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Abstract

This paper introduces a new continuous distribution based on the sine function. The
proposed Sine Square distribution has one parameter and its domain depends on this
parameter. The probability density function f(x) of a Sine Square variable X as well
as its cumulative distribution function F (x) are defined. The formulas for the rth raw
moment and central moments, moments generating function (m.g.f.), characteristic
function (c.f.) and some other properties of the new distribution are provided. A
method to generate random variables from the Sine Square distribution is analyzed
and applied.
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1 Introduction

There are many probability distributions in statistical literature that are used in real-life

for modelling a varieties of random phenomenon. These distributions cover both discrete

and continuous variables. No one particular distribution is appropriate for modelling ev-

ery phenomenon. Different variables are modelled by different probability distributions.

Some distributions are based on algebraic functions of the underlying random variable (for

instance normal and gamma distributions), and some others are based on trigonometric

functions (such as von Mises distribution). Johnson et al. (1994, pp.172) covers almost

all available statistical distributions along with their properties. Unfortunately, there are
∗Corresponding author
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only a few distributions that are based on trigonometric functions. In fact there are very

limited number of distributions that are based on trigonometric functions. One of them

is the von Mises distribution (also called the circular normal distribution) and is found in

Kotz and Johnson (1982), for instance. Fisher (1993) provides a number of statistical tools

to analyse circular data along with appropriate statistical models and inferencial methods.

Nadarajah and Kotz (2006) discussed several beta-type distributions using some trigono-

metric functions. With the increased interest in the directional data researchers are looking

forward to have more and more options in terms of the availability of distributions based

on trigonometric functions.

This paper introduces a new statistical distribution using commonly used Sine function

having one shape/growth parameter λ. The domain of the distribution depends on the

parameter of the model. In addition to defining the probability density function p.d.f. of

the Sine square distribution, we derive the cumulative distribution function c.d.f., moment

generating function m.g.f., characteristic function c.f., and raw and central moments of

the distribution. Furthermore, we discuss some important properties of the distribution.

The next Section introduces the p.d.f. and c.d.f. of the proposed Sine Square distri-

bution. The moment and characteristic generating functions are derived in Section three.

Section four provides the raw and central moments of the distribution. Some distributional

properties of the Sine square variable are included in Section five. A method to generate

Sine Square variables is covered in Section six. The final section contains some concluding

remarks.

2 The Sine Square Distribution

Definition: Let X be a continuous random variable and λ > 0 be a positive real number.

Then X is said to have a Sine Square distribution with parameter λ, if the probability

density function p.d.f. of X is expressed as:

fX(x;λ) =

{
2

λπ sin2 x
2λ , if 0 < x < λπ, and λ > 0;

0, otherwise
(2.1)

Note that fX(x; λ) ≥ 0 for all values of X in the domain (0, λπ), and

∫ λπ

0
fX(x; λ)dx =

∫ λπ

0

2
λπ

sin2 x

2λ
dx =

1
λπ

∫ λπ

0

(
1− cos

x

λ

)
dx

=
x

λπ

∣∣∣∣∣
λπ

0

− λ

λπ
sin

x

λ

∣∣∣∣∣
λπ

0

= 1 (2.2)

We denote the above distribution as X ∼ Sin2(λ), that is, the random variable X

follows a Sine square distribution with parameter λ. Here λ is the shape/growth parameter.

Smaller values of λ represent higher growth rate of the p.d.f. curve, and larger values are

2



related to its lower growth rate. The p.d.f. of the Sine Square distribution is displayed for

some selected values of the parameter λ.
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Figure 1: Graph of p.d.f. of Sine Square distribution for selected values of λ .

The cumulative distribution function c.d.f. of the Sine Square distribution is given by

FX(t;λ) = P (X ≤ t) =
∫ t

0

2
λπ

sin2 x

2λ
dx =





0, if t ≤ 0
t

λπ − 1
π sin t

λ , if 0 < t < λπ
1, if t ≥ λπ

(2.3)

For the proof, note that

P (X ≤ t) =
∫ t

0

2
λπ

sin2 x

2λ
dx =

2
λπ

[
x

2
− λ

2
sin

x

λ

]t

0
=

t

λπ
− 1

π
sin

t

λ
(2.4)
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Figure 1: Graph of c.d.f. of Sine Square distribution for selected values of λ .

