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ABSTRACT
Detecting binary stars in photometric time series is traditionally done by measuring eclipses.
This requires the orbital plane to be aligned with the observer. A new method without that
requirement uses stellar oscillations to measure delays in the light arrival time and has been
successfully applied to δ Scuti stars. However, application to other types of stars has not been
explored. To investigate this, we simulated light curves with a range of input parameters.
We find a correlation between the signal to noise of the pulsation modes and the time delay
required to detect binary motion. The detectability of the binarity in the simulations and in real,
Kepler data show strong agreement, hence, we describe the factors that have prevented this
method from discovering binary companions to stars belonging to various classes of pulsating
stars.
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1 IN T RO D U C T I O N

The primary science goal of Kepler was to find stars with Earth-
like exoplanet companions by observing transits in the photometric
time series (Borucki et al. 2010; Koch et al. 2010). Large numbers of
eclipsing binaries were also discovered (Prša et al. 2011; Kirk et al.
2016), some of which show stellar oscillations (e.g. Southworth
2015). These oscillations can also be used to find binaries without
transits or eclipses, provided the pulsation modes are stable enough
to act like a ‘clock’. That is the subject of this paper.

As a star and its companion orbit each other, the light travel
time from the host star to the observer will vary. The variation is a
periodic function that is related to the integral of the radial velocity
variation. Telting et al. (2012) used the differential arrival time of
pulsation modes to confirm the presence of a companion to an sdB
star. Murphy et al. (2014) developed the phase modulation (PM)
method, using changes in the pulsation phases of δ Sct stars to
find binary companions. This method complements the frequency
modulation (FM) method by Shibahashi & Kurtz (2012), wherein
the binary motion modulates the oscillation frequencies, causing
multiplets in the Fourier transform. The FM method is suitable for
data sets that are much longer than the orbital period of the binary.
Hence, for the wide orbits, the frequency splitting can approach the
frequency resolution of the pulsation spectrum. In contrast, the PM
method favours wider orbits because the light travel time across
the orbit is larger. The PM method has the benefit of providing a
visualization of the orbit by tracking the time delays as a function

� E-mail: d.compton@physics.usyd.edu.au

of orbital phase. It also allows the signals from different pulsation
modes to be combined straightforwardly. This method has been used
on known δ Scuti binaries in the Kepler field (e.g. Balona 2014).
Additionally, many new binary systems have been discovered using
the PM method (e.g. Murphy et al. 2014). Several giant planets have
been discovered around pulsation sdB stars using timing variations
(e.g. Silvotti et al. 2007; Geier et al. 2009; Lee et al. 2009; Qian
et al. 2009).

The goal of this paper is to apply the PM method to other types
of pulsating stars to detect the presence of a binary companion.
We start by introducing the PM method and apply it to artificial
light curves (Section 2). We adopt a Monte Carlo method by mass-
producing light curves and extracting relevant parameters from the
time-delay spectrum. The resulting distributions are analysed to
diagnose detectability and then compared with real Kepler binaries
in Section 3. Finally, the implications of this research are discussed
in Section 4.

2 M E T H O D A N D S I M U L AT I O N S

2.1 Phase measurements and time delays

The PM method involves measuring the phase, �(t), of a pulsation
mode over time, t. We generalize the light curve as a periodic
function, f(t). The phase of a pulsation mode with frequency ν can
be calculated using the Fourier transform over a time interval δt,
which is

F(t ; ν, δt) =
∫ t+δt/2

t−δt/2
f (t ′)e−2πiνt ′ dt ′. (1)
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The argument of the complex quantity F in equation (1) gives the
phase:

�(t ; ν) = tan−1

(
Im(F(t ; ν, δt))

Real(F(t ; ν, δt))

)
. (2)

The length of the intervals used by Murphy et al. (2014) was
δt = 10 d.

The phase of a pulsation signal is sensitive to changes in distance
to the source. Extracting the pulsation phase for each time interval
produces a series of phases that are modulated by orbital motion,
allowing us the measure the binary period, Porb, and projected semi-
major axis a1sin (i), where i is the inclination of the orbital plane
with respect to the observer.

