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Abstract 

It is now clear that milk has multiple functions; it provides the most appropriate 

nutrition for growth of the newborn, it delivers a range of bioactives with the potential 

to stimulate development of the young, it has the capacity to remodel the mammary 

gland (stimulate growth or signal cell death) and finally milk can provide protection 

from infection and inflammation when the mammary gland is susceptible to these 

challenges. There is increasing evidence to support studies using an Australian 

marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique 

model to study milk bioactives.  Reproduction in the tammar wallaby is characterized 

by a short gestation, birth of immature young and a long lactation. All the major milk 

constituents change substantially and progressively during lactation and these changes 

have been shown to regulate growth and development of the tammar pouch young and 

to have roles in mammary gland biology. This review will focus on recent reports 

examining the control of lactation in the tammar wallaby and the timed delivery of 

milk bioactivity. 

Introduction 

Lactation evolved about 200 million years ago in aplacental egg laying animals as 

observed today in monotremes (class Mammalia, subclass Prototheria) but since this 

time there has been extensive adaptation to reproduction, including a large variation 

of lactational strategies when the Theria split into the Metatheria (Marsupialia) and 

Eutheria (Placentalia) lineages over 150 Mya (Lefevre et al., 2010).  

Many of these species have extreme adaption to lactation and the availability of  

comparative functional genomics now show that the regulatory mechanisms 

controlling the great majority of physiological processes have been conserved during 

evolution but the timing and mechanism for delivering these processes may differ 

between species of mammals (Sharp et al., 2014). Therefore the use of these diverse 
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species coupled with the availability of genomics and bioinformatics has provided the 

opportunity to exploit marsupial models for new insights into the functions of milk.  

Eutherians have a well-developed placenta and a long gestation that leads to the birth 

of a relatively well developed young. The length of lactation is often similar to 

gestation and composition of the milk doesn’t change substantially. In contrast, the 

echidna (Tachyglossus and Zaglosus genera) and platypus (Ornithorhynchus 

anatinus; monotremes), and the tammar wallaby (Macropus eugenii; a marsupial) are 

increasingly studied groups of animals (Sharp et al., 2015; Sharp et al., 2014).  The 

echidna has an interesting combination of reptilian and mammalian characters. It has 

retained a primitive component of reptilian reproduction, laying shelled eggs  

(Morrow and Nicol, 2013) but subsequently milk is the sole source of nutrition and 

protection for the hatchlings which are altricial and are not immune competent 

(Griffiths, 1978). The early stages of development of this altricial young occurs in a 

non-sterile environment  therefore the role of milk is not only important for  growth 

and development but also particularly essential for protection of the young from 

disease  (Bisana et al., 2013; Enjapoori et al., 2014). It has been postulated  that 

antibacterial  bioactives fulfilling a role for the protection and survival of the young 

have been integral to the evolution of mammals (Sharp et al., 2011).  Reproduction in 

marsupials such as the tammar wallaby (M. eugenii) is characterized by a short 

gestation (26.5 days), birth of immature young and a long lactation (approximately 

300 days) during which all the major milk constituents change substantially during 

lactation (Tyndale-Biscoe and Janssens, 1988). Interestingly the tammar neonate 

closely resembles a fetus and remains attached to the teat in the pouch  for the first 

100 days of lactation, and may be considered a fetus maintained in the pouch as 

opposed to the uterus. Indeed, the efficiency of conversion of milk to body mass is 

very similar to the conversion of precursors to body mass observed in the eutherian 

fetus in utero (Tyndale-Biscoe and Renfree, 1987).  

There is increasing evidence that changes in milk composition regulate growth of the 

tammar pouch young (Sharp et al., 2010; Sharp et al., 2015). The tammar wallaby is 

one of most studied marsupials and its lactation is divided into three phases (phase 

2A, phase 2B and phase 3) based on the composition of the milk and growth and 

development of the young (Figure 1) (Tyndale-Biscoe and Janssens, 1988). During 

the first 100 days the development of the marsupial neonate is similar to a late stage 
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eutherian fetus and therefore the signalling factors involved in the development of the 

eutherian fetus are most likely delivered in the milk (Brennan et al., 2007a). The 

pouch young are born with immature organs and during early lactation the organs 

necessary for their survival such as respiratory system (Runciman et al., 1996), gut 

(Kwek et al., 2009a), lymphoid tissues (Basden et al., 1997) and nervous system 

including brain and spinal-cord (Harrison and Porter, 1992; Saunders et al., 1989) are 

rapidly developed. Fostering experiments demonstrated that transferring the early 

phase pouch young to a late phase lactating tammar can accelerate the growth and 

physical development of pouch young (Menzies et al., 2007; Trott et al., 2003). 

Subsequent studies showed that cross fostering the young also accelerated maturation 

of specific organs such as the stomach (Kwek et al., 2009a). More recent studies have 

shown that the lungs of the marsupial neonate are immature and develop rapidly in 

the suckled young during the early stage of lactation (Modepalli et al., 2015). Using in 

vitro models it was shown that milk collected from marsupials during early lactation 

(day 20-100), but not late lactation (day 100-300) stimulated proliferation and 

differentiation of whole lung cultures from mouse embryos (Modepalli et al., 2015). 

These studies are still preliminary in terms of identifying the factors that have the 

potential to stimulate lung development but the models allow for a focused 

examination of milk between day 20 and 100 of lactation to identify candidate 

signalling molecules. 

