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Abstract 

 

In recent years, digital instruments have been widely used in the medical area with the 

rapid development of digital technology. The digital stethoscope, which converts the 

acoustic sound waves in to electrical signals and then amplifies them, is gradually 

replacing the conventional acoustic stethoscope with the advantage of additional usage 

such as restoring, replaying and processing the signals for optimal listening. As the sounds 

are transmitted in to electrical form, they can be recorded for further signal processing. 

One of the major problems with recording heart sounds is noise corruption. Although 

there are many solutions available to noise reduction problems, it was found that most of 

them are based on the assumption that the noise is an additive white noise [1]. More 

research is required to find different de-noising techniques based on the specific noise 

present. Therefore, this study is motivated to answer the research question: ‘How might 

the noise be reduced from the heart sound records collected from digital stethoscope 

with suitable noise reduction method’. 

 

This research question is divided into three sub-questions, including the identification of 

the noise spectrum, the design of noise reduction method and the assessment of the 

method. In the identification stage, five main kinds of noise were chosen and their 

characteristics and spectrums were discussed. Compared with different kinds of adaptive 

filters, the suitable noise reduction filter for this study was confirmed. To assess the effect 

of the method, 68 pieces of sound resources were collected for the experiment. These 

sounds were selected based on the noise they contain. A special noise reduction method 

was developed for the noise. This method was tested and assessed with those sound 

samples by two factors: the noise level and the noise kind.   

The results of the experiment showed the effect of the noise reduction method for each 

kind of noise.  The outcomes indicated that this method was suitable for heart sound noise 

reduction. The findings of this study, including the analysis of noise level and noise kind, 

indicated and concluded that the chosen method for heart sound noise reduction 

performed well. 

 

This is perhaps the first attempt to understand and assess the noise reduction method with 

classified heart sound signals which are collected from the real healthcare environment. 

This noise reduction method may provide a de-noising solution for the specific noise 

present in heart sound.      

 

Key words: digital stethoscope, noise reduction, Otsu’s method, noise classification   

 

[1] White noise: a random signal with a flat (constant) power spectral density  

  

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Power_spectral_density
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Chapter 1 Introduction 
 

 

The world is experiencing a digital era (Young 2006). Currently, the advanced digital 

technology has wide practical applications in commercial, financial, military, medical and 

other fields. In the medical field, particularly, the technological advances improve almost 

all the medical facilities, including healthcare, imaging, auscultation and patient 

documentation.  

 

The stethoscope, for example, is a commonly used acoustic device for auscultation, which 

was invented by Doctor Rene Lanennec, a French physician, in 1816. At that time, the 

stethoscope was used for listening to the sounds of a human body (Laennec 1819). 

Nowadays, it is not only used to listen to heart and lung sounds, but also to listen to 

intestines and blood flow in arteries and veins in combination with sphygmomanometer 

(Brusco & Nazeran 2004). Stethoscope is often considered as a symbol of all the 

physicians, as it can always be found on the doctor’s neck. Therefore, the stethoscope has 

been perceived as ‘the highest positive impact on the perceived trustworthiness of the 

practitioner’ (Jiwa et al. 2012). 

 

There are several types of stethoscopes. The conventional acoustic stethoscopes are 

familiar to most people for their common usage. The acoustic stethoscopes operate on the 

transmission of sound from chest piece via air-filled hollow tubes (Mangion 2007). The 

chest piece usually consists of two sides (diaphragm and bell) for sensing sound. The bell 

transmits low frequency sounds while the diaphragm transmits higher frequency sounds. 

One problem with acoustic stethoscopes is that the sound level is extremely low (Lasky 

1977).  Thus the sound needs to be amplified before it is sent to be heard.  

 

The electronic stethoscope was developed in late twentieth century, which overcomes the 

shortcomings of the conventional stethoscope by electronically amplifying body sounds. 

The amplification of stethoscope only focuses on the mid-range frequency of the sound. 

This part of sound is converted to electrical signals and then amplified and processed for 

optimal listening. This conversion suffers from ambient noise interference during 

amplification (Durand, J. et al. 1997). 

  

The noise corruption could be solved by the equipped analogue or digital filters. The 

filtering is important and useful not only in reducing the background noise, but also in 

enhancing diagnosis by amplifying a particular frequency band of sounds relative to the 

requirement (Zhang, Y. T. et al. 2006).  

 

The emergence of the electronic stethoscope has also provided a convenient approach to 

record heart sound or innocent heart murmurs for clinical diagnosis, teaching and research. 

The electronic stethoscopes are also used with computer-aided auscultation programs to 

analyse the recorded heart sounds. The direct audio output can be restored and used with 

an external recording device, such as a PDA or PC. This function allows further study for 

general research, noise reduction as well as evaluation and consultation of a particular 

patient's condition and telemedicine, or even remote diagnosis (Palaniappan et al. 2013).  

The function of recording and restoring the output sound in the external device is useful 

as it makes the noise removal processing and simulation possible with the computer 

supported software. As one of the major problems with the recording heart sounds is noise 

http://en.wikipedia.org/wiki/Telemedicine
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corruption, some the solutions to noise reduction can be found in literature review. 

Various signal processing methods have been designed and implemented by software to 

remove the unwanted noise, these methods including averaging (Messer, S. R. et al. 2001), 

adaptive filtering (Jatupaiboon et al. 2010; Patel, S. B. et al. 1998), and wavelet 

decomposition (Gavrovska et al. 2013; Mishra et al. ; Varady 2001). 

 

Based on the literature review, most of the methods listed above are implemented on the 

assumption that the noise is an additive white noise. Although the methods listed above 

have been proved effective, more research is required to determine the exact kind of noise 

corrupting the recorded heart sounds. Studies focused on both the noise classified and the 

noise reduced for heart sound record is limited. Thus previous studies indicated that a 

system which could employ suitable de-noising techniques based on the specific noise 

present is required (Zhang, Y. T. et al. 2006).  

 

This study focuses on the noise reduction for the heart sound signal from the digital 

stethoscope. The heart sound signals are collected from the digital stethoscope, and then 

saved in the computer for further processing. This study analyses those signals, 

investigates the suitable noise reduction methods, and answers the research problem: 

How might the noise be reduced from the heart sound records collected from digital 

stethoscope with suitable noise reduction method. 

 

The objective of this research is to provide suitable noise reduction method for the heart 

sound output from the digital stethoscope. Based on the literature and the experiment, the 

finding of this study can lead to robust and suitable solution to solve the noise corruption 

in the heart sound records. To approach the research objective, those research questions 

can be addressed and the further discussion and details will be explained in the following 

chapters. 

 

To address this problem and to concentrate on the experiment and analysis, three research 

sub-questions were designed: 

 

RQ 1.  What kinds of the possible noise are in the output signals and what are their 

spectrums respectively?  

A comprehensive knowledge of the noises mixed with the heart sound is necessary before 

the noise can be reduced. There are generally two kinds of noise: background noise and 

body noise. The background noise includes all kinds of noise generated from noisy 

environment while the body noise is coupled through the patient’s body. Five main kinds 

of noise were chosen for this study. Their spectrum and characteristics are identified in 

the Experiment Chapter.  

 

RQ 2.  How to develop suitable noise reduction method for the noises mentioned in 

the above question? 

The design of the noise reduction method depends on the different spectrums and 

frequency between the heart sound and the noise. The premise of assumption is that all 

kinds of signal are in different statistical properties and each of them is time and frequency 

shifted. In order to filter these different kinds of noises, all kinds of noise are classified 

into several types depending on their own statistical properties. Then the chosen noise 

reduction method is designed for the suitable digital signal processing. The details about 

how to design a suitable method for digital heart sound signals would be provided in the 

Methodology Chapter.   
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RQ 3.  How to validate that the heartbeat signal or the other useful information 

would not be distorted after processing? 

When the noise is removed from the heart sound signal, other important detailed 

information in the original signal should not to be eliminated as well. The processed signal 

would be compared with the original signal by their images and sound. Through the 

images, it can be identified that the effect of the de-noising method and the remaining of 

the two main parts of the heart sound (S1 and S2). Through the replay of sound, it can be 

confirmed whether the useful information for auscultation has been kept. The details can 

be found in the Experiment Chapter. 

 

In addition to answering these research questions, there is a requirement for the 

assessment of designed noise reduction method in this study. Therefore, the effect of the 

noise reduction method is examined and assessed by two main factors: the noise kind and 

the noise level.   

 

Noise kind is the classification of the noise and sound resources. As the sources and 

characteristics of noise vary, it is necessary to classify the noises before the noise 

reduction method is investigated. To assess the effectiveness of the noise reduction 

method, five main kinds of noise have been considered. The sound resources considered 

for this study have been divided and put into one of those groups according to the noise 

it contains.   

      

On the other hand, noise level, within the scope of this study, refers to the extent that the 

heart sound is corrupted by the noise. The sound samples in this study were collected 

from hospitals. Thus the heart sounds were corrupted by various noises with different 

noise level. These corrupted heart sounds were then considered for the experiment using 

adaptive filtering techniques.  The function of the adaptive filtering method can then be 

assessed, and the results of the noise reduction method have been provided in the Finding 

Chapter.  

 

The scope of this study is restricted to designing the noise reduction method for the heart 

sound recordings. The focus of this study differs from other research studies as it not only 

designs the noise reduction method, but assesses the method with the real heart sound 

recordings that have been selected and classified into different groups. Therefore, the 

result of this study is more robust and practical.      
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Chapter 2 Literature Review 
 

 

Electronic systems, with the context of audio communication, perform collection, 

recording, playback, transmission, analysis or synthesis of audio signals. Noise corruption 

must be considered carefully when a system is designed for any of these functions (Davis 

2002). Thus noise reduction has become a long-term and popular research area (Benesty 

et al. 2009). To characterize different types of noise and reduce their effect, a number of 

signal processing methods can be introduced and thus can enhance the quality or clarity 

of the audio signal. A number of digital signal processing (DSP) tools or methods can be 

applicable to specific noise corruption depending on the different environments and 

different electronic systems. De-noising for heart sound records is one of the cases since 

the digital stethoscope has been invented. The scope of this chapter is to provide a simple 

and generally critical review of the DSP fundamentals and some noise reduction methods 

based on them. Some relevant definitions are attached as well.  

 

In this chapter, some of the relevant concepts in noise reduction algorithms and the de-

noising algorithm methods applied for digital stethoscope are presented. The content of 

each section is listed as follows. In the first section, a brief review of several commonly 

used noise reduction methods is introduced. The difference between these methods, 

including their strength, weakness and efficiency for noise reduction are described 

respectively. Then these are summarised in a table. The following section reviews the 

importance and role of noise reduction in the context of digital stethoscopes. In the next 

Section, an introduction is provided to a special technique called the Otsu’s method and 

its current application in signal processing. The probability and advantage of applying 

this method to noise reduction for digital stethoscope is also discussed. The final part of 

this chapter provides a short review of some relevant knowledge for this research study 

including the development of stethoscope and the heart sound record analysis.  

 

The subtitles of this chapter are listed below:   

 2.1 Common noise reduction algorithms   

 2.2  Heart sound record analysis and development of stethoscope  

 2.3 Noise reduction in digital stethoscopes 

 2.4 Research objectives 

 

2.1 Common noise reduction algorithms   

 

Noise reduction is the process of removing noise from a signal (Davis 2002). All 

recording devices, both analogue and digital, when collecting useful signals, have a 

chance to be susceptible to noise.   

 

The signal noise reduction can be divided into two parts, the analogue style noise 

reduction and the digital style one. This research focuses on the digital signal noise 

reduction only because analogue style noise reduction systems are no longer necessary as 

the improvement of modern digital sound recordings. Generally, a class of noise reduction 

algorithms cannot work in the time-domain directly. The original digital signals need to 

be transformed to decomposed signals, time-frequency domain for example, before the 

noise reduction process. Then the de-noising algorithms, such as time-frequency filters 

http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Signal_%28information_theory%29
http://en.wikipedia.org/wiki/Analog_electronics
http://en.wikipedia.org/wiki/Digital
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or threshold filtering methods can be applied on the decomposed signals. Fig 2.1 below 

shows the three main steps of de-noising a digital signal, and the details of each step is 

given in the following contents.   

 
 

 

2.1.1 Original digital signal and digital signal processing Digital signal 

 

A digital signal is a physical signal that is a representation of a sequence of discrete values 

(a quantified discrete-time signal), for example of an arbitrary bit stream, or of a digitized 

(sampled and analog-to-digital converted) analog signal(Mitra & Kuo 2006). The term 

digital signal can refer to two parts: 

 

1. a continuous-time waveform signal used in any form of digital communication. 

 

2. a pulse train signal that switches between a discrete number of voltage levels or levels 

of light intensity, also known as a line coded signal, for example a signal found in 

digital electronics or in serial communications using digital baseband transmission, 

or a pulse code modulation (PCM) representation of a digitized analog signal. 

 

A signal that is generated by means of a digital modulation method (digital passband 

transmission), produced by a modem, is in the first case considered as a digital signal, 

and in the second case as converted to an analog signal. 

 

Digital signal processing (DSP) is concerned with the representation of discrete time, 

discrete frequency, or other discrete domain signals by a sequence of numbers or symbols 

and the processing of these signals. Digital signal processing and analog signal processing 

are subfields of signal processing. 

 

DSP includes subfields like: audio and speech signal processing, sonar and radar signal 

processing, sensor array processing, spectral estimation, statistical signal processing, 

digital image processing, signal processing for communications, control of systems, 

biomedical signal processing, seismic data processing, etc. 

 

The goal of DSP is normally to measure, filter and/or compress continuous real-world 

analog signals. The first step is usually to convert the signal from an analog to a digital 

form, by sampling and then digitizing it using an analog-to-digital converter (ADC), 

which turns the analog signal into a stream of numbers. However, often, the required 

output signal is another analog output signal, which requires a digital-to-analog converter 

(DAC). Even if this process is more complex than analog processing and has a discrete 

value range, the application of computational power to digital signal processing allows 

original digital 
signal

decomposed

signal
de-noising process

Fig 2.1 de-noising signal process 

 

http://en.wikipedia.org/wiki/Signal_%28electronics%29
http://en.wikipedia.org/wiki/Quantification
http://en.wikipedia.org/wiki/Discrete-time_signal
http://en.wikipedia.org/wiki/Bit_stream
http://en.wikipedia.org/wiki/Digitize
http://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Digital_communication
http://en.wikipedia.org/wiki/Pulse_train
http://en.wikipedia.org/wiki/Line_code
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Baseband
http://en.wikipedia.org/wiki/Pulse_code_modulation
http://en.wikipedia.org/wiki/Digital_modulation
http://en.wikipedia.org/wiki/Passband
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Signal_%28electronics%29
http://en.wikipedia.org/wiki/Analog_signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Audio_signal_processing
http://en.wikipedia.org/wiki/Speech_signal_processing
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Discrete_signal
http://en.wikipedia.org/wiki/Discrete_signal
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for many advantages over analog processing in many applications, such as error detection 

and correction in transmission as well as data compression(Shuai & Renyi 2011).  

 

DSP algorithms have long been run on standard computers, on specialized processors 

called digital signal processor on purpose-built hardware such as application-specific 

integrated circuit (ASICs). Today there are additional technologies used for digital signal 

processing including more powerful general purpose microprocessors, field-

programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial apps 

such as motor control), and stream processors, among others(Stranneby & Walker 2004). 

 

DSP domains 

In DSP, researchers normally study digital signals in one of the following domains: time 

domain (one-dimensional signals), spatial domain (multidimensional signals), frequency 

domain, and wavelet domains. They choose the domain to process a signal in by making 

an informed guess (or by trying different possibilities) as to which domain best represents 

the essential characteristics of the signal. A sequence of samples from a measuring device 

produces a time or spatial domain representation, where a discrete Fourier transform 

produces the frequency domain information, is the frequency spectrum. Autocorrelation 

is defined as the cross-correlation of the signal with itself over varying intervals of time 

or space. 

 

Time and space domains 

The most common processing approach in the time or space domain is enhancement of 

the input signal through a method called filtering. Digital filtering generally consists of 

some linear transformation of a number of surrounding samples around the current sample 

of the input or output signal. There are various ways to characterize filters; for example: 

 

 A "linear" filter is a linear transformation of input samples; other filters are "non-

linear". Linear filters satisfy the superposition condition, i.e. if an input is a 

weighted linear combination of different signals, the output is an equally weighted 

linear combination of the corresponding output signals. 

 A "causal" filter uses only previous samples of the input or output signals; while 

a "non-causal" filter uses future input samples. A non-causal filter can usually be 

changed into a causal filter by adding a delay to it. 

 A "time-invariant" filter has constant properties over time; other filters such as 

adaptive filters change in time. 

 A "stable" filter produces an output that converges to a constant value with time, 

or remains bounded within a finite interval. An "unstable" filter can produce an 

output that grows without bounds, with bounded or even zero input. 

 A "finite impulse response" (FIR) filter uses only the input signals, while an 

"infinite impulse response" filter (IIR) uses both the input signal and previous 

samples of the output signal. FIR filters are always stable, while IIR filters may 

be unstable. 

Filters can be represented by block diagrams, which can then be used to derive a sample 

processing algorithm to implement the filter with hardware instructions. A filter may also 

be described as a difference equation, a collection of zeroes and poles or, if it is an FIR 

filter, an impulse response or step response. 

 

The output of a digital filter to any given input may be calculated by convolving the input 

signal with the impulse response. 

http://en.wikipedia.org/wiki/Error_detection
http://en.wikipedia.org/wiki/Error_detection
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Digital_signal_processor
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Field-programmable_gate_array
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Frequency domain 

Frequency domain analysis, also called spectrum- or spectral analysis, is a commonly 

used analysis in signal processing. Signals are converted from time or space domain to 

the frequency domain usually through the Fourier transform. The Fourier transform 

converts the signal information to a magnitude and phase component of each frequency. 

Often the Fourier transform is converted to the power spectrum, which is the magnitude 

of each frequency component squared. 

 

The most common purpose for analysis of signals in the frequency domain is analysis of 

signal properties. The researchers can study the spectrum to determine which frequencies 

are present in the input signal and which are missing. 

 

In addition to frequency information, phase information is often needed in signal 

processing. This can be obtained from the Fourier transform. With some applications, 

how the phase varies with frequency can be a significant consideration. 

 

Filtering, particularly in non-realtime work, can also be achieved by converting to the 

frequency domain, applying the filter and then converting back to the time domain. This 

is a fast operation, and can give essentially any filter shape including excellent 

approximations to brickwall filters. 

 

There are some commonly used frequency domain transformations. For example, the 

spectrum converts a signal to the frequency domain through Fourier transform, takes the 

logarithm, then applies another Fourier transform. This emphasizes the frequency 

components with smaller magnitude while retaining the order of magnitudes of frequency 

components. 

 

2.1.2 General techniques for decomposing a signal 
 

The decomposition methods include Fourier transform and wavelet decomposition. In 

this section, four decomposed methods are introduced and their strength and weakness 

are compared. The theory of several common signal processing methods based on the 

software--short-time Fourier transform (STFT), wavelet transform (WT) and wavelet 

packet method to digital signals are presented in this chapter. Then, a comparison of those 

four methods will be given to show the resolution differences among them.  

 

There are four kinds of techniques listed: Fourier Transform (FT), Short-Time Fourier 

Transform (STFT), Wavelet Transform (WT) and Discrete Wavelet Transform (DWT).  

To determine which method is appropriate for sound de-nosing, it is necessary to review 

their decomposition methods of original signal. The theory of these common time-

frequency transforms is presented in this chapter. Then, a comparison of the difference of 

those three methods was shown. 

Fourier Transform (FT) 

Fourier Transform (FT) is a widely used method to process and analysis signals. Fourier 

Transform converts a signal expressed in the time domain to a signal expressed in the 

frequency domain. Normally, FT is implemented in the form of a Fast Fourier Transform 

(FFT) algorithm. FFT, computing the Discrete Fourier Transform (DFT) speedily, has 

gained a wide acceptance in both academia and industry (Frigo 1999). 

http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Brickwall_filter
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The mathematical definition of the FT is described below. The FT X(ω) of a signal x(t) 

is defined as: 

 

X(ω) = ∫ x(t)e−jωtdt 

 

where t and ω are the time and frequency parameters respectively. It defines the spectrum 

of x(t) which consists of components at all frequencies over the range for which it is non-

zero. For many signals, Fourier analysis is extremely useful because the signal's 

frequency content is often the key to analyzing signal. Therefore, the FT, especially the 

FFT is widely used even in some unsuitable areas (Hubbard & Meyer 1998).  But Fourier 

analysis has a serious drawback. As the signal is transformed to the frequency domain 

over time, information in time domain is lost because FT does not provide frequency 

content information localized in time. Moreover, most signals like heart sound contains 

numerous non-stationary characteristics which are often the most important part of the 

signal and Fourier analysis is not adequate to detect it (Lee, J. et al. 2002). This will 

introduce difficulty for heart sound analysis for any longitudinal analysis. 

