southern 
grains systems (Miller and Schober 2018; Voight 2019). Infield sampling may not be practical for 
timely in-season nitrogen management decisions and collection of tiller and density counts is 
typically labour-intensive.  

Automated systems have been developed using reflectance sensing to increase the spatial and 
temporal resolution of assessments. Reflectance sensors (e.g. Crop CircleTM) that measure 
vegetation indices from spectral reflectance and cameras that assess colour have been used for crop 
vigour assessments to estimate nitrogen content (Li et al. 2010; Porter 2010; Wang et al. 2014 and 
dos Santos et al. 2016). The measured reflectance of the crop can be compared with that of N-minus 
and N-rich strips to estimate nitrogen content with a linear regression and machine learning. For 
example, a type of machine learning, ‘support vector machine’, has been used to quantify nitrogen 
status from hyperspectral data (Chlingaryan et al. 2018). Support vector machines analyse data for 
classification and regression analysis and is particularly suited to high-dimensional data as it reduces 
overfitting. However, reflectance sensing (e.g. NDVI) has inconsistent correlations to nitrogen status 
across different stages and seasons (Poole and White 2008; Poole and Craig 2010).  

Simulation modelling can also be used to automated nitrogen status estimation (Lawes et al. 2019) 
using the APSIM crop model). This involves linking available online weather, soil information and 
satellite imagery, with iterative simulations to estimate daily soil and leaf nitrogen requirements. 



This requires a high level of computing capacity and skill, which is not currently feasible in all regions 
and commercial cropping situations. 

An alternative approach uses existing machine vision systems to compare agronomic crop features  
in N-minus and N-rich strip trials, providing a rapid, on-the-go machine vision nitrogen sensor. 
Machine vision systems have been developed for tiller counting by extracting individual leaves using 
colour thresholding and line detection (Boyle et al. 2015; Wu et al. 2019); and for plant density 
detection using colour thresholding and machine learning (Jin et al. 2017; Liu et al. 2017). Deep 
learning machine vision algorithms have also been used in agricultural image segmentation to detect 
crop flowering and fruiting structures in orchards (Chen et al. 2018; Kamilaris and Prenafeta-Boldú 
2018; Koirala et al. 2020). Muñoz-Huerta et al. (2013) identified that more research is required for 
use of machine vision to determine crop nitrogen status, particularly to reduce the sunlight 
dependence on machine vision system performance. Fieldwork and simulation analysis have been 
conducted to identify how machine vision could complement and be incorporated with other 
sensing technologies in an automated nitrogen sensing system.  

Method 

Field site and data collection 

Fieldwork was conducted to collect a dataset of replicated machine vision data from different 
cameras and plots, and APSIM simulations were conducted to estimate soil and leaf nitrogen status 
throughout the season for comparison. Barley was planted over a 0.4 ha area in USQ’s agricultural 
plot on 9 August 2018 and harvested on 10 December 2018. Nitrogen was applied uniformly over 
the crop at planting and irrigation was applied on 9 August (30mm), 6 September (15mm) and 29 
September (30mm). Soil moisture, plant height, canopy width and tiller counts were collected 
weekly between August and December 2018 for the barley trial in nine locations in a grid. Weekly 
soil nitrate-N, ammonium-N and leaf nitrogen were modelled using APSIM on the days of the plant 
measurements. APSIM was parameterised using the management information, soil characterisation 
samples (Hussein 2018), infield automatic weather station and soil nitrate-N and ammonium-N 
samples collected at harvest.  

The machine vision systems compared were: (i) infield fixed cameras capturing oblique images every 
3 hours; (ii) UAVs capturing oblique images in the visible waveband weekly; and (iii) multi-spectral 
Parrot Sequoia camera capturing top view images weekly. The multi-spectral imagery was used to 
collect spectral reflectance and estimate NDVI (normalized difference vegetation index) and NDRE 
(normalized difference red edge). 