The phase variations can be converted to time delays by dividing
by the angular frequency of the pulsation mode:

τ (t) = ��(t)

2πν
. (3)

Here, �� = �(t) − 〈�(t)〉, which sets the mean of the time delays
to be zero.

Fig. 1 shows the main steps of the PM method for a known Kepler
binary δ Sct star KIC 11754974 (Murphy et al. 2013b): (1) the
Fourier transform of the time series around a prominent oscillation
mode, (2) time-delay series, and (3) time-delay spectrum. Binary
motion produces a peak in the Fourier transform of the time delays
(henceforth time-delay spectrum) at the orbital frequency, forb =
1/Porb. The amplitude of this peak is the projected light travel time
across the orbit, which is a1sin (i) divided by the speed of light c.
A more complete set of orbital parameters can be extracted from
fitting directly to the time delays (see Murphy & Shibahashi 2015).

2.2 Simulated light curves

To evaluate the performance of the PM method, we generated
monoperiodic Kepler time series, which simulate the binary mo-
tion. The simulated light curves were a linear combination of two
components: a single oscillation mode and a noise term. Bina-
rity was simulated by adding a time-dependent phase shift to the
pulsation.

The flux variation due to a single mode in the time series is given
by

f (tn; A, ν, φ) = A cos (2πν(tn + τ (tn)) + φ), (4)

where A and ν are the amplitude and frequency of the mode, and
φ is the phase relative to an arbitrary fixed starting point. The
time stamps, tn, for the simulations were based on the Kepler long-
cadence sampling (�t = 29.4 min) using all four years of available
data. The time-dependent function τ (tn) describes the time delays
induced by the binary motion. To simplify our analysis, we only
considered circular orbits, i.e. eccentricity e equals zero. Shibahashi
& Kurtz (2012) expressed the PM function as

τ (tn; τmax, Porb, ψ) = τmax sin

(
2πtn

Porb

)
+ ψ, (5)

where τmax is the amplitude of the time-delay variations, Porb is
the orbital period, and ψ describes the phase of the orbit. For a
circular orbit, τmax only depends on the projected semimajor axis.
In the absence of noise, the maximum time delay is equivalent to the
projected light travel time across the orbit, i.e. τmax = a1sin (i)/c.
In this paper, τmax will be used as the input maximum time delay,
whereas a1sin (i)/c is the empirical maximum time delay extracted
from the simulated time series using the PM method.

Figure 1. Application of the phase modulation method to the Kepler δ

Sct binary star KIC 11754974. (a) The close-up view of a single mode at
189.1 μHz in the Fourier transform in the photometric time series. (b) time
delays calculated from 10 d sub-series at the frequency of the chosen mode.
(c) Fourier transform of the time delays (time-delay spectrum). The peak at
0.0029 d−1 in the time-delay spectrum is caused by the binary motion of the
δ Sct star.

We simulated the white noise using the equation

W (tn; σ ) = Xtn (σrms), (6)

where Xtn is a random number taken from a Gaussian distribution
with a mean of zero and a standard deviation of σ rms.

The relationship between the scatter in the time series, σ rms, and
the mean noise level in the amplitude spectrum, σ amp, is

σamp =
√

π

N
σrms. (7)
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Table 1. Set of fixed parameters used in the simulations. Y
is a uniform random number-generating function between 0
and 1. Each simulation used a different random seed.

Parameter Description Simulation value

Porb Orbital period 100 d
e Orbital eccentricity 0
ψ Orbital phase 2πYi

Nsub Number of sub-series 150
A Pulsation amplitude 1.0 (arbitrary units)
νsim Pulsation frequency 250 μHz
φ Pulsation phase 2πYj

Here, N is the number of data points in the time series (Kjeldsen
& Bedding 1995). The relationship between A and σ rms gives the
signal-to-noise ratio of the oscillation mode,

S/N = A

σamp
= A√

π
N

σrms
. (8)

The signal-to-noise ratio is a convenient quantity because it com-
bines the oscillation amplitude and noise into one scalar quantity
and it can be measured straightforwardly from the Fourier transform
of the light curve.

The uncertainty of the pulsation phase measurement depends on
this signal to noise. For a given binary orbit, equation (3) indicates
that the PM of a particular pulsation mode is proportional to the
mode frequency. It follows that the uncertainties of the phases are
lower for higher pulsation frequencies.