To work out the probability that X is less than any arbitrary value (say) x, we provide

Table 1 containing the cumulative probabilities for selected choices of the parameter λ.

Probability of any event defined within the domain of X can be obtained from this table.

The table can be expanded for other choices of x, or λ, or both x and λ.

3 The Generating Functions

The moment generating function m.g.f. and characteristic function c.f. of the Sine Square

distribution are provided in this Section.

Theorem 3.1: If the random variable X follows a Sine Square distribution with parameter

λ then the m.g.f. and c.f. of X are given by

MX(t) =
4

(
eπλ − 1

)

π (4λt + λ3t3)
and (3.1)

CX(t) =

(
eπλ − 1

)

π

(
16λti− 4λ3t3(2− i)− λ5t5(1 + i)

)

4λt + λ3t3
(3.2)

respectively.
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Proof:

The moment generating function of X is given by

MX(t) = E(etX) =
∫ λπ

0
etx 2

λπ
sin2 x

2λ
dx

=
1

λπ

∫ λπ

0
etx

(
1− cos

x

2λ

)
dx

=
eλπt − 1

λπt
+

λ2t(eλπt − 1)
λπ(4 + λ2t2)

Simplification of the above expression establishes the result. Similarly, the characteristic

function of X is given by:

CX(it) = E(eitX) =
∫ λπ

0
eitx 2

λπ
sin2 x

2λ
dx

=
−ieitλπ − 1

λπt
− λ2it(eitλπ − 1)

λπ(4 + it2λ2)

Proceeding in the same way as for the proof of MX(t) above, the evaluation of the integral

completes the proof.

For the verification of MX(t = 0) = 1 consider the following:

MX(t = 0) =

[
eλπt − 1

λπt

]

t=0

+

[
λ2t(eλπt − 1)
λπ(4 + λ2t2)

]

t=0

=

[
eλπt − 1

λπt

]

t=0

(3.3)

Straightforward substitution of t = 0 in the above expression would lead to an undefined

value. However, direct expansion of eλπt−1
λπt by Maclaurin’s series lead to

MX(t = 0) =


1 + λπt + (λπt)2

2! + (λπt)3

3! + · · · − 1
λπt




t=0

= 1 (3.4)

4 The Moments

Finding of moments using MX(t) involves more complicated computations than finding

them by using the direct definition of moments. In this Section we derive the general for-

mulas for the rth raw and central moments. The mean and variance are also provided here.

Theorem 4.1: If the random variable X follows a Sine Square distribution with parameter

λ then the mean, variance, and rth raw and central moments of X are given by

µ = E(X) =
λ(π2 + 4)

2π
(4.1)

σ2 = Var(X) =
λ2π4 − 48

12π2
(4.2)

µ′r =
λπ

r + 1
− λr

π





∑ r
2
k=1 (−1)

r
2
−k+1 π2k−1 r!

(2k−1)! , if r is even;

2 (−1)
r+1
2 r! +

∑ r+1
2

k=2 (−1)
r+1
2
−k+1 π2k−2 r!

(2k−2)! , if r is odd
(4.3)

µr =
λr

[
(π2 + 4)r+1 + (−1)r(π2 − 4)r+1

]

(r + 1)π
− λr

π

{
ζr, if r is even;
ηr, if r is odd

(4.4)
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where

ζr =

r
2∑

k=1

(−1)
r
2
−k+1 r!

(2k − 1)!

[
(π2 + 4)2k−1 − (π2 − 4)2k−1

]
, (4.5)

ηr = (−1)
r+1
2 r! +

r+1
2∑

k=2

(−1)
r+1
2
−k+1 r!

(2k − 2)!

[
(π2 + 4)2k−2 − (π2 − 4)2k−2

]
(4.6)

respectively.