 

Short-Time Fourier Transform (STFT)  

In an effort to make up this insufficiency, Short-Time Fourier Transform (STFT) was 

developed in 1946 by Denis Gabor (Hubbard & Meyer 1998). The STFT differs from the 

usual FT by windowing and analyzing one section of the signal at a time. Thus the time 

signal x(t) multiplies a suitable sliding time window w(t). The additive time window 

introduces a time dimension and obtains a time-varying frequency analysis. 

The STFT X(t, ω) of a signal x(t) is defined as: 

 

X(t, ω) = ∫ x(t)w(τ − t)e−jωtdt 

 

where w(t) is the time window applied to the signal.  

 

STFT does offer some information about time and frequencies simultaneous of the signal 

determined by the size of the window.  

 

However, it still has limitations on time-frequency resolution. If more detailed frequency 

resolution is required, it can be attained only at the expense of temporal representation 

(Abbas & Bassam 2009). In brief, The STFT is just a tradeoff between the time and 

frequency resolution of a signal providing information on the frequency content and this 

negotiation is determined by the window size. The smaller the window size is, the more 

sharply changing component are seized, but those low frequency details are not found 

well. If a larger window is used, lower frequencies may be detected accurately, but 

localization in time domain becomes fuzzy (Obaidat 1993). 

Most signals in real life, like the heart sounds, are non-stationary signals which vary 

greatly according to time. These signals require an adaptive method- the window size 

should be alterable to reveal more exact information in either time or frequency domain. 

As a result, the STFT analysis with a constant window size still does not meet the 

requirement of heart sound processing.   

 

The Wavelet Transform (WT) 

javascript:void(0)
javascript:void(0)
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The Wavelet Transform (WT) is also used to analyze the heart sound in time and 

frequency domains. The wavelet transform was designed as a technique to map the signal 

into a frequency-time domain while achieving high time and frequency resolution at the 

same time (Misiti et al. 2001). The term “wavelet” was first mentioned in 1909 in a thesis 

by Alfred Haar. However, the breakthrough in this field has not been made until 1980’s 

(Hubbard & Meyer 1998).  

 

By applying a variable sized window (the wavelets), instead of a constant window size, 

the WT shows a great improvement over the STFT because it can obtain both time and 

frequency resolution simultaneously (Rioul & Vetterli 2002). As the wavelet may be 

stretched or compressed, different features of the signal are extracted.  The high frequency 

components of the signal are extracted by a narrow wavelet, while the low frequency 

components are picked up on a broadened wavelet (Messer, S. et al. 2001).    

A wavelet is a signal of limited duration with a zero average value. A continuous wavelet 

transform (CWT) is defined as the convolution between the original signal x(t) and a 

wavelet (Vasios et al. 2001). The mathematical description of the Continuous Wavelet 

Transform (CWT) of a signal x(t) is defined as:  

 
 

WT(t) =
1

√𝑎
∫ 𝑥(𝑡) 𝑔∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡 = √𝑎 ∫ 𝑋(𝜔) 𝐺∗(𝑎𝜔)𝑒𝑗𝜔𝑡𝑑𝜔 

 

The mother wavelet g(t) is defined as: the * denotes a complex conjugate, g(t) is the 

transforming function, called mother wavelet. 𝑋(𝜔) and 𝐺(𝜔) are the Fourier transforms 

of x(t) and g(t) respectively. The scale parameter 'a' of the wavelet is considered inversely 

proportional to frequency (Khadra et al. 1991);'b' is the translation parameter.  

 

The wavelet function is given by 

 

𝑔𝑎,𝑏(𝑡) =
1

√𝑎
𝑔 (

𝑡 − 𝑏

𝑎
) 

 

 The analyzing wavelet g(t) should satisfy a number of properties. The importance is 

integrability and square integrability. Furthermore, the wavelet has to be concentrated in 

the time and frequency as much as possible (Lee, J. et al. 2002).  

 

The process of calculating the CWT is very similar to that of the STFT. The wavelet is 

compared to a section at the beginning of a signal. Then a number is calculated showing 

how closely correlated the wavelet and original signal section are. The wavelet is moved 

right and the process is repeated until the wavelet covered the whole signal. The wavelet 

is scaled (stretched or compressed) and the previous process is repeated for all scales 

(Messer et al. 2000). 

The Discrete Wavelet Transform (DWT)   

Compared with the STFT, the CWT reveals much more details about a signal, but since 

all scales of the signal are used to compute the WT, the required computation time seems 

to be enormous. Therefore, the Discrete Wavelet Transform (DWT) is widely accepted 

instead. Similar to the DFT, DWT coefficients are sampled from CWT on a so-called 

dyadic grid, thus these coefficients are at discrete intervals of time and scale. The DWT 

chooses parameters of translation 𝑏 = 𝑛 ∗ 2𝑚 and 𝑎 = 2𝑚. The wavelet function in DWT 

is defined as:  
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𝑔𝑎,𝑏(𝑡) =
1

√2𝑚
𝑔 (

𝑡 − 𝑛 ∗ 2𝑚

2𝑚
) 

 

The DWT of a signal x[n] is calculated by passing it through a series of half-band filters 

and decompose the signal into approximation (from the low-pass filter) and detail (from 

the high-pass filter)  coefficients. It is important that the two filters are related to each 

other and they are known as a quadrature mirror filter. This is a technique developed by 

Mallat (1999). 

 

The procedure can be seen in Fig 2.2(a) and described on the basis of the following 

equation: 

 

yhigh(k) = ∑ x(n) ∙ h(2k − n)
n

 

ylow(k) = ∑ x(n) ∙ g(2k − n)
n

 

 

Where yhigh(k) and ylow(k) are the output of high-pass and low-pass filtering operation, 

h[n] is half-band high pass filter and g[n] is half-band low pass filter. However, since 

each filter reduces half the bandwidth of the signal, half the samples can be abandoned 

according to Nyquist’s rule. Thus the output signal is then sub-sampled by two (Fig2.2 

(a)). After decomposition the signal at the first level, the subsequent DWT decomposition 

is implemented on the approximation coefficients only, showed in Fig2.2 (b).   

 

 
 

 
 

Fig 2.3(Lei 2008) is the instance of decomposition process of an empirical signal through 

the DWT. The testing signal, showed on the first row, is a frequency-varying signal 

according to the time axis. The wavelet analysis of this signal is performed with five 

levels of decomposition. From each row below the first row, the left image shows the 

approximation output while the right image maps the detail output.  Through the 

decomposition result, it is obvious that the testing signal is segmented into several 

sections due to its different frequency components by DWT, using the stretched or 

compressed wavelets. 

 

Fig 2.2 (a) First level decomposition 

 

        Fig 2.2 (b) Multi-level decomposition 

http://en.wikipedia.org/wiki/Quadrature_mirror_filter
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With the application of DWT, the signal is decomposed into low and high frequencies at 

each level; the time resolution becomes fairly good at high frequencies, while the 

frequency resolution becomes fairly good at low frequencies (Chourasia 2009), which 

meets the requirement of the reality.  

 

 
 

 

 

Inverse Discrete Wavelet Transform (IDWT) is the opposite direction of decomposition, 

which reconstruct the original signal from the wavelet coefficients. For reconstruction 

purposes, at each level, after up-sampling, the approximation coefficients are convolved 

with a low-pass reconstruction filter and the detail coefficients are convolved with a high-

pass reconstruction filter. Then the upper level approximation coefficient is the sum of 

the outputs of the low- and high-pass reconstruction filters.  

With the DWT, a fast algorithm is possible with keeping the same accuracy as other 

methods (Gopinath & Burrus 2002). Because of holding a huge advantage of revealing 

time and frequency information, DWT method is widely used in the current study.  

 

2.1.3 Popular techniques for noise reduction  
 

Currently, various signal processing methods can be designed and implemented by 

hardware or software to remove the noise (Zhang, Y. et al. 2006). Those signal processing 

methods include averaging (Berouti et al. 2003; Marro et al. 2002), adaptive filtering 

(Glover Jr 2003; Goodwin & Sin 2009; Kaneda & Ohga 2003), and wavelet 

decomposition (Fang & Huang 2004; Pizurica et al. 2003).  

Fig 2.3 wavelet decomposition of an empirical signal 
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A class of algorithms work in the time-frequency domain using some linear or non-linear 

filters that have local characteristics and are often called time-frequency filters. Noise can 

therefore be removed by use of spectral editing tools, which work in this time-frequency 

domain, allowing local modifications without affecting nearby signal energy. This can be 

done manually by using a mouse with a pen that has a defined time-frequency shape. This 

is done much like in a paint program drawing pictures. Another way is to define a dynamic 

threshold for filtering noise, which is derived from the local signal, again with respect to 

a local time-frequency region. Everything below the threshold will be filtered, everything 

above the threshold, like partials of a voice or "wanted noise", will be untouched. The 

region is typically defined by the location of the signal Instantaneous Frequency, as most 

of the signal energy to be preserved is concentrated about it. 

 

Although adaptive filtering, based on Fourier-based analyzing tools, has some limitations 

concerning frequency and time resolutions, it is still the most commonly used method in 

signal processing(Chourasia & Mittra 2009). Wavelet transform, which addresses these 

limitations, still requires selecting suitable de-noising algorithm(Rosas-Orea et al. 2005).    

 

Thresholding method is one of the commonly used noise reduction method. The whole 

de-noising progress consists of three ordinal steps: decomposition, thresholding and 

reconstruction. The decomposition and the reconstruction are performed with the 

selection of right wavelet family and mother wavelet to transform the empirical signal 

into a set of coefficients and then reconstruction with the adjusted coefficients, described 

in Section 2.4.3. The thresholding step is the selection of threshold level for de-noising 

of the signals. So the whole presented de-noising methods are mainly different in the way 

coefficients are treated by de-noising algorithms(Hess et al. 1997). Three different kinds 

of de-noising algorithms (thresholds) are always applied for the approach: the Universal 

threshold, the Rigorous SURE threshold and the Minimax threshold (Donoho & 

Johnstone 1994). 

 

The Minimax threshold  

The Minimax consists in an optimal threshold that is derived from minimizing the 

constant term in an upper bound of the risk involved in the estimation of the signal 

(Donoho & Johnstone 1994). The optimal threshold is defined as  

 

𝜆𝑀 = σ𝜆n
∗  

Where σ is the standard deviation and 𝜆n
∗  is determined by minimax rule such as the 

maximum risk of estimation error(Taswell 1995) and the minimum of the maximum mean 

square error(Jansen & Bultheel 2002). 

 

Universal threshold 

The Universal threshold de-noising algorithm, also called VisuShrink (Donoho & 

Johnstone 1994) or Sqtwolog in Matlab, uses a fixed threshold form, which is defined as 

 

𝜆𝑈𝑁𝐼 = σ√2log (𝑛)  

 

where ‘n’ indicate the length of the signal and σ is the standard deviation.  

The implementation of this threshold does not need the development of lookup tables. 

Nevertheless, the universal threshold is depended on the data size and substantially larger 

than the Minimax threshold (Antoniadis et al. 2001). 
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Rigorous SURE threshold 

Both of the previously described de-noising algorithms use global thresholds. That means 

the computed threshold is applied to all wavelet coefficients. The Rigorous SURE 

threshold (Sardy et al. 2004), named Rigrsure in Matlab, describes a scheme that uses a 

varying threshold - at each resolution level ‘j’ of the wavelet coefficients a threshold value 

λj  would be used. The Rigorous SURE threshold de-noising algorithm, also called 

SureShrink, achieves an unbiased estimate through the Stein's Unbiased Risk Estimate 

criterion.  

 

Soft and hard threshold 

After the efficient decomposing of signals, the wavelet coefficients due to useful signal 

(heart sound) tend to be larger than those coefficients due to noise. The noise-based 

coefficients below a certain threshold are then filtered out by de-noising algorithm. The 

de-noising algorithms can be divided into linear and non-linear methods.  

The linear method is implemented regardless of the wavelet coefficient size. This method 

assumes that the noise can be detected not in coarse scales coefficients but mainly in fine 

scale ones (Hess et al. 1997). On the other hand, Non-linear de-noising method is based 

on the assumption that noise can be found in every coefficient and is distributed over all 

scales. This method can be applied in two ways: hard thresholding and soft thresholding. 

In both thresholding, the coefficients below a certain threshold are set to zero; the other 

coefficients are maintain in hard thresholding, but also reduced by the value of threshold 

in soft thresholding to some extent. They are:   

 

Hard thresholding:   s(x) = {
s(x), |x| > 𝜆
   0  , |x| < 𝜆

                    

                         

                  Soft thresholding:    s(x) = {
sign(x)(|x| − 𝜆), |x| > 𝜆

              0              , |x| < 𝜆
 

 

where s(x)is the empirical signal, and 𝜆 is selected threshold. 

There appears to be limited complete de-noising system designed for the newly developed 

electronic stethoscopes which was just developed in the end of twentieth century.  

Wavelet-based de-noising method has applied to heart sound de-noising (Bing-lian & 

Qian 2006; Huiying et al. 2002) and viewpoints in the literature promote the de-noising 

algorithms for phonocardiographic (PCG) output signals (Chourasia 2009; Khadra et al. 

1991). However, limited evidence is found to show that those methods are also suitable 

for electronic stethoscopes outputs. Furthermore, the Daubechies, Coiflet and Symmlet 

wavelets, are frequently-used in the wavelet transform, but no one wavelet seems to 

consistently give better results than another in de-noising (Messer, S., Agzarian, J. & 

Abbott, D. 2001). The threshold value  λ is an empirical value and varies in different 

environments. There is little principle about identifying the threshold value and the 

thresholding function particular for sound de-noising. 

 

2.2 Heart sound record analysis and development of stethoscope 
 

In this section, the signal collected by the current digital stethoscopes is introduced. In 

this study, the noise of the original heart sounds need to be reduced. Thus it is necessary 

to introduce the heart sound and heart sound analysis. Then a brief review of the current 

digital stethoscopes which used for collected heart sound is described. How signals are 
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collected by digital stethoscopes and problems or issues in the collecting process is 

discussed as follows. 

      

2.2.1 The heart sound analysis and heart sound signal 
  

Heart sound is highly a non-stationary signal. Currently, the whole processing of heart 

sound auscultation is implemented into the following general steps:  Preprocessing, 

Segmentation, Feature Extraction and Classification. The first step, Preprocessing, is to 

sample and filter the raw heart sound so as to remove the noise and to prepare it for further 

analysis. During filtering, in order to limit the impact on the useful signal which also 

overlaps in the filtered frequency band, it is important to study the frequency and time 

information of the heard sound. 

 

The origins of heart sounds 

Heart sounds are the acoustic vibrations emerged during the cardiac cycle. Usually, the 

whole process of cardiac cycle is divided into two parts, the systole and diastole phases 

due to fast accelerations and retardation of the blood in the chambers and arteries (Reed, 

T. et al. 2004). During those two phases of the cardiac cycle, audible sounds are made 

from the opening and the closing of the heart valves, and the blood flowing in the heart 

(Zhang, Y. T. et al. 2006).  

 

The most widely accepted theory on the genesis of the heart sound is described by Rusher 

and states that heart sound consists of four components (Durand, L. et al. 2002), S1 to S4. 

Normal heart sound has two major components, the first heart sound (S1) and the second 

heart sound (S2), which can be heard clearly in each heart cycle.  

 

S1 is generated at the onset of ventricular contraction (the end of arterial contraction), 

while S2 occurs during ventricular diastole. Yuenyong states that systole is the period 

between S1 and S2 and diastole is the period between S2 and S1 (Yuenyong et al. 2009). 

The normal third heart sound (S3) is always audible in children and youth but not in most 

adults while the fourth heart sound is seldom audible in normal individuals, and 

pathological if occurred in older adults. The example of a normal heart sound is showed 

on Fig 2.4 (Woywodt et al. 2004).  

 

 
 

 

 

Heart sound analysis 

Heart sound provides clinicians with valuable diagnostic clues and crucial prognostic 

information with acoustical and mechanical phenomena of the cardiac cycle. As many 

heart diseases are associated with the characteristic changes in the intensities of or the 

Fig 2.4 the records of a normal heart sound 
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time relation between the S1 and S2 (Lee, J. et al. 2002), it is crucial to analysis the 

frequency range of each heart component to conduct the initial diagnostics. 

 

The whole frequency of heart sounds and murmurs is a wide range from 0.1Hz to 2000Hz 

(Webster 2009). However, most of the information carried by the heart signal is too weak 

to be recognized by human ear. Thus the audible range of the heart sounds above the  

audible level is about 40–500 Hz, which possessed only a narrow audible range (Leatham 

1970). 

 

The first heart sound (S1) is characterized by higher amplitude, low tone and longer 

duration in comparison with other heart sounds. S1 has two major high-frequency 

components and its frequency components are mainly in the range of 10–200 Hz. The 

second heart sound (S2) usually has a more extended spectral activity compared with the 

first heart sound (S1). Specifically, S2 spectra have greater amplitude than S1 spectra 

above 150Hz (Arnott et al. 1984). It occupies frequencies between 50Hz and 300Hz.  

Because the frequency range of heart sound is generally certain to some degree, removing 

the noises outside this range is as easy as introducing the suitable digital filters. However 

for those noises contained in the pass band, another method is necessary.  

 

2.2.2 The development of stethoscope 
 

The development of the conventional stethoscope 

 

The stethoscope, used to transmit heart and lung sounds from those organs, through the 

chest wall to human ears, was the first diagnostic instrument and has become the badge 

of the physician. Although the modern stethoscope is quite different from the original one 

in appearance, function and application, it is always regarded as an essential medical 

instrument. The first model of stethoscope was created by R.T.H. Laennec in 1816. Then 

the next innovation was the flexible, monaural stethoscope, which was invented in 1828-

29, and the binaural stethoscope which was invented in the early 1950s  (Bishop 1980).  

Both inventions provided a model structure to the modern medical stethoscope. Currently, 

five basic components are believed to be found in the modern mechanical stethoscope: 

the earpieces, binaural, metal brace, tubing, and the chest piece (or the stethoscope head). 

Once the sound is recorded by the chest piece at the skin surface, it transmitted via the 

tubing and the binaural to the earpiece (Zhang, Y. T. et al. 2006). 

 

Auscultation, the process of listening to sounds emanating from the body, is important 

and easy to use such tool in clinical diagnostic routines. Conventional medical practice 

uses a mechanical stethoscope for auscultation. Often, the practitioners would need to 

rely on their hearing ability and their subjective judgment on the interpretation of the 

sounds (Messer, S., Agzarian, J. & Abbott, D. 2001).  

 

Another major problem with the conventional stethoscope is noise corruption. Many 

sources of noise may pollute the heart sound including fetal breath sounds if the subject 

is pregnant, lung and breath sounds, environment noise from contact between the 

recording device and the skin. Moreover, the manner the stethoscope is used can greatly 

affect the sounds perceived. Therefore, a need existed for a better instrument that could 

convey sound more accurate and loudly to make the auscultation process more 

comfortable and convenient for both physicians and patients (Zhang, Y. T. et al. 2006). 

 



16 

 

The emergence of electronic stethoscope (digital stethoscope) 

 

In late twentieth century, electronic stethoscopes were developed to overcome the 

shortcomings of the conventional mechanical stethoscopes. With the introduction of 

electronic stethoscopes, people are now hoping to measure and to analyze heart sounds 

in a more objective manner. As the development of the electronic stethoscope, a 

computer-based system for recording and analyzing of body sounds is introduced. 

Though the system cannot replace the human ear, it can complement diagnose (Schuttler 

et al. 1996). However, the stethoscope is highly prone to interference from ambient noise 

and thus becomes clinically useless in high ambient noise environments (Patel, S. et al. 

1998).  

 

The newly designed electronic stethoscope allows heart sound to be digitally recorded 

and downloaded to a computer for analysis. It gives chance to the introduction of various 

signal processing methods. In order to auscultate in noisy condition, the application of  

noise reduction technique is essential (Müller & Kompis 2002).  Most of the reduction 

techniques are based on an adaptive noise canceller and use a least mean square algorithm 

(LMS). However, in practice, most DSP algorithms can only remove periodic noise which 

is much easier to cancel than broadband random noise (Harley 1997). Nevertheless, there 

are many situations in which random noise cancellation is required. Therefore, a lot of 

the computer-based heart sound analysis techniques adopted by researchers, such as 

wavelet transform and neural network, have already provided new insight into the de-

noising techniques. In this research, it is schemed to design an improved and synthetical 

wavelet-based noise cancellation system which can control the noises in a better way. 

 

Similar devices:  PCG and ECG  

 

There are two different devices which are similar to electronic stethoscope, namely 

phonocardiograph (PCG) and electrocardiograph (ECG).  

Electrocardiography is a transthoracic interpretation of the electrical activity of the heart. 

The wave is over time captured and externally recorded by skin electrodes (Alvarez 1922). 