The randomness of our simulations gives a distribution of mea-
sured maximum time delays, ai sin (i)/c, and orbital periods, Pobs.
Non-varying asteroseismic and binary parameters were marginal-
ized by setting them as constant across all simulations, as shown in
Table 1.

The amplitude, A, was kept constant and the noise level, σ rms, was
adjusted to control the signal to noise of the mode. We split each
time series into Nsub = 150 sub-series, which corresponds to approx-
imately 10 d for most Kepler light curves. If the effective length of a
sub-series was less than 8 d, it was discarded. 10 d is short enough to
sample the orbit for any orbital period above 20 d and long enough

to resolve individual modes with a minimum frequency separation
of approximately 3μHz (see Christensen-Dalsgaard 2008).

In general, high-frequency pulsations and longer orbital periods
are advantageous. However, upper limits exist for both these quan-
tities. A full sample of the orbit throughout the time series (i.e.
Porb � 1000d) is required to ensure that the time-delay variations
are periodic and caused by an orbiting companion. The pulsation
frequency is limited by the long-cadence sampling, which has a
Nyquist frequency of 283.2μHz. Therefore, care must be taken to
avoid aliases (e.g. Murphy, Shibahashi & Kurtz 2013a).

2.3 Setting limits on the detection of binarity

To determine the limits of binary detectability, we generated simu-
lated Kepler time series with a grid of input parameters. We initially
simulated time series without binarity to understand the influence
of the pulsation mode signal to noise on the time-delay spectrum.
We simulated 1000 light curves for each value of signal to noise in
a grid spanning 5 < S/N < 2000. The PM method was applied to
each white-noise time series to extract the height of the highest noise
peak from the time-delay spectrum. For a given signal-to-noise ra-
tio, the absolute phase uncertainty caused by the white noise is the
same across different modes of varying frequency. This means that
the variance of this extracted maximum time delay multiplied by
the pulsation mode frequency is the same for modes of identical
signal-to-noise ratios. Therefore, we compared the PM in units of
number of pulsation periods across stars with varying white noise
coefficients, i.e. time delays multiplied by the speed of light: τmax ·
ν or a1sin (i)/c · ν.

An example of the distribution of maximum time delay from 1000
simulations of purely white noise time series is shown in Fig. 2(a).
A Gaussian fit to the histogram gives the typical maximum time
delay caused by the white noise scatter. The maximum time delay
of a binary must exceed this value for a given signal-to-noise ratio
to be considered detectable, i.e. above the points in Fig. 2(b). At
low S/N, we observed excessive phase wrapping in the time-delay
sub-series, that is the point-to-point scatter in Fig. 1(b) exceeded the
co-domain of equation (2) (|�(t)| > π ). We fitted a power law to
the points above a signal-to-noise ratio of 50, which we considered

Figure 2. (a) A single distribution (S/N ≈ 140) of the maximum noise peak in the time-delay spectrum using N = 1000 simulated time series of the same
star with no binary component. The distribution was fitted with a Gaussian (green line). The mean and standard deviation of the Gaussian is represented by
the dotted red line and the blue bar, respectively. (b) The diamonds and attached error bars represent the mean and standard deviation, respectively, of each
distribution as a function of signal to noise. The blue diamond corresponds to the distribution in (a). The solid red line is a power-law fit to the points with S/N
> 50 (dashed black line), and the dotted red line is its extrapolation.
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Figure 3. The distribution of maximum time delays from 1000 simulations
with input parameters of τmax ≈ 120s and S/N ≈ 140. The red dashed line
is the mean of the distribution. The one standard deviation uncertainties are
represented by the blue bar. The top axis denotes the ratio of the highest
peak extracted from the time-delay spectra, a1sin (i)/c, and the maximum
time delay injected into the simulated, τmax.

to be a soft lower bound on the binary detection threshold for a
monoperiodic star due to the phase wrapping.