Interestingly, the tammar can practise concurrent asynchronous lactation (Nicholas, 

1988); the mother provides a concentrated milk for an older animal which is out of the 

pouch and a dilute milk from an adjacent mammary gland for a newborn pouch 

young, suggesting the mammary gland is most likely under the control of both 

endocrine and local regulatory mechanisms. An explanation for the mechanisms 

controlling this phenomenon has eluded scientists for more than 80 years but more 

recent studies are starting to shed new light on the central role of the extracellular 

matrix in programming the mammary epithelial cells to produce milk with a specific 

composition (Wanyonyi et al., 2013). This data will be important to better understand 

how the tammar regulates a timed delivery of bioactives in milk. 

This review will focus on the more recent studies examining the control of lactation in 

the tammar wallaby and the timed delivery of milk bioactivity.  As mentioned above, 

the major growth and development of the young occurs post-partum during lactation 
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and therefore the immature marsupial neonates rely on maturation factors in milk that 

would most likely be presented to the eutherian fetus by the placenta and amniotic 

fluid (Nicholas et al., 1997). There is a high incidence of premature and low 

birthweight (LBW) human babies in developing countries (Lee et al., 2013). This 

leads to either inappropriate or lack of signalling of organ development which results 

in a failure to thrive (initially a result of limited gut and lung development), higher 

incidence of death and increased frequency of mature onset disease (eg hypertension, 

diabetes, obesity). Studying the milk from Australian marsupials provides a unique 

opportunity to identify factors that program short and long-term development of the 

young; the human orthologue of these proteins may hold considerable promise as a 

supplement for improved short and long-term health outcomes for LBW and 

premature babies (both breast and formula fed). 

 

The lactation cycle in the tammar wallaby 

The tammar mammary gland is programmed to progress through defined phases of 

the lactation cycle and to deliver milk bioactivity that correlates with specific 

developmental stages in the young (Sharp et al., 2010). The tammar lactation cycle is 

divided into four broad phases (Figure 1). The gestation phase (P1) is approximately 

26 days with the subsequent  birth of a fetus-like young (Tyndale-Biscoe and Renfree, 

1987). During P1 all the four mammary glands undergo progressive lobulo-alveolar 

development, gradually replacing the connective tissue with glandular tissue (Findlay, 

1982). Phase 2A (P2A) commences at parturition when the neonate attaches 

permanently to one of the four teats and remains attached for approximately 100 days 

(Behringer et al., 2006; Brennan et al., 2007b; Nicholas, 1988a; Old and Deane, 2000; 

Tyndale-Biscoe and Renfree, 1987). During this early stage of development the young 

is altricial and immunocompromised with a limited capacity to mount an immune 

response (Basden et al., 1997). The mother produces relatively small volumes of 

dilute milk with a high concentration of complex carbohydrates and a low 

concentration of protein and lipid (Hendry et al., 1998; Nicholas et al., 2001; Trott et 

al., 2003) (Figure 1). The reproductive strategy of the mother is to slow growth of the 

pouch young while the tissues develop and become functional. Phase 2B (P2B) 

commences 100-120 days post-partum and continues for approximately 100 days 
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during which the neonate remains in the pouch but relinquishes the teat and only re-

attaches to suck (Hendry et al., 1998; Trott et al., 2003). The milk produced maintains 

high levels of carbohydrates and low concentrations of protein and lipids. However, 

there are changes in the kinds of proteins secreted (Brennan et al., 2007a; Nicholas et 

al., 1995).  

At the onset of phase 3 (P3), the neonate begins to exit the pouch and feeds on 

herbage, returning to the pouch to suckle. During P3 the mammary gland enlarges 

significantly (Bird et al., 1994), producing large amounts of concentrated milk that is 

rich in protein and lipid but low in carbohydrates to provide a high energy milk 

(Green and Merchant, 1988; Hendry et al., 1998; Nicholas et al., 1997; Trott et al., 

2003; Tyndale-Biscoe and Renfree, 1987). P3 also represents the period of most 

dramatic change in morphology and growth of the young including the switch from 

ectothermic to endothermic regulation of body temperature (Janssens et al., 1997; 

Nicholas et al., 1997; Nicholas, 1988a; Richardson et al., 2002).  

Microarray analysis of the tammar mammary gland has revealed a multitude of 

changes in gene expression during the lactation cycle (Brennan et al., 2007a; Sharp et 

al., 2009; Sharp et al., 2015)  but earlier studies have identified some of the major 

milk protein genes  that can be used as markers to identify the specific phases of milk 

production (Menzies and Nicholas, 2007; Nicholas et al., 1997; Nicholas, 1988a; 

Trott et al., 2003; Trott et al., 2002) (Figure 2A). P2A is characterised by the 

expression of the gene for the early lactation protein (tELP) (Khalil et al., 2008; 

Simpson et al., 1998a; Trott et al., 2003), P2B by the expression of the gene for the 

whey acidic protein (tWAP) (Nicholas et al., 2001; Simpson et al., 2000) and P3 by 

the expression of the gene for the Late lactation proteins (LLP-A and LLP-B) (Trott et 

al., 2003; Trott et al., 2002). In contrast to these asynchronously expressed genes, the 

caseins, β-lactoglobulin and α-lactalbumin genes are expressed throughout lactation 

(Sharp et al., 2009) which is similar to observations in eutherian mammals.  