Proof:

The proof of the mean and variance follows from the rth raw and central moments for r = 1

and r = 2 respectively. First we proof equation (4.3). The rth raw moment is given by

E(Xr) =
∫ λπ

0
xrfX(x;λ)dx for r = 1, 2, 3, ... (4.7)

Then for r = 1 we get

E(X) =
∫ λπ

0
xfX(x; λ)dx =

2
λπ

∫ λπ

0
x sin2 x

2λ
dx =

λπ

2
− 1

λπ

∫ λπ

0
x cos

x

λ
dx (4.8)

Let I1 =
∫ λπ
0 x cos x

λdx , then

E(X) =
λπ

2
− I1

λπ
(4.9)

Similarly, for r = 2 we get

E(X2) =
∫ λπ

0
x2fX(x;λ)dx =

2
λπ

∫ λπ

0
x2 sin2 x

2λ
dx

=
(λπ)2

3
− 1

λπ

∫ λπ

0
x2 cos

x

λ
dx (4.10)

Let I2 =
∫ λπ
0 x2 cos x

λdx , then

E(X2) =
(λπ)2

3
− I2

λπ
(4.11)

Continuing the process we get

E(Xr) =
(λπ)r

r + 1
− Ir

λπ
(4.12)

where

Ir =
∫ λπ

0
xr cos

x

λ
dx for r = 1, 2, 3, . . . (4.13)

The evaluation of Ir leads to

I1 = −2λ2

I2 = −2λ3π

I3 = −3λ4(π2 − 4)
...

Ir =





λr+1 ∑ r
2
k=1 (−1)

r
2
−k+1 π2k−1 r!

(2k−1)! , if r is even;

λr+1

[
2 (−1)

r+1
2 r! +

∑ r+1
2

k=2 (−1)
r+1
2
−k+1 π2k−2 r!

(2k−2)!

]
, if r is odd

(4.14)
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Substituting the value of Ir from (4.14) in (4.12), we get the required equation (4.3). To

find the mean of X, we substitute the value of I1 in (4.9).

To prove (4.4), by definition, the rth central moment is given by

µr = E[(X − µ)r] =
∫ λπ

0
(x− µ)rfX(x;λ)dx for r = 1, 2, 3, . . . (4.15)

Following similar steps, as above, the expressions for µr is obtained. Finally, to find the

variance of X, we substitute r = 2 in (4.15)

With this,the proof is accomplished.

5 Some Distributional Properties

If the random variable X follows a Sine Square distribution with parameter λ then the

following properties hold.

1. In general, if

fX(x) =

{
2

nλπ sin2 x
2nλ , 0 < x < nλπ, for any real n;

0, otherwise
(5.1)

then X ∼ Sin2(nλ).

2. If X ∼ Sin2(λ) and Y = mX, then Y ∼ Sin2(mλ) where m is a non-zero real valued

constant.

3. If X ∼ Sin2(λ) and λ = n
π where n is an integer number then the p.d.f. of X becomes

fX(x) =

{
2
n sin2 xπ

2n , 0 < x < n; n = 1, 2, 3, . . .
0, otherwise.

(5.2)

In this case X is said to have a Sine Square distribution over the interval (0, n). Here

the domain of X does not depend on λ when λ = n
π .

4. If X ∼ Sin2(λ) then the coefficient of skewness of the distribution is given by

Sk =
µ3

µ
3
2
2

= −
12
√

12(λπ)3
[

4π
3 + 64

3π3 + 96
π

]

[λ2π4 − 48]
3
2

(5.3)

5. If X ∼ Sin2(λ) then the coefficient of kurtosis of the distribution is given by

Ku =
µ4

µ2
2

− 3 =
144(λπ)4

[
π4

80 + 24
π2 + 128

5π − 1
]

[λ2π4 − 48]2
− 3 (5.4)

8



6. If X ∼ Sin2(λ) then the median of the distribution is given by the solution x̃ of the

following equation:

P (X ≤ x̃) = 0.50 (5.5)

or equivalently the solution of

x̃− λ sin
(

x̃

λ

)
=

λπ

2
(5.6)

Solving the above non-linear equation by Newton-Raphson (see for example, Epper-

son, 2002) method we get the median as

x̃ = 1.659019676λ (5.7)

Therefore, both the mean and median of the Sine Square distribution depends on the

shape/growth parameter, λ, of the distribution.

