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Abstract

Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred
alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in
vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline.
To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is
required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-
content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The
Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation
of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological
parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of
peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated
with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In
addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode;
essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high
throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers
associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated.
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Introduction

Prostate cancer (PCa) has the highest prevalence of cancer in

Australia, with nearly 20,000 new cases diagnosed each year [1].

At the onset of PCa, treatment involves androgen ablation, which

temporarily slows progression, however recurrence of the cancer

in an androgen-independent form is common [2]. At this stage,

PCa can no longer be controlled by standard therapies, metastasis

occurs, which is the major cause of mortality. Hence, new

therapies are required to combat the disease prior to metastatic

progression.

The importance of using 3D models in the evaluation of tumour

development has previously been described [3,4]. We, and others,

have shown that 3D cultures afford a better platform for the study

of solid tumour masses as tumour cells in this microenvironment

discern antigenic profiles and phenotypic behaviour that mimic

more precisely tumour cells as found in vivo [3,4]. 3D cell culture

allows for the subtle interplay of cells of the same or different

origins within a matrix, mimicking cell-cell and cell-matrix

interactions similar to those found in vivo. Moreover, proper

alignment and spatial organisation in 3D is essential for tumour

progression [5]. Taken together, these results suggest that 3D

cultures may serve as a more biologically relevant model in the

drug discovery pipeline.

Antigenic profiles of tumours excised from advanced PCa

patients have identified alterations in the expression of numerous

proteins. Of these, the androgen receptor (AR) [6], a6 [7,8] and

b1 integrin subunits [9], and more recently chemokine receptor

CXCR4 [10] expression have been linked to increased Gleason

grade and metastatic dissemination in PCa. Patient tumours

consistently show an up-regulation of the b1 integrin subunit [11]

and the chemokine receptor CXCR4 [12], accompanied by a

redistribution and down regulation of a6 integrin [7,8].

Heavily implicated in PCa bone metastases development and

progression is the integrin b1 subunit [13–15]. Expression of a5b1

and a2b1 on PCa cells has been reported to facilitate interactions

with bone stromal cells [15] and to actively promote invasion and

adherence of PCa cells to the bone stroma in vitro [14] and

experimental bone metastases in vivo [13]. Similarly the laminin-

binding integrin a6b1 has been shown to permit extravasation of
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human PCa cells from circulation to the bone stroma in vivo [16–

18].

Similarly, studies have indicated that the chemokine, CXCL12,

plays a role in trafficking PCa cells to the bone. CXCL12 is

expressed by stromal cells in target organs of PCa metastasis (bone,

brain, lymph), but not in other tissues [19] and its receptor,

CXCR4, is highly expressed by bone metastatic PCa cells [20,21].

It was the aim of the current study to evaluate and analyse the

expression patterns and distribution of these well-established

markers associated with PCa progression, utilising a 3D model

in conjunction with high throughput imaging analysis.

Another highly influential protein that contributes to the

development of PCa is the AR [6]. The AR belongs to a

superfamily of nuclear receptors and mediates the action of

androgens such as 5-a-dihydrotestosterone (DHT). The AR and its

activating ligands play an important role in PCa progression by

mediating the responses of androgens and activating gene

transcription. Although many of the well characterised effects of

AR in PCa cells are reliant on the genomic effects which involve

the transcription of target genes, non-genomic effects of androgens

also influence cell behaviour. These include the activation of

kinase cascades and cytoskeletal rearrangement which can

stimulate cell motility [22–24].

Previously, we have reported that PCa PC3 metastatic cells re-

express non-transcriptionally active AR which is in part mediated

by the Src pathway [4]. Utilising a 3D model in conjunction with

high throughput imaging analysis, it was a further aim of the

current paper to evaluate the potential functional relevance of

endogenous AR up-regulation in this cell line and how it may

affect other important protein constituents known to mediate PCa

progression including b1 integrin.

The ability to accurately analyse multiple imaging parameters

obtained from 3D cell culture is to date reliant on highly

specialised programs that are by no means automated. The

existing imaging software suffers largely from the inherent problem

of an inability to rapidly adapt and accommodate changing

requirements effectively [25]. Here, we have developed an

automated image-analysis based software named ‘‘PCaAnalyser’’

that is capable of analysing a range of parameters measured in 3D

cell culture based on 2D images.

PCaAnalyser has been developed as an ImageJ [26–28] plugin,

therefore has the capability to share and enhance several basic

functions provided in ImageJ. The analysis undertaken by

PCaAnalyser is a composition of two major algorithmic-interfaces.

In the first step, the boundary of the cellular 3D spheroid is

detected and the required masks are generated. In the second step,

nuclei are detected and spheroid-memberships are then predicted

using the masks and the boundaries. Similar approaches are

followed to detect and study cytoplasmic areas by segregating

them from critical noise.

The paradigm of PCaAnalyser, including the reporting

component, has been designed to be flexible to enable the user

to readily manipulate related analysis in a variety of ways, in

addition to the default options.