In the early 1960s asynchronous concurrent lactation (ACL) was described in 

macropod marsupials (Griffiths et al., 1972; Nicholas, 1988a) with the marsupial  

having a dormant blastocyst in the uterus and at the same time two parallel lactation 

cycles producing early and late lactation milk in adjacent glands to support a pouch 

young and an older sibling at heel concurrently (Figure 2B)..  Subsequent experiments 
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showed that apart from the different volumes of milk secreted from adjacent teats, 

there was differential expression of specific milk protein genes in each mammary 

gland, suggesting a local intra-mammary mechanism for ACL (Bird et al., 1994; 

Brennan et al., 2007b; Nicholas et al., 1997). It is likely that paracrine and potentially 

autocrine factors, in addition to endocrine factors modulate ACL since the observed 

differences between the individual mammary glands occurs in the presence of the 

same hormonal milieu.  Therefore, the tammar provides a challenging experimental 

model to understand the concomitant regulatory mechanisms of the lactation cycle but 

more specifically this new data will provide a better understanding of the mechanisms 

of local regulation of milk composition. 

 

Endocrine control of the tammar mammary gland 

Previous studies using a tammar mammary explant culture model have shown that 

mammary tissue from pregnant (P1) tammars incubated with different combinations 

of insulin, cortisol, prolactin and thyroid hormone lead to expression of the individual 

casein genes  and whey protein genes such as β-lactoglobulin and α-lactalbumin that 

are normally expressed in P2A mammary gland (Simpson and Nicholas, 2002; 

Simpson et al., 2000). In contrast, the LLP genes could be down-regulated in 

mammary explants from P3 tammars and then restimulated with insulin, cortisol, and 

prolactin, but expression of these genes could not be induced in mammary explants 

from pregnant tammars with any hormone combination tested (Trott et al., 2002). 

This conclusion was supported by experiments showing that constructs comprised of 

the Llp -A gene promoter and a reporter gene did not express after transfection into 

Chinese hamster ovary cells incubated with insulin, cortisol, and prolactin. The same 

construct was not expressed at any stage of the lactation cycle in transgenic mice 

(Trott et al., 2002). Therefore it was evident that some of the genes expressed by the 

tammar were regulated by multiple mechanisms and that alternative models were 

required to better understand these processes. 

 

The mammary extracellular matrix – a role in differential expression of tammar 

milk protein genes 
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Mammary epithelial cells (MEC) are attached to extracellular matrix (ECM) which 

transduces signals necessary for  modulation of  histogenic  processes including  

apical/basal cell polarity (Maller et al., 2010; Schedin et al., 2004) and cell 

proliferation (Provenzano et al., 2009). Therefore, the local regulation of mammary 

function in adjacent glands during ACL suggests that, in addition to endocrine 

stimuli, the ECM in individual glands may have a role in determining which genes are 

expressed in the mammary epithelial cells.  

The concept of ACL in macropod marsupials has remained perplexing because two 

adjacent mammary glands under the same systemic control not only differ 

significantly in size but produce milk with profoundly different composition (Lincoln 

and Renfree, 1981; Nicholas et al., 1997; Nicholas, 1988a). Several mechanisms have 

been suggested for ACL (Lincoln and Renfree, 1981; Nicholas et al., 1997; Nicholas 

and Tyndale-Biscoe, 1985) but in a recent study by Wanyonyi et al (2013), tammar 

mammary epithelial cells (WallMECs) and ECM collected from mammary tissue at 

different phases of lactation were used in a series of experiments where the cells  from 

one phase were cultured on ECM from another phase to investigate ECM-induced 

changes in marker genes.  

Initial experiments showed that the ECM regulated the morphology of the 3-

dimensional alveolar-like acini which are formed by the wallaby mammary epithelial 

cells (WallMEC) cultured on mammary ECM.  WallMECs from mid lactation 

cultured on ECM extracted from late lactation mammary glands developed acini that 

were more numerous and smaller in size than acini cultured on ECM extracted from 

mid lactation mammary glands (Wanyonyi et al., 2013). These data provided the first 

indication that phase-specific ECM influenced WallMECs to alter the morphology of 

mammary acini and led to subsequent experiments using this model to assess the 

impact of ECM on milk protein gene expression in WallMECs. 

 

Late phase mammary ECM changes the phenotype of earlier phase WallMEC to 

resemble the latter phase of lactation.  

When early lactation cells were cultured on mid lactation ECM they expressed 

significantly higher levels of the tWAP gene compared to when they were cultured on 

early lactation ECM (Figure 3A). Similarly when mid lactation cells were cultured on 
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late lactation ECM they expressed significantly more tLLP-B (Figure 3B) but less 

tWAP than when they were cultured on their own phase (mid) ECM. In all the 

treatments the expression of milk protein genes in MECs was dependent on the 

inclusion of I, F and P in culture media which is consistent with the requirement for 

these hormones for milk protein gene expression in mammary explants (Wanyonyi et 

al., 2013).  

 

Earlier phase mammary ECM does not reverse the phenotype of latter phase 

WallMEC to the earlier phase of lactation  

WallMEC from a late phase of lactation were cultured on ECM from an earlier phase 

to determine if this treatment would reverse milk protein gene expression to the 

earlier phase phenotype. To test this hypothesis mid lactation cells were cultured on 

early, mid and late lactation ECM and the expression of the tWAP gene measured 

(Wanyonyi et al., 2013).  There was no difference in expression of tWAP between 

cells cultured on early and mid lactation ECM but tWAP expression was significantly 

lower on late lactation ECM (Figure 4A). This suggested that the WallMECs were 

developmentally programmed in a forward direction that could not be reversed. 