6 Generating Sine Square Random Variables

In this Section the Acceptance-Rejection method is used to generate Sine Square random

variables (Rubinstein, 1981, p.45-50). This method generates random variables from any

specific distribution and accept it after checking if it is from the distribution, otherwise

reject it. The method is described as follows.

Let X be a random variable generated from a distribution with p.d.f. f(x). The density

function of X can be expressed as

f(x) = c× h(x)× g(x) (6.1)

where c ≥ 1 represents the mean number of trails, h(x) is a p.d.f. and 0 < g(x) < 1.

Generate one random variable U from U(0, 1) distribution and another one Y from the

density g(y). If the inequality U ≤ g(Y ) holds, accept X = Y as a variable generated from

f(x), otherwise reject it and repeat the trail again.

For generating random variables from the Sine Square distribution, the p.d.f. of the

distribution of X can be written as

f(x) = 2× 1
λπ

× sin2 x

2λ
, when 0 < x < λπ (6.2)

so that c = 2, h(x) = 1
λπ , an uniform p.d.f. over the interval (0, λπ), and g(x) = sin2 x

2λ .

Note that 0 < sin2 x
2λ < 1.

First generate a random variate U1 from a U(0, 1) distribution and then independently

generate another random variate Y from h(y). Set U2 = H(Y ) where H(Y ) is the c.d.f.

associated with h(y). Then from H(y) = y
λπ , set Y

λπ = U2 so that Y = λπU2. If U1 ≤ g(Y ),

with g(Y ) = sin2 πU2
2 , accept U1 as a Sine Square random variate, otherwise repeat the

9



process again.

The Algorithm

1. Select an appropriate value of λ.

2. Generate U1 and U2 from U(0, 1) and U(0, λπ) distributions respectively.

3. Set Y = λπU2.

4. If U1 ≤ sin2 πU2
2 , accept X = Y as a random variate from the Sine Square distribution,

otherwise go to step 2.

In Mont Carlo simulation, we compute the simulated mean of the distribution, the

simulated mean number of trials and the simulated efficiency for the parameter values vary

0.01(0.005)0.05, 0.1(0.2)0.5, 1(0.5)2 with run size 1000 and the results represented below in

Table 2 together with the theoretical mean, mean number of trials and the efficiency.

10



Table 2: Theoretical and simulated means and efficiency by Monte Carlo simulation with

theoretical mean No. of trials (c = 2) and theoretical efficiency (1/c = 0.5).

Theoretical Simulation Simulation Mean Simulation
λ Mean Mean No. of Trails Efficiency

0.01 0.0221 0.0219 1.984 0.504
0.015 0.0331 0.0333 2.0084 0.4979
0.02 0.0441 0.0441 2.0024 0.4994
0.025 0.0552 0.0548 1.9842 0.504
0.03 0.0662 0.0662 2.0088 0.4978
0.035 0.0773 0.0779 1.9998 0.5001
0.04 0.0883 0.0879 1.9936 0.5016
0.045 0.0993 0.0988 1.973 0.5068
0.05 0.1104 0.1097 2.0092 0.4977
0.1 0.2207 0.2213 1.9826 0.5044
0.3 0.6622 0.6602 1.9748 0.5064
0.5 1.1037 1.1021 1.9812 0.5047
1 2.2074 2.2182 1.984 0.504

1.5 3.3111 3.2984 2.0028 0.4993
2 4.4148 4.3771 2.0028 0.4993

7 Concluding Remarks

The proposed distribution can be used to model truncated data. The truncation may be

due to Government policies, natural causes or termination of a study at some point. Unlike

the maximum likelihood estimator of the parameter λ, the method of moment estimator is

easily obtainable. For an independent sample of size n from the Sine Square distribution

the method of moment estimator for the shape/growth parameter is λ̂ = 2π
π2+4

X̄ where X̄

is the sample mean.
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