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 Abstract—A fast and automated technique is crucial for bearing 

faults diagnosis during operation. To circumvent the intricacies of 

signal spectrum analysis, a diagnostic method named the pulse 

signal-to-noise ratio (PSNR) test is proposed by exploiting the 

time-domain sparsity of fault signals under a constant angular rate, 

which are modeled as periodic pulses with consistent duty cycle 

and power. The algorithm employs a statistic called pulse signal-

to-noise ratio to both identify faults and determine their location. 

A simplified variant of the PSNR test, named pulse signal-to-noise 

amplitude ratio (PSNAR) test, is further proposed for near 

multiplication-free fast diagnosis. Data from Machinery Failure 

Prevention Technology (MFPT) and Case Western Reserve 

University (CWRU) were used to verify the algorithm. 

 

Index Terms—Bering fault diagnosis, generalized likelihood ratio 

test, low-complexity, pulse signal model, pulse signal-to-noise ratio. 

I. INTRODUCTION 

EARING failure is a frequent problem in mechanical 

systems. To detect and diagnose bearing faults, 

mechanical vibration can be monitored using 

accelerometers [1]. The diagnosis of bearing faults deals 

primarily with three types of single-point defects: outer race, 

inner race, and ball (roller) faults [2]. Efficiently identifying 

fault types remains challenging in industrial scenarios due to 

strong interference, and our study designs a diagnosis method 

that considers both accuracy and complexity. 

Defects in different parts produce quasi-periodic impacts 

with a corresponding characteristic period (frequency) that is 

used to differentiate between the three fault types [3]. The most 

widely used approach is envelope spectrum analysis [4], which 

converts the signals into periodic envelope by Hilbert transform 

and squaring, and identifies the characteristic frequency using 

fast Fourier transform (FFT) [6].  Fundamentally, the analysis 

examines the periodic fluctuations in energy signals induced by 

impacts in the frequency domain [7]-[9]. Another common 

method is the harmonic signal-to-noise ratio (HSNR), which 

diagnoses the fault characteristic period via auto-correlation 

[10]. Despite their usefulness, these methods do not fully utilize 

prior knowledge, leaving room for improvement. Moreover, an 

 
 

automated identification of errors is desired to ensure impartial 

judgments [11]. 

On the other hand, the impulsivity of the fault pulses are well 

exploited to identify the most significant subband during 

preprocessing. Typically, the kurtogram is used to indicate the 

subband with maximum kurtosis [12]. Numerous similar 

criteria, all essentially envelope weighting, have then been 

presented over the past decade [13]. In recent years, studies 

have noticed the sparsity of bearing signals and proposed new 

preprocessing approaches to enhance the signal before 

diagnosis [14], [15]. Sparse recovery algorithms are designed 

to recover the fault pulses that occupy only a small portion in 

the time-domain with known potential characteristic period 

[16]. However, most sparse recovery algorithms involving 

optimization are computationally complex with unclear 

improvement in diagnostic performance [17]. 

This paper commences with an analysis of bearing signal, 

which is modelled as periodic pulses with fixed power and duty 

cycle, as the basis for time-domain processing. The fault 

diagnosis constitutes a hypothesis testing problem and a test 

statistic PSNR is designed for both Neyman-Pearson (NP) test-

based fault detection and generalized likelihood ratio test 

(GLRT)-based fault classification. A low-complexity algorithm, 

named the PSNAR test, has been further developed by 

substituting the power ratio in PSNR with the amplitude ratio 

to achieve nearly multiplication-free fast diagnosis. Both 

methods exhibit satisfactory diagnostic performance with the 

measured data. The paper is organized as follows: Section II 

elaborates on the pulse signal model. Section III presents the 

diagnostic algorithm. Section IV verifies the method with 

measured data, and Section V draws a conclusion. 

II. BEARING SIGNAL MODEL  

Like the traditional techniques, the diagnosis is conducted by 

utilizing the unique pulse characteristic frequency produced by 

single-point defect [3]. To highlight the feature of each fault, 

the sampled discrete signals  [0], [1]...x x=x  are modeled as  

 
[ ] [ ], ( ) ( ) ( ) ( ) ( )

[ ]
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s k w k lT i i k lT i i P i
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w k k
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where the characteristic period ( )T i  is pre-known for specific 

bearings with a given shaft speed and physical structure [3]. The 

0,1,2,  and 3i =  correspond to four hypotheses: normal, outer 

race, inner race, and ball fault, denoted by 0 , 1 , 2 , and 

3 . The pulse width is presumed to be ( ) ( )P i T i= , where the 

pulse duty cycle 1   is the same for different 1  2,  and 3i = ，  

as in [16]. 0 0P = =  for 0  with no fault pulse. The number 
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of pulses observed is 1,0,1,2...l = − , where the -1 indicates that 

a pulse may have already occurred at the start of the observation.  

0 ( ) ( )i T i   is the unknown pulse start time, and the first 

fully observed pulse starts at the ( )i th sample. [ ]w k  is white 

Gaussian noise with variance 2

n .  