2.4 Simulations of binary motion

We extended our analysis by adding PM (τmax > 0 in equation (5))
to simulate binary motion. We used a similar Monte Carlo analysis
to find the uncertainty of the extracted maximum time delay as
a function of τmax and pulsation mode S/N. Arrays of S/N and
τmax were logarithmically spaced to make a 40×40 grid of input
parameters. For each grid point, another 1000 monoperiodic time
series were constructed with different random seeds. Using the PM
method, the maximum time delay, a1sin (i)/c, was extracted from
the time-delay spectra. Note that we scaled the time delays to a
phase unit, a1sin (i)/c · ν, to allow easy comparison between stars in
different binary systems or having different oscillation frequencies.

We then looked at the distribution of maximum time delays of
each of the sets of 1000 simulated time series in the grid. These
distributions were found to be Gaussian-like, as in Fig. 3, as long as
the time delay due to binary was consistently above the maximum
noise peak. In contrast, the maximum time-delay distribution of
a set of noisy time series was found to be spread out and non-
Gaussian because more false peaks in the time-delay spectra were
extracted. The mean of the maximum time-delay distribution in
Fig. 3 is less than the input maximum time delay. This is caused by
an undersampling of the orbit. Murphy et al. (in preparation) will
give a full characterization of the effect, but with our sampling of
10 sub-series per orbit there is little impact on our results.

The grid of distributions are compiled into Fig. 4 using contours
of constant relative uncertainty. The relative uncertainty was cal-
culated by dividing the standard deviation of each distribution by
the injected maximum time delay, τmax. The contour lines follow a
power law for large S/N and time-delay amplitude, where binarity
is most easily detectable. Conversely, the contours become irreg-
ular at larger uncertainties and the binary is harder to detect. The
large uncertainties correspond to a parameter space where the noise
in the time-delay spectrum consistently exceeds τmax (red line in
Figs 4 and 2b). We concluded that the binary peak in the time-delay

spectrum could not be reliably detected if the relative uncertainty
was much greater than 30 per cent. Therefore, contours greater than
this are not shown in Fig. 4. We should keep in mind that our sim-
ulation only included a single pulsation mode in each time series,
and that we should expect to do somewhat better in multiperiodic
stars.

3 C OMPARISON W ITH O BSERVED DATA

We looked for PM Kepler data for in a variety of pulsating stars
with known binaries. Examples are shown in Fig. 5, and all have
coherent modes with lifetimes longer than the four years of the
observations. We considered two types of main-sequence pulsating
stars near the instability strip. δ Scuti stars have high-amplitude and
high-frequency p modes, which is why they were initially chosen
when the PM method was developed. γ Doradus stars have g-mode
pulsations at lower frequencies. In addition, we looked at δ Sct/γ
Dor hybrids which have both δ Sct and γ Dor pulsations. We also
investigated red giant branch (RGB) and clump stars, where the
coupling between pressure- and gravity-dominated modes generates
mixed dipole modes with long lifetimes (e.g. Dupret et al. 2009).
Finally, we also considered two classes of compact evolved stars, the
sub-dwarf B (sdB) stars and white dwarfs, which both have coherent
and modest-amplitude g modes (e.g. Reed, Quint & Kawaler 2011;
Greiss et al. 2014) that could be suitable for detecting binary PMs.

We used Kepler light curves that had been reduced using the
multiscale Maximum A Posteriori algorithm developed by Stumpe
et al. (2012). This removes systematic trends, discontinuities, out-
liers, and artefacts. The light curves were then analysed using the
PM method, as outlined in Section 2.1.

Relating our simulations to the observed data requires knowledge
of the projected light travel time across the orbit and the signal-to-
noise ratios of the observed pulsations. For each star, the strongest
mode in the amplitude spectrum was selected for analysis and its
frequency ν i and amplitude Ai were noted. The light travel time
was calculated as described in section 2.1. The signal to noise was
calculated using equation (8) from the pulsation amplitude and the
mean noise level. The results are plotted as symbols in Fig. 4. The
location of a star in Fig. 4 gives an estimate of the relative uncertainty
of its maximum time delay for an individual mode. If the relative
uncertainty is greater than 30 per cent, it is unlikely to be detectable.
Analysing multiple modes reduces the total relative uncertainty by
approximately the square root of the number of modes.