It is a noninvasive recording produced by an electrocardiographic device. The ECG works 

mostly by detecting and amplifying the electrical changes on the skin that are caused 

when the heart muscle "depolarises" during each heartbeat. During each heartbeat a 

healthy heart will have an orderly progression of a wave of depolarisation. This is detected 

as tiny rises and falls in the voltage between two electrodes placed either side of the heart 

which is displayed as a wavy line either on a screen or on paper. This display indicates 

the overall rhythm of the heart and weaknesses in different parts of the heart muscle. The 

weakness of the ECG is that when the sound is recorded by ECG, it is impossible to replay 

and heard by human ears.  

 

Phonocardiogram or PCG is a high fidelity technique for registering sounds and murmurs 

made by the heart during a cardiac cycle with the help of phonocardiograph. The sounds 

are thought to result from vibrations of the heart valves. It allows the detection of the 

timing and relative intensities of faint sound and murmur, and make a permanent record 

of these events. In contrast, the conventional stethoscope cannot detect such sounds or 

murmurs, and provides no record of their occurrence. The ability to quantify the heart 

sounds provides vital information about the effects of certain cardiac changes in wave 

shape and timing parameters upon the heart. It is also an effective method for tracking the 

progress of the patient's disease(Walker et al. 1990). 

http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Non-invasive_%28medical%29
http://en.wikipedia.org/wiki/Voltage
http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Cardiac_cycle
http://en.wikipedia.org/w/index.php?title=Phonocardiograph&action=edit&redlink=1
http://en.wikipedia.org/wiki/Heart_valve
http://en.wikipedia.org/wiki/Heart_murmur
http://en.wikipedia.org/wiki/Stethoscope
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Although Phonocardiography can record and store auscultator findings accurately, its 

usage as a diagnostic tool is uncommon because of critical procedures and complicated 

instrumentation. A standard procedure to record requires a specially designed, 

acoustically quiet room. Further, the phonocardiographic devices were typically large, 

noisy, and inconvenient to use (Zhang, Y. et al. 2006). 

 

2.3 Noise reduction in digital stethoscopes 
 

Auscultation now uses digital stethoscopes and concerns with the automated acoustic 

recording and processing of medical signals. But these medical signals can potentially be 

corrupted by noise in a variety of ways (Messer, Agzarian & Abbott 2000). The sequence 

of corruption demonstrates several key areas where external interferences could cause 

degradation of the original signal. When dealing with critical medical signals, such as 

heartbeats, it is important if the data does become corrupted by noise and these alterations 

can be eliminated in an accurate and effective manner (Danahy et al. 2005). 

 

2.3.1 Noise analysis 
 

In reality, heart sound records are often disturbed by various factors, which can prohibit 

the accuracy of the original sound (Varady 2001). Most of these factors are noises from 

sources such as breath sounds, contact of the stethoscope with the skin, fetal heart sounds 

if the subject is pregnant, and ambient noise that may corrupt the heart sound signals. 

 

To make it easier, these factors can be categorized as two aspects in the mass: external 

factors and internal factors. 

 

 External factors: 

 Small movement of the stethoscope (“shear noises” or friction noises) 

 Ambient noise 

 Instrument noises 

 Human voices   

 Patient movements 

 

Internal factors: 

 Respiration sounds (lung mechanics) or breathing noise. 

 Acoustic damping through the bones and tissues 

 

Currently, there is no way of knowing a priori what the particular noise component is, or 

of determining the noise component once the measurement has been recorded. In every 

case and situation, the noise will be different (Messer, Agzarian & Abbott 2000).  

 

The electronic stethoscope will become a much more useful diagnostic tool if unwanted 

noises are removed revealing the heartbeat sound clearly and integrated. This research 

attempts to find the suitable way to reduce the unwanted noise and improve the quality of 

the heart sound.   

 

2.3.2 Noise reduction for heart sound 
 

Based on the literature review, there appears to be several gaps. There appears to be 

limited complete de-noising system or method designed for the newly developed digital 
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stethoscopes which was just invented less than twenty years. Adaptive threshold selection  

de-noising method has applied to heart sound de-noising (Bing-lian & Qian 2006; 

Huiying, Sakari & Iiro 2002) and viewpoints in the literature promote the de-noising 

algorithms for phonocardiographic (PCG) output signals (Chourasia 2009; Khadra et al. 

1991). However, limited evidence is found to show that those methods are also suitable 

for electronic stethoscope outputs. Furthermore, those adaptive threshold selection 

methods, which are frequently-used in other areas, not seem to consistently give better 

results in de-noising (Messer, S., Agzarian, J. & Abbott, D. 2001). In the adaptive 

threshold selection methods, the threshold value  λ is an empirical value and varies in 

different environments. There is little principle about identifying the threshold value and 

the thresholding function particular for heart sound de-noising. 

 

To fill these gaps, this study has developed a new de-noising method particularly applied 

in electronic stethoscope outputs quoted from Otsu’s method. In this study, it would be 

detected which decomposition levels and thresholding methods can be best used for 

removing the noise in a heartbeat sound from the electronic stethoscope without great 

loss of useful information. 

 

2.4 Research objectives 
 

The main objective of this research is to use a set of suitable digital processing techniques 

to reduce the noises in the heart sound from the digital stethoscope. This involves properly 

recognizing various sound attributes and their respective frequencies, including the 

frequencies of unwanted noises, and then developing the suitable algorithms to control 

these unwanted sections. These lead to the following sub-questions: 

1)  What kinds of the possible noises are in the output signals and what are their 

spectrums respectively?  

To reduce the noise contained in the heart sound, it is necessary to comprehend the 

content of the noises at first. The noise in the output signal of the digital stethoscope is 

generally made up of two different kinds-- background noise and body noise. The 

background noise includes all kinds of noise generated from noisy environment while the 

body noise is coupled through the patient’s body (section 2.2). To condition the digital 

stethoscope data, it is necessary to know the difference between these noises as each of 

them has distinct spectrum and statistical properties.  

 

2) How to develop suitable noise reduction method for the noises mentioned in the 

above question? 

Noise reduction is not a simple problem and cannot be solved by just subtracting a part 

of the signal from another. The reason of this assumption is that all kinds of the signal are 

in different statistical properties and each of them is time and frequency shifted. 

In order to filter these different kinds of noises, it is essential to classify these noises into 

several types depended on their own statistical properties and then design the suitable 

digital signal processing. The details about design the suitable method for digital heart 

sound signals will be introduced in “Methodology” chapter.   

 

3) How to validate that the heartbeat signal or the other useful information would 

not be distorted after processing? 

The aim of the de-noising process is to remove noise by correctly identifying the 

corrupted data parts and reduce this segment. However, one has to take into account 

throughout the signal process is not to eliminate other important detailed information that 
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both the structure and details of the original clean signal contains. The mean squared error 

(MSE) and zero difference count (ZDC) are widely applied in most research (Danahy, 

Agaian & Panetta 2005). Both methods will be calculated between the processed outputs 

and clean signal to demonstrate results. 
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Chapter 3 Otsu’s Method 

 
3.1 The Otsu’s method theory   
 

The theory of the Otsu’s noise reduction method is quoted from Threshold Selection 

Method from Gray-Level Histograms (Otsu, N 1975) which also called Otsu's method. It 

is a nonparametric and unsupervised method of automatic threshold selection applied for 

many areas. In picture segmentation, for example, it selects the threshold at the gray level 

with the maximal amount of difference. The benefit of this theory is threshold selection 

without other priori knowledge. 

  

Otsu’s method (Liao et al. 2001) is a very popular global automatic thresholding 

technique, which has been applied to a wide range of applications (Tian et al. 2003). 

Those applications are not limited to such area as noise reduction for human action 

recognition (Arseneau & Cooperstock 1999), adaptive progressive thresholding to 

segment lumen regions from endoscopic images (Asari et al. 1999), document 

segmentation (Sund & Eilertsen 2003), pre-processing of a neural-network classifier for 

hardwood lo inspection using CT images (Li et al. 1996), low cost in process gauging 

system in removing illumination dependencies well(Miller et al. 1998), real-time 

segmentation of images with complex background environment and segmentation of 

moving lips for speech recognition (Broun et al. 2002).  

 

According to the theory, it lets the data points of a given signal be represented in L 

different levels [1, 2, …, L]. The number of data points at level i is denoted by ni and the 

total number of data points by N = n1 + n2 + ⋯ nL. And the probability distribution of 

the signal is: 

 

pi =
ni

𝑁
,   pi ≥ 0, ∑ pi = 1

L

i=1

.  

 

Then it supposes that the signal is dichotomized into two classes  C0 and C1 (noise and 

heartbeat) by a threshold at value K; C0 denotes data with levels [1, …, k]，while C1 

denotes data with levels [k+1, …, L]. The probabilities of class occurrence and class mean 

levels are: 

 

ω0 = Pr(C0) = ∑ pi = ω(k)

k

i=1

 

            ω1 = Pr(C1) = ∑ pi = 1 − ω(k)L
i=k+1  

 

And 

μ0 = ∑ iPr(i/C0) = ∑ ipi/ω0 = μ(k)/

k

i=1

ω(k)

k

i=1

 

μ1 = ∑ iPr(i/C1) = ∑ ipi/ω1 =
μT − μ(k)

1 − ω(k)

L

i=k+1

L

i=k+1
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Where the zeroth- and first- order cumulative moments to the k level respectively: 

ω(k) = ∑ pi 

k

i=1

, μ(k) = ∑ ipi

k

i=1

 and  μT = μ(L) = ∑ ipi

L

i=1

  

 

μT is total mean level of the original picture. The following relationship is existed for any 

k: 

 

μ0ω0 + μ1ω1 = μT, ω0 + ω1 = 1 
 

The class variances require second-order cumulative moments, are given by 

 

σ0
2 = ∑(i − μ0)2Pr(i/C0)

k

i=1

= ∑(i − μ0)2pi/ω0

k

i=1

 

σ1
2 = ∑ (i − μ1)2Pr(i/C1)

L

i=k+1

= ∑ (i − μ1)2pi/ω1

L

i=k+1

 

 

Then the within-class variance, the between-class variance, and the total variance of 

levels are described as: 

 

σw
2 = σ0

2ω0 + σ1
2ω1 

σB
2 = ω0(μ0 − μT)2 + ω1(μ1 − μT)2 = ω0ω1(μ1 − μ0)2 

And    σT
2 = ∑ (i − μT)2pi

L
i=1  

 

And the following basic relation always holds: 

 

σw
2 + σB

2 = σT
2  

 

Which σw
2  and σB

2  are functions of threshold level k, but σT
2  is independent of k; and σw

2  

is based on the second-order statistics (class variance), while σB
2  is based on the first-order 

statistics (class means). 

 
In order to evaluate the following discriminant criterion measures (or measures of class 

separability) used in the discriminant analysis: 

 

𝜆 =
σB

2

σw
2

 , 
σT

2

σw
2

 ,  =
σB

2

σT
2   

 

The discriminant criteria maximizes λ,  , and
 respectively, and equivalent to one 

another. Because  = λ + 1 and   =
σB

2

σw
2 . Therefore,    is the simplest measure with 

respect to k. Thus   is regarded as the criterion measure to evaluate the separability of 

the threshold at level k. The optimal threshold k that maximizes    , or equivalently 

maximizes σB
2 . 
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σB
2 =

[μTω(k) − μ(k)]2

ω(k)[1 − ω(k)]
 

 

And the optimal threshold k is:  

 

σB
2 =

Lk1
max σB

2 (k) 

 

A method to select a suitable automatically from a certain level of heart sound record in 

frequency domain comes from the concept of discriminant analysis. The issue of 

evaluating the appropriation of the threshold is the key point. The optimal threshold(or 

multiple thresholds) is selected by the discriminant criterion and maximizing the between 

class variance(Otsu, N. 1979). Thus the BCVC (Between Class Variance Computation) 

of Otsu’s method is seemed to meet the high-speed requirements. 

 

3.2 Otsu’s methods’ advantage and applications 
 

This proposed method is named by its nonparametric and unsupervised nature of 

threshold selection and has the following desirable advantages. 

 

1) The procedure is very simple; only the zeroth and the first order cumulative 

moments are utilized. That means the higher order statistics calculation is avoided. 

2) A straightforward extension to multi-thresholding problems is feasible by virtue 

of the criterion of the based method. 

3) An optimal threshold (or set of thresholds) is selected automatically and stably, 

not based on the differentiation, but on the integration of the sound level. 

4) Further important aspects can also be analyzed (evaluation of class separability, 

class mean levels or the computation of between class variance) 

5) The method is quite general and covers a wide range of unsupervised decision 

procedure. 

 

Taking the above benefit points into account, the Otsu’s method suggested in this stage 

may be recommended as the most simple and standard one for the adaptive threshold 

level selection method that can be applied to various practical problems.   
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Chapter 4 Research Methodology and Design 
      

 

In this Chapter, an appropriate research methodology for the study will be discussed. First, 

it reviews the research paradigms in Information System (IS) and compares their 

difference. Then the research approach and methodology applied for this study, which 

attempts to explain the research question posed in previous chapter, would be selected 

and determined. The research problem focusing on the noising reduction of heart sound 

record from digital stethoscopes in the context of tele-health, would be explored by three 

sub- questions. The most suitable research strategy and approach for this study would be 

identified in this chapter though the comparison and selection from the research 

paradigms in IS. 

 

In section 4.1, a brief summary of some of the relevant concepts in research philosophy 

and paradigms are presented. In the next section of this chapter the research paradigm, as 

well as the research epistemologies and ontologies in this research study, is introduced. 

After that, the positivist and interpretivist research paradigms are also discussed in this 

section and an appropriate philosophy is selected as a basis for this study. Qualitative 

quantitative and experiment research methods are discussed against each other in section 

4.3 and the most appropriate   research approach to answer the research question is 

presented in section 4.3.1.  

 

4.1 Introduction to research 
 

Research is regarded as something very abstract and complicated. While the different 

parts or phases of a research project or research study is confirmed then fitted together, 

it's not nearly as complicated as it seems to be at first glance. A research study has a 

relatively-fixed structure -- a beginning, middle and end. The major components or parts 

of a research study are guided by different research philosophies. The way in which 

research is conducted may be conceived of in terms of the research philosophy subscribed 

to, the research strategy employed and the research instruments utilised to fulfil a goal, 

or the research objectives, and the quest for the solution of a problem -- the research 

question. 

 

When undertaking research of this nature, it is important to consider different research 

paradigms and matters of ontology and epistemology. Since these parameters describe 

perceptions, beliefs, assumptions and the nature of reality and truth (knowledge of that 

reality), they can influence the way in which the research is undertaken, from design 

through to conclusions, and it is therefore important to understand and discuss these 

aspects in order to approaches the nature and aims of the particular inquiry are adopted, 

and to ensure that researcher biases are understood, exposed, and minimised. 

 

As the research philosophy is considered about the way in which data about a 

phenomenon should be gathered, analysed and used, the term epistemology (what is 

known to be true) as opposed to ontology (what is believed to be true) are introduced to 

the various philosophies of research approach. The purpose of science, then, is the process 

of transforming things believed into things known. Two major research philosophies have 

been identified in the Western tradition of science, namely positivist (sometimes called 

scientific) and interpretivist (also known as antipositivist) (Galliers & Sutherland 1991). 
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There are different research paradigms operating in information systems (IS) research. 

One well-known differentiation is made by (Orlikowski & Robey 1991). They describe 

three different “research epistemologies (what is known to be true)” in IS research which 

have been identified in the western tradition of science, named positivist, interpretive and 

critical approaches. They follow an earlier division made by (Fluhr et al. 1986). This 

division of IS research approach has been acknowledged by several other scholars (Myers 

& Avison 2002) in their introduction to an anthology of qualitative IS research. Several 

scholars have written about interpretive research and made this in contrast to positivist 

research (Myers & Avison 1997; Walsham 2006). The main competing research 

paradigms in IS seem to be positivism and interpretivism. 

 

4.2 Critical theory, positivism and interpretivism 
 

4.2.1 Interpretivism 
 

Interpretivists contend that only through the subjective interpretation of and intervention 

in reality can that reality be fully understood (Walsham 1995). The study of phenomena 

in their natural environment is the key to the interpretivist philosophy, together with the 

acknowledgement that scientists cannot avoid affecting those phenomena they study. 

They admit that there may be many interpretations of reality, but maintain that these 

interpretations are in themselves a part of the scientific knowledge they are pursuing. 

Interpretivism has a tradition that is no less glorious than that of positivism, nor is it 

shorter. 

 

Wilhelm Dilthey in the mid-twentieth century was influential in the interpretivist 

paradigm or hermeneutic approach as he highlighted that the subject matter investigated 

by the natural sciences is different to the social sciences, where human beings as opposed 

to inanimate objects can interpret the environment and themselves (Rhodes et al. 2010). 

In contemporary research practice, this means that there is an acknowledgement that facts 

and values cannot be separated and that understanding is inevitably prejudiced because it 

is situated in terms of the individual and the event (Cousin 2005; Elliott & LUKEŠ 2008). 

Researchers recognise that all participants involved, including the researcher, bring their 

own unique interpretations of the world or construction of the situation to the research 

and the researcher needs to be open to the attitudes and values of the participants or, more 

actively, suspend prior cultural assumptions (Conway 2009). These principles are 

particularly important in ethnographic methodology (Elliott & LUKEŠ 2008; Somekh & 

Lewin 2005). Some interpretivist researchers also take a social constructivist approach, 

initiated by Lev Vygotzky (also around the mid-twentieth century), and focus on the 

social, collaborative process of bringing about meaning and knowledge (Kell & Oliver 

2004). The case study research methodology is suited to this approach (Elliott & LUKEŠ 

2008; Somekh & Lewin 2005). Interpretivist research methods include focus groups, 

interviews, and research diaries 

 

One of the criticisms of interpretivism is that it does not allow for generalisations because 

it encourages the study of a small number of cases that do not apply to the whole 

population (Arnold 1970). However, others have argued that the detail and effort involved 

in interpretive inquiry allows researchers to gain insight into particular events as well as 

a range of perspectives that may not have come to light without that scrutiny (Macdonald 

et al. 2002; McMurray et al. 2004). More detailed information of interpretivism is 

provided in the following content. 
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4.2.2 Positivism 
 

In positivists’ mind, reality does exist, stable and can be observed and described from an 

objective viewpoint (Lin 1998; Smith et al. 1996) without any influence on the 

phenomena being studied. They suggested that phenomena should be isolated and that 

observations should be repeatable. This often involves manipulation of reality with 

variations in only a single independent variable so as to identify regularities in, and to 

form relationships between, some of the constituent elements of the social world. 

 

In the nineteenth century, positivism began with Auguste Comte (Lather 2006) and 

insisted that a deterministic and empiricist philosophy, which generates determine effects, 

and aims to directly observe, quantitatively measure and objectively predict relationships 

between variables (Conway 2009). It assumes that social phenomena, like objects in 

natural science, can be treated in the same way. The viewpoint of this presentation is that 

positivism should be regarded as one of the tools in the arsenal of a researcher. Arguably, 

recognizing science as a problem-solving, positivism itself (if it could be separated from 

the people who articulate or follow this position) would probably support this position. 

 

The positivist paradigm has the following positions with regard to the three dimensions: 

 

1. An objective reality is assumed which can be systematically and rationally 

investigated through empirical investigation, and is driven by general causal laws 

that apply to social behaviour. This is sometimes called naïve realism (the 

ontological position) (Guba and Lincoln 1994). 

 

2. The researcher and the phenomena being investigated are assumed to be 

independent, and the researcher remains detached, neutral and objective (Shanks 

2007). 

 

3. General theories are used to generate propositions that are operationalised as 

hypotheses and subjected to empirical testing that is replicable. Hypotheses 

should be testable and provide the opportunity for confirmation and falsification. 

This is the essence of the scientific method (Rubinstein 1975). 

 

One major criticism of positivism is the issue of separating the researcher from what is 

being researched. The expectation that a researcher can observe without allowing values 

or interests interfering is arguably impossible (Somekh & Lewin 2005). As a result, 

positivism today, also known as post-positivism, acknowledges that, even though 

absolute truth cannot be established, there are knowledge claims that are still valid in that 

they can be logically inferred; we should not resort to epistemological theory or relativism 

(Hammersley, n.d.). Positivist research methods include experiments and tests, that is, 

particularly those methods that can be controlled, measured and used to support a 

hypothesis. 
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4.2.3 Critical research 
 

Critical researchers assume that social reality is historically constituted (Boland & 

Hirschheim 1992) and that it is produced and reproduced by people. Although people can 

consciously pretend or perform to change their social and economic circumstances, 

critical researchers recognize that their ability to do so is constrained by various forms of 

social, cultural and political domination. The main task of critical research is seen as being 

one of social criticism, which includes the restrictive and separated conditions. Critical 

research focuses on the oppositions, conflicts and contradictions in society (Parker 2002) 

from the same period, and devotes to be patulous. It should help to eliminate the causes 

of separation and domination. 