The [ ]s k  are modeled as random and independent samples 

with identical Gaussian distribution with zero mean and 

variance (power) 2

s , i.e. 2[ ] ~ (0, )ss k  . The fault pulses in 

all cases are considered to have identical expected energy, 

significantly simplifying the shape of the impact pulses and 

disregarding the influence of any fault location change. The 

sole variation among the four hypotheses is the pulse repetition 

time, which is used to design the following diagnostic method. 

III. METHOD 

The hypothesis 1 , 2 , and 3  can be distinguished by 

their different characteristic period ( )T i . Since the probability 

density function of each hypothesis is unknown with unknown 

( )i , 2

,s i , and 2

,n i , the GLRT method is used to derive the 

diagnostic method [18]. The first step is the maximum 

likelihood estimation of the unknown parameters. The 

logarithmic likelihood function of the signal model (1) is 
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where the p is constrained by 0 ( ) ( )p i lT i K + +   to 

ensure that the sample numbers are within 0 to 1K − . The 

following equations all adhere to this constraint. K is the 

number of samples and ( )L i  is the number of observed pulses. 

The K  samples are assumed to contain exactly ( )L i  pulses. 

Incomplete pulses may be included at the beginning and end of 

the observation, which are ignored because their influence is 

small when the number of observed pulses ( )L i is large. The 

estimated results that maximize (2) are 
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where the   means circular convolution. The constant vector 

[1,  1... 1,0,...0] consists of ( )P i  1s and ( ) ( )T i P i−  0s. The 

vector  [0], [1],..., [ ( ) 1]i i i ix x x T i= −x  consists of ( )T i  

elements where  
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The likelihood function (2) with estimated parameters is  
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See the Appendix for proof of (3) to (7). The Eq. (7) is an 

increasing function of 2 2

, ,
ˆ ˆ/ 0i s i n iPSNR  =  , so the likelihood 

ratio test is formulated as  

 ( )   2 2 2 2

, , , ,
1,2,3 1,2,3

ˆ ˆ ˆ ˆ ˆ ˆarg max ; ( ), , arg max / ,s i n i s i n i
i i

i p i    
= =

= =x  (8) 

where the hypothesis i  that maximizes (7) is the diagnostic 

result in the presence of a fault.  

For hypothesis 0 ,  0 0PSNR =  and a NP test is used to 

determine whether the fault exists with given detection 

threshold  . The bearing is considered normal if 

  
1,2,3

max ( )i
i

PSNR 
=

x , (9) 

where the   is governed by the given false alarm rate fp  

  ( )
1,2,3

max ( )f i
i

p p PSNR 
=

= w , (10) 

where the signal w  is white Gaussian noise with the same 

length and sampling rate as x . 

Both (8) and (9) use iPSNR  as the test statistic, so the 

diagnostic method is named a PSNR test. The clear physical 

meaning of PSNR suggests that we can replace the signal-to 

noise power ratio with a simpler amplitude ratio, defined as  

, ,
ˆ ˆ/i s i n iPSNAR A A=   where  
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And the PSNAR test procedure follows (8) and (9), where the 

iPSNR  is replaced by iPSNAR . Both methods are shown in 

Algorithm I.  

The complexity of both proposed methods is lower than that 

of existing methods. The PSNR test mainly involves 

Algorithm I: Bearing fault diagnosis. 

Input: Fault characteristic period (1)T , (2)T , and (3)T . 

Pulse duty cycle  and fault detection threshold  , 

Input signal x . 

1: Calculate ix  by using 
( ) 1

0

[ ] [ ( )]
L i

c

i

l

x j x j lT i
−

=

= + , where the exponential 

c  is 2 for PSNR test and 1 for PSNAR test.  

2: Estimate ( ), ,
ˆ ˆ

s i n iA A+  or ( )  2 2

, ,
ˆ ˆ max [1,...1,0...0] /s i n i i K  + = x .  

3: Calculate the 2 2

, ,
ˆ ˆ/i s i n iPSNR  =  or , ,

ˆ ˆ/i s i n iPSNAR A A= . 

4: Compare  
1,2,3

max ( )i
i

PSNR
=

x  or  
1,2,3

max ( )i
i

PSNAR
=

x  with   .  

5: If  is bigger, the bearing is considered normal. Conversely the fault 

type with the maximum iPSNR  or iPSNAR  is diagnosed. 
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multiplications in (6), where K  squares are calculated. Thus, 

its complexity is ( )O K , lower than spectrum or correlation 

based methods using FFT whose complexity is ( )log( )O K K

[19], [20]. The PSNAR test is multiplication-free except for the 

only calculation of the amplitude ratio, so its complexity is 

significantly lower than state-of-the-art methods. 

IV. EXPERIMENTS AND RESULTS 

A. Fault Detection Threshold 

First, set the fault detection threshold for NP test. The definitions 

in (10) is not analytical, so 107 Monte Carlo simulations were 

conducted to determine a quantitative relationship between the 

detection threshold   and false alarm rate fp  with a signal 

length of 0.25 seconds (3000 samples), a sampling rate of 12kHz, 

and a duty cycle of 0.3. Different parameters will influence 

simulation results, hence the following experiments also used data 

truncated to 0.25 seconds and assume a duty cycle of 0.3. The fault 

characteristic frequencies in the simulation were set as 

107.3Hz, 162.4Hz, and 141.1Hz.  