In order to confirm whether the ECM changes the phase phenotype of WallMEC in a 

sequential manner, early lactation cells were cultured on early, mid and late lactation 

ECM and the expression of tLLP-B measured. There was no significant difference in 

tLLP-B gene expression between early lactation cells cultured on mid or late lactation 

ECM and their own phase (early lactation) ECM (Wanyonyi et al., 2013).  These 

experiments suggested that the WallMECs must be sequentially programmed at each 

phase of the lactation cycle before proceeding to the next phase of lactation. 

 Wanyonyi et al. (2013) demonstrated that the transition between phases appeared to 

correlate with the progressive changes in ECM composition of the mammary gland 

across the lactation cycle. However, an important experiment would be to culture 

early lactation WallMECs on  P2B ECM and then transfer the cells to a P3 ECM to 

examine whether there is a need to progressively program the cells on each phase 

ECM to enable the cells to eventually express P3 milk protein genes.  

In summary, the regulation of mammary development and mammary function during 

the lactation cycle is underpinned by a sophisticated program of control that requires 
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signals from the endocrine system and the extracellular matrix. This program requires 

that the MECs proceed through a development program that continues in one 

direction from P1 to P3 of lactation and cells must systematically progress through 

each phase of lactation in order to advance to the next phase. This multilevel control 

of milk composition is necessary to provide both timed delivery of bioactivity and 

protection from infection to the developing young and potentially to assist in the 

regulation of mammary development.   

 

The role of milk bioactives in development of the suckled young 

Development of the gut 

Dramatic changes in gut morphology in the suckled young take place around day 170 

post-partum (Waite et al., 2005). In the hindstomach region, parietal cells increase in 

number, gastric glands enlarge and adopt the adult-like phenotype of very long, thin 

glands (Waite et al., 2005) and peptic enzyme activity becomes elevated (Davis, 

1981). Concomitantly the forestomach region changes from an immature gastric 

glandular phenotype to a cardia glandular phenotype in the region that will become 

the adult forestomach (Kwek et al., 2009a; Waite et al., 2005). The phenotypic change 

in the forestomach was accompanied by functional changes; an increase in pH to 

neutrality (Janssens and Ternouth, 1987), a decline in peptic activity (Davis, 1981) 

and the gastric glandular cell type gene markers were down-regulated (Kwek et al., 

2009a). The changes in stomach morphology were correlated with significant changes 

in milk composition raising the possibility that these processes may be regulated by 

milk bioactives. Indeed, a study by Kwek et al. (2009) examined pouch young (PY) at 

day 120 of age cross-fostered to host mothers at day 170 of lactation for 50 days. 

Analysis of the fore-stomach in fostered PY showed there was increased apoptosis, 

but no change in cell proliferation (Kwek et al., 2009b). The parietal cell population 

was significantly reduced, suggesting that fore-stomach maturation proceeds by two 

temporally distinct processes that were uncoupled: down-regulation of gastric 

glandular phenotype and initiation of cardia glandular phenotype. These experiments 

also indicated that herbage consumed by the PY and bacterial colonisation of the 

stomach may play additional roles in regulating these two processes. 
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More recent studies (Kuruppath, Sharp, Nicholas and Abud, unpublished) have shown 

that milk collected from tammars in early lactation and cultured with embryonic 

mouse stomach explants resulted in elevated cell proliferation and increased level of 

expression of specific developmental gene markers. It is likely that these kinds of 

factors would be delivered by the placenta and amniotic fluid to eutherian fetus. 

Therefore, identification of these developmental signalling molecules will show 

promise for new strategies to address limited gut development in premature and low 

birth weight babies.   

Development of the lung 

The stages of lung development in mammals are similar (Tschanz, 2007). In eutherians, 

the majority of lung morphogenesis occurs during gestation, while the placenta performs 

gaseous exchange between the fetus and the mother (Mess and Ferner, 2010). During this 

period the lung develops to maturity to enable gaseous exchange after birth. In contrast, 

studies of lung development in several marsupial species including bandicoot (Isoodon 

macrourus) (Gemmell and Little, 1982), Julia Creek dunnart (Sminthopsis douglasi) 

(Frappell and Mortola, 2000),  tammar wallaby and gray short tailed opossum 

(Monodelphis domestica)  (Szdzuy et al., 2008) have demonstrated that the major 

developmental changes in the respiratory system occur during their early postnatal life 

(Runciman et al., 1996). Unlike eutherians, marsupials allow transmission of 

macromolecules across the gut wall due to their immature gut (Yadav, 1971) and 

therefore the milk proteins and peptides transmitted from the intestinal lumen into the 

peripheral circulation may play a regulatory role in lung maturation that allows a 

transition from respiration through the skin to gaseous exchange in the lung.  

In order to examine the potential role of tammar milk in lung development Modepalli et 

al (2015) cultured mouse embryonic lungs (E-12) in media with tammar skim milk 

collected at key time points during lactation (Figure 5; (Modepalli et al., 2015). 

Remarkably the embryonic lungs showed increased branching morphogenesis when 

incubated with milk collected at specific time points between approximately day 40 to 

100 of lactation (P2A) and reduced lung development when incubated in media with milk 

from day 20 lactation (Figure 5A-D). In addition, day 60 milk significantly up regulated a 

number of marker genes for key developmental processes and specialised cell types 

(Figure 5E). This suggests that day 20 milk either lacks the necessary factors to stimulate 
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lung development or included inhibitors of this process at a time when respiration occurs 

through the skin. This appears to be a sophisticated temporal regulation of tissue 

development in the neonate by milk bioactivity.  