 

A growing number of information systems (IS) researchers lay claims to adopting a 

critical research perspective. They state this on their web pages, gather at conferences 

dedicated to critical research and publish work where their declared aim is to challenge 

dominant discourses. These are key epistemological and methodological questions for 

any research perspective and, unsurprisingly, the answers that researchers in information 

systems have offered to them have changed over time. Specifically, IS researchers have 

declared what they mean by a critical perspective (Walsham 2005), identified particular 

critical theories and concepts as promising ones for the discipline (Avgerou 2002). 

Furthermore, numerous calls since the 1970s for research that adopts a critical, reflexive 

stance on the interrelationships among information systems, organizations and society 

(Baskerville & Wood-Harper 1996; Mingers 2003; Walsham 2005). 

   

4.3 Research strategy 
 

It has often been observed (Benbasat et al. 1987) that no single research methodology is 

intrinsically better than any others, many authors calling for a combination of research 

methods in order to improve the quality of research (Kaplan & Duchon 1988). Equally, 

some institutions have tended to adopt a certain  specific methodology (Galliers & 

Sutherland 1991); this seems to be almost ignored the fact that, given the richness and 

complexity of the real  world, a methodology best suited to the problem under certain 

consideration, as well as the objectives of the researcher, should be chosen(Pervan 2007). 

In this research, we have tried to avoid the insistence on using a single research method. 

This is due to the ability to decide between the various merits and demerits of the various 

methods. Instead, we believe that all methods are valuable if used appropriately, that 

research can include elements of both the positivist and interpretivist approaches, if 

applied carefully. 

 

A number of research methodologies have been identified in Table 4.1 below. The list of 

the methodologies were identified by Galliers (1991), indicating whether they typically 

conform to the positivist or interpretivist paradigms has been shown the methodologies 

applied in this research. The key features of the key methodologies have been summarised 

in the table, identifying their respective strengths and weaknesses. In the following 

sections, the methodology for this study will be selected and explained how they both 

operate and interoperate in this research. 
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Case study is an intensive analysis of an individual unit (e.g., a person, group, or event) 

stressing developmental factors in relation to context. The case study is common in social 

sciences and life sciences. Case studies may be descriptive or explanatory. The latter type 

is used to explore causation in order to find underlying principles. They may be 

prospective (in which criteria are established and cases fitting the criteria are included as 

they become available) or retrospective (in which criteria are established for selecting 

cases from historical records for inclusion in the study). 

 

Focus group is a form of qualitative research in which a group of people are asked about 

their perceptions, opinions, beliefs, and attitudes towards a product, service, concept, 

advertisement, idea, or packaging. Questions are asked in an interactive group setting 

where participants are free to talk with other group members. The first focus groups were 

created at the Bureau of Applied Social Research in the USA, by associate director, 

sociologist Robert K. Merton. The term itself was coined by psychologist and marketing 

expert Ernest Dichter.  

 

An interview is a conversation between two people (the interviewer and the interviewee) 

where questions are asked by the interviewer to obtain information from the interviewee. 

The qualitative research interview seeks to describe and the meanings of central themes 

in the life world of the subjects. The main task in interviewing is to understand the 

meaning of what the interviewees say(Dilley 2004). 

 

Research diary is a written record of the researcher's activities, thoughts and feelings 

throughout the research process from design, through data collection and analysis to 

writing and presenting the study. The research diary is many things to many people(Lee, 

R. & Fielding 1996). Some researchers may use a diary to record factual items such as 

contact numbers of key informants or reasons for changes to the research protocol. Others 

use it more prolifically to record analytical, conceptual or methodological ideas. Others 

still will be more inclined to use their research diary to express emotions, perhaps their 

concerns or delights throughout the study. 

 

One of the criticisms of interpretivism is that it does not allow for generalisations because 

it encourages the study of a small number of cases that do not apply to the whole 

population (Hammersley 2012). However, others have argued that the detail and effort 

involved in interpretive inquiry allows researchers to gain insight into particular events 

as well as a range of perspectives that may not have come to light without that supervision 

(Mackrell & Nielsen 2007; McGregor & Murnane 2010; Medcalf 2010). In this research, 

the noise reduction need to be applied to all kinds of the stethoscopes and should be 

effective in most cases of the environment. The function of the de-noising method should 

Positivist Interpretivist 

Laboratory Experiments Case Studies 

Action Research Interview 

Surveys Focus group 

Case Studies Research diary 

Simulation  

Table 4.1 A list of Research Methodologies 
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http://en.wikipedia.org/wiki/Retrospective
http://en.wikipedia.org/wiki/Qualitative_research
http://en.wikipedia.org/wiki/Bureau_of_Applied_Social_Research
http://en.wikipedia.org/wiki/Robert_K._Merton
http://en.wikipedia.org/wiki/Ernest_Dichter
http://en.wikipedia.org/wiki/Question
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not be verified much according to the changeable surroundings. Thus the interpretivism, 

encourages the study of a small number of cases while not apply to the whole population 

is not suitable for this study.   

 

Quantitative research methods were originally developed in the natural sciences to 

study natural phenomena. Quantitative research is a research method that relies less on 

interviews, observations, small number of questionnaires, focus groups, subjective 

reports and case studies but is much more focused on the collection and analysis of 

numerical data and statistics.  Examples of quantitative methods now well accepted in the 

social sciences include survey methods, laboratory experiments, formal methods (e.g. 

econometrics) and numerical methods such as mathematical modelling (Straub et al. 

2005).  

 

Qualitative research methods are various as various philosophical perspectives can 

inform qualitative research. A research method is a strategy of inquiry which moves from 

the underlying philosophical assumptions to research design and data collection. The 

choice of research method influences the way in which the researcher collects data. 

Specific research methods also imply different skills, assumptions and research practices. 

The four research methods that will be discussed later. 

 

Laboratory experiments permits the researcher to identify precise relationships between 

a small number of variable (Benbasat 1988). These relationships are studied intensively 

through a designed laboratory environment and using quantitative analytical techniques 

with a view to making general statements which can be applied to real-life situations. The 

key weakness of laboratory experiments is the "limited extent to which identified 

relationships exist in the real world due to oversimplification of the experimental situation 

and the isolation of such situations from most of the variables that are found in the real 

world" (Galliers, 1991, p.150).  

 

The ways in which the experiments presented above is different from the setting in which 

they are conducted(Latham et al. 1988). Some are laboratory experiments that take place 

in a setting created by researchers, and others such as field experiments are conducted in 

participants’ natural setting. Additional ways for communication researchers to conduct 

their studies would be research questionnaires which ask participants to write their 

answers to questions researchers pose and panel studies which are surveys in which 

responses from the same people are obtained to learn how their beliefs, attitudes, and/or 

behaviours change. There are particular strengths and weaknesses of each type of 

experiment done. 

 

Laboratory experiments are perceived as the most ‘scientific’ method of obtaining data 

within Psychology(Maxwell & Delaney 2004). This is due to the fact that generally, most 

lab experiments are in a controlled setting, which means that the researcher can easily 

manipulate the independent variable and record the dependent variable (Casebeer & 

Verhoef 1997). This is the strength of Lab experiments, due to the fact that if something 

is classified as ‘scientific’ it is taken more seriously. Therefore, this method is an easy, 

relatively quick, and scientific way of researchers to collect data. 

 

On the other hand, although there are many strengths of using a laboratory experiment, 

there are also weaknesses. The ecological validity of laboratory experiments is a huge 

criticism(Benton et al. 2007). Lab experiments are extremely artificial settings, which 
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leads to the problem of the lack of ecological validity. Due to the fact that participants are 

not in a real life situation, this may encourage artificial behavior. An example of where 

lack of ecological validity may affect participant’s behavior is in Milgram’s obedience 

study. As many of you will know, in this experiment, he got participants to believe they 

were potentially harming a confederate by giving them electric shocks. The majority of 

participants carried on inflicting the shocks even when they were lead to believe that the 

confederate was suffering a lot from the shocks or may have even died. This suggests that 

the participants may have acted differently to how they would in this situation in a real 

life scenario, due to the fact that the setting was extremely artificial. This makes us 

question whether the results gained from laboratory experiments are in fact reliable, as 

the behaviour being observed isn’t natural behavior due to the artificial setting in the 

laboratory. 

 

Simulation involves copying the behaviour of a system. Simulation is used in situations 

where it would be difficult normally to solve problems analytically and typically involves 

the introduction of random variables. As with experimental forms of research, it is 

difficult to make a simulation sufficiently realistic so that it resembles real world 

events(Swope et al. 1982). 

 

Simulation is a very flexible modelling approach, which makes it one of the most widely 

used Operational Research techniques. The approach taken is to model the behaviour of 

individual elements within the system, often using random sampling to generate realistic 

variability. The overall behaviour of the system emerges from the interactions between 

the elements. 

 

The simulation process consists of problem definition, conceptual modelling, model 

coding, model verification and validation, experimentation and analysis of results, and 

solution implementation. Application areas for simulation in industry include 

manufacturing, call centres, business processes, service operations, military, transport, 

health care, IT, and environment. There are also applications in many other areas of 

science. 

 

Action research is a form of applied research where the researcher attempts to develop 

results or a solution that is of practical value to the people with whom the research is 

working, and at the same time developing theoretical knowledge. Through direct 

intervention in problems, the researcher aims to create practical, often emancipatory, 

outcomes while also aiming to reinform existing theory in the domain studied. As with 

case studies, action research is usually restricted to a single organisation making it 

difficult to generalise findings, while different researchers may interpret events 

differently. The personal ethics of the researcher are critical, since the opportunity for 

direct researcher intervention is always present(Argyris et al. 1985). The main weakness 

of action research is such method often lends itself to small-scale studies and is time-

consuming. That means it is not suitable for the real-time research or research that need 

the instant results. The value of this a methodology is that it provides a powerful means 

of improving and enhancing practice. 

 

It is important to realize the different philosophies of research because that would enable 

the researchers to conduct the correct decision about research design. Actually, the 

philosophy is the overall configuration of research, for example, what kind of evidence 

to be collected and where the evidence can be gathered, how such evidence is interpreted 
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in order to provide good answers to the research questions. Furthermore, it would help 

you to consider whether the above research approaches are effective. For example, if one 

is interested in knowing why something is happening then interpretivism is more 

appropriate than positivism. Knowledge of different research traditions enables you to 

adapt your research design to cater for the constraints as well. These could be practical 

(e.g., not be able to the access to interviews) or they could arise from a lack of prior 

knowledge of the subject. One cannot be in a position to construct a hypothesis if the 

realization of the topic is not sufficient.      

 

Positivism emphasizes the importance of an objective scientific method. These 

researchers prove the theories through collecting facts and then studying the relationship 

between those facts. They analyse quantitative data using statistically valid techniques 

and produce quantifiable and generalized conclusions. Positivism stresses the importance 

of studying social and organizational realities in a scientific way that mirrors the research 

processes used in the natural sciences. However, interpretivism is concerned to 

understand human’s perceptions of the world. Interpretivists see facts as the product of 

human interactions – they are the product of shared understandings and meanings and are 

not always predictable. The less quantifiable and the subjective interpretations, reasoning, 

and feelings of humans are seen as a more relevant line of enquiry in order to understand 

and explain the phenomena. Therefore, the focus of interpretivism is not numbers but on 

words. 

 

4.4 Research model and instrument 
 

In this research, the research objectives focus on finding the appropriate noise reduction 

method for the sound record of stethoscope. To achieve the research target, a lot of data 

about the sound resources would be collected, analysed and compared before the final 

noise reduction solution can be achieved. Thus, interpretivism, the study of subjective 

interpretation of reality and phenomena in their natural environment, seems not suitable 

for this study.  

 

In this study, when the research data, the sound resources from stethoscopes, has been 

collected, some factors are required to be considered. The volume and quality of the sound 

resources differ from each specific medical device, the styles of noise change according 

to the environment, the speed and strength of heartbeat is depended on individual’s body 

conditions. Each factor is variable during the collection of the sound resources and able 

to influence the final sound quality dependently. To study how those issues affected the 

sound quality and then design the probable de-noising resolution, the measurement and 

control of each variety is essential.  Since it will be concerned the affection from each 

variable and a certain designed situation would be applied to explore the relationship 

between each variable and the result. Then the possible solution, the laboratory 

experiment research technique will be provided.  

 

The laboratory experiment which has been identified above is the study involving 

intervention by the researcher beyond that required for measurement. The usual 

intervention is to manipulate some variable in a setting and observe how it affects the 

subjects being studied. In this research, the variation of each issue (e.g. the volume of the 

sound, the kind of background noises, the change of heart rate) is considered to be a 

variable. As the foremost advantage of experiment is the researcher’s ability to 

manipulate the independent variable, each variable is regarded as one independent 
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variable (IV) and their function of influence the whole quality of sound quality will be 

researched. As all the co-factors affect the sound quality together, we need to evaluate the 

function of each one and design the probable solution. The contamination from 

extraneous variables can be controlled more effectively than that in other designs. This 

helps us isolate experimental variables and then evaluate their impact over time. Further, 

after finish designing the noise reduction method, the lab experiment technique helps us 

to repeat the experimental results with different subject groups and conditions, for 

example using extra sound resources.    

 

The artificiality of the laboratory is arguably the primary disadvantage of the experiment 

method, while many subject’s perception of a contrived environment can be improved by 

investment the facility. In this research, the co-affection of all the factors will be 

considered and tested when the final noise reduction method is determined. Thus the 

limitation of contrived environment is minimized. 

 

In this study, the influence of each variable needs to be confirmed. While in the reality, 

some certain variable always cooperate together and it is quite hard to collect the sound 

resource which is affected by only one variable. The result of affection from certain factor 

needs to be generated and form one system. Then the result/behaviour of each system will 

be put together to simulate the corruption of sound quality in real life. Thus the simulation 

research technique is considered to be applied in this research as well. The simulation is 

hardly to make a factor sufficiently realistic while it can resemble some variables of the 

real world events which cannot occur independently. As a very flexible modelling 

approach, simulation makes it easier to be applied with the laboratory experiment research. 

 

4.5 Research facilitation software 
 

MATLAB 2010b is employed in this research as a signal processing and simulation 

software. Compared with other numerical or data analysis software, MATLAB proves by 

a number of considerations. MATLAB is, arguably, the most widely used program for 

performing numerical calculations. It comes with its own programming language, in 

which numerical algorithms can be implemented.     

 

MATLAB (matrix laboratory) is a numerical computing environment and fourth-

generation programming language. Developed by MathWorks, MATLAB allows matrix 

manipulations, plotting of functions and data, implementation of algorithms, creation of 

user interfaces, and interfacing with programs written in other languages, including C, 

C++, Java, and Fortran. 

 

The selected software has been widely used in signal processing areas. Although 

MATLAB is intended primarily for numerical computing, an optional toolbox uses the 

Mu PAD symbolic engine, allowing access to symbolic computing capabilities. An 

additional package, Simulink, adds graphical multi-domain simulation and Model-Based 

Design for dynamic and embedded systems. In 2004, MATLAB had around one million 

users across industry and academia. MATLAB users come from various backgrounds of 

engineering, science, and economics. MATLAB is widely used in academic and research 

institutions as well as industrial enterprises. 

 

In this research, all the sound resources will be stored in hard disk with WAV form. 

MATLAB is used to conduct the following tasks, to read the digital signal record stored 
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in the hard disk, to cut the original signal into certain fragments, to analyse the noise 

corruption and to apply the de-nosing signal processing with the appropriate noise 

reduction method we provide, and to output the processed signal with WAV form again.    

 

4.6 Design of laboratory experiments 
 

Experimental flow graph: 

 

 
 

1. Load sound files into Matlab 

 

The heart sound examples of electronic stethoscope will be acquired from existing and 

other available electronic stethoscopes. During the measurement, system parameters of 

these heart sounds are set at the following conditions: 44.1 KHz sampling frequency 

(sanple rate), high sensitivity and about one minute length for each piece of recording 

data. These heart sounds are stored in PC in the form of MP3. MP3 audio format should 

be converted into format such as WAV which can be recognized by MATLAB software. 

 

The easiest way to read audio data from a file is to use the Import Wizard from Matlab, a 

graphical user interface. The Import Wizard can read WAV, AU, or SND files, thus the 

MP3 files from the electronic stethoscope need to be transferred in to WAV files through 

file-convert software first. While to import WAV files without invoking a graphical user 

interface, ‘wavread’ is recommended. 

 

MATLAB audio functions can read and store single-channel audio data in an m-by-1 

column vector, and stereo data in an m-by-2 matrix, m is the number of samples. For 

stereo data, the first column contains the left channel, and the second column contains the 

right channel. 

 

Typically, each sample is a double-precision value between -1 and 1. In some cases, 

particularly when the audio hardware does not support high bit depths, audio files store 

the values as 8-bit or 16-bit integers. The range of the sample values depends on the 

available number of bits. The MATLAB sound functions (‘wavread’) support only single- 

1.
• Load sound files into matlab

2.
• Noise reduction for different environments?

3.
• Discuss about possible threshold option

4.
• The plan to run a pilot sound track

http://www.mathworks.com.au/help/techdoc/ref/wavread.html
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or double-precision values between -1 and 1. Other audio functions support multiple data 

types, as indicated on the function reference pages. 

 

In this experiment, the sound files are two-channel audio data, thus both the left and right 

channel should be imported and processed in Matlab. After the noise reduction process, 

experiment, the result of each sound channel will be shoed and the complete processed 

double-channel sound file will be given. 

 

Before the processing of the noise reduction, the WAV form sound files need to be cut 

into certain length for the ease of comparison after experiment. In this experiment, the 

sound length is dependent on the sample rate. The audio signal in a file represents a series 

of samples that capture the amplitude of the sound over time. The sample rate is the 

number of discrete samples taken per second and given in hertz. The precision of the 

samples, measured by the number of bits per sample, depends on the available audio 

hardware. In this experiment, the sample rate is 44.1 KHz. And the sound files need to be 

cut into two, four and eight seconds for the processing.  

 

2.  Noise reduction for different environments 

 

The medical signals can be corrupted by noise in a variety of ways. The sequence of 

corruption demonstrates several key areas where external interferences could cause 

degradation of the original signal. In reality, heart sound records are very often disturbed 

by various factors, which can prohibit the accuracy of the original sound and most of 

these factors are noises from sources such as breath sounds, contact of the stethoscope 

with the skin, fetal heart sounds if the subject is pregnant, and ambient noise that may 

corrupt the heart sound signals. 

 

To make it easier, these factors can be categorized as two aspects in the mass: external 

factors and internal factors. 

 

The external factors include: Small movement the stethoscope, ambient noise, instrument 

noises, human voices and patient movements; while the internal factors include: 

respiration sounds or breathing noise and acoustic damping through the bones and tissues. 

 

Currently, there is no way of knowing a priori what the particular noise component is, or 

of determining the noise component once the measurement has been recorded. In every 

case and situation, the noise will be different. Thus one of the probable ways to make the 

de-noising method suitable for different environments is to utilize the adaptive noise 

reduction method which can be adjust automatic due to the different or changeable noise 

background. The details of choosing reduction method will be discussed in the next 

segment.     

 

3. The possible threshold option 

 

There are four threshold selection rules available in MATLAB, Rigrsure, Sqtwolog, 

Heursure and Minimaxi. The third threshold is just constituted by the first two according 

to the signal-to-noise ratio (SNR) of the signal. The introduction of these thresholds has 

been provided in Literature Review Chapter.  

As these thresholds are designed for all kinds of signals, none of them performs well in 

heart sound processing particularly because they are all fixed thresholds while the heart 
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sound and noises are mutable or sometimes random. In addition, the real environment 

where the sound is collected is always changeable. In this research, it is supposed to 

design a new adaptive threshold method for the noise reduction for heart sound. This 

threshold can be used to adjust the signal due to the SNR of the original heart sound. 

When the SNR is large (means little noise contained in the heart sound signal), the 

threshold value will be low so that more useful information will be maintained; while the 

threshold value would be relatively high to remove more noise when the SNR seems to 

be small. The probable threshold is seemed to be the Otsu’s method which can be seen in 

literature review chapter. 

 

4. The plan to run a pilot sound track 

 

The new de-noising method will be test by two different ways by using the empirical 

signal and real heart sound signal respectively. 

 

 
 

 

The method will be first tested by the empirical signal, which is consisted of certain kind 

of noise (Gaussian noise, Friction noise or breathing noise) and clean heart sound with 

limited noises. The output signal from the de-noising method will be compared with the 

clean heart sound. The evaluation criterion called ‘mean square error’ (MSE) would be 

introduced in this step and compare the similarity between them. MSE is a risk function, 

corresponding to the expected value of the squared error loss or quadratic loss. MSE 

calculates the average of the square of the "error", which is the amount of the difference 

between the estimator and the estimated quantity(Lehmann & Casella 1998). The MSE 

of the signal estimator can be obtained by the following expression: 

 

MSE(s) =
∑ (s − se )i

2n
i=1

n
 

 

Where ‘n’ means the length of the signal, ‘s’ denoted the original signal and ‘se’ is the 

estimated signal achieved from the de-noising coefficients.  