Care must be taken when calculating the mean noise level, σ amp.
For the highest amplitude δ Sct stars, the spectral window will
dominate the amplitude spectrum (e.g. Murphy et al. 2013b), even
when the window function is ideal. To estimate the noise, we first
pre-whitened the peak with the highest amplitude in the pulsation
spectrum. The mean residual amplitude within ±10 per cent of the
mode frequency was taken to be the mean noise level and used to
calculate the signal-to-noise ratio. For most δ Sct stars, we note that
this overestimates the noise because variance from other oscillation
modes remains.

4 D ISCUSSION

Fig. 4 shows good agreement between the predicted detectability
of binary stars and those with observed time-delay variations. This
validates the use of the simulations as a way to determine a lower
bound of observable projected light travel time across the orbit for
a given signal to noise and pulsation frequency. For example, a
pulsation mode with S/N = 100 at ν = 210μHz should typically
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Figure 4. The contours define lines of constant relative uncertainty in the time delays calculated from a sample of 1000 simulated light curves as a function
of signal-to-noise ratio, S/N, of the pulsation mode, and injected maximum time delay, τmax. The red line is the power-law fit to the average maximum noise
peak, shown in Fig. 2(b). Each symbol represents the strongest pulsation mode of a known Kepler binary star. The red squares and purple triangles are δ Sct p
modes (by Murphy et al. 2014). Orange diamonds are sdB stars measured by Telting et al. (2012, 2014) (KIC 7668647 and KIC 11558725). The dotted-lined
box represents the area where the most ideal red giants lie (Beck et al. 2014; Gaulme et al. 2014). The green crosses and blue pluses are δ Sct/γ Dor hybrids, p
mode and g mode, respectively (see Van Reeth et al. 2015 for KIC 3952623 and Keen et al. 2015 for KIC 10080943).

show detectable PM if the maximum time delay is greater than 30 s
(a1sin (i)/c · ν = 30 · 210 · 10−6 = 0.0063).

If the primary star mass is known, a lower bound on the projected
mass of the companion can be inferred. The lower bound on mass
occurs when the orbital plane is perpendicular to the plane of the
sky (i.e. i = 90◦). However, the maximum time delay for eccentric
orbits depends on the argument of periapsis,  . For the known
binaries we examined, we assumed the eccentricity of the orbit has
a negligible effect on the time delays, i.e. the maximum time delay
is equivalent to a1sin (i)/c and does not affect the detectability.

The δ Sct binaries in our sample, denoted by the red squares and
purple triangles in Fig. 4, were all detected using the PM method.
Except for two, all lie above the maximum time delay of noise (solid
red line). These two were detected by analysing multiple modes (up
to nine modes in total), which reduces the uncertainty of the time
delays by approximately the square root of the number of modes,
whereas the simulations were calculated for single modes only.

We found that γ Dor pulsations are not suitable for the PM
method because the frequencies of the g modes are too low. The
examples shown in Fig. 4 are δ Sct/γ Dor hybrid stars that only have
detectable time delays for the p-mode pulsations. The PM analysis
of the g modes did not yield a detectable signal of binary motion. In
general, the periods of the g modes are at least 10 times greater than

the p modes. This reduces the detectability of time-delay variations
by the same factor. Additionally, the density of modes in the Fourier
transform of γ Dor stars can be too high for them to be resolved
with 10-d time intervals (see Keen et al. 2015 for an example); the
time delays are obscured by beating between other pulsation modes
in the star. Binary δ Sct stars analysed by Murphy et al. (2014) also
show the effect of closely spaced beating modes on the time-delay
spectrum.

From the analysis of RGB and clump stars, we concluded that
Kepler red giants will not have detectable time-delay variations.
We inferred the maximum delays using 16 red giant binaries that
have known orbital parameters reported by Beck et al. (2014) and
Gaulme et al. (2014). The ideal red giants are high-frequency, lower
RGB stars like the one shown in Fig. 5(d). We combined typical
mass ratios of red giant binaries with a range of possible binary
parameters to create a best-case scenario for the low-luminosity
RGB stars. The best red giants would exist in the dotted box in
Fig. 4. Therefore, we conclude that the signal-to-noise ratios of the
coherent dipole modes, even in the best cases, are insufficient to
detect time-delays caused by binarity.