The mechanisms by which the day 60 milk stimulated lung development remain to be 

established but the studies of Modepalli et al (2015) showed a difference in the ratio of 

epithelium and mesenchyme in embryonic lung when treated with tammar milk protein 

collected from different time points. The addition of day 60 milk to mouse embryonic 

lungs stimulated the primitive mesenchyme, with increased cell proliferation and 

elongation of mesenchymal cells invading the surrounding matrix. Menchymal-epithelial 

interactions are essential for epithelial branching morphogenesis (Alescio and Cassini, 

1962; Masters, 1976) and it was interesting to observe that in media containing  day 60 

milk proteins the mesenchymal cells were flattened, elongated and spindle shaped, 

representing either airway smooth muscle cells or myofibroblast cells derived from 

primary mesenchyme. In contrast, the treatment of mouse embryonic lung with day 20 

milk showed a reduced effect on epithelium and mesenchymal cell populations which is 

consistent with the inhibiting effects of this milk on development of lung explants. This 

temporal effect was lost in milk collected from later phases of lactation (P2B & P3). 

Taken collectively the data shows the timing of this stimulatory activity of milk on 

mouse embryo lungs is consistent with increased lung development in tammar neonates 

during the first 100 days post-partum and the reduced level of lung development after 

P2A lactation.   

 

Mechanisms for delivery of bioactivity in milk 

Multi-functional milk proteins; domain-specific delivery of bioactivity 

It is now becoming clear that alternative splicing of some milk protein genes has been 

utilised by the mammary gland to deliver domain-specific functions at specific times 

during lactation. 

Cathelicidin (Meucath1) 

(i)  a role in mammary innate immunity 

Cathelicidin includes antimicrobial peptides that form part of innate immunity in 

vertebrates (Yang et al., 2004) and the protein usually exists in an inactive proform 
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until post-translational cleavage by specific proteases. Earlier studies have shown the 

two domains of the proform cathelicidin may have a variety of functions (Yang et al., 

2004).  

The tammar cathelicidin 1 gene (MaeuCath1) revealed two splice variants (Figure 6; 

MaeuCathel1a and 1b)  that are differentially expressed in the mammary gland 

throughout the lactation cycle (Wanyonyi et al., 2011). The level of MaeuCath1a 

transcripts increased during early lactation and late involution whereas there was a 

three-fold increase in MaeuCath1b expression from P2B lactation until early 

involution.  

The MaeuCath1a protein significantly inhibited a range of bacteria (Wanyonyi et al., 

2011).  The presence of this protein in milk in the first 48 hours post-partum and in 

P2B is consistent with a need to act in synergy with humoral and cellular immune 

systems to provide protection from pathogens (Daly et al., 2007). MaeuCath1a 

expression at day 10 of involution suggested an additional antibacterial role at a time 

when the mammary gland is more susceptible to pathogen-mediated mastitis (Oliver 

and Mitchell, 1983)  

(ii)  a role in proliferation of wallaby mammary epithelial cells  

The continued expression of the MaeuCath1b splice variant after the timing of 

immune transfer and the time when the neonate has developed adaptive immunity 

suggests this protein product may have additional roles for the maintenance and 

proliferation of mammary epithelia during increasing milk production (Bird et al., 

1994; Dove and Cork, 1989). Several studies have suggested a role for cathelicidins in 

epithelial cell proliferation during wound healing, maintenance and re-establishment 

of the intestinal barrier integrity and proliferation of lung epithelial cells (Heilborn et 

al., 2003; Otte et al., 2009; Shaykhiev et al., 2005). Studies reporting WallMEC 

proliferation in tissue culture models following inclusion of MaeuCath1b in the media  

confirmed this hypothesis (Wanyonyi et al., 2011).  

WAP four-disulphide domain protein-2 (WFDC -2)  

WFDC2 is part of a large family of whey acidic protein (WAP) four disulfide core 

(DSC) proteins (Figure 7A; (Bingle et al., 2002; Campbell et al., 1984; Hennighausen 

and Sippel, 1982; Topcic et al., 2009). Tammar wallaby WFDC2 is comprised of two 
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4-DSC domains that have previously been annotated domain III on the amino 

terminal end and domain II at the carboxyl terminal end (Simpson et al., 2000).  

WFDC2 gene expression was low in the non pregnant wallaby mammary gland but 

elevated expression was evident in pregnancy and early lactation (Figure 7B). The 

gene was down regulated in mid lactation (P2B) but increased towards the end of P3 

and during involution (Watt et al., 2012).  These studies by Watt et al (2012) showed 

the WFDC2 protein and domain II of the protein had antibacterial activity against 

Salmonella enterica, Pseudomonas aeruginosa and Staphylococcus aureus. In 

contrast the WFDC2 protein, domain II and domain III showed no antibacterial 

activity against Enterococcus faecalis suggesting this bioactivity resided within 

domain II and had strain-specific activity.  

The elevated expression of WFDC2 during pregnancy, early lactation and involution 

correlates with the timing of increased risk of infection in the mammary gland  

(Basden et al., 1997; Daly et al., 2007; Old and Deane, 2000) which is largely due to 

the presence Staphylococcus aureus, Streptococcus spp. and Escherichia coli in the 

mammary tissue (Barkema et al., 2009; Borm et al., 2006; Bradley and Green, 2001). 