 

Both the new de-noising algorithms and the common ones will be simulated in MATLAB 

for de-noising the heart sound signals. MSE is used to evaluate the performance of both 

the approaches. The de-noising algorithm will prove to be better if the MSE value is 

smaller.  

 

The final step of the research will test the new de-noising methods with the real heart 

sound output from the electronic stethoscopes. 

 

Clean heart 
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Fig 4.1 de-noising method tested with empirical signal 
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The raw heart sound will be inputted into the new de-noising method and the output signal 

will be obtained. The result signal after de-noising as well as the raw heart sound signal 

will be sent to the doctors and physicians to seek the feedback of the acceptance of the 

recommended method.  

 

4.7 Conclusion 
 

In this chapter we have presented a detailed account of the research philosophy, strategy 

and methodology according to which we shall conduct this research. We place our 

research in the positivist camps and explain why interpreticist theory seems not suitable 

to this research. We utilise a mixture of laboratory experiment and simulation research 

approaches. We explain how we propose to interoperate the two positivist methods so as 

to achieve our research objectives. This includes a substantial literature review, the early 

research models and the development of an instrument. These are explained in much 

greater details elsewhere in the thesis and in other published papers. Finally we detail our 

broad procedures for data analysis and software intervention. More details about the data 

collection and analysis will be given in 5.4.1 ‘The integration process of the experiment’.  
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Fig 4.2 De-noising method tested with real heart sound  
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Chapter 5 Data Collection and Analysis 
 

 

In this chapter, the approaches employed for data collection and data analysis will be 

provided along with a description of how the data was analysed will be discussed. The 

process of data collection and analysis for the research is introduced and explained in the 

following sections. Section 1 defines the format of the data required for the experiment. 

In Section 2, the real data which has been collected is described. Section 3 and 4 discuss 

the application of the algorithm applied in the experiment and the adjustment of the 

coefficient. In section 5, the data is tested with different threshold levels, and the results 

are showed then. 

 

5.1 Data assumption discussion 
 

In this research, the main objective was to understand various noises mixed with the heart 

sound and how these can be reduced with a noise reduction method so that a clear heart 

sound can be presented to physicians. The raw records are restored in the form of MP3 

before the conducting experiment. Thus all heart sound records (MP3 form) are stored 

and saved as digital signals, in other words, in the form of numbers. This helps to analyse 

the sound in a quantitative manner, which is essential for the experiment method chosen 

for this study.  

 

Conducting the quantitative data collection, especially for sound samples, is not an easy 

task as there are certain challenges to be overcome by the researcher. In the following 

paragraph, these challenges are briefly discussed. 

 

In the Methodology Chapter, the general view of the target data has been described. The 

data in this research is the real heart sound files which are recorded from existing and 

other available electronic stethoscopes.  

 

The sound specification needs to be defined when the sound is recorded. This is essential 

so that clear and precise audible sounds can be extracted. The sample rate of the heart 

sound record is 44.1 kHz, which is a highly sensitive, widely used and commonly found 

sampling frequency for analog audio sampling, for example, applied in Compact Discs. 

The interpretation of this is that the analog audio is recorded by sampling it 44,100 times 

per second, and then these samples are used to reconstruct the audio signal when playing 

the recording back. 

 

For the convenience of auscultation, the sound needs to reach both ears during the 

diagnostic process. This is quite important so that a balanced sound is heard when the 

auscultation process occurs. Otherwise, people will encounter perceived discomfort. Thus 

the raw sound records are two channel audio and the sound in each channel is exactly 

same when it reaches the ears. In this research, the sound from one of the channels is used 

to process noise reduction and after the experiment, the other channel is copied with the 

processed sound so that both ears receive the same sound and the computation time is 

half of the usual processed time. 

 

Each heart sound record should be about one minute long for the sake of the experiment. 

In this research, the sound file was cut into certain different lengths (2 seconds, 8 seconds 
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etc.) prior to the noise reduction process, and these samples are used to examine the effect 

of the de-noising algorithm.     

 

The required heart sound records, collected from the real environment for this experiment, 

consist of two key parts: the pure heart sound and the noise components. The pure heart 

sound is the heart sound with limited noise corruption which can be used as a reference 

after the noise reduction process. The heart sound with the noise is the sound which needs 

to be de-noised because of external noises other than the heart sound. Thus both sounds 

need to be collected and restored during the data collection.  

 

The heart sounds vary for the people from different age or gender (Barber et al. 1950). 

For example, the third heart sound (S3) may be normal in people under 40 years of age 

and some trained athletes but should disappear before middle age (Drazner et al. 2001). 

Thus a range of heart sounds from people of different ages and gender should be 

considered to ensure the reliability of the sound.  

 

The noise is another key issue in the collected data.  Noises occur in real life and come 

with heart sound as described in chapter 2 need to be collected in different samples to 

understand how heart sound are combined with a range of noises so that these unwanted 

noises can be de-noised. 

 

The causes of different kinds of noise which may affect the quality of heart sound have 

been discussed in the Literature Review and Methodology chapter. Both internal and 

external factors need to be considered in this research. To make it easier, five main kinds 

of noise have been chosen through this data collection. These noises are: (1) small 

movement of human or stethoscope, (2) ambient noise, (3) human voices, (4) respiration 

sounds or breathing noise, and (5) acoustic damping through the bones and tissues.  

 

These noises are briefly introduced below.  

 

(1) Small movement of human or stethoscope: when the stethoscope is utilized on the 

patient body, the physician need to move the chest piece on the human body to 

get the heart sound from different part of the body.  

(2) Ambient noise: ambient noise or background noise is any sound other than the 

sound being monitored (primary sound). Ambient noise is a form of noise 

pollution or interference. For example, if a trolley or equipment is operated in the 

surroundings, stethoscopes will pick up these noises.  

(3) Human voices: there is interaction between the patient and the physician during 

auscultation procedures. A sensitive digital stethoscope picks this conversation 

and some noise will be transmitted through the stethoscope.  

(4) Respiration sounds or breathing noise: the patients need to take the breath during 

the recording of the sound. These noises will also travel through the device. 

(5) Acoustic damping through the bones and tissues: sound will attenuate when it 

transmit out from the bones tissues and clothes. 

 

Each noise kind includes different participants. The heart sound collection from each of 

them will be added with one specific kind of noise. That means, when the data (heart 

sound record) is collected, pure heart sound from each of them will be recorded first. Then 

one piece of the designed noise mixed with the heart sound will be recorded. Both the 

clean and noise-polluted heart sound recorded will be collected for further comparison.        
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5.2 The collection of data 
 

To perform data collection is a complicated job in a health type research environment. 

The researcher encountered certain challenges when the data is collected. For example, 

recruitment of patient was an issue as many ethical approvals need to be obtained. In the 

next section, the whole process of data collection, both in India and Australia, is described. 

 

The concept electronic stethoscope was introduced in chapter two of this thesis. The data 

collection process includes three components: the researcher, the physicians and the 

patients (participants). The data need to be collected in a quiet and isolated location to 

assure sound quality. The sound quality should consist of clear and pure heart sound and 

should be contained of specific noise. The research set-up consisted of one electronic 

stethoscope and one laptop. The heart sounds were collected by the stethoscope operated 

by an experienced physician. The sound was also transmitted to a recording device in a 

format that is suitable for analysis. The laptop was used to document the entire session in 

a spreadsheet file to comply with the ethical approvals.   

 

The number of samples and the participants’ details for the experiment will be provided 

in the description of the experiment in healthcare institutes in India and Australia. All the 

participants would attend the data collection with each gender. The collection would 

cover different age groups.  In this research the majority of participants are patients from 

hospitals and health institutes.  

 

The supervisor undertook the role of an observer in this research of data collection 

exercise.  The data were collected in India and in Australia. In India, PSG Hospital was 

the main data collection centre and the heart signals were collected in the cardiology ward. 

In Australia, The Prince Charles Hospital was used for this purpose, and the cardiology 

ward was used for the data collection. In both centres, trained cardiologists used a USQ 

developed Digital Stethoscope and recorded the data. The supervisor helped with 

technical aspects, and observed the procedures.  

 

The data collection in India was conducted in PSG hospital located in Coimbatore. PSG 

hospital Coimbatore is a general hospital. This is a multi-specialty hospital, with 1000 

beds. The hospital is a recognised teaching institution. The data collection occurred in the 

cardiology ward, and facilitated by the medical director, who is a trained cardiologist. 

The protocol for data collection was developed in advance for the research team to be 

used in Indian data collection.  

 

Two trained medical professionals, one cardiologist and a nurse participated in the data 

collection activities. The USQ-designed stethoscope which was introduced in Literature 

Chapter was used by these two people to collect heart sounds. A total of 42 sound samples 

were collected and these included heart and lung sounds. The data collection activities 

were conducted over for days, where the first day was used to test the device. The 

recruitment strategy included channelling patients from day care units into the cardiology 

unit. A consent from was given to patients, and the purpose was explained. 

 

The data collection in Australia was conducted in the Prince Charles Hospital. The Prince 

Charles Hospital provides health services to residents living in the northern suburbs of 

Brisbane and specialist services to the broader Queensland and northern New South 
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Wales population with approximately 3500 staff. The USQ-designed stethoscope was 

given to the users.  

 

It was planned to have one remote telehealth system setting as this experiment and data 

collection is not only designed for this research but also for the remote area sound 

transmission. Then the research team prepared two separate rooms at the hospital to build 

the telehealth platform. The sound records were collected in on room and transmitted to 

another room through the computer-to-computer network for diagnosis. Participants’ 

observation was fully documented by the main researcher.  

 

The participants from this hospital tested the stethoscope for about half an hour in separate 

rooms and the sound records from the stethoscope have been restored. The participants 

were two medical doctors, one nurse and one medical student from Queensland Health. 

26 different pieces of sound included the heart and lung sound has been recorded in this 

experiment. 

 

5.3 Documenting and recording of data    
 

The following flow chart, showed in Fig 5.1, represents the procedure of documenting, 

processing and analysis of data, and the paragraphs following the flow chat give the 

details of each step in order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data documenting began with patient assessment, which included the appropriate way 

to collect the required and qualified sound files through digital stethoscope.  Then heart 

and lung sounds were extracted separately, and these sounds were sent back to the 

physicians’ feedback directly and recorded by digital recorder at the same time. The 

sound files were converted into suitable format before the signal processing routines were 

employed in Matlab. All the noise reduction process was accomplished in Matlab and the 

result would be discussed then.  

  

Patient Assessment 

Digital stethoscope technology is fast becoming an accepted popular option, aiding in the 

diagnostic process of patients. It has a very versatile range of features and 

applications(ZIN 2011). In this experiment, all the sound files would be collected as target 

Patient 
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heart and lung 
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Sounds to ears 
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Digital sound 
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Fig 5.1 Flow diagram of data analysis 
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data through the digital stethoscope.  Thus before the experiment begins, it is necessary 

to figure out the patient assessment. For example, how can we use the digital stethoscopes 

correctly on the chest and back, or how can we overcome the difficulties when auscultate 

the female’s chest and male’s hair. 

 

General background information: 

 

1. The stethoscope feature allows digital recording to be made by using a digital 

stethoscope. The recordings are saved in the memory space of stethoscope and 

then be transmitted and played back at another location with certain form (e.g. 

MP3).  

2. Digital stethoscope in this experiment requires the use of a USQ—designed 

stethoscope and equivalent software. 

3. The clinical experience in using stethoscope is assumed. 

4. The researcher needs to inform the required sound file to the doctors before it is 

collected. 

 

Stethoscope Operation 

Fig 5.2 shows the terminology of a stethoscope and the procedures to use the digital 

stethoscopes appropriately. Clean off the earpieces before putting the stethoscope into 

your ears. Then hold the chest piece between your palms to warm it before placing it on 

a patient's chest. Then place the stethoscope into your ears. Then hold the chest piece in 

your hand. With the other hand, tap a finger against the chest piece and listen. Grip the 

chest piece between your middle and index fingers to provide firm contact with the skin. 

To minimize extraneous noises, avoid touching or rubbing the tubing or chest piece 

against clothing is necessary. Place the chest piece onto the part of the body you want to 

listen to. For the auscultation of heart sound, this is a few inches above the left nipple. A 

steady "lub dub" sound can be detected. This is known as the apical pulse(Werblud 2001). 

 

 

A patient's size and weight can affect the transmission of sound—decreased breath sounds, 

for instance, may be a result of obesity. The technique may be helpful if the patient has a 

lot of muscle or adipose tissue that muffles heart and lung sounds. For example, when we 

were examining a female patient with large breasts, use the free hand to hold the breast 

up and position the stethoscope head as close to the chest wall as possible; if that isn't 

helpful, move her onto her left side would work(Markel 2006). 

 

Fig 5.2 Terminology of a stethoscope 
(Source: http://www.mystethoscope.com/images/scope_anatomy.gif) 

 

http://www.mystethoscope.com/images/scope_anatomy.gif
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Extraction of heart and lung sounds  

Auscultating heart sounds is a fundamental component of physical assessment. When 

heart sound is obtained through a stethoscope, a physician listens for rate, type, and 

rhythm of it, as well as any sounds that shouldn’t be there (adventitious sounds), such as 

gallops, murmurs or clicks gallops, murmurs or clicks (Coombs & Moorse 2002).  

 

All hearts noises sound the same at first.  But after listening to many hearts, eventually 

sounds will seem to jump out.  For heart sounds, we listen to the four primary areas: left 

and right of the sternum at the level of the second rib, left of the sternum at the forth rib, 

and on the left nipple line at the level of the 5th rib.  Remember these with the mnemonic 

“2-2-4-5.”  The names of the valves that are heard in these locations are: (2 right) aortic, 

(2 left) pulmonic, (4) tricuspid, (5) mitral.    

 

Assessing lung sounds allows one to identify the rate, rhythm and quality of breathing, 

any obstructions of the airways, as well as rubs that indicate inflammation of the 

pleura.  Remember that for lung sounds (according to the Bates “Bible,”) were listened 

in six paired areas on the chest, and seven paired areas on the back.  Physicians listen to 

left and right sides at the same level before moving down to the next level – this way they 

get a side-by-side comparison, and any differences will be more apparent (Traver 1973). 

 

Sound to digital records: 

Some electronic stethoscopes, called recording stethoscope, have the feature that their 

direct audio output can be used and stored with a recording device, such as 

a laptop or MP3 recorder. The USQ—designed digital stethoscope is one of them. The 

same connection can be used to listen to the previously-recorded auscultation through the 

stethoscope headphones or the speaker from laptop or MP3 player. This feature allows 

more detailed study for general research as well as evaluation and consultation regarding 

a particular patient's condition and telemedicine, or remote diagnosis. 

 

Digital sound conversion/suitable form 

Sound files are collected and then restored in laptop with MP3 form. MP3 form cannot 

be read by Matlab (the software help to process the noise reduction) directly, those sound 

files need to be converted in to WAV form in stand. A lot of softwares applications can 

accomplish this conversion. In this research study, the specific software in sound 

processing area, named Cool Edit Pro 2.0, would be employed help to finish the 

conversion. Through this software the shape of sound files can be seen and compared 

visually. Every piece of MP3 sound file would be import into this software and then save 

as WAV form before noise reduction. Fig 5.3 shows the interface of Cool Edit Pro 2.0. 

 

http://en.wikipedia.org/wiki/Heart_sounds#Extra_heart_sounds
http://en.wikipedia.org/wiki/Heart_murmurs
http://en.wikipedia.org/wiki/Heart_click
http://www.youtube.com/watch?v=WkCXkgzrgGs&feature=related
http://www.amazon.com/Bates-Physical-Examination-History-Taking/dp/0781780586
http://en.wikipedia.org/wiki/Notebook_computer
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Auscultation
http://en.wikipedia.org/wiki/Telemedicine
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Cool Edit Pro 2, current version Adobe Audition CS6, is one of the digital audio 

workstation from Adobe Systems which offers high-performance, intuitive tools for audio 

editing, mixing, restoration, and effects. From the Cool Edit Pro interface, MP3 sound 

files were imported into Cool Edit and the file name showed on the voice list (on the left 

side of the interface). The waveform view of the double channel sound is displayed in the 

middle of the window (both left and right channel). The general information of this piece 

of sound is listed on the right bottom of the interface. The file can be easily converted 

from MP3 form to WAV form by saving the file in different format, and the software can 

accomplish the conversion automatically. 

    

Input sound to Matlab (sound look like) analysis 

Before the sound files are input into Matlab, they need to be cut into certain length first, 

thus the processing aspects can be controlled. The length of heart sound depends on how 

many heart beats included in the sample file. At least two heart beats should be contained 

in one piece of sound so that the processing can be properly accomplished. As the heart 

rate of human being is about 60-90Hz, two seconds is the minimal time length.  For the 

sake of the experiment, heart sound with 2s, 4s and 8s are selected to put in to Matlab de-

noise processing.    

 

5.4 Data analysis 
 

5.4.1 The integration process of the experiment 
 

In electronics, signal processing, and statistics, both time domain and frequency domain 

are the domains for analysis of mathematical functions or physical signals with respect to 

time and frequency respectively (Ferreira 1999). In brief, a time-domain graph shows 

how a signal changes with time, whereas frequency-domain graph shows how the signal 

distributes in the given frequency band. In the time domain, the signal’s value is real 

numbers, for the case of continuous time or discrete time. A frequency domain can 

include information of the frequency components and phase shift that can recover the 

original time signal. Fig 5.3 and Fig 5.4 are the time and frequency form of a section of 

Fig 5.3 The interface of Cool Edit Pro 2.0 

 

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Continuous_time
http://en.wikipedia.org/wiki/Discrete_time
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heartbeat signal extracted from an existing digital stethoscope. The noise, mixed with the 

real heart sound, covers the whole time domain in Fig 5.4, thus it is quite improbable to 

tell the heartbeat from the noise in time domain. 

  

A given signal can be converted between the time and frequency domains with a pair of 

mathematical operations which named as transforms. For example, the Fourier 

Transform (FT) which decomposes a function or signal into the sum of a number of sine 

wave frequency components. The sine wave frequency component, also called the 

‘spectrum’ of frequency component is the way the frequency domain represents the signal. 

In Fig 5.5, FFT (Fast Fourier Transformation) formula is utilized to transform the time-

domain signal into frequency domain. It is detected from Fig 5.5 that the main frequency 

component of the whole signal is below 1000Hz. 
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Fig 5.4 Time domain of a heartbeat signal 
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The frequency components of heart sound are almost below 1000Hz, and the amplitude 

is relatively higher than that of noise which covers the whole frequency domain. In 

chapter 2, Otsu’s method has been introduced and the self-adaptive threshold separates 

the heat sound into two parts. The data points of a given signal is represent in L different 

levels [1,2,…,L]. It assumes that each heart sound signal is dichotomized into two 

classes, C0 and C1. C0  (denotes data with levels[1,…,k]) represents the noise part and C1 

(denotes data with levels[k+1,…,L])  represents the heartbeat sound part with limited 

noise in frequency domain.  

 

From the Otsu’s theory, the issue of evaluation of the appropriation of the threshold is the 

key point.  From the theory, the optimal threshold is to select the discriminant criterion 

through maximizing the between class variance σB
2 , which has been given in details in 

Chapter 2. 

 

σB
2 =

[μTω(k) − μ(k)]2

ω(k)[1 − ω(k)]
 

 

Where ω(k) is the zeroth- and first- order cumulative moments to the k level ( C0),  μT is 

total mean level of the original signal: 

 

ω(k) = ∑ pi 

k

i=1

, μ(k) = ∑ ipi

k

i=1

 and  μT = μ(L) = ∑ ipi

L

i=1

  

 

This threshold value can depart the useful heart sound (C1 ) from the noise  (C0)  in 

frequency domain. In Fig 5.5, the dotted line depicts the value of the threshold. The 

amplitude values of frequency components above the threshold are regarded as heart 

sound part and would be kept; while the values below the threshold are noise part and 

would be adjusted. The threshold is fluctuated adaptively according to the SNR of the 

0 500 1000 1500 2000 2500 3000 3500

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Hz

m
o
d
u
lu

s
 a

m
p
lit

u
d
e

frequency domain of the heartbeat

Fig 5.5 Frequency domain of a heartbeat 

signal 

 

Low SNR 

threshold 

High SNR 

threshold 

Hz 

Modulus 

Amplitude 



45 

 

input signal. If the SNR is large which means the heart sound contains limited noise, the 

threshold value will be altered low to maintain more useful information (Low SNR 

threshold); while the threshold value would be relatively high so as to remove more noise 

when the SNR seems to be small(High SNR threshold). The fluctuation of the threshold 

is shown in Fig 5.5 as well.  