The companions of pulsating sdB stars are on the threshold
of being detectable, as shown by the orange diamonds in Fig. 4.
Two Kepler sdB stars in known binaries were analysed. The orbital
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Figure 5. Examples of amplitude spectrum for each type of star analysed in this paper ordered from highest to lowest S/N. The left-hand column is the full
spectrum calculated from the observed Kepler time series and the right-hand column is a 20μHz-wide close-up of the region between the red dashed lines. The
close-up plots show the spectra of the full time series (grey line) and a typical 10 d sub-series (black line). The types of stars are as follows: (a) a δ Sct star with
p-mode pulsations. (b) A γ Dor/δ Sct hybrid star with low-frequency g mode and high-frequency p-mode pulsations. (c) An sdBs with g-mode pulsations. (d)
A red giant branch star with solar-like mixed dipole modes oscillations. The amplitude of each plot has been normalized to the height of the strongest pulsating
peak.

periods are about 10 d, each with a white dwarf companion. There-
fore, in an attempt to detect the PM due to binarity, we took Nsub

= 500 sub-series, which corresponded to a sub-series length of 2 d,
which was required to sample the short orbit adequately. Naturally,
decreasing the sub-series length increases the uncertainty of the
time delays, further reducing the detectability of the binarity of the
sdBs. The PM method would succeed for sdB stars with longer
orbital period companions, which would give a higher maximum
time delay. We were unable to detect binarity from the 19 pulsat-
ing sdB stars that have Kepler long-cadence data, and which are
not known to be binaries (Silvotti et al. 2014). Previous work by
Telting et al. (2012, 2014) analysed these two sdB stars in a similar
way by fitting the time delays to the pulsation modes. They were
successful in extracting the maximum time delays by using Kepler
short-cadence data and using many tens of modes. Our analysis
considers only a single mode, and is based on long-cadence data
only.

We also considered white dwarfs, although we note that none of
the pulsating white dwarfs in the Kepler field are in known binary
systems. The pulsation frequency of white dwarfs is an order of
magnitude higher than the other stars considered in this analysis.
Therefore, Kepler short-cadence data (one minute sampling inter-
val) were used in the analysis, which is not entirely comparable to
our simulations in Fig. 4. We infer from the work of Hermes et al.
(2011) and Greiss et al. (2014) that the signal-to-noise ratios of
white dwarf oscillations are similar to those of red giants. Note that
the short oscillation periods of white dwarfs can cause the maxi-
mum time delay to exceed the pulsation period, in which case, one
must also account for phase wrapping of the binary-induced phase
shifts. We concluded that the high-frequency pulsations suit the PM
method, but, for the same reasons as for the sdBs, the smaller

number of pulsating white dwarfs with Kepler data limits the
chances of detecting binary systems.

5 C O N C L U S I O N S

We attempted to extend range of stars for which the PM method
can be applied, to include red giants, γ Dor stars, white dwarfs,
and subdwarf B stars. We explored the asteroseismic and orbital
parameter space to find the detection limits. The results from our
simulations show a relationship between the signal-to-noise ratio
of the pulsation mode and the ability to detect binarity. To confirm
this, we compared the results of the simulations with observed Ke-
pler light curves. We saw a strong agreement in binary detectability
between the observed and simulated data. Moreover, for δ Scts star
with the highest signal-to-noise ratios, time-delay variations as low
as a few seconds should be detectable. For a monoperiodic oscil-
lator, this maximum time delay corresponds to a companion mass
of the order of M sin (i) = 10 Jupiter masses, given the limits of
the Kepler time series. This limit can be decreased for stars with
pulsations above the Nyquist frequency or when analysing multiple
modes, which can reduce the time-delay uncertainty by

√
N , where

N is the number of modes analysed. The limit for γ Dor and sdBs
is approximately 10 times more massive, due to the differences
in mode frequency and signal-to-noise ratio. These companions
would be very low-mass stars that have periods of over one year.
The limit for red giants is 100 times greater relative to the δ Sct
stars, which is of the order of a solar mass companion. This op-
timistic case does not take into account the density of g modes,
which cause heavy interference in the time-delay spectra, ulti-
mately causing the red giants to be unrealistic candidates for the PM
method.
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We conclude that the PM method is best suited to searching for
companions around δ Sct stars, where it should be possible to reach
down to planetary masses.
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