However, the timing of expression of this gene suggests an additional role in 

protecting the pouch young during the first 100 days post-partum when it is 

immunocompromised (Basden et al., 1997). It is noteworthy that the antibacterial 

effect of WFDC2 was directed to potentially pathogenic bacteria and not commensal 

bacteria (Daly et al., 2007; Old and Deane, 1998, 2000) and the down regulation of 

WFDC2 after 100 days post-partum when the young detaches from the teat correlated 

with the development of an immune response in the young. 

Whey acidic protein (WAP)        

Whey acidic protein (WAP),  another member of the WFDC family (Figure 7A) has 

been identified in the milk from many eutherian species (Beg et al., 1986; Campbell 

et al., 1984; Devinoy et al., 1988; Hennighausen and Sippel, 1982; Simpson et al., 

1998b) in addition to marsupials (Demmer et al., 2001; Nicholas et al., 2001; Simpson 

et al., 2000) and  monotremes  (Sharp et al., 2007b; Teahan et al., 1991). Eutherian 

WAP has two 4-DSC domains (domain I and II) whereas marsupial WAP has an 

additional third domain (domain III) (De Leo et al., 2006; Simpson et al., 2000).  
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Mice, rats and rabbits express the WAP gene in the mammary gland during the entire 

lactation cycle (Campbell et al., 1984; Demmer et al., 2001; Hennighausen and 

Sippel, 1982) whereas this gene is expressed transiently during mid lactation  in the 

tammar (Figure 7B; (Simpson et al., 2000) and other marsupials (De Leo et al., 2006; 

Demmer et al., 2001; Nicholas et al., 2001; Topcic et al., 2009).   

 Studies using transgenic mice (Burdon et al., 1991) and pigs (Shamay et al., 1992) 

expressing a mouse WAP transgene showed limited mammary development and 

lactation efficiency and this data was consistent with studies using in vitro models 

(Ikeda et al., 2004; Iwamori et al., 2010; Nukumi et al., 2007; Nukumi et al., 2005). 

Interestingly WAP gene knock-out mice showed no apparent changes in mammary 

gland phenotype during the lactation cycle, but the young showed limited 

development in the later stages of lactation (Triplett et al., 2005).  

In contrast earlier studies indicated that the presence of either exogenous tammar 

WAP or DIII protein alone in culture media specifically increased proliferation of 

wallaby mammary epithelial  cells (Topcic et al., 2009). A protein comprised of DI-II 

from tammar WAP, which more closely resembles the 2-domain eutherian WAP, had 

no effect on the proliferation of mammary epithelia cells from the tammar and mice.  

Earlier studies have shown that the exogenous expression of tWAP and DIII in 

transfected HC11 and Wall-MEC cells increased cell proliferation and significantly 

up-regulated the expression of cyclin D1 and CDK-4 genes (Topcic et al., 2009) 

which is consist with a role for tammar WAP  as a positive regulator of cell cycle 

progression of mammary epithelial cells in culture by the regulation of these genes. It 

is plausible that tammar WAP (and specifically domain III) has a role in the increased 

DNA synthesis observed in the mammary gland during the mid-phase of lactation 

(Nicholas, 1988a; Nicholas, 1988b) and subsequent increase in milk production and 

growth of the young that occurs around the time the young exits the pouch. 

These studies suggest DIII of tammar WAP is the functional domain and it is 

conceivable that evolutionary pressure has adapted the structure and function of the 

protein and expression pattern of the WAP gene with the appearance of the eutherian 

lineage and accompanying changes in reproductive strategy.  

Functional milk-derived peptides 
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Milk bioactive proteins have a multitude of functions but many of the bioactivities 

remain inactive until proteolysis releases the latent bioactive peptides (Kanda et al., 

2007; Lönnerdal, 2010; Meisel, 2004, 2005; Meisel and FitzGerald, 2000; Schmelzer 

et al., 2007). To examine bioactivity the milk proteins are typically digested by 

incubating either milk or individual milk proteins with proteases that are found in the 

gut (pepsin, trypsin and chymotrypsin) (Eriksen et al., 2010; Kitazawa et al., 2007; 

Picariello et al., 2010; Schmelzer et al., 2007) but it is now apparent that milk has the 

capacity to process milk proteins with milk-borne proteases. Bioactive milk peptides 

resulting from proteolytic digestion include functions such as immunomodulatory 

(Adel-Patient et al., 2012; Qian et al., 2011), antimicrobial (Dallas et al., 2013; 

Gifford et al., 2005; Liepke et al., 2001), antithrombotic (Chabancea et al., 1995; Fiat 

et al., 1993), opioid agonists (Gertrud et al., 1985; Meisel and FitzGerald, 2000; 

Migliore-Samour et al., 1989; Teschemacher et al., 1997), ACE inhibitors (Wu et al., 

2013) and proliferative factors (Kanda et al., 2007).  