 

The real heart sound records collected from the hospitals are import into the experiment 

and validate the de-noising effect of the noise reduction method. 

 

5.4.2 Introduction of the process of experiment 
 

In order to validate the performance of the new thresholding function, several sections of 

the heart sound are required from the output of a digital stethoscope. Those sound sections 

are extracted from the heart sound collected from the hospitals. One of them is shown in 

Fig 5.6. These heart sounds are stored in PC in the form of MP3 and converted into format 

of WAV which can be read by MATLAB software. The whole noise reduction progress 

was conducted in MATLAB. 

 

 
 

 

 

A piece of heart sound with two whole heart beats, is extracted and shown in Fig 5.7. In 

Fig 5.8, the frequency domain of the heartbeat through FFT is depicted. The main 

frequency component of heart sounds and murmurs is in a range from 0.1Hz to 1000Hz, 

and some limited frequency component (include part of the murmur and noise) lies above 

1000Hz. Then the frequency band over a range of 0 to 2000Hz is drawn in Fig 5.8. Thus 

the overall distribution of the frequency component of heart sound can be seen in Fig 5.8. 
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Then the optimal threshold of Otsu’s method, which can be adjusted according to the 

input data, is applied in the frequency domain of the signal. In this case, the maximum 

value of the data in frequency domain is 150.78. The threshold value is set as a positive 

integer, the data value range is from 1 to 151 and all the data are re-distributed and 

accounted to their nearest round values.  As the threshold value is set to be an integer, 

150 possible threshold values (from 1 to 150) have been calculated to find the 

maximum σB
2 .  
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In Fig 5.9, each possible threshold value is calculated to get the corresponding value σB
2 . 

The algorithm to calculate  σB
2  is listed above. Every value of  σB

2  corresponding to the 

different threshold value is marked in Fig 5.9. Thus it is easy to find that the value σB
2  

reaches the top value at 391 when threshold value is 42. The vertical and horizontal values 

are shown in Fig 5.9. Thus the value 42 is set as the optimal threshold value of this piece 

of signal, drawn as a straight line in full colour in Fig 5.9. Then all the data values below 

42 are regarded as noise and would be attenuated or reduced. 

 

 
 

 

Fig 5.8 also shows the comparison between the frequency of the signal before and after 

signal processing. The de-noise parameter is set as 3 which means all the data values 

below this optimal threshold (42) would be divided by 3. In Fig 5.8 It is obvious to find 

that the frequency components higher than 500 are all reduced while the main frequency 

of the heart sound, from 50 to 500 Hz are mostly kept.   

 

5.4.3 The result and analysis of the experiment  
 

In this research, the original heart sounds are the heart sounds mixed with different kinds 

of noise. Those heart sounds are collected and de-noised through the Otsu’s noise 

reduction method. The heart sounds, collected in hospital, are cut into four-full heart 

sound samples for the sake of calculation. The whole procedure of the experiment are 

recorded and shown in the following content.  

 

The original and processed heart sound signals (the heart sound after noise reduction), are 

drawn in one figure, copied from the Matlab simulation result in figure. These figures 

show the original and processed heart sounds by applying the sound data to Otsu’s method 

in Matlab. Heart sound samples, mixed with different kinds of noises, are selected and 

classified into several groups. In each group, to explain one certain kind of noise 

corruption and the effect of noise reduction method, a figure contains the original and 

processed heart sound is attached and the noise reduction effect of our method would be 

discussed then.  
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The whole process of the noise reduction experiment is described first with a sample. To 

identify the effect of the noise reduction method, several steps in this experiment will be 

mentioned respectively to discuss the realization of the de-noising method. Several steps 

are included in each heart sound sample, stating the feature of the heart sound, importing 

the heart sound to Matlab simulation programme, explaining the programme of Otsu’s 

method and discussing the experiment result.    

 
 

1. Statement of the original heart beat 

 

This sample piece of heart sound, shown in Fig 5.10, consists of four full heartbeats. The 

heartbeat signal is restored in PC by WAV form. The sampling frequency of this signal 

is 44.1 KHz. In this figure, the first two heartbeats contain little noise, while the third 

heart beat contains the murmur and noise which has been flagged on the figure. The fourth 

heart beat is mixed with some noise as well. The heart sound is then inputted in Matlab 

for the noise reduction process. The heart sound after the noise reduction is shown in Fig 

5.10 as well. By comparing the difference between those two graphics, the effect of the 

noise reduction method can be described and confirmed.   

 

2. Importing the heart sound to Matlab 

 

The simulation of noise reduction is conducted in Matlab. Both the original and processed 

heart sound signals are recorded and restored. Each step of the noise reduction is 

explained with the programme command. The programme of Matlab simulation is 

attached in the appendix. 

 

The original heart sound signal is inputted into matlab by the command [y, Fs, nbits] 

= wavread(filename), which loads a WAVE file specified by the string filename, 

returning the sampled data in y, the sample rate (Fs) in Hertz used to encode the data in 

the file and the number of bits per sample (nbits). Fig 5.10 shows the original heart 
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sound with it’s sampled data, sample rate and the number of bits. The command 

‘Plot(Y)’ in Matlab can plot the columns of Y versus the index of each value to visual 

the heart sound. That shows the original heart sound in the Fig 5.10.  

   
 

 

The original heart sound signal then is transformed into frequency domain for further 

process. Fig 5.11 shows the result of the Fast Fourier Transform (FFT) of the original 

signal. The frequency component of the processed signal is shown in the same figure for 

comparison.  The function Y = fft(X) returns the discrete Fourier transform (DFT) of 

vector X, computed with a fast Fourier transform (FFT) algorithm. The fast discrete 

fourier transform and inverse transform pair can be implemented by the functions 

Y=fft(x) and y=ifft(X), x is the sampled data which obtained from command wavread.  

All the value of the data is turned into absolute value for requirement of Otsu’s method. 

Y=abs(x) returns an array Y that each element of Y is the absolute value of the 

corresponding element of X.  

 

The main frequency component of heart sound is under 500 Hz. From Fig 5.11, it can be 

inferred that the frequency component is not attenuated from 500 Hz in this piece of heart 

sound. The murmur and noise component can be clearly seen during 800~1000Hz. Some 

part of noise contains in 0~500Hz as well. 
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3. Explanation of the Otsu’s method programme  

 

The ’for’ statement execute certain times of statement in a loop. The Otsu’s method is 

conducted with ’for’ statement. From 1 to the highest value of the signal in frequency 

domain, each integer value is selected in the ‘for’ statement and the threshold value ‘k’ 

is obtained when the   σB
2  number ‘vb’ is maximum.  The whole procedure is shown in 

Fig 5.12. In this sample, the highest value of the signal is 207, thus the possible threshold 

value is from 1 to 207. Each integer values between 1 and 207 are selected as assumed 

threshold value and the corresponding number ‘vb’ is recorded. The max ‘vb’ will be 

found and the value ‘k’ is regarded as the optimal threshold value when the ‘vb’ reaches 

maximum.  

         

For this piece of heart sound sample, the threshold value is ‘k=47’. After the threshold 

value is obtained, all the values lower than 47 will be adjusted. The adjusted number is 

set as ‘3’ for this sample which means all the value below 47 needs to be divided by three. 

The adjusted number is changeable and will be tested according to the original signal.  

The result is shown in Fig 5.11 as the frequency domain of processed signal. The 

component between 800 to 1000 Hz has been reduced obviously. From the processed 

signal in Fig 5.10, the murmur and noise part is flatted then.  

 

4. Discussion of  the function of the experiment  

 

In this research experiment, about 20 pieces of the heart sound records mixed with 

different kind of noises have been inputted into the programme and the results and 

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Between-Class Variance as a Function of Threshold

Threshold Value


B2

Fig 5.12 Inter-Class variance σB
2   

 



51 

 

analysis will be shown below. Both the original and processed heart sound figure will be 

shown together in a figure for the ease of comparing, and the signals in time and frequency 

domain will be displayed in the following analysis.  

 

This experiment is supposed to test the function of the noise reduction method with heart 

sound samples in two ways: whether the original heart sound signal with limited noises 

is corrupted by addictive noise after noise reduction; whether original heart sound signal 

polluted by noise can be de-noised effectively by the noise reduction method. The 

advantage, as well as the limitation of this algorithm for different kind of noises will be 

discussed based on the experiment result. 

 

 5.4.4 The experiment records 
 

In the Literature Review Chapter, several main kinds of noise have been identified as 

main noises to affect the quality of heart sound records from DS. In this experiment, all 

the sound resources are classified into five groups by the different main noises they mixed 

with. Several pieces of sound samples for each kind of noises have been selected in this 

experiment. These noises include:  

 

(1) The respiration sounds or breathing noise 

(2) The ambient noise  

(3) The noise burst 

(4) The human voices 

(5) The friction-induced noise 

 

1. The pure heart sound 
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This piece of heart sound, shown in Fig 5.13, consists of four whole heartbeats. It is the 

pure heart sound with limited noise. The original heart sound and processed heart sound 

after noise reduction are both shown in the same figure for the sake of comparison. 

 
 

The main frequency component of this piece of heart sound is between 200Hz and 1000 

Hz. From Fig 5.14, the highest value in frequency domain is 207 and the threshold value 

is 47. It is showed that the frequency component between 300Hz and 950 Hz has been 

kept, while the rest of the frequency component has been adjusted and limited. Due to the 

lack of this part of frequency component, in Fig 5.13, the maximum amplitude of the heart 

sound diminishes, and a little extra noise appears between the heartbeats.   

 

Five pieces of the pure heart sound samples have been selected in this experiment. The 

experimental data is recorded in the Table 5.1.  

 

 

 

Signal No. 1 2 3 4 5 

Max value in 

frequency domain 
207 201 383 255 178 

Threshold value 47 45 68 55 44 

Main frequency 

(Hz) 
250~1000 300~1100 200~800 200~700 250~1050 

Kept frequency 

(Hz) 
300~950 300~900 200~750 300~700 300~800 
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Table 5.1 Experiment report of the pure heart sounds 
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The noise reduction method is conducted in frequency domain of the heart sound signal.  

Some key experiment data in frequency domain is recorded for further discussion. Those 

numbers include: the maximum value in frequency domain, the threshold value, the main 

frequency (Hz) and the kept frequency component of the signal after noise reduction (Hz). 

 

The full noise reduction process of the first heart sound sample has been described above 

with the figures. Each of the five samples includes four full heart beats. From the table, 

the threshold value of the samples varies according to the maximum value of the signal. 

The ‘Main frequency’ shows the main frequency component of the samples in frequency 

domain. For this experiment, ‘Main frequency’ shows the frequency component of the 

heartbeat. It is varied (low frequency between 200 and 300Hz, high frequency between 

700 to 1100Hz)   according to the different sound resources. The ‘Kept frequency’ shows 

the unchanged frequency component after noise reduction.  Comparing with the ‘Main 

frequency’, the range of ‘Kept frequency’ is quite similar or just the same, which means 

the main frequency component of the pure heartbeat is well remained after noise reduction 

in the experiment.  

 

2. The respiration sounds or breathing noise 

    
 

 

This piece of heart sound, shown in Fig 5.15, consists of four whole heartbeats. From the 

Fig 5.15, the first and the fourth heartbeats contain noises which are validated as breathing 

sound, while the second and third heartbeats contain little noise. In the processed heart 

sound, the noise part has been flagged and been limited, and little noise has been added 

between the second and third heartbeat.    
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The main frequency component of this piece of heart sound is below 700 Hz. The 

breathing noise covers the whole frequency domain and it can be clearly detected in 

600~900Hz. From Fig 5.16, it is showed that the frequency component between 300Hz 

and 700 Hz has been kept, while the rest of the frequency component has been limited. 

The breathing noise component can be clearly seen after 700Hz.       
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This piece of heart sound, shown in Fig 5.17, consists of four whole heartbeats. In Fig 

5.17, the whole heart sound is corrupted by breathing noises, the second heartbeat 

contains human voice and third heartbeat is mixed with extra noise burst. In the processed 

heart sound, the noise part has been lighted limited while the noise reduction effect is not 

obvious. The breathing noise contains in the second heartbeat is reduced to a certain 

extent, and the human voice in third heartbeat is flatted. But the human voice mixed in 

the first heart beat is almost unchanged.  
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The main frequency component of this piece of heart sound is 200~1100Hz. The 

breathing noise covers the whole frequency domain, and it is obviously seen between 

600~800Hz. Human voice and noise burst also affect the frequency component from 300 

to 500Hz. From Fig 5.18, it is showed that the frequency component between 300Hz and 

900 Hz has been kept, while the rest of the frequency component has been limited.  

 

Five pieces of the heart sound samples with breathing noise have been selected in this 

experiment. The experimental data is recorded in Table 5.2 and the experiment analysis 

is concluded in Table 5.3. 

 

 

 

Signal No. 1 2 3 4 5 

Max value in 

frequency domain 
277 286 347 305 281 

Threshold value 61 63 71 59 70 

Main frequency 

(Hz) 
250~1000 200~1150 300~1100 200~1100 200~800 

Kept frequency 

(Hz) 
300~750 300~800 300~850 300~750 250~650 
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Table 5.2 Experiment report of the heart sounds with breathing noise 

 

Fig 5.18 Comparison between the frequency of the heart sounds  
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No. 
Explanation of the 

sample 

Frequency 

component  

Algorism 

effect 
Comment 

1 

A four-heartbeats 

sound, first and 

fourth heart beat are 

corrupted by the 

breathing noise    

The frequency 

range of breathing 

noise dominates 

600~1000Hz, 

mixed with heart 

sound from 600 to 

700 Hz   

Noise from 

700 to 1000Hz 

has been 

reduced, while 

600~700Hz 

has been kept   

Most noise has 

been reduced, 

the noise 

component stoke 

up with heart 

sound is higher 

than threshold 

and failed to be 

eliminated 

2 

A four-heartbeats 

sound corrupted 

with breathing noise, 

and extra human 

voice and noise burst 

The frequency 

range of breathing 

noise dominates 

600~800Hz,  

human voice and 

noise burst appear 

from 300 to 500Hz 

Noise higher 

than 700Hz has 

been obvious 

limited, noise 

from 400 to 

600Hz has 

been kept   

Noise frequency 

component same 

as heart sound is 

not elimited  

3 

A four-heartbeats 

sound corrupted by 

breathing noise in 

fourth heartbeat 

The frequency 

range of breathing 

noise is 

700~1100Hz 

Noise from 

800 to 1100Hz 

has been 

reduced, the 

processed 

signal is 

similar to the 

pure heart 

sound 

noise higher than 

800Hz has been 

reduced 

accurate, the 

noise component 

mixed with heart 

sound 

700~800Hz is 

still remain 

4 

A four-heartbeats 

sound corrupted by 

breathing noise in 

third and fourth 

heartbeat 

The frequency 

range of breathing 

noise is 

700~1100Hz, 

mostly shown in 

700~1100Hz 

Noise from 

750 to 1100Hz 

has been 

reduced, the 

processed 

signal is 

obviously 

noise reduced 

The breathing  

noise corrupted 

between third 

and fourth heart 

sound has been 

reduced 

effectively   

5 

A four-heartbeats 

sound corrupted by 

breathing noise in 

first and second 

heartbeats 

The frequency 

range of breathing 

noise is 

600~800Hz 

Noise from 

650 to 800Hz 

has been 

reduced, some 

heart sound 

frequency is 

affected 

The breathing 

noise between 

first and second 

heart sound has 

been reduced, 

while little part 

of the heart 

sound is reduced    

 

 

 

 

 

Table 5.3 Experiment analysis of the heart sounds with breathing noise 
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3.  The ambient noise 

 
 

 

This piece of heart sound, shown in Fig 5.19, consists of four whole heartbeats. From the 

Fig 5.19, the first heartbeat is mixed with much ambient noise, and the noise covers the 

whole time domain of it. The fourth heartbeat contains a piece of knocking noise, sound 

like something dropping on the table. The second and third heartbeats contain relatively 

less noise. In the processed heart sound, the first heart sound has been limited entirely, 

especially the burst of sound during the time domain. The noise part of the fourth heart 

sound is reduced obviously, and the shape of the heart beat is with little change. Little 

noise has been added between the second and third heartbeat.    
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Fig 5.19 Heart sound and processed heart sound with ambient and knocking noise 
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The frequency component of this piece of heart sound reaches maximum around 400Hz, 

and then the component dies down from 400Hz to 600Hz. And the frequency component 

between 600Hz and 1000Hz which is flat and higher than the rest of component are the 

noise part. The noise also covers the heart sound frequency component, form 300Hz to 

700Hz. From Fig 5.20, it is showed that the frequency component between 300Hz and 

600 Hz has been almost kept, while the rest of the frequency component has been limited.  
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Fig 5.20 Comparison between the frequency of the heart sounds  
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This piece of heart sound, shown in Fig 5.21, consists of four whole heartbeats. From the 

Fig 5.21, the first and fourth heartbeats are mixed with ambient noise, and the noise covers 

the whole time domain of the heart beats. The second and third heartbeats contain 

relatively less noise.  

 

In the processed heart sound, the noise part of both first and fourth heart sound has been 

reduced, and the shape of the heart beat is with little change. Little noise has been added 

between the second and third heartbeat.    
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Fig 5.21 Heart sound and processed heart sound with ambient noise 
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The frequency component of this piece of heart sound reaches maximum around 350Hz, 

then the amplitude of component descends from 300Hz to 800Hz and keeps from 900Hz 

to 1200Hz. According to the characteristic of ambient noise, the noise component tiles 

the whole frequency domain. The noise also covers the heart sound frequency component 

from 300Hz to 800Hz. From Fig 5.22, it is showed that the frequency component between 

400Hz and 800 Hz has been almost kept, while the rest of the frequency component has 

been limited.  

 

 

 

 

Signal No. 1 2 3 4 5 

Max value in 

frequency 

domain 

264 353 347 315 376 

Threshold value 54 75 62 53 68 

Main frequency 

(Hz) 
300~1000 250~1150 300~1100 200~1000 200~850 

Kept frequency 

(Hz) 
300~600 300~800 300~850 300~750 250~650 
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Table 5.4 Experiment report of the heart sounds with ambient noise 

 

Fig 5.22 Comparison between the frequency of the heart sounds  

 



62 

 

 

 

No. 
Explanation of the 

sample 

Frequency 

component  
Algorism effect Comment 

1 

A four-heartbeats 

sound, first heart 

beat corrupted by 

the ambient noise, 

fourth heart beat 

with knocking 

noise    

The frequency 

range of ambient 

noise covers 

300~1000Hz, 

mixed with heart 

sound from 300 to 

700 Hz   

Noise from 600 to 

1000Hz has been 

reduced, while 

300~600Hz has 

been kept   

Most noise has 

been reduced, the 

noise component 

mixed with heart 

sound is  failed to 

be eliminated 

2 

A four-heartbeats 

sound corrupted 

with ambient noise 

in first and fourth 

heart beats 

The frequency 

range of ambient 

noise covers 

250~1150Hz,  

 

Noise higher than 

800 has been 

obvious limited, 

noise from 300 to 

800 has been kept   

Noise frequency 

component same as 

heart sound is not 

reduced  

3 

A four-heartbeats 

sound corrupted by 

ambient noise in 

fourth heartbeat 

The frequency 

range of ambient 

noise is 

300~1100Hz 

Noise from 850 to 

1100Hz has been 

reduced, the 

processed signal is 

restored as the pure 

heart sound 

noise higher than 

850Hz has been 

reduced accurately, 

the noise 

component mixed 

with heart sound 

300~850Hz is still 

remain 

4 

A four-heartbeats 

sound corrupted by 

ambient noise in 

third and fourth 

heartbeats 

The frequency 

range of ambient 

noise is 

200~1000Hz 

Noise from 750 to 

1000Hz has been 

reduced, the 

processed signal is 

obviously noise 

reduced 

The breathing  

noise corrupted 

between third and 

fourth heart sound 

has been reduced 

effectively   

5 

A four-heartbeats 

sound corrupted by 

breathing noise in 

second heartbeats 

The frequency 

range of breathing 

noise is 

200~850Hz 

Noise from 650 to 

850Hz has been 

reduced, some heart 

sound frequency is 

affected 

The breathing noise 

in second heart 

sound has been 

reduced, while 

little part of the 

heart sound is 

reduced    

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 Experiment analysis of the heart sounds with ambient noise 
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4. The noise burst 

 
 

 

This piece of heart sound, shown in Fig 5.21, consists of four whole heartbeats. From the 

Fig 5.23, the first heartbeat contains breathing noise. The second heartbeat is mixed with 

a piece of coughing noise, and the heartbeat is corrupted seriously and can hardly be 

identified in the time domain. The third and fourth heartbeats contain relatively less noise.  