The results are presented in Fig. 1. When  0.4 =  for PSNR 

test and 0.2 =  for PSNAR test, the false alarm rate is less than 

10-6, which means that when the bearing is normal and the 

sensor only collects white noise, misjudgments occur once 

every about 106 diagnoses. The same threshold is used for 

subsequent experiments, as it is enough to detect faults with 

sufficient certainty and prevent  frequent false alarms. 

B. Diagnosis on Measured Data 

The experimental data were from MFPT [21] and CWRU  

data center [22]. The MFPT dataset includes only outer and 

inner race fault data, and the diagnostic results are visualized in 

Fig.2, where each data is depicted as a point whose position is 

determined by 1PSNR ( 1PSNAR ) and 2PSNR ( 2PSNAR ). The 

plane is segregated into three decision domains, in which the 

data within the square region surrounded by horizontal and 

vertical lines satisfy (9) and are considered normal. The data 

above or below the diagonal line have larger 1PSNR ( 1PSNAR ) 

or 2PSNR ( 2PSNAR ), respectively. All faulty data were 

correctly diagnosed whilst the normal data evidently fell below 

the detection thresholds. 

The CWRU data poses greater diagnostic difficulty with many 

anomalous data [4]. 299 sets of drive-end and fan-end bearing 

fault data sampled at 12kHz were utilized in experiment. The 

Envelope analysis [4], cyclic modulation spectrum (CMS) [8], fast 

spectral correlation (Fast-SC) [9], and HSNR [10] were used for 

comparison. Given the lack of unified fault detection criteria, it 

is assumed that a known fault is present and only determine the 

fault type by seeking the most significant fault features. For the 

proposed method, the detection threshold is 0, and the hypothesis 

with the largest iPSNR or iPSNAR is taken as the result. 

Table I presents the diagnostic accuracy of six methods. The 

PSNR test and the simplified PSNAR test produced almost 

identical results. The two proposed methods yielded slight 

advantages over the classical envelope spectrum and were akin to 

the enhanced envelope spectrum obtained by fast-SC. Numerous 

anomalous data in CWRU dataset created great challenges for all 

methods, and the both proposed methods demonstrated no inferior 

performance compared to other contemporary methods.  

Besides, the proposed method has great complexity advantages. 

In Table I, the wN  and STFTN  are the windows number and FFT 

length in short time Fourier transform of input signal. The PN  is 

 

Fig. 1.  False alarm rates for given detection thresholds of 

PSNR and PSNAR test in white Gaussian noise. 

TABLE I 

CWRU DATA DIFFICULT TO DIAGNOSE 

 

Number of 

successful 
diagnoses 

Algorithm complexity 

PSNR 

test 
187(62.5%) ( )O K  

PSNAR 
test 

185(61.9%) ( )O K  

Envelope 

Spectrum 
181(60.5%) ( )( )logO K K  

HSNR 167(55.9%) ( )( )logO K K  

CMS 179(59.9%) ( ) ( )( )log logw STFT STFT STFT w WO N N N N N N+  

Fast-SC 186(62.2%) ( ) ( )( )log logw STFT STFT P STFT w WO N N N N N N N+  

Number 

of data 
299(100%)  

 

 

Fig. 2. PANSRs and PANSRs of data from MFPT.  
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the number of frequency bins used for correlation in Fast-SC [9]. 

Due to the overlaps in short-time Fourier transform, the product of  

wN  and STFTN  is much larger than the signal length K , leading 

to an high complexity of CMS and Fast-SC.  

V. CONCLUSION 

An automated bearing fault diagnosis method named PSNR 

test is designed, which employs the PSNR as the criterion for 

fault detection and classification. A simplified PSNAR test is 

further developed by substituting signal squares in PSNR test 

with absolute values. Both methods have low complexity, 

especially the latter. The proposed time-domain signal model is 

primitive and future research with more accurate model would 

further optimize the algorithm. 

APPENDIX 

First, estimate the sum of signal and noise power 

( )2 2

, ,n i s i +  by making (2) derivative to 2

,s i  0 
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whose solution is 
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Similarly, make the (2) derivative to 2

,n i  0 and  
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Estimate ( )i  by maximizing the likelihood function in (2), 

with (14) and (15) substituted 
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which includes the summation of K  convex ln() functions, 

whose variables satisfy that 
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which holds for any i  with 1,2,3i = . The likelihood function 

in (2) and (16) can be rewritten with unique variable 2 2

, ,/s i n i   
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which is increasing when 2 2

, ,/ 0s i n i   . And 2 2

, ,/s i n i   is an 

increasing function of  2

,s i , so (16) becomes  

  2

,
0 ( ) ( )

ˆ( ) arg max s i
i T i

i


 
 

= , (19) 

which is (5). Eqs. (3) and (4) are obtained by substituting ˆ( )i  

into (14) and (15). The likelihood function in (7) is similar to 

(18), where 2 2

, ,/s i n i   is replaced by iPSNR . 
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