Comparing performance of nitrogen status algorithms  

The literature review identified algorithms with potential to automatically determine nitrogen 
requirement from plant measurements in commercial fields which could be compared with different 
data inputs to identify which measurements to use: crop features (e.g. crop height, width, tiller 
counts), spectral reflectance (NDVI, NDRE, greenness) and soil water status (soil water content, 
drained upper limit). The nitrogen status algorithms evaluated are described below: 

• Linear regression algorithm between all individual sensed measurements and N status 

• Linear scaling algorithm which is a regression algorithm between sensed measurements in N-
minus and N-rich plots in each management zone and sensed measurements in other zones 
with similar properties (e.g. soil water status, drained upper limit, sowing density) to 
estimate nitrogen status with a linear scaling algorithm. The linear scaling algorithm is an 
extension of the linear regression approach which compared spectral reflectance/soil water 
status/crop features in all the plots and did not consider underlying variability which may 
have caused errors in the nitrogen estimation. In contrast, the linear scaling algorithm 



estimates nitrogen status in the crop considering the underlying variability in soil and crop 
properties. This is achieved by comparing the spectral reflectance/soil water status/crop 
features in the crop with crops in the N-minus and N-rich plots with the most similar 
measured soil water, estimated drained upper limit and measured sowing density. 

• Machine learning algorithms linking single or multiple data streams using most influential 
data inputs for nitrogen. The influence of each data type was compared using a random 
forest classifier, while eight types of machine learning that were trained using the collected 
data were compared in Spyder®: logistic regression, support vector machines, random forest 
classifier, extra trees classifier, linear discriminant analysis, neural network, decision tree 
classifier and naïve Bayes. The datasets were broken into training and testing data sets with 
50% of the data in each. The parameters in each machine learning algorithm were optimised 
before implementation. The machine learning algorithms were implemented with different 
input data combinations based on the feature importance results. Four sets of training data 
sets were evaluated: spectral reflectance with and without soil water status, crop features 
and all.  

The linear regression algorithms and machine learning models were developed from datasets 
captured in Zadok’s growth stages GS25-GS30 and compared with the raw measured data from the 
field study. The algorithms were evaluated with different manually measured crop features to 
identify which inputs to target in a machine vision system. 

Evaluating robustness of machine vision algorithms to lighting  

Machine vision systems (e.g. optical sensors, cameras) can be affected by the time of day, which can 
influence the nitrogen status assessment. From Figure 1, NDVI can vary by 6.3% between 8am and 
11am and 1.3% between 11am and 7pm. The performance of simple colour threshold algorithms to 
measure canopy cover and greenness, were compared using images from infield cameras taken at 
different times during the day: early morning (5-8am), morning (8-11am), midday (11am-2pm), 
afternoon (2-5pm) and late afternoon (5-8pm). This would identify which times of day were optimal 
for data collection. 

 
Figure 1. Relationship between GreenSeeker® NDVI sensor readings and time of day  

(adapted from Porter 2010). 



Results 

Linear regression algorithm for estimating nitrogen status 

Table 1 compares the performance of linear regressions fitted between modelled soil and leaf 
nitrogen status and measurements of spectral reflectance (NDVI and NDRE), soil water status 
(volumetric soil water content and estimated drained upper limit) and crop features (height, width 
and tiller counts). These are shown as correlations of determination between 0 and 1 which are low 
and high correlations, respectively. These linear regressions were fitted on each day of machine 
vision and crop ground truthing data collection and the values shown in Table 1 were for the data 
types with the highest coefficients of determination. These were fitted for data between emergence 
(GS00) and harvest (GS99) and in-season nitrogen decisions are typically made by GS30.  

From Table 1 , individual factors measured were only partially correlated with N status with 
correlations of determination of <0.4. This may indicate that multiple data types may be required to 
estimate nitrogen status, or there were errors in modelled soil and leaf nitrogen status from APSIM.  
This could also indicate that the field measurements were affected by factors other than nitrogen 
(e.g. soil characteristics and sowing density) which provided a level of error in measurement that 
needs to be reduced if a more accurate estimate of N status is to be made.  

Simulated results showed the highest correlations between crop features and modelled leaf and soil 
nitrogen at GS30 which is the latest stage that in-season nitrogen decisions would be made. There 
was a low correlation between modelled nitrogen status and soil water status, spectral reflectance 
and crop features at most of the earlier and later growth stages.  

Table 1. Data types at different days after sowing with the highest correlation  for leaf and soil 
nitrogen.  Variables with the highest correlations are closer to one and highlighted in grey. 