 

In the processed heart sound, the first heart sound has limited changed, and the playback 

sound shows that the breathing noise is not much reduced. The second heart sound, in the 

contrast, is changed to an obvious extent, and the playback sound shows that the coughing 

noise has been aggressively removed.  Little noise has been added between the third and 

fourth heartbeat, but the shape of the whole heartbeat is with little deformation.    
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Fig 5.23 Heart sound and processed heart sound with breathing and coughing noise 
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The frequency component of this piece of heart sound reaches maximum around 400Hz, 

and then the component dies down until 800Hz. As the frequency component of heart 

sound is below 500Hz, the frequency between 600Hz and 800Hz is regarded as pure noise. 

From Fig 5.24, the processed signal frequency figure shows that the frequency component 

between 250Hz and 600 Hz has been almost kept, while the rest of the frequency 

component has been limited.  
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Fig 5.24 Comparison between the frequency of the heart sounds  
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This piece of heart sound, shown in Fig 5.25, consists of four whole heartbeats. From the 

Fig 5.25, the first and third heartbeats contain noise burst. The noise burst of the first heart 

beat is the chest piece hits the clothes buttons. The noise burst of the third heart beat 

sounds as a piece of knocking noise nearby.        

 

In the processed heart sound, the first heart sound has limited changed, and the playback 

sound shows that the hitting noise is partial reduced. The third heart sound, in the contrast, 

is changed obviously, and it shows on the figure that the knocking noise has been mostly 

removed.  Little noise has been added between the second and fourth heartbeat, and the 

shapes of them are with little deformation.    
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Fig 5.25 Heart sound and processed heart sound with knocking noise 
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The frequency component of this piece of heart sound is between 250Hz to 1400Hz. The 

component amplitude reaches maximum on 500Hz and keeps in a high level until about 

800Hz. Then it floats from 800Hz to 1400Hz. As the main frequency component of heart 

sound is below 700Hz, the frequency higher than 800Hz is regarded as the noise burst. 

From Fig 5.26, the processed signal frequency figure shows that the frequency component 

between 250Hz and 1200Hz has been almost kept, while the rest of the frequency 

component has been limited.  

 

 

 

 

Signal No. 1 2 3 4 5 

Max value in 

frequency domain 
285 276 343 184 263 

Threshold value 58 62 56 51 67 

Main frequency 

(Hz) 
200~700 200~1050 300~1200 200~1400 200~950 

Kept frequency 

(Hz) 
200~600 300~750 300~850 250~1200 250~750 
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Table 5.6 Experiment report of the heart sounds with noise burst 

 

Fig 5.26 Comparison between the frequency of the heart sounds  
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No. 
Explanation of the 

sample 

Frequency 

component  

Algorism 

effect 
Comment 

1 

A four-heartbeats 

sound, first heart 

beat corrupted by a 

piece of light 

breathing noise, 

second heart beat 

with  

coughing noise 

The frequency 

range of knocking 

noise dominates 

300~700Hz, mixed 

with heart sound 

200 ~ 600 Hz   

Noise from 

600 to 700Hz 

has been 

reduced, while 

300~700Hz 

has been kept   

Most of the 

breathing noise 

has failed to be 

eliminated, part 

of the coughing 

noise component 

is reduced, 

2 

A four-heartbeats 

sound corrupted by 

noise burst of 

bumping noise 

The frequency 

range of noise 

burst  covers 

700~10500Hz,  

 

Noise higher 

than 750Hz 

has been 

obvious 

limited, noise 

from 600 to 

750Hz has 

been kept   

Noise frequency 

component same 

as heart sound is 

not eliminated  

3 

A four-heartbeats 

sound corrupted by 

noise burst in 

second heartbeat 

The frequency 

range of noise 

burst is 

600~1200Hz 

Noise from 

1000 to 

1200Hz has 

been reduce 

noise higher than 

1000Hz has been 

reduced, the 

noise component 

mixed with heart 

sound 

600~1000Hz is 

still remain 

4 

A four-heartbeats 

sound corrupted by 

noise burst in first 

and fourth 

heartbeats 

The frequency 

range of noise 

burst is 

700~1400Hz 

Noise from 

1000 to 

1400Hz has 

been reduced, 

the knocking 

noise is 

obviously 

reduced 

The noise burst 

corrupted the 

third heart sound 

has been reduced 

effectively, 

while the hitting 

noise is not 

eliminated well    

5 

A four-heartbeats 

sound corrupted by 

noise burst in first 

and second 

heartbeats 

The frequency 

range of noise 

burst is 

600~950Hz 

Noise from 

750 to 950Hz 

has been 

reduced, some 

heart sound 

frequency is 

affected as 

well 

The noise burst 

between first and 

second heart 

sound has been 

reduced, while 

little part of the 

heart sound is 

reduced   

 

 

 

 

Table 5.7 Experiment analysis of the heart sounds with noise burst 
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5. The friction-induced noise (small movement of human or 

stethoscope) 

 
 

 
This piece of heart sound, shown in Fig 5.27, consists of four whole heartbeats. From the 

Fig 5.27, the forth heartbeat contains friction noise. The rest three heartbeats contain 

relatively less noise.  

 

In the processed heart sound, the whole heart sound is not much changed. The fourth heart 

sound with friction noise has been slightly reduced, while the whole amplitude of the 

fourth heart is decreased as well. 

2 4 6 8 10 12

x 10
4

-0.1

-0.05

0

0.05

0.1

the orginal heart sound

time

a
m

p
li
tu

d
e

2 4 6 8 10 12

x 10
4

-0.1

-0.05

0

0.05

0.1

the processed heart sound

time

a
m

p
li
tu

d
e

Fig 5.27 Heart sound and processed heart sound with friction noise 
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The main frequency component of this piece of heart sound is 200~750Hz. As the friction 

noise does not severely affect the whole heart sound, the component of the friction noise 

is not obvious on the frequency domain. From Fig 5.28, the optimal threshold of this piece 

of heart sound is 69. It is showed that the frequency component between 250Hz and 750 

Hz has been kept, while the rest of the frequency component has been limited. With 

relatively less noise, the main heart sound component can be defined and kept accurately 

through this algorithm. 
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Fig 5.28 Comparison between the frequency of the heart sounds  
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6. The human voice noise 

 
 

 

This piece of heart sound, shown in Fig 5.29, consists of four whole heartbeats. From the 

Fig 5.29, the third heartbeat is cover by physician’s voice. The second heartbeat is mixed 

with little friction noise as the movement of the chest piece on the patient’s body. The 

first and fourth heartbeats contain relatively less noise.  

 

In the processed heart sound, the whole heart sound has limited changes. From the 

processed heart sound, both the second and third heart beats are mostly kept and the shape 

of the heart sound is not much changed. The playback sound shows that the most part of 

human voice is not much reduced. Little noise has been added into the processed heart 

sound, but the human voice is not properly defined as noise in this algorithm.    
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Fig 5.29 Heart sound and processed heart sound with human voice 
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The main frequency component of this piece of heart sound is between 300Hz to 750Hz. 

The component amplitude reaches maximum on about 500Hz and declines sharply on 

750Hz. The optimal threshold of this piece of heart sound is 66. As the main frequency 

component of heart sound is below 750Hz, the frequency higher than 750Hz is regarded 

as the noise part. From Fig 5.30, the processed signal frequency figure shows that the 

frequency component between 250Hz and 750Hz has been almost kept, while the rest of 

the frequency component has been limited.  

 

5.5 Summary of the findings 
 

This experiment utilized 68 heart sound samples (42 collected in India and 26 collected 

in Australia) to gain the efficiency of the noise reduction method. All heart sound samples 

are segmented in to small pieces (four heart beats section). Those pieces with one or more 

kinds of certain noise have been selected in the experiment. With these sound samples, 

the results show that the noise reduction method is effective in all the noises, but the 

method has different effects on noises of different kind.    

 

The experiment starts with the pure heart sound signal. Five pieces of heart sound from 

different patients have been selected in this part of experiment. These heart sounds are 

various in amplitude and frequency.  The Max value, threshold value, main and kept 

frequency domain have been recorded then. With the results, the range of kept frequency 
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Fig 5.30 Comparison between the frequency of the heart sounds  
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domain is similar to that of real main frequency domain of the heartbeats. The closeness 

of low frequency is 86.87%, and the closeness of high frequency is 89.35%. The result 

proves that most part of the heart sound component has been kept. From the comparison 

between the original and processed signal, the heart sound shape is also almost the same. 

Thus this noise reduction method can catch the pure heart sound component accurately 

with little addictive changes.       

     

For the respiration and breathing noise, the method acts good as well. The closeness of 

low frequency is 79.33%, while the closeness of high frequency is 74.25%. The frequency 

range of breathing noise various from 600~800Hz, which mixed with high frequency 

component of the heart sound samples. From the results, when more noise is introduced, 

the rate between threshold value and max value would increase (the rate of sample 5 is 

24.91%), and less frequency component would be kept (66.7% in sample 5); while with 

less noise, the rate of value is relatively low (20.46% in sample 3) and more frequency 

component would be kept (75% in sample 3). Thus the results prove that the threshold is 

fluctuated due to the quality of input signal. From the playback of the processed signal, 

the breathing noise has been reduced obviously as well.     

    

The ambient noise is one of the most common noises for the DS records. In the part of 

experiment for ambient noise, the closeness of low frequency is 86%, while the closeness 

of high frequency is 72.55%. As the background environment and the reason that the 

noise creates are various, each ambient noise can be different. Thus the efficiency of the 

method differs in each piece of sound sample. For the knocking noise, the de-noising 

method can identify the noise part properly, and the noise would be limited obviously; 

for the continuous background noise, the method doesn’t work very well and the noise is 

slighted changed.       

 

The noise burst is the noise occurs suddenly. In the part of experiment for noise burst, the 

closeness of low frequency is 85.33%, while the closeness of high frequency is 78.53%. 

In the experiment, the noise burst signal is always mixed with other noise, but the noise 

burst (coughing noise or hitting noise) can be eliminated effectively. 

The friction-induced noise always exists in auscultation. It happens when the chest piece 

moves on patient’s body. Compared with the heart sound, this noise is not obvious. The 

results of the experiment show that the whole heart sound component has been kept and 

little part of the friction noise has been eliminated. The result proves that with little input 

noise, the threshold value would be increased and most of the heart sound component 

would be kept well.   

 

The human voice noise happens when patient or physician speaks during the auscultation. 

The record of the experiment shows that the human voice covers the same frequency 

domain of as heartbeat, thus the method can hardly identified and depart the human voice 

from the heart sound. Most of the human voice has been kept in the processed signal. 

Further research of the de-noising method can be conducted in this area.     

 

5.6 Conclusion of this chapter 
 

This chapter reports the whole process and results of the experiment study, which tested 

the noise reduction method, which designed in the Methodology Chapter, with 68 heart 

sound samples collected in Australia and India. 



73 

 

The descriptive data analysis include the introduction of the whole process of the 

experiment, the classification of the sound samples, and the recorded results of the sound 

samples mixed with each kind of noises. Those data and description, concluded in tables, 

are useful in understanding the progress and efficiency of the designed noise reduction 

method. 

 

The data analysis covers the benefits and drawbacks of the noise reduction method for 

each kind of noise. Through the experiment result, pure heart sound can be accurately 

identified without noise; the breathing noise can be reduced properly; the result of 

ambient noise reduction is various in different backgrounds; part of the noise burst can 

be identified and eliminated; the friction-induced noise doesn’t affect the whole heart 

sound quality thus it is not reduced much; and this method failed to depart the human 

voice with the heart sound.     

  

There are some limitations in this study. First limitation is in the data collection process—

—the original sound resources are collected and restored in MP3 form. It causes the loss 

of the high frequency component during the transformation of the signal. Sometimes there 

is more than one kind of noises mixed with the heart sound, and it is hard to compare the 

different noise reduction efficiency on the same heart sound sample. The heart sounds are 

collected from different heart patient, so the result for different heart disease may differ.       

         

A further discussion about the analysis of method is provided in the next chapter, 

Discussion Chapter, for comparing the relationship between the findings of this 

experiment and relevant studies in the literature review. 
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Chapter 6 Findings 
 

 

In Chapter 4, the research approach and methodology for noise reduction study were 

identified. In Chapter 5, five kinds of noises were examined and analysed. The experiment 

findings were discussed in the context of literature review chapter. The newly designed 

noise reduction method was also discussed in the previous chapter, and the effect of this 

method is concluded in this chapter. 

 

6.1 Otsu’s noise reduction method 
 

Otsu’s method was introduced in the Literature Review chapter as a self-adaptive 

threshold method. In the Otsu’s algorithm, the input signal can be separated into two parts 

by an optimal threshold of this method. The threshold is selected by the discriminant 

criterion of the input signal, which maximizes the separability of the two parts of the 

signal. The details of the algorithm can be found in Literature Review Chapter.    

 

Otsu’s method has been used to investigate image thresholding (Sezgin 2004), or the 

reduction of a gray level image. In this study, Otsu’s method was applied in signal 

processing area in the domain of heart sounds. The outcomes indicate that this method is 

also suitable for heart sound noise reduction. This study has established the following 

specific aspects in regards to heart sound analysis using Otsu’s method.  

 

 The selection of the optimal threshold  

 

To apply the Otsu’s method into heart sound signal processing, it was assumed that the 

input signal (in frequency domain) contained two parts of signals (useful sound and noise). 

The calculated optimum threshold separated those two parts so that their combined spread 

(intra-class variance) was minimal. At the same time, the algorithm kept the between class 

variance σB
2  to a maximum. In the signal processing, the optimal threshold was to select 

the discriminant criterion through maximizing the between class variance σB
2  of those two 

parts of signals. It has been identified that the spectral characteristics of heart sound was 

transient and like periodical, while the characteristic of the noises was varied and 

sometimes random. Thus when the between class σB
2  reach maximum, the optimal 

division between heart sound and mixed noise was obtained. As the threshold has been 

set automatically after the calculation of maximum σB
2 , it directly solved the problem of 

evaluating the goodness of thresholds.  

 

 No need for priori noise characteristics 

 

OTUS’s method is a nonparametric and unsupervised method of automatic threshold 

selection. From the literature and data analysis, the noise could influence the quality of 

heart sound in many ways (Zhang, Y. T. et al. 2006). In addition, the noise was always 

changeable when capturing the sound under real environment. Thus it was quite difficult 

to predict the characteristics of different kinds of noise before the sound was collected. 

Through the noise reduction of Otsu’s method, the spectral characteristics of heart sound 

and noise were computed in real-time, thus eliminating the need for any knowledge of 

noise in advance. Thus the procedure of noise reduction became very simple because 

http://en.wikipedia.org/wiki/Thresholding_(image_processing)
http://en.wikipedia.org/wiki/Variance
app:ds:spectral
app:ds:characteristic
app:ds:spectral
app:ds:characteristic
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the optimal threshold was only based on the integration of signal itself. This feature, 

thus, supported the method for different kind or random noises. 

 

 The fluctuating de-noising threshold  

 

The optimal threshold of Otsu’s method, which applied in the frequency domain of the 

input signal, could be adjusted according to the quality of input data. Through the 

experiment data and analysis, this threshold could fluctuate due to the SNR of the input 

heart sound. In particular, when the SNR was large (means little noise contained in the 

heart sound signal), the threshold value would be low so that more useful information 

will be maintained, while the threshold value would be relatively high to remove more 

noise when the SNR seemed to be small. The fluctuating of the threshold made the 

balance between the noise reduction and the useful sound remaining, thus providing better 

output sound quality. 

 

 The changeable de-noising parameter  

 

After the threshold value was confirmed in frequency domain, all the data values above 

the threshold value were regarded as useful heart sound and would be kept, while the data 

values below the threshold were regarded as noise part and needed to be adjusted or 

reduced. Those data needed to be reduced would be adjusted according to the ‘de-noise 

parameter’. The default de-noising parameter was set as 3, which means all the data 

values below this optimal threshold would be divided by 3. However, when the noise was 

increasing, the de-noising parameter should rise up thus more noise would be eliminated 

during the noise reduction procedure. This feature together with the fluctuating threshold 

provided better noise reduction result.  

 

6.2 Noise and sound quality 
 

 It should be noted that designing a suitable noise reduction method for managing heart 

sounds is the core content of this study. Thus, the noise contained in the recorded heart 

sound and its influence to the diagnosis becomes necessary knowledge of this study. From 

the finding of this study, ‘noise’ was the most important factor, which influenced the 

quality of heart sound. Thus it appeared to have a high impact on physicians’ diagnosis. 

This issue has been identified from the literature. For example, “the contribution of each 

noise source may vary significantly depending on the noise kind, the technical 

characteristics of the recording instrumentation, the recording environment, and the 

physiological status of the subject” (Zhang, Y. T. et al. 2006). Belloni mentioned that 

high levels of environmental noise invalidated the auscultations and suitable electronic 

cancellation was not normally implemented for this reason (Belloni et al. 2010). Further, 

ambient noise and disturbances could corrupt the recorded heart sound signal and affect 

the accuracy of data collection (Tang et al. 2010).  The finding of this study proved that 

most of the recorded heart sounds were combined with noises, and the impact of sound 

quality differed from the noises of various kinds. For example, during the heart sound 

capturing process, the background noise (ambient noise, noise burst) and friction noise 

between the digital stethoscope and the skin would always appear to corrupt the original 

heart sound. The background noise was unpredictable and uncontrollable, thus it needed 

to be eliminated or minimised. The friction noise was unpredictable as well, but it could 

be controlled by the physicians, by adjusting the movement of the chest piece of the 

app:ds:diagnosis
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stethoscope. Some kind of noises, such as human voice between the patients and 

physicians, could be predicted and controlled by the physicians during sound capturing. 

 

Noise reduction is necessary to help the physicians to obtain the correct diagnostic 

information from the original heart sound combined with noise. As different noises 

impact the sound quality with different degree, the noise reduction would require analysis 

of heart sound signal and the noises it contains (Reed, T. R. et al. 2004). The analysis of 

the original heart sound has been identified in the literature, and four components of heart 

sound as well as their time-frequency domain characteristics were described in the 

literature review chapter. The analysis concluded that the heart sound signals are transient 

and periodical, while the characteristic of the noises is varied. For example, the ambient 

noise and disturbances usually have high amplitude and last for a short period of time 

(Tang et al. 2010), while other noises, like human breathing or voice, may be continues 

(Bai & Lu 2005).  

 

The main research target of this study is to eliminate or minimise the noises introduced 

during the auscultation using a digital stethoscope. Thus the designed noise reduction 

method should be effective for different kinds of noise. As the characteristic of each noise 

is different, the designed noise reduction method should be tested for the heart sound 

mixed with each kind of the noise. Thus the classification of the noises and test of the 

method for different noises is necessary. 

 

6.3 Noise reduction method 
 

In this study, the original heart sound samples mixed with different kinds of noise are 

collected and restored in digital form. In the experiment, to investigate the effect of the 

noise reduction method, this method would be used for the heart sound signal mixed with 

five selected kinds of noise. These selected heart sound sample would be mixed with one 

certain kind of noise, thus the effect of the method for each kind of noise could be 

recorded during the experiment. To intuitively and rapidly examine the effect of the noise 

reduction method, two main factors have been explained in the experiment design: the 

kind of noise and the noise level.   

 

6.3.1 Noise classification 
 

In reality, heart sound signals are often corrupted by various noises, which can prohibit 

the accuracy of the original sound (Varady 2001). Noise exited in the real world has 

different types, which would affect the sound quality in different ways. The ambient noise, 

disturbances, sliding movements and surround speech sounds can all affect the accuracy 

of data being acquired.  

 

As the sources and characteristics of noises vary, it is necessary to classify the noises 

before the noise reduction method is investigated. Varady categorized the noises by two 

aspects: external and internal factors (2001). The external noise included the sliding 

movements of the stethoscope diaphragm, ambient noise, instrument noise, human voice 

and the patient’s movement; and the internal noise included the breathing noise and the 

damping through bones and tissues. Compared with the internal noise, the external noise 

is a main reason of noise corruption and body sounds are difficult to hear in complete 

statement. Furthermore, the physicians had different requirements for different kind of 

noise (Jatupaiboon, Pan-ngum & Israsena 2010). For example, the physicians were more 
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sensitive to the long-time ambient noise and required these noises to be mostly eliminated; 

while they paid less attention to the friction-induced noise, because this noise accrued 

when they moved the chest piece on the patient body, the auscultation results during these 

time periods were not applicable. 

 

In the literature review, most of the previous research studied the noise reduction method 

with certain kind of noise or the manual noise. Although some studies indicated the 

classification of the noises, less of them test the noise reduction method with each kind 

of noises or mixed noises collected from real life. Additionally, few studies identified and 

summarised the effectiveness of the noise reduction method with different noises as this 

study.  

 

The finding of the study which study suggested that in order to test the efficiency of the 

noise reduction method, the noise which most commonly appeared, should be chosen to 

test the noise reduction method.  

 

In this study, all the noise resources were selected and classified from the real heart 

recorded collected in India and Australia. From the 68 heart sound samples we collected, 

five most common noises were selected from all kinds of the noises. Four of them, the 

ambient noise, the noise burst, the human voices and the friction noise were external 

noises as the external factors were the main reason of the noise corruption. One internal 

noise, the respiration sounds, was selected as well.   