 

These bioactive peptides may be active in the mammary gland to protect the tissue 

from infection and reduce inflammation during this process, but they may also act in 

the oral cavity, the gut and potentially move into the peripheral circulation of the 

suckled young. Therefore it is interesting to explore the potential of the tammar 

mammary gland to present timed-delivery of these peptides to these environments by 

the asynchronous activity of both proteases and specific proteins in milk. Gene 

expression analysis by cDNA sequencing (Lefèvre et al., 2007), microarrays and 

RNAseq (Lefevre, Sharp and Nicholas, unpublished) of the tammar mammary gland 

during the lactation cycle has allowed a preliminary examination of some genes 

coding for secreted proteases. It is apparent that some of these genes are expressed 

throughout the lactation cycle (Figure 8), but other genes are expressed at specific 

phases of the lactation cycle indicating the potential for timed delivery of peptide 

bioactivity to the mammary gland and the suckled young.  

 

miRNA 

MicroRNAs (miRNAs) are small RNAs that regulate target mRNAs and subsequently 

influence protein expression levels, thereby having crucial roles in regulating a wide 

range of cellular functions, such as cell differentiation, proliferation and cell death 



  

 17

(Hwang and Mendell, 2006; Song and Tuan, 2006). Recent studies have shown that 

secretory miRNAs are found in  milk (Zhou et al., 2012), saliva (Michael et al., 2010), 

plasma (Caby et al., 2005) and urine (Pisitkun et al., 2004) suggesting that secretory 

miRNAs may function in extracellular cell to cell signalling and participate in 

intercellular regulation of cell function (Kosaka et al., 2013). Milk miRNAs have been 

reported in several eutherian species including human (Kosaka et al., 2010), bovine (Hata 

et al., 2010), pig (Gu et al., 2012) goat (Ji et al., 2012) and more recently the tammar 

(Modepalli et al., 2014). Milk miRNA, are most likely secreted and transported in  

exosomes (Zhou et al., 2012) to protect the miRNA from degradation although there are 

studies showing an alternative mechanism using milk fat globules (Munch et al., 2013).  

Transport of milk miRNAs in exosomes to the tammar pouch young  

Recent studies have shown that the majority of tammar milk miRNA co-purified together 

with other small RNA in a fraction enriched in exosome-like vesicles (Modepalli et al., 

2014). These vesicles were similar to exosomes reported in milk of several eutherian 

species (Admyre et al., 2007; Gu et al., 2012; Hata et al., 2010; Lasser et al., 2011). 

These results suggest that miRNAs in tammar milk are likely to be transported through 

exosome  vesicles and potentially play a role in communication of a diversity of potential 

molecular signals between cells (Creemers et al., 2012). Further analysis of these 

exosomal miRNAs revealed increased stability under harsh conditions of low pH and 

high protease activity, indicating that milk miRNAs may successfully be transported into 

the pouch young digestive system without degradation and survive longer in the gut 

(Modepalli et al., 2014). Therefore it is likely milk miRNA represent not only potential 

markers of mammary gland development and activity during the lactation cycle, but also 

new putative signalling molecules involved in programming development of the suckled 

young (Kumar et al., 2012).  

 

Conclusion 

The regulation of the lactation cycle in the tammar wallaby has fascinated and 

challenged scientists for many decades and the interesting interplay between the 

endocrine, autocrine and paracrine mechanisms that are implicated in this process are 

now beginning to be better understood. However, it is the timed delivery of bioactives 

in the milk that play a role in mammary function and protection and development of 
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the suckling young that are of paramount interest. It is ironic that marsupials have 

long been considered a primitive mammal. The reality is that the mammary gland in 

these species is very sophisticated in terms of its capacity for temporal delivery of 

bioactives for multiple targets. Indeed, it appears that the eutherian mammary gland is 

less sophisticated as many of its previous functions have evolved to be delivered by 

multiple tissues. It is clear that the marsupial provides a unique opportunity to more 

easily identify the bioactives that potentially play a role in early development of the 

fetus.  

We have known for some time that significantly premature and low birthweight 

human babies have acute challenges for survival, largely due to limited development 

of their lungs and gut. However, it is equally important to note that these babies also 

have the potential for an increased frequency of mature onset disease in adulthood  

(Svedenkrans et al., 2013) and this disease status may be more exacerbated if the low 

birthweight babies have rapidly increased growth rates as part of the procedures to 

improve their early survival. It appears that significant programming occurs in the 

earlier stages of development that subsequently impacts on mature onset disease. The 

tammar wallaby provides a new model to better understand this process of 

developmental programming. For example, it will be interesting to determine whether 

the developmental program is set during the 26 day gestation or whether the milk is 

providing signals to the altricial neonate that have a role in this process. The option of 

cross fostering neonates to mothers at advanced stages of lactation to exclude the 

temporal delivery of putative milk bioactives to the young and accelerate growth of 

the suckled young may shed new light on the process of developmental programming. 

 

Glossary 

Mya    million years ago 

Altricial    immature 

Bioactive   a molecule that elicits a physiological response 

LBW   low birthweight baby 

ACL  asynchronous concurrent lactation 
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P1,2,3   phase 1,2 3 of lactation 

MEC   mammary epithelial cells 

WallMEC   wallaby mammary epithelial cell 

ECM   extracellular matrix 

miRNA   a short strand of RNA 

 

 

Figure legends: 

Figure 1.  Tammar wallaby lactation strategy. Progressive changes in milk 

production, milk composition and growth of the young during the three phases of the 

lactation cycle in the tammar wallaby (Brennan et al., 2007a; Nicholas et al., 1997). 