With respect to the efficiency of PCaAnalyser, we have

incorporated a candidate-membership based algorithm to speed-

up the nucleus-spheroid detection process, making the overall

processing time considerably faster. Time complexity analysis has

been provided in this article, to assist with estimations of the

processing time, which is based on the available data-parameters,

such as number of spheroids per image, number of nuclei per

spheroid and perimeter of the nucleus. This feature also provides a

basis for comparison of the PCaAnalyser with other published

algorithms.

In the current study, we utilised a Perkin Elmer OperaTM [29],

a high throughput confocal imaging system, to generate the output

from a PCa 3D cell culture model in microtitre plate format

suitable for HTS. Complete reconstruction of the spheroids in 3D

was memory and time intensive, thus 2D-image acquisition of the

3D objects, along the xy-plane, was applied as an alternative. In

this population of spheroids, the 2D-image of the 3D objects

varied in image resolution and sharpness due to the different focal

planes, thus physical depths, as well as composition of the different

cellular components of the 3D objects, which collectively made

segmentation and detection challenging. Detection of various co-

localised and multiple-contextual objects within the same channel-

image also posed significant challenges. PCaAnalyser has been

designed to successfully address such challenges. Thus, the

PCaAnalyser presented here provides a valuable resource for

investigations using 3D cell based models, particularly for use in

high throughput automated systems.

Utilising PCaAnalyser, we report here the successful analysis of

the distribution and intensity of well-established markers associ-

ated with PCa progression in a range of metastatic PCa cell-lines

(DU145 and PC3) in a 3D model. Specifically, we have shown that

in response to the ligand, SDF-1a, CXCR4 distribution and

expression changed, indicative of a functional receptor. Moreover,

we present here novel data concerning the down-regulation of b1

integrin after treatment with DHT. These results suggest that in

PC3 cells, non-transcriptionally active AR can mediate other

important proteins associated with PCa progression. These results

have far reaching implications regarding AR targeted therapeutics

in late-stage PCa treatment.

Materials and Methods

1. Cancer Cell Lines
The DU145, PC3 and MDA-MB-231 cell lines were purchased

from American Tissue Culture Centre (ATCC). The PCa Du145 and

PC3 cell-lines, were maintained in RPMI-1640 (Invitrogen),

supplemented with 10% fetal bovine serum (FBS, Gibco). The

Breast Cancer (BCa) cell-line MDA-MB-231 was maintained in

DMEM-F12 (Invitrogen), supplemented with 10% FBS. All cells

were propagated at 37uC in standard cell culture conditions (5%

CO2, 37uC) in T75 Flasks. Media was replenished every 3 days.

Once cells had reached 80–90% confluency they were replated (1/

10) in T75 flasks. After 10–12 passages, cells were discontinued.

2. Miniaturised 3D Cell Cultures
For the PCa cell lines, cells were plated on top of a 3D matrix

gel bed (Matrigel: BD Bioscience) in glass-bottomed 96 well plates

(Matrical: PerkinElmer). For miniaturised 3D cultures, wells were

filled with 60 ml MatrigelTM/culture medium (70%) and polymer-

ised at 37uC with 5% CO2 for 1 hr. Cells were then seeded at

,5000 cells per well and maintained as previously described

above. Media was carefully removed and replenished every three

days. Cultures were maintained for up to 12 days. For the BCa cell

line MDA-MB-231, 1000 cells per well were plated on top of 15 ml

of Growth Factor Reduced Matrigel (GFR Matrigel) in a 384-well

CellCarrier plate (PerkinElmer).

3. Ligand and Drug Treatment Assays
Using a 96-well plate format PC3 cells were grown in 3D

Matrigel cultures as described above. After 9 days in culture, 3D

cells were treated with a natural androgen Dihydrotestosterone

(DHT, Sigma-Aldrich) for 30 hrs in serum free media at 0, 1, 5

and 10 nM concentrations. Alternatively, 3D cultures were serum

starved for 16 hrs and then treated with a CXCR4 ligand: SDF-
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1a: (30 ng/ml, R&D Systems) for 0, 20 and 40 mins. Cells were

then fixed and processed for immunocytochemistry.

In the case of MDA-MB-231, cells were incubated for 3 days

before application of 720 nM of Doxorubicin (Sigma-Aldrich) for

72 hrs. To view the nucleus in these cells Hoechst (1:500,

Invitrogen) was applied for 2 hrs before live cell imaging was

undertaken. Doxorubicin emits endogenous fluorescence (excita-

tion wavelength 480 nm, emission wavelength 530 nm).