 

In the experiment, each selected heart sound sample contained one (or two) kind of noise. 

All the samples were classified into five different groups by the noise it contained. Thus 

it would be easy to test the efficiency of the newly designed noise reduction for certain 

kind of noise through the experiment by comparing the difference between the processed 

and original sound sample. 

 

For each kind of noise, five pieces of the sound samples (contained the same kind of noise) 

were investigated with the noise reduction method (Otsu’s noise reduction method).  The 

method would judge and eliminate the noise part of the signal automatically. During the 

noise reduction progress, the de-noising parameter was fixed as a constant (defaulted set 

as 3). This ensured that the effect of noise reduction for each kind of noise would be the 

same. The result of each kind of the noise reduced signal was recorded in the Experiment 

Chapter. Compared with the original signal, the effect of the noise reduced method for 

each kind of noise is described in the table below. 

 

The effect of the noise reduction for each kind of the noise is listed in Table 6.1:      
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Kind of noise Noise description Noise reduction result 

Respiration 

sounds or 

breathing 

noise 

 Patient’s breaths noise 

 Noise frequency 

component is certain 

 Need eliminate  

 Most of the breathing 

noise has been reduced 

 Noise component mixed 

with heart sound signal 

is partly remained 

 Main heart sound 

component is kept 

Ambient noise 

 Common noise 

 Noise frequency 

component is vary 

 Need eliminate urgently 

 Effect differ from each 

other 

 Effect better in shot-

time noise,    not 

obviously in continuous 

noise 

Noise burst 

 No-priori noise 

 Mixed with other 

noises 

 Noise frequency 

component is wide 

 Need eliminate urgently 

 Eliminate effectively 

 Main heart sound 

component is identified 

and kept 

 

Human voices  

 Speak during 

auscultation 

 Noise component 

mixed with heart sound 

 No need to eliminate 

 Frequency domain of 

the noise covers that of 

heart sound 

 Hardly identified or 

reduced 

Friction-

induced noise 

 Chest piece moves on 

body 

 Noise component is 

wide 

 Need to eliminate 

 Hardly identify  the 

noise 

 Both noise and heart 

sound signal are kept  

 

 

The result of the experiment showed that the effect of de-noising method differed by 

noises. For the respiration noise and noise burst, this method could eliminate the noise 

properly. The effect for ambient noise depended on the kind of input noise, and the 

method did not work properly with human voice and friction-induced noise. In 

consequence, it could be concluded that this method effected better in short term noise 

but did not work properly with some kinds of continue noise.       

 

6.3.2 Noise level 
 

It showed in the literature review that most of the papers test their noise reduction method 

with certain kind of artificial noise. Jatupaiboon used white, pink, babble and factory 

noises (2010), Belloni et al. (2010) only used the white noise. Belloni et al. (2007) used 

heart sound signals in both empirical and realistic conditions to estimate the coefficient 

of the digital filter. 

Table 6.1 The effect of the noise reduction method 
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In this study, the real heart sound signals were collected form Australian and Indian health 

centres. The experiment made use of these signals with different noise levels, to test the 

adaptive filter in more realistic experimental conditions. As the original heart sound 

signals were mixed with noises, it was hard to provide the SNR for each piece of the 

sample. Thus the ratio of the threshold value and max value (RV), the ratio of kept 

frequency component and the whole frequency (RF) were selected as the factors to 

describe the efficiency of the adaptive filter.  

 

The results reported in chapter 5 showed the function of the noise reduction method with 

different noise levels. For the pure heart sound signals group, the results proved that most 

part of the heart sound component had been kept. The results also showed that little 

addictive noises appeared in the processed noise. For each kind of the noise, the floating 

threshold method was effective.  Three kinds of noises, with which the noise reduction 

method worked properly, were examined in this study. The ratio of threshold value and 

max value represent the floating threshold (RV), and the ratio of kept frequency 

component and the whole frequency (RF) represent showed the affection of the noise 

reduction method. 

 

The noise level and results of noise reduction are listed in the Table 6.2:   

 

 

 

Kind of noise RV RF 

Pure heart sound 

(little noise) 

22.7% 

22.38% 

17.75% 

21.57% 

24.72% 

86.67% 

75% 

91.67% 

80% 

71.5% 

Respiration sounds or  

breathing noise 

22.02% 

22.02% 

20.46% 

25.90% 

19.57% 

60% 

58.8% 

68.75% 

50% 

66.67% 

Ambient noise 

24.24% 

21.25% 

17.86% 

16.8% 

18.08% 

42.8% 

55.5% 

68% 

56.25% 

61.5% 

Noise burst 

20.35% 

22.46% 

17.57% 

16.85% 

25.47% 

80% 

52.9% 

61.3% 

79% 

58.82% 

 

 

Table 6.2 The effect of the floating threshold 
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From the table 6.2, the floating threshold fluctuated due to the input signal. When the 

input signal was the pure heart sound (contain little noise), most frequency component of 

the signal would be kept (70%~90%). While when the signal mixed with noise comes, 

the ratio reduced sharply. For certain kind of noise, the threshold floated with the SNR of 

the input signal. For example the heart sound mixed with the breathing noise, when the 

rate of value (RV) rose up (25.9%), which meant more noise contained in this piece of 

noise, the rate of frequency (RF) fell down (50%) and less part of the frequency 

component was kept in the processed signal; while when the threshold level fell down 

(19.57%), more frequency component was kept (66.67%). The other two kind of noise 

showed the similar results. Thus it proved that the floating threshold method worked for 

those three certain noises. As this method did not work properly with the human voices 

or friction-induced noise, the result for them had not been listed in the table. 
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Chapter 7 Conclusion 
 
 
With the development of digital technology in recent years, the digital stethoscope, with 

the advantage of restoring and replaying function, is gradually replacing the acoustic 

stethoscope. However, the sound corruption in digital stethoscope is still a problem to the 

users. The problem motivated this research to analyse and discuss the noise elements of 

the digital stethoscope, and then to find a suitable solution to reduce unwanted noise in 

the digital signal processing area.  

 

Thus, the research question of this research is identified as: How might the noise be 

reduced from the heart sound records collected from digital stethoscope with 

suitable noise reduction method. 

 

To address this problem and to concentrate on the experiment and analysis, three research 

sub-questions were designed. 

RQ 1 What kind of the possible noises is in the output signals and what are their spectrums 

respectively?  

RQ 2 How to develop suitable noise reduction method for the noises mentioned in the 

above question? 

RQ 3 How to validate that the heartbeat signal or the other useful information would not 

be distorted after processing? 

 

7.1 Structure of this research  
 

The objective of this research is to find a better solution of noise reduction method for the 

heart sound recordings from a digital stethoscope. The overarching aim of the study is to 

improve the quality of heart sounds for auscultation and to help the physicians’ diagnose.     

 

A multiple-stage research design was developed to answer the research question posited 

above and achieve the objectives of this study. These stages included initiation study, 

method design, experiment and the result. 

 

In the initiation stage, the idea of this research was formed and identified through the 

initial review of the literature research. The output of this stage was the research proposal 

which was approved and supported by the Faculty and University. In this research 

proposal, several essential parts were concluded, such as the review of related literature, 

the research question and research objectives, the research method introduction and 

framework, and the possible contribution.  The literature review part offered necessary 

background knowledge for this study and the synthesis of noise reduction. Then the 

research question and objectives were identified. The methodology part reviewed the 

research paradigms in Information System (IS), compared their difference and then 

designed the appropriate experiment method for this study.   The experiment described 

the process of the experiment and tested the collected data with the designed noise 

reduction method. The results were presented in appropriate formats for easy reading.  

 

In the literature review, the necessary knowledge for this study, included heart sound, 

stethoscope, relevant concepts of noise reduction and the de-noising algorithm methods 

applied for heart sound. Heart sound and heart sound analysis offer the characteristics and 

forms of heart sound. The introduction of current digital stethoscope describes the sources 
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of sound samples. The review of several commonly used noise reduction methods 

provides the scope and possible noise reduction solutions. The difference between these 

methods, including their strength, weakness and efficiency for noise reduction are 

described respectively and then summarized in a table. The probability and advantage of 

applying those methods to noise reduction for heart sound is also discussed. Then the 

introduction of a special technique called the Otsu’s method is provided and its current 

application in signal processing. The research question and objectives are provided at the 

end. The result showed the advantage of the Otsu’s method, and the improvement of the 

sound quality after noise reduction.   

 

In the research methodology, the research paradigms were reviewed, and research 

strategies in Information System (IS) and compared their differences. Then the research 

approach and methodology applied for this study was provided. Laboratory experiment 

was selected as the suitable research method as its scientific and obtaining data feature. 

In research model and instrument, the details and steps of the experiment was designed 

which was focused on answering the three sub-questions. 

 

In the data collection and analysis part, the approaches employed for data was provided 

along with a description of how the data was analysed will be discussed. The process of 

data collection and analysis for the research was introduced and explained in several 

sections: the definition of the format of the data required for the experiment, the real 

collected data discussion of the application of the algorithm applied in the experiment and 

the adjustment of the coefficient, the data which is tested with different threshold levels, 

and the results in figures.  

 

In the finding and results of the research, the benefit and advantage of the new designed 

reduction method was described with the results of the experiment. The Otsu’s method 

proved to be better in heart sound noise reduction because of its optimal division, no priori 

characteristics, fluctuation threshold and changeable de-noising parameter.  The 

comparison of sound quality between the original and processed heart sound support the 

research objectives. The finding also offered the appropriate classification of the noise 

contained in the heart sound records.     

 

7.2 The solution of research question 
 

This study attempts to answer the research question,’ How might the noise be reduced 

from the heart sound records collected from digital stethoscope with suitable noise 

reduction method.’ To address the research target, the main work contains three major 

components: identifying noises, designing noise reduction techniques and evaluating the 

proposed method. Three sub-questions have been discussed correspond to each 

component.  

 

RQ 1 What kind of the possible noises is in the output signals and what are their 

spectrums respectively?  

In this research, five main kinds of noise have been identified as main noises to corrupt 

the quality of heart sound records from DS. These noises include: The respiration sounds 

or breathing noise, the ambient noise, the noise burst, the human voices and the friction-

induced noise. The spectrum and features of each noise is recorded in chapter 5.4.4 ‘The 

experiment records’. The noises which corrupted the heart sound signals were collected 
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in real-life environments. The heart sound samples were classified into five sound groups 

with each kind of noises.   

 

RQ 2 How to develop suitable noise reduction method for the noises mentioned in 

the above question? 
After classifying and investigating the input signals, several features of the main noises 

are confirmed. The noise can corrupt the heart sound signal in many ways and always be 

changeable. It is impossible to predict the noise kind, noise level or the time when noise 

appears. Thus the designed noise reduction method should include the following features:  

no need for priori noise characteristics; a fluctuating noise reduction threshold to adapt 

different SNR noise; a changeable reduction parameter to adjust the de-noising value with 

different noise. 

 

In the literature review, little principle proves that the current thresholding function is 

designed particular for heart sound de-noising (2.3.2 Noise reduction for heart sound). 

Otsu’s method, however, provides all the above features and has been applied in picture 

segmentation before. Thus Otsu’s method has been chosen as the probable suitable noise 

reduction method in this research (6.1 Otsu’s noise reduction method).  

 

RQ 3 How to validate that the heartbeat signal or the other useful information would 

not be distorted after processing? 

In the experiment, except the five noise sound group, there is a separate sound group 

named ‘pure heart sound’, which includes the heart sound samples with limited noise 

corrupted. Before the noise reduction step, the effectiveness of the designed method has 

been tested with pure heart sound first (5.4.4 the experiment records). Result shows the 

pure heart sound has little change with Otsu’s method. In Literature Review chapter, the 

main frequency component of heart sound is confirmed as 40 – 500 Hz (2.2.1 the heart 

sound analysis and heart sound signal). Through the experiment of noise corrupted heart 

sound, those part of frequency component have been mostly kept after signal processing 

(5.4.3 the result and analysis of the experiment). The result of the experiment also proves 

that the heart sound signal would not be distorted by the noise reduction process. 

 

7.3 Theoretical and practical implication 
 

Otsu’s method has been successfully applied into a wide range of area, such as human 

action recognition and picture segmentation. The details of Otsu’s method application is 

in ‘Chapter 3 Otsu’s Method’. In this research, Otsu’s method is applied to the noise 

reduction for heart sound signals. In the experiment, the Otsu’s method separated the 

input signal to two parts and found the minimal value of combined spread (intra- class 

variance) between heart sound signal and noise in frequency domain. With the advantage 

of Otsu’s method (optimal threshold, no priori noise characteristics and fluctuating 

threshold), the experiment proves that the noises with different kinds and degrees, mixed 

in the heart sound signal can be de-noised automatically. The experiment also proves that 

the de-noising threshold is adaptive according to the quality of input heart sound and the 

de-noising parameter could be adjusted for different kinds of noise. In brief, Otsu’s 

method is firstly utilized in noise reduction area in this research. That method proved to 

be effective to heart sound signal through the experiment. This is the main theoretical 

implication of this research.  
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In this research, the input testing signals are real heart sound signals which collected from 

health centre in both Australia and India. Five kinds of noises are determined as main 

noise corruption for heart sound. The collected heart sounds are classified in to 5 groups 

with certain kind of noise (details in ‘5.4.4 the experiment records’). Then the 

effectiveness of the Otsu’s method is demonstrated by each group of noise. The effect of 

the floating threshold is recorded and compared by different degree of noise corruption 

in ‘6.3.2 Noise level’. Thus the designed method could be downloaded into a hard chip 

in digital stethoscope for real auscultation. It is the main practical implication in this 

research. 

 

7.4 Limitation of this research  
 

There are certain limitations in this study. In the stage of experiment study, considered 

the time, accessibility and cost, all the data (sound samples) are second hand data. All the 

sound samples were collected by the physician and their assistants in the hospital in both 

Australia and India. The data were collected from the real environment, it was impossible 

to obtain the data with a completely silent room. Thus the reference signal is with limited 

noise. 

 

With the limitation of the digital stethoscope, the heart sound samples were stored as MP3 

form before the research. Thus these sound samples lost some high frequency component 

before the signal processing 

 

Another limitation was that the development of the noise reduction is still in initial stages. 

This increases the difficulty of identifying a suitable noise threshold for each kind of noise.  

Then appropriate threshold parameter levels have to be determined to fit the main noises 

in the heart sound. Moreover, the relationship between the SNR, the fluctuating threshold 

and the adjustment of de-noising parameter need to be researched more with more sound 

samples or in practical use. 

 

7.5 Future improvement  
 

The objective of this study was to provide a suitable noise reduction method for the digital 

stethoscope sounds. Thus the designed method needs to be compiled as a software 

algorithm and then downloaded into a hard chip to achieve the usage of the noise 

reduction in real life. 

 

The Otsu’s noise reduction method is conducted in frequency domain. The transformation 

between time and frequency domain is time cost. It can prove the transforming of data 

(from time domain to frequency domain) from FFT transform to the wavelet transform. 

 

In this stage, the research objective was to focus on the noise reduction for heart sound 

records. As the development of the different digital stethoscope, different models for 

certain aim can be set for stethoscope. Thus this noise reduction method can be spread 

and applied to other sounds (lung sound for example).  
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Appendix A: Programme of the Otsu’s Method 
 
clear all 
close all 
%-------------------------read signal and do FFT----------------------

--% 
[Y,FS,NBITS]=wavread('05_fourbeats.wav'); 
[N,M]=size(Y); 

  
YY=(Y(:,1)+Y(:,2))/2; 
figure(3) 
plot(YY); 

  
axis([0 N -max(abs(YY)) max(abs(YY))]); 
title('the orginal heart sound', 'fontsize', 13); 
xlabel('time', 'fontsize', 12); 
ylabel('amplitude', 'fontsize', 12); 

  
fk=fft(YY); 
absfk=abs(fk); 

 

  
%---------------------------------------------------------------------

--% 
% number of the signal is N, so N/2 is the sample  

  
   NN=2000; 
v=absfk(1:NN,:); 

  
%---------------------------------------------------------------% 
% assume L is the maximum value of the FFT 

  
L = ceil(max(v)); 

  
%--------------------------------------------------------------- 

  
%--------------------------------------------------------------- 
% general bimodal distribution 

  
%--------------------------------------------------------------- 

  
%--------------------------------------------------------------- 
x = 1:L; 
n = hist(v, x); 
%plot(n) 
figure(1); 
bar(x, n, 'b', 'linewidth', 2); 
title('Distribution of Source Data', 'fontsize', 13); 
grid('on'); 
set(gca, 'xlim', [1 L]); 
set(gca, 'xtick'); 
xlabel('Data Value', 'fontsize', 12); 
ylabel('Count', 'fontsize', 12); 
hold('on'); 

  
sum(n) 
p = n/NN; 
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p = p(:); 
%--------------------------------------------------------------- 

  
%--------------------------------------------------------------- 
vbmax = 0; 
kstar = 0; 
vbplot = []; 
kplot = []; 

  
for k = 1:L 
    kplot = [kplot k]; 
    w0 = sum(p(1:k)); 
    w1 = 1 - w0; 

         
    if( (w0 < eps) || (w1 < eps ) ) 
        vbplot = [vbplot 0]; 
        continue; 
    end 
    i = [1:k]'; 
    mu0 = sum(i.*p(i))/w0; 

  
    i = [k+1:L]'; 
    mu1 = sum(i.*p(i))/w1; 

     
    vb = w0*w1*(mu1 - mu0)^2; 
    vbplot = [vbplot vb]; 
    %w0 
    %w1 
    %vb 

     
    if( vb > vbmax ) 
        vbmax = vb; 
        kstar = k; 
    end 
    %pause 
end 
%--------------------------------------------------------------- 

  
fprintf(1, 'Optimal threshold kstar=%d\n', kstar); 
figure(2); 
clf 
plot(kplot, vbplot, 'linewidth', 2); 
title('Between-Class Variance as a Function of Threshold', 'fontsize', 

13); 
grid('on'); 
set(gca, 'xlim', [1 L]); 
set(gca, 'xtick'); 
xlabel('Threshold Value', 'fontsize', 12); 
ylabel('\sigma_B^2', 'fontsize', 12); 
%--------------------------------------------------------------- 
% add threshold to histogram plot  
figure(1); 
ylimhist = get(gca, 'ylim'); 
line([kstar kstar], ylimhist, 'linestyle', ':', 'linewidth', 2) 
buf = sprintf('\\leftarrow Optimal threshold \n        k = %.0d', 

kstar); 
text(kstar+2, ylimhist(2)*0.9, buf, 'BackgroundColor', 'w', 'Color', 

'r', 'EdgeColor', 'w', 'FontSize', 12, 'FontAngle', 'italic'); 
%--------------------------------------------------------------- 
% add threshold value to FFT frequency figure 
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figure(4) 
plot(v); 
hold on 
plot(1:NN,kstar); 
title('the frequency domain of orginal heartsound ', 'fontsize', 13); 
xlabel('frequency', 'fontsize', 12); 
ylabel('amplitude', 'fontsize', 12); 

  
%-------------------------------------------------------------- 
% delete the noise value under the threshold  
% D is the adjust parameter to denoise the noise 
fkabsclean=[]; 
fkclean=[]; 

  
de=3; 
for i = 1 : N 
    if absfk(i) < kstar 
       fkclean=[fkclean fk(i)./de]; 
       fkabsclean=[fkabsclean absfk(i)./de]; 
    else 
         fkclean=[fkclean fk(i)]; 
       fkabsclean=[fkabsclean absfk(i)]; 

        
    end 
end 

  
fkclean=fkclean'; 
fkabsclean=fkabsclean'; 

  

  
Yclean = ifft(fkclean) ; 
Yclean = flipud(Yclean); 
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Appendix B: Experiment Results  
 

In this appendix, the sound samples and of noise reduced form of these samples would 

be recorded by figures in both time and frequency domain. 

 

1. The pure heart sound 
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           Sample 2: 
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        Sample 3: 
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        Sample 4: 
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         Sample 5: 
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2. The respiration sounds or breathing noise 

Sample 1: 
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Sample 2: 
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          Sample 3:  
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          Sample 4:  
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          Sample 5:  
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3. The ambient noise 

Sample 1: 
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Sample 2: 
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         Sample 3: 
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         Sample 4: 
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         Sample 5: 
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4. The noise burst 

         Sample 1: 
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Sample 2: 
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       Sample 3: 
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      Sample 4: 
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      Sample 5: 
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5. The friction-induced noise (small movement of human or 

stethoscope) 

    Sample 1: 
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       Sample 2: 
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       Sample 3: 
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       Sample 4: 
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       Sample 5: 
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6. The human voice noise 

Sample 1: 
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Sample 2: 
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Sample 3: 
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Sample 4: 
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Sample 5: 
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