 

Figure 2. (A) Differential expression of the major milk protein genes during 

tammar lactation. Profile of tammar milk protein genes expressed during the 

lactation cycle. The genes shown are α-casein (α-CAS), β-casein (β -CAS), α-

lactalbumin (α-LAC), β-lactoglobulin (β -LG, early lactation protein (ELP), whey 

acidic protein (WAP), late lactation protein-A (LLP-A) and late lactation protein-B 

(LLP-B).  Adapted from Sharp et al., (2011). (B) Phase specific mammary 

morphology and milk protein gene expression. (a) Tammar mammary glands 

showing asynchronous lactation. Q represents quiescent and non-lactating mammary 

gland, P2A and P3 represent mammary glands producing early lactation milk for the 

pouch young (PY) and late lactation milk for the young that has exited the pouch 

respectively. (b) H&E stained cross sections of mammary gland. PG (pregnant, day 

17), Early (early lactation, day 40), Mid (mid-lactation, day 168), Late (late lactation, 

day 260) and INV (involution, day 10 post weaning). Alveoli are marked with A, 

stroma with S. (c) RT-PCR analysis of milk protein gene expression. NTC, no 

template control. Stages of lactation as above.  tELP, tWAP, tLLP-B and tβ-cas 

represent tammar early lactation protein, whey acidic protein, late lactation protein-B 

and β-casein, respectively. GAPDH was used as the housekeeping gene.  PCR 

products were resolved on a 1.2% agarose gel. Adapted from (Nicholas et al., 2012). 
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Figure 3. Milk protein gene expression after culturing early and mid lactation 

WallMECs on mammary ECM.  (A) tELP and tWAP gene expression in WallMEC 

cultured on early and mid lactation mammary ECM. Gene expression was analysed 

relative to GAPDH expression. Early and Mid represent the lactation phase of the 

ECM. Samples were either treated with either insulin and cortisol (IF) or insulin, 

cortisol, prolactin, tri-iodothyronine and estradiol (IFPT3E2).  The asterisk denotes 

significant difference (student t-test, p=0.011; n=4) between early and mid lactation 

Standard error bars (SEM) are shown. (B) tWAP and LLP-B gene expression in 

WallMEC cultured on mid and late lactation mammary ECM. Mid and Late represent 

the lactation phase of the ECM. The asterisk represents significant difference 

(p≤0.005; n=4) between mid and late lactation ECM Adapted from (Wanyonyi et al., 

2013). 

 

Figure 4. Effect of ECM on milk protein gene expression (A) tWAP gene 

expression in early lactation WallMEC cultured on early, mid and late lactation 

mammary ECM. Gene expression was analysed relative to GAPDH. Early, Mid and 

Late represent the lactation phase of the ECM. The asterisk denotes significantly 

lower expression compared to mid lactation ECM.  Standard error bars (SEM) are 

shown. Statistical analysis was performed using student t-test (p<0.005; n=4). (B) 

LLP-B gene expression in early lactation WallMEC cultured on early, mid and late 

lactation ECM. Adapted from (Wanyonyi et al., 2013). 

 

Figure 5. Effect of early phase tammar wallaby milk on lung branching 

morphogenesis and expression of lung developmental marker genes. (A) The 

experimental model used for culture of mouse E12 embryonic lungs with tammar 

milk. (B) Embryonic lungs were cultured for 86 h in the presence of wallaby milk 

(10%) collected at day 20, day 60, day 120 and control embryonic lungs were 

cultured in media with PBS. (C) Histological analysis of mouse embryonic lung 

sections stained with H&E after 84hrs of culture The experimental conditions are 

described above. (D) Analysis of branching morphogenesis.  The number of terminal 

end buds were counted in sections from control embryonic lung and embryonic lungs 

treated with tammar milk from day 20, day 60, day 120 lactation. (E) Expression of 

critical developmental marker genes Sp-C,  Sp-B (Type-II pneumocytes marker 
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genes), Wnt-7b, Bmp4 and Id-2 in mouse embryonic lung cultured with tammar milk 

for 84hrs. Significant increases are indicated (P values <0.05, n=4) with an asterisk 

(student t-test). Scale bar 250 µm. Adapted from (Modepalli et al., 2015). 

 

Figure 6.  Differential splicing of the MaeuCath1 gene. The MeuCath gene is 

differentially spliced and specific transcripts expressed in specific stages of the 

tammar lactation cycle. Meaucath1a is only expressed during P2A and late involution, 

while MeuCath1b is expressed at low levels during P2A and is upregulated in P2B, 

P3 and involution. Adapted from (Wanyonyi et al., 2011). 

 

Figure 7. Relationship between WAP and WFDC2. (A) The 4-disulphide domain 

structure of WFDC2, marsupial WAP and eutherian WAP. Modified from (Sharp et 

al., 2007a). (B) Expression profiles of the WAP and WFDC2 genes.  RNA was 

extracted from tammar wallaby mammary gland at the indicated stages of pregnancy 

and lactation.  RT-PCR was used to quantify gene expression following normalized 

expression of the GAPDH gene. Modified from (Watt et al., 2012). 

 

Figure 8. Expression profile of mammary genes coding for secreted proteases 

expressed during the tammar lactation cycle. (A) Gene expression profiles of 

proteases were examined by microarray analysis of mammary gland tissue collected 

from different phases of the tammar wallaby lactation cycle. Examples of some 

proteases (CTSC, TPSB1, CFD) are differentially expressed in different phases of 

lactation. (B, D, F). In contrast, the level of expression of some genes (CTSK, PRCP, 

GZMB) remained unchanged during lactation (C,E,G). 
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