Days 
after 

sowing 

Zadok’s 
growth stage 

Modelled leaf N (g/m2) Modelled NH4-N (ppm) Modelled NO3-N (ppm) 

Data type R² Data type R² Data type R² 

36 25 Soil water 
status 0.389 Crop features 0.289 Crop features 0.351 

43 25 Crop features 0.285 Spectral 
reflectance 0.217 Crop features 0.251 

50 30 Crop features 0.749 Soil water 
status 0.530 Crop features 0.781 

60 42 Soil water 
status 0.391 Spectral 

reflectance 0.658 Spectral 
reflectance 0.564 

67 59 Crop features 0.211 Spectral 
reflectance 0.692 Spectral 

reflectance 0.704 

71 66 Crop features 0.296 Crop features 0.384 Spectral 
reflectance 0.375 

78 72 Soil water 
status 0.462 Soil water 

status 0.285 Crop features 0.224 

85 76 Spectral 
reflectance 0.340 Spectral 

reflectance 0.512 Spectral 
reflectance 0.409 

93 81 Spectral 
reflectance 0.418 Spectral 

reflectance 0.666 Spectral 
reflectance 0.591 

99 84 Spectral 
reflectance 0.345 Spectral 

reflectance 0.584 Spectral 
reflectance 0.411 

105 90 Spectral 
reflectance 0.061 Spectral 

reflectance 0.369 Crop features 0.379 

113 99 Soil water 
status 0.210 Soil water 

status 0.313 Crop features 0.379 



Linear scaling algorithm for estimating nitrogen status 

Table 2 compares how well the linear scaling algorithm estimated leaf and soil nitrogen status. Using 
crop features in the linear scaling algorithm produced the highest accuracy in estimating nitrogen 
status (82.3-87.4%). This high accuracy was consistent for all sources of underlying variability. There 
was a lower correlation between spectral reflectance and nitrogen status (66.2-70.4%). This 
indicates that crop features could be used without spectral reflectance for estimating nitrogen 
status, and that only one underlying variability field map (e.g. drained upper limit from the CSIRO 
Soil and Landscape Grid of Australia) could be used. 

Table 2. Comparison of percentage accuracy for estimating soil and leaf nitrogen using a linear 
scaling algorithm considering different types of underlying variability. 

Underlying variability 
data considered 

Accuracy using spectral 
reflectance (%) 

Accuracy using 
crop features (%) 

Soil water 67.3±6.5 85.1±6.8 

Drained upper limit 70.4±11.5 85.4±7.4 

Sowing density 66.2±5.6 87.4±7.2 

Soil water, drained upper 
limit and sowing density 66.8±6.6 82.3±10.8 

Machine learning algorithm for estimating nitrogen status 

Figure 2 compares the relative importance of using spectral reflectance, soil water status or crop 
features to reflect leaf nitrogen, soil ammonium-N and soil nitrate-N during GS25-GS30. The spectral 
reflectance had the largest influence on modelled leaf nitrogen status (42%), whilst crop features 
had the largest influence on modelled soil ammonium-N (54%). Soil water status and crop features 
contributed equally to modelled soil nitrate-N (38% each). This indicates that multiple data inputs 
(e.g. soil water and crop features or spectral reflectance and crop features) may be required to 
estimate both leaf and soil nitrogen status. 

 
Figure 2. Comparison of feature importance for each input data type on modelled leaf and soil 

nitrogen for GS25-GS30. 

Table 3 compares the percentage accuracy of each machine learning model with the six data input 
combinations for determining modelled leaf nitrogen, soil ammonium-N and soil nitrate-N. The 
accuracies using machine learning on the training dataset were generally low (<60%) but higher than 



the linear regression nitrogen algorithms (<40%) and lower than the linear scaling algorithms (>60%). 
This indicates that a larger training dataset is required for machine learning model training, 
potentially with additional ramped nitrogen treatments.  

The highest accuracies were achieved using all data (59.2%) or spectral reflectance and soil water 
status (54.2%). Of the eight evaluated machine learning algorithms, support vector machines 
produced the highest overall accuracies (52.7%). The superior performance of the support vector 
machines over the other machine learning models may be caused by the reduced overfitting that is 
inherent in these types of machine learning models.  

Table 3. Comparison of averaged percentage accuracy in modelled soil and leaf nitrogen using 
different machine learning models and data input combinations with those with the highest 

correlations highlighted in grey. 

Data input 
combination 

Logistic 
regression 

Support 
vector 

machines 

Random 
forest 

Extra 
trees 

Linear 
discrimination 

analysis 

Nearest 
neighbour 

Decision 
tree 

Naïve 
Bayes 

All 51.7±7.3 59.2±2.7 44.4±20.6 46.1±16.5 47.6±3.2 47.9±14.1 47.7±5.6 41.6±19.4 

Spectral 
reflectance 52.2±9.3 51.1±11.2 44.0±9.1 44.4±12.8 51.3±6.1 46.8±11.4 49.0±0.9 39±14.1 

Spectral 
reflectance 

and soil 
water status 

50.2±4.9 54.2±5.5 45.0±17.3 53.1±5.5 45.2±1.9 49.6±11.6 51.7±5.4 40.8±13.9 

Crop 
features 

44.4±7.2 46.3±5.8 38.8±7.4 48.6±4.2 40.9±12.1 42.7±15.6 48.8±2.7 39.1±18.0 

Considerations for machine vision development for automated nitrogen status sensing 

Figure 3 shows the average difference in cover and greenness across the plots at different times of 
the day. The errors in cover and greenness because of lighting variation during the day were 
generally low and under 5%. The errors in cover and greenness were lowest at midday (2.6% and 
3.3%, respectively), and highest in the early morning (4.8% and 8.0%, respectively). The results from 
the machine vision camera are consistent with the optical sensor (Porter 2010) with the largest 
errors in the early morning. The machine vision sensor has lower errors than the optical sensor 
during the later morning (4.3% for cover and 3.7% for greenness). Therefore, the impact of time of 
day on machine vision sensing is comparable with optical sensors.  



 
Figure 3. Daily mean absolute error in cover and greenness from infield cameras at different  

times of day with different lighting conditions. 

Discussion 

A pilot simulation and field study was conducted to establish the role of machine vision in a nitrogen 
sensing system. The performance of three nitrogen status algorithms were compared with modelled 
soil and leaf nitrogen and different combinations of measured data: spectral reflectance (current 
standard practice), soil water status and crop features that could be measured using machine vision.  

A linear regression algorithm using single data inputs produced correlations that were generally low 
(<0.5) for all data types. This suggests that more than one data input is required to estimate nitrogen 
status. A linear scaling algorithm that also used underlying variability in sowing density and soil 
water status produced higher accuracy for estimating modelled soil and leaf nitrogen than linear 
regression. The highest accuracy was achieved using inputs of crop features (82.3-87.4%), and lower 
correlation was achieved using spectral reflectance (66.2-70.4%). This indicates that machine vision 
detectable crop features may improve indication of nitrogen status when compared with the current 
standard of spectral reflectance.  

Machine learning algorithms had improved repeatability over linear regression but lower accuracy 
than the linear scaling algorithms with test accuracies of <60%. The highest accuracies were 
achieved using all data (59.2%) or spectral reflectance and soil water status (54.2%). The highest 
overall accuracies were achieved using the support vector machines (52.7%). A larger training 
dataset may be required with additional multiple rate nitrogen treatments to improve the machine 
learning algorithm performance. 

Machine vision-estimated crop features may be impacted by time of day and lighting. However, this 
impact was comparable with optical sensors, with errors in cover and greenness over any day being 
<5%.  

Conclusions 

Machine vision has potential to improve nitrogen status estimation by sensing crop features in N-
minus and N-rich plots. A linear scaling algorithm had an accuracy of 82.3-87.4% for modelled leaf 
nitrogen using plant features with underlying soil variability. This outperformed the same algorithm 
using spectral reflectance by 15%. Linear regression and machine learning models produced lower 
accuracies for modelled soil and leaf nitrogen status, potentially because additional data may be 
required for training. Further work will involve transferring the machine vision system and nitrogen 
status algorithms to Future Farm core sites nationally. This will enable refinement of the machine 



vision algorithms (e.g. deep learning) and evaluation of the nitrogen status algorithms with in-field 
measurements of soil and leaf nitrogen status. 
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