4. Immunohistochemistry
The image based assay was undertaken as described previously

[4] with minor modifications. Briefly, after 10 days in culture, 3D

cultures of PCa cells DU145 were washed with PBS and fixed with

PFA (4%, 10 minutes for 2D, 20 minutes for 3D), washed twice

with PBS and blocked for 2 hrs with 2% BSA, 0.1% Triton-X,

0.05% TWEEN. Primary mouse anti-a6 and anti-b1 integrin

subunit antibodies (5 mg/mL, R&D Systems) or mouse anti-

CXCR4 (5 mg/mL, R&D Systems) were then added for 24 hours

at 4uC in blocking buffer. Cells were washed with PBS (365 mins)

and incubated at room temperature (RT) for 4 hrs with secondary

antibodies (5 mg/mL 488 goat anti-mouse) and Hoechst nuclear

stain (1/1000, Invitrogen).

5. Acquisition of Image
All fixed cells were imaged using the PerkinElmer OperaTM

Quadruple Excitation High Sensitivity Confocal Cell Imager with

a PerkinElmer 20/.75 water iris. Images were acquired using the

488 and 405 emission spectrum. Live cell imaging was completed

using the PerkinElmer Opera using the 106 air objective with

excitation by the 405 and 561 nm lasers. The acquired images

were used as the input for the PCaAnalyser software for the

analytical study described herein.

Results

1. Channel Information and Challenges
In this instance, images via two fluorescent channels were

investigated: (1) Ch-1, to detect the nucleus (Hoerchst: emission

405) and (2) Ch-2, to detect the expression of the protein of

interest, (CXCR4, ab or b1 integrin subunits) and distribution.

Ch-1 is used to identify (a) the nucleus, and (b) the area of the

spheroid. For extracting information pertaining to either the

nucleus and/or the area of the spheroid the images from this

channel were treated as bright-field images, which enable two

different contexts of the image to be extracted from the same

signal.

The image content has its own complexity as well: even though

a confocal imaging system is employed, the spheroids have a 3D

structure which incorporates depth and variation, resulting in

uneven illumination of the focal plane. 3D spheroids are grown in

a semi-solid gel, and as such they sit in a multitude of different z-

planes. Thus, there are a relatively small number of cells that are

imaged in focus within that focal plane. These images are

comprised of a combination of both well-defined and ill-defined

structures and blurred ill-defined components, thus providing a

considerable challenge to accurately detect the nucleus of each

cell. This becomes even more problematic when using automated

analysis, as these signals are often integrated into the final output

or intensity. Thus, greater control over threshold levels and the

ability to filter parameters within the software was required to

obtain accurate representative data.

Ch-2 provides the images which define the cell membrane and

the cytoplasm of the individual cells of the spheroid mass. Images

acquired through this channel have a low signal-to-noise ratio

(SNR). The challenges with these specific images are (a) to

segment, identify and read the zero or low intensity area along

with the higher intensity area of the cytoplasm, (b) to develop and

define suitable functions to classify various regions of cytoplasm,

and (c) to avoid noise. The staining of any given immunofluores-

cence tag has with it a range of SNR values. Nuclear stains (Ch-1

images) are generally measured within the spectrum range of the

405 nm wavelength, which in comparison to the 488 nm (green)

or 594 nm (red) spectrums, are highly permeable stains. Thus, Ch-

1 images have less noise in comparison to those obtained with Ch-

2. In addition, the OperaTM system is an automated high

throughput confocal imager, whereby variable parameters could

not be set for individual images, thus a particular setting

sometimes works better for 6 to 10 images but not for the

remainder. Therefore, our software was customized to address

these problems, as well as reducing unwanted noise.

2. Analysis of Image
Our PCaAnalyser was developed as a plug-in of ImageJ [26–

28], which provides an excellent environment for customisation, as

well as easy access to many different image-file-formats due to

LOCI plug-in and the Bio-Formats Java library [30,31]. A

compressed version of the associated FLEX files has been

generated, which is the format primary image files are obtained

in. FLEX file is the default file-format generated by the

PerkinElmer OperaTM system that we have used to capture the

raw images. These are compatible with MBF_ImageJ [32] (version

of ImageJ) through extended supports of LOCI Bio-Formats

(http://loci.wisc.edu/bio-formats/imagej).

In addition, an independent FLEX to TIFF convertor was

developed to provide images in a more generic format. Many

parameters in the GenericDialog of ImageJ needed to be accommo-

dated to achieve this. Unfortunately, GenericDialog was limited in

handling more than a few parameters, thus it was necessary to

further combine ImageJ and NetBean (version 6.8) [33] to develop

a customised Tabbed-Paned Dialog (Figure 1) for PCaAnalyser.

This Tabbed-Paned Dialog is readily and efficiently accommo-

dating almost 30 parameters of different types. The heart of the

software is ParticleAnalyzer from ImageJ [26–28]; however we have

extended it further to be used in batch-mode to complement the

single-mode option. ImageJ has been updated accordingly and thus

to use our PCaAnalyser as a minimum, ImageJ version 1.44d is

required.

Overall, the algorithms of PCaAnalyser can be divided into the

following sequences: i) overall spheroid detection and mask

generation, ii) nucleus and membership detection, iii) detection

and cytoplasm read and iv) reporting.

2.1 Spheroid Detection and Mask Generation
Ch-1 has the image of the nuclei, grouped per spheroid. Ch-1 to

segment is processed to detect the complete spheroid area and

boundaries, enabling the formation of the boundary-mask using

Algorithm 1 (Figure 2) and the corresponding major steps are

shown in Figure 3. The boundary-mask is used for processing

images of Ch-2 for: (a) noise removal and (b) to read intensities of

cytoplasm and membrane areas, ranging from zero to high values.

Ch-2 has very uneven intensities, including values as low as zero

for the membrane and cytoplasm area of the spheroid, and also

includes many higher intensity and lower levels of SNR.

Therefore, Ch-2 cannot be used for boundary detection of the

spheroid reliably.

While processing Ch-1, difficulties associated with signals

resulting from uneven illumination are experienced. Using the

background subtraction with an appropriate radius of the rolling-

PCaAnalyser: Analytic 3D Prostate Cancer Tool

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79865



ball-algorithm, we were able to eliminate this image related

artefact. Assuming, the height as a 3rd dimension on a 2D surface

of a background image, provides the pixel-intensity proportionally

of that image. With the purpose of having a smooth background,

the rolling-ball algorithm can assume a ball of chosen radius is

rolled over the 2D surface and the hull of volume reached by the

ball is the expected smoothened background. In order to

accomplish this, first the spheroid-boundary was detected by

enhancing the contrast considerably (6 times) to separate the low

signals from the background. In the next step, two possible ways

were provided for the user to proceed: (a) auto or (b) manual to

identify the appropriate contour based on the depth of the original

signal-gradient of 3D objects and other morphological parameters,

such as circularity and size (area). Options to convert the images

into lower bit levels were also provided, which helps to separate

the unwanted fragment in the image resulting from uneven

illumination caused by the experimental setup.

With the pre-processed and provided parameters, the Parti-

cleAnalyzer was deployed to detect the spheroids – the algorithm

was applied to approximately 1000 images and the resultant

detection was performed with more than 90% accuracy, when

compared to manual microscopy analysis and simple object

recognition programmes. Per image, there were generally 10

spheroids on average.

2.2 Nucleus and Membership Detection
The signal from Ch-1 was used for nucleus detection; however

the corresponding image had uneven illumination which impacted

on the efficiency of the analysis programme (see ‘Original Image’

in Figure 3). Thus, it was necessary to build and incorporate at

least 10 additional parameters to enable accurate and reliable

nucleus-detection. The final nucleus detection algorithm (Algo-

rithm 2) developed has been outlined in detail in Figure 4.

The nucleus-image, available in Ch-1 has also been used for

spheroid detection. As shown in Algorithm 2, in the first instance,

background subtraction was used to decrease uneven illumination,

and the image resolution was then sharpened (step 3). Within a

given image, not all nuclei were found to have the same height

along the z-axis, resulting in some of them being out of focus as

they resided in an alternative focal plane within the 3D spheroid.

Applying the module ‘enhancement of sharpness’ (ImageJ

function), we were able to reduce the number of pixels and thus

improve the detection of the given signal. We also applied the

‘smooth operation’ (ImageJ function) module to avoid non-smooth

or zigzag type boundary-detection of the nucleus. A suitable

threshold-algorithm (step 5) was then applied for segmentation and

detection of the nucleus. In addition, the morphological filter was

applied to filter out unwanted noise. The steps of this analysis are

shown in Figure 5.

In addition to the major steps in detecting spheroid-membership

of a nucleus qualitatively (Figure 5), we have simultaneously

quantitatively detected the membership. For this, we developed

and deployed Algorithm 3 (Figure 6). To perform the candidate-

check in Algorithm 3, we employed the bounder-box approach to

detect whether object Y is possibly inside object X or not (Figure 7).

2.3 Detection and Measurement of Intensities of
Membrane and Cytoplasm Areas

The information available through Ch-2 is expected to have

various intensity levels (signals) around the membrane and

cytoplasmic area of the spheroid. Relevant areas were segmented

by generating the boundary-mask of the spheroid in the previous

steps (section 2.1). This enabled us to reliably read the lower

intensity of the non-background area and to avoid the noisy areas.

An objective was to analyse cells based not only on the average

intensities but also on the distribution of given proteins.

Ascertaining whether the expression of proteins reside primarily

at the cell-cell junctions, or in the cytoplasm, will help confirm

Figure 1. Tabbed-pane for defining parameters. One of the five tabbed sections related to the ‘mask-generation’ is visible.
doi:10.1371/journal.pone.0079865.g001

Figure 2. Pseudo code of Algorithm 1. Major steps of the spheroid
detection algorithm. Variables with sample values are placed within the
angle brackets (i.e. , … .).
doi:10.1371/journal.pone.0079865.g002
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both basal expression levels in cancerous and non-cancerous cells,

and to what extent certain treatments have on protein expression.

The algorithm involved in measuring intensities and classifying

intensity distribution provides 4 possible major combinations

(Figure 8) enabling a degree of freedom to study various patterns of

intensity distribution, especially important for classifying periph-

eral and non-peripheral area. We define the segregation of the

areas in an automated and reproducible fashion in four possible

ways. They are described as:

i) Define fixed width from boundary and area defined
by the boundary-mask. This combination will read the whole

area within the mask and will classify the measured area into two

distinct areas: ‘peripheral-area’ of width x (variable) pixels inside

from the boundary and the remaining non-peripheral area

(Figure 9).

ii) Define fixed width from boundary and the common
area of the mask and the above threshold. These

combinations are similar to the aforementioned option, which is

number-(i), except instead of reading the whole area within the

mask, it will take into account those intensities which are above the

assigned threshold-value. The major steps are shown in Figure 10.

The threshold can be assigned automatically as well as manually

using the dialog shown in Figure 11. It is also possible to check the

effect visually. A similar dialog is available in ImageJ, however the

ImageJ version of the dialog is limited in passing selected

threshold-values to the customised plug-ins of PCaAnalyser. Thus,

we developed a similar but extended dialog (Figure 11) for

PCaAnalyser.

iii) Proportional width from centre of the spheroid
(object) by a factor y (where, 0vyv1) and area defined
by the boundary-mask. Unlike the fixed width, this option first

determines the centre of the object and then applies propor-

tional width to classify a pixel based on whether it belongs to

peripheral or to the non- peripheral area. The process is shown

in Figure 12A.

The peripheral versus non-peripheral function (Figure. 12A)

was particularly useful for investigating the Chemokine receptor,

CXCR4, expression and distribution in response to ligand

treatment. Our objective was to evaluate whether there were

differences in expression in both the absence and presence of its

ligand, SDF-1a. In the absence of SDF1a, the CXCR4 protein

was only expressed on the peripheral regions of the spheroids.

After treatment, however, the CXCR4 expression changes and

migrates further into the middle of the spheroid and was found

within the non-peripheral regions. Therefore, this analysis allows

validation as to whether or not a protein is functional in the 3D

cell culture model system, or not.

iv) Proportional width from centre of the spheroid
(object) by a factor y (where, 0vyv1) and area defined
by the boundary-mask and the threshold-mask. This is

the same as the immediate previous combination (number-(iii)), with

the exception that the read-map excludes those pixels that are

below the (upper) value of the assigned threshold-mask.

Visually, the image depicted in Figure 12A could possibly be

viewed as two separate spheroids in close proximity to one

another. However, it is known that over time in culture, spheroids

can merge and fuse together to form larger masses [3]. It was

therefore imperative to formulate a process that could verify a

single vs fused object. We accomplished this via a feature called

‘‘false clump-breaking’’ candidate. This feature helps the PCaA-

nalyser software to determine whether spheroids are truly

connected or not. The false clump-breaking is difficult to detect

visually, however the PCaAnalyser solves this problem by

amplifying the signal to more clearly define the situation where

low signal exists (i.e., false clump-breaking candidate) versus no

signal exists (i.e., true clump-breaking candidate). The principle is

that the amplification of ‘no signal’ will remain zero. Figure 12B

represents such a situation where the software identifies it as a false

clump-breaking candidate whereas visually it appears to be a true

candidate.

3. Analysis of PCa DU145 and morphometrically diverse
PC3 cells

Using immuno-cytochemistry procedures, we analysed the

expression patterns of integrin a6 and b1 subunits on DU145

cells. Furthermore, we analysed the intensity of b1 subunits on

PC3 cell-lines in the presence and absence of DHT in 3D cultures.

Twenty-four wells of a 96-well-plate were analysed by evaluating

two channels with 20 images captured per channel. Thus, over

1000 distinct images were processed for each analysis. Each of

these images contained ,10 detected spheroids and approximate-

ly 10 to 40 nuclei detected per spheroid.

Figure 3. Spheroid detection. The major steps involved in spheroid detection are illustrated.
doi:10.1371/journal.pone.0079865.g003

Figure 4. Pseudo code of Algorithm 2. The major steps required for
the nucleus detection algorithm. Variables with sample values are
placed within the angle brackets (i.e. , ….).
doi:10.1371/journal.pone.0079865.g004
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In addition, for proof of principle, we undertook analysis of a

metastatic BCa cell line MDA-MB-231 taken with a 610

objective. Here we analysed the expression of the integrin b1

subunit in response to treatment with Doxorubicin, a well-known

therapeutic used in a range of cancer treatments.

While processing the images using PCaAnalyser, a comprehen-

sive array of measurement properties and object details were

automatically exported to a database where analytic reports could

then be generated.

The performance of the software was robust, as: (a) it

performed well in a very noisy environment and (b) selection of

the cut-off value defined to enable inclusion of nuclei was

simplified.

The software can be operated in single mode for a single file

representing a single well, or alternatively in batch mode

through the simple interface outlined in figure 13 (Figure 13).

Each image file can be of a single image or a stack of images,

where each single image represents a single sub-layer within a

well.

All raw data is stored in an Access database. Generated

reports are provided in comma-separated-value (CSV) as well as in

jasper file formats. The reports are also arranged in tabular

format with the row-column being the same as the experimen-

tal-plates. In addition, files are named according to their well

location.

3. 1 Software Processing
The implicit operations of the software are summarised in

Algorithm 4 and shown in Figure 14. The explicit operations of

the software, along with software-architecture, are depicted in

Figure 15.

The software, PCaAnalyser, is a plug-in for ImageJ and has

been developed in java using Neatbean (Ver. 6.8) and Microsoft

Visual-J# 2005 editors. The access database has been used for

capturing analysed data, the architectural outline for this is given

in Figure 15.

3.2 Software Output and Quality Assessment
The software can generate two different outputs:

(i) Quantitative: extracted features from the image analysis are

captured in a database. Various levels of report views are

available based on this database.

(ii) Qualitative: output images with various labels, colours and

read-maps are inserted adjacent to input image forming a

stack, which can conveniently allow immediate comparisons

of input versus output images.

Irrespective of resolution acquisition (610 or 620 objective),

once processed, the quality of the software output is evident from

the sample image in Figure 16. We next investigated whether

Figure 5. Nucleus-detection. The critical steps involved in nucleus-detection, in addition to performing the task of superimposing previously
generated corresponding spheroid boundaries.
doi:10.1371/journal.pone.0079865.g005

Figure 6. Pseudo code of Algorithm 3. The major steps in detecting spheroid-membership of a nucleus are shown.
doi:10.1371/journal.pone.0079865.g006
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PCaAnalyser could adequately evaluate the intensity of b1 integrin

expression using morphometrically diverse metastatic PC3 cells in

the absence or presence of DHT (Figure 17). Similar to the results

obtained for DU145 cells, when processed with PCaAnalyser, both

the nucleus (Figure 17A–B) and b1 expression (Figure 17C–D)

could be detected and quantified in a reliable and reproducible

manner. Utilising a sublayer wise report output, we could

successful quantify the effects of DHT treatment on b1 integrin

expression in PC3 cells. Treatment with 1–10 mM of DHT

resulted in a significant dose dependent decrease in the general

intensity of b1 integrin (Figure 17E). These results suggest that

non-genomic AR can mediate b1 integrin expression in this

metastatic PCa cell line.

3.3 Output Reporting
For output reporting, the CSV (Comma-separated values)

format (see Figure 18), as well as jasper report, have been used.

Java-scripting and SQL-scripting were also utilised in report

generation. The reasons for using the CSV report format are: (i)

CSV can be conveniently used to interface between modules, i.e.

convenient for future extensions, (ii) Jasper-report could generate

CSV, but it would need 2 passes and often the column-alignments

were incorrect when converted to CSV format from jasper-report,

(iii) the CSV file would allow integration with our in-house built

general purpose data-analysis software and finally (iv) as an excel

application, CSV allows users to conveniently apply statistical

functions as required.

On the other hand, incorporation of jasper-report enabled

immediate amalgamation of qualitative (i.e., image) as well as

quantitative data, for final reports. Both the report formats provide

various levels of analysis and include: (i) detailed analysis reporting

of any single image (from a single sub-layer within a well) and (ii)

the corresponding summary report of (i), (iii) summary on a file,

containing all the sub-layers within a well and (iv) micro-titre plate

formatted summary report based on a single property of the

experimental quest.

The PCaAnalyser tool is freely available and includes a user’s

guide, generated codes and sample images [43].

Discussions and Conclusions

We present the first software that is capable of analysing 3D cell

spheroid data in an automated and reliable fashion, and is readily

accessible. The software development has been described for

metastatic PCa DU145 (see Figure 16) and morphometrically

diverse PC3 cells (see Figure 17). The expression patterns

concerning protein constituents known to be involved in regulating

the progression of PCa have been analysed, and include the

integrin a6-b1 sub-unit and chemokine receptor, CXCR4,

expression. We have also shown that this software can be extended

and applied to other 3D cell model systems, as evidenced by the

Figure 7. Candidate-checking. To perform the candidate-check in Algorithm 3 to primarily detect whether object Y is possibly inside object X or
not, using the bounder-box approach. In the case of (A), object Y is inside object X, therefore, at least one corner of the bounder-box of Y must be
inside of the bounder-box of X. However, even if any of the corners of the bounder-box of Y is inside X’s, Y may not actually be inside of X, such as,
case (B).
doi:10.1371/journal.pone.0079865.g007

Figure 8. Involved parameter. Measuring intensities and classification of the intensity distribution.
doi:10.1371/journal.pone.0079865.g008
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successful analysis of the BCa cell-line MDA-MB-231 (see

Figure 16).

1. Expression patterns of Integrins and CXCR4 in PCa

DU145 and PC3 cells. Consistent with a highly invasive

phenotype, we have shown that in 3D DU145 cells in 3D express

functional CXCR4 and are similar to metastatic prostate cell

biopsies, with high levels linked to more aggressive phenotypes and

the extent of metastasis [34,35]. CXCR4 expression was found

primarily on the outer membrane of DU145 spheroids, while

treatment with SDF-1a resulted in a re-distribution of CXCR4 to

the centre of the spheroid, consistent with active ligand-induced

recycling.

Similarly, we have shown both PC3 and DU145 cell-lines

expressed membrane bound integrin b1 which is similar to

metastatic prostate cell biopsies, with high levels linked to more

aggressive phenotypes [34,35]. Recent studies have demonstrated

that the b1 integrin subunit controls the growth and invasion of

prostate tumour cells in 3D culture conditions [36,37] and

knockout strategies in transgenic mouse tumour models have

shown that integrins control primary tumour growth and dictate

the site of metastatic spread [38]. Interestingly, these influences are

largely masked by growth of tumour cells in the standard

environment of 2D cell culture due to the lack of cell-cell and

cell-ECM complexity [36].

Previously, we have demonstrated that PC3 cells cultured in 3D

re-express non-transcriptionally active AR [4]. Here we present

data that suggests that non-genomic AR can mediate Beta b1

integrin expression in this metastatic cell line. These results are

consistent with the findings of others where non-genomic effects of

androgens influence the activation of kinase cascades and

cytoskeletal rearrangement [22–24]. Functionally these results

correspond with the pathophysiological progression of PCa. At

onset, AR is upregulated in the prostate which is known to alter a

range of protein constituents including integrins [39]. Down

regulation of b1 integrin have been associated with increased

dissemination of tumour cells from the primary epithelium [39].

These results have far reaching implications regarding late stage

therapeutics and further studies are now needed to evaluate

additional non-genomic effects of AR regulation in PCa progres-

sion.

The ImageJ based PCaAnalyser provides many degrees of

freedom that has enabled us to address the challenges set out in

section 2.3. As can be seen from the quality of the input image

(Figure 16A) and corresponding output image (Figure 16B), the

detection of the spheroid boundary, as well as the boundary of the

nucleus, was successfully analysed from the same channel. The

corresponding intensity-read was successfully performed within a

noisy environment, as can be observed from input (Figure 16C)

and output (Figure 16D). The same is also true for Figure 16E–H

and for Figure 17A–D applied to the BCa MDA-MB-231 and PCa

PC3 cell-lines, respectively.

The flexibility to include, or exclude, the nucleus that is visually

blurred can be manipulated by adjusting the parameters of

algorithm 2 (Figure 4). We basically sharpened the image to

include the nuclei that are not in the same depth. This could also

have been done using the ‘shrink and grow’ based approach to

make the blurred images sharper. Further, those nuclei that are at

the side of the image of the 3D spheroid have an angulated view,

compared to the nuclei which are relatively central within the

image. This effect causes uneven illumination within the same

spheroid. As this is a physical property attributed to the 3D

environment of the spheroid itself, even if the nuclei are co-planar,

the angulated nucleus emits light less perpendicularly towards the

imaging CCD camera, and thus the angulated nuclei are observed

as being darker. As a future step, the ‘affine region detection’ based

approach [40] can be considered to further improve the processing

of such cases.

Figure 9. Read-map generation. Major steps involved in generating
the classified read-map.
doi:10.1371/journal.pone.0079865.g009

Figure 10. Advanced read-map generation. The major steps involved in generating the classified read-map via boundary-mask and threshold-
mask. Images depict a DU145 spheroid grown in a 3D matrix following immuno-labelling for the a6 integrin subunit. Panels in this figure refer to the
intensity of the antibody and distribution of the a6 integrin subunit. Labelling was present primarily in the peripheral region of the spheroid
structure.
doi:10.1371/journal.pone.0079865.g010

Figure 11. Dialog to set the threshold values visually.
doi:10.1371/journal.pone.0079865.g011
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Figure 12. Peripheral versus non-peripheral and clump-breaking defined functions. A) Steps involved in processing read-map
classifications with options set for proportional width and boundary-mask. Images depict a DU145 spheroid in a 3D matrix following immuno-
labelling for b1 integrin subunit. Panels in this figure refer to the intensity of the antibody and distribution of the b1 integrin subunit. The distribution
of b1 remained primarily around the outer membrane/peripheral region of the spheroid. B) Original image of DU145 spheroid B’) Application of
PCaAnalyser utilising the clump-breaking functions, after magnifying the signal the software found non-zero signals in between the two spheroids
like masses and detected it as a single spheroid.
doi:10.1371/journal.pone.0079865.g012

Figure 13. The main interface of PCaAnalyser. PCaAnalyser is offering both single mode and batch mode of operations and offering at least 3
different levels of reporting.
doi:10.1371/journal.pone.0079865.g013
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2. Efficiency of Algorithm 3
The computation of the spheroid-membership-check of the

nucleus are computationally time intensive. To make the

membership checking faster using Algorithm 3 (Figure 6), we

initially applied bounded-box based candidate checking. Here, we

compute the time complexity to measure how much we have

improved the speed of analysis. Assume in a single image, we have,

m = numbers of spheroid on an average and n = numbers of

nucleus on an average, x = is the number of pixels on an average

forming the boundary of a nucleus. Therefore, using algorithm 3

without bounded-box checking steps, we can estimate the average

operations as:

m

2
|n|

x

2
~

mnx

4
ð1Þ

where, to get a membership it is assumed that we have to traverse

half of the spheroid list (i.e., m
2
) on an average and half of the

boundary pixel (i.e., x
2
) of the nucleus on average. Obviously, the

time complexity would be at least O(n2). Now, using the algorithm

#3, as it is, with the bounded-box checking option on, the rate of

true membership found from bounded-box is assumed to be y%.

The involved operations can be estimated as:

4

2
|

m

2
|n

� �
z y%|

x

2
|n|1

� �

z 1{y%ð Þ| x

2
|n|
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At the beginning of Equation (2), we are considering 2 corner-

points checking on an average out of 4 corner-points of a

bounded-box. For y%, practically we found that practically it tends

to 100% and thus the 3rd part of Equation (2) is eliminated.

Therefore, Equation (2) can be expressed simply as (3):

mnð Þz nx

2

� �
ð3Þ

Thus, the speed-up due to having the candidate-check can be

estimated using Equation (4), formed by Equation (1) over

Equation (3):

Figure 14. Pseudo code of Algorithm 4. Central functions of PCaAnalyser, showing the major steps: calling algorithms 1–3 and integrating the
database.
doi:10.1371/journal.pone.0079865.g014

Figure 15. Operational overview of PCaAnalyser software. Paradigm and flow-diagram of PCaAnalyser, depicting the integration and
operation sequences of inputs, central-operations, data-processing, output-generation and output-formats.
doi:10.1371/journal.pone.0079865.g015
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mx

2(2mzx)
ð4Þ

From our experiments, using average typical values of m = 10 and

x = 100, using Equation (4), the algorithm was found to be 4.16

times faster due to the candidate-check step.

3. Adaptation to the Parallel Execution
ImageJ based software was found to be reasonably fast (16 times

faster on average) when compared to the time taken for the same

number of operations performed by the software associated with

the Opera, a high throughput confocal image which was used for

image acquisition. Based on the anticipated high volume of

screening to be undertaken, the software architecture (Figure 15)

was built to perform in a distributed and parallel manner.

The paradigm of PCaAnalyser supports multiple instances

running on the same computer sourcing data from a single

database. For example, images are stored in a separate folder

based on the different source plates, and different instances of

PCaAnalyser can be used to analyse the data from individual folders

simultaneously. To apply the idea, if previous data are to be deleted,

only the first instance will need to turn on the delete option (i.e. the

option, ‘Delete previous data (if exists)’ in Figure 13). The separate

instances of the PCaAnalyser can be executed to process separate

folders containing datasets. Alternatively, an outer loop can be

added within the code to process more than one folder as required,

which would be a relatively simple modification.

Within a network environment having multiple computers, the

processing capacity can be easily scaled-up by having the instances

running in parallel on every computer. However, the database can

either be uniquely pointed to a single place or otherwise different

databases can be merged simply by copying and pasting data to

integrate within one master database.

The option for further enhancing the processing capacities can

be made [41] by involving GPU [42] which are now-a-days more

commonly available with a powerful graphics card, such as AMD

Radeon or NVIDIA GeForce.

Figure 16. Overall outcome from the application of PCaAnalyser software. Panels show DU145 and MDA-MB-231 spheroids grown in a 3D
matrix following immuno-staining for dapi (nucleus; A, E), Beta 1 integrin (C) and doxorubicin (G). (A) Original image of DU145 spheroid and nucleus.
(B) Detected spheroid and detected nucleus. The spheroids interacting window-boundary has been optionally chosen to be excluded, and in such a
case the corresponding detected nucleus is shown in a different colour (yellow). (C) Original cytoplasm and membrane area image, having noise of
higher intensities as well as quantities. (D) Classified read-areas for studying intensities are highlighted and the distinct spheroids are optionally
labelled. The generated mask from (B) helps avoid noise effectively and a fixed width from peripheral-boundary has been selected in this case to
generate the classification. (E–H) MDA-MB-231 spheroids treated with doxorubicin and imaged with a 610 objective. (E) Original image of MDA-MB-
231 spheroid and nucleus. (F) Detected spheroid and detected nucleus (G) Original image of doxorubicin staining. (H) Classified read-areas for
studying intensities.
doi:10.1371/journal.pone.0079865.g016
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4. Classification Functions for Intensity Read
Four possible major combinations for the classified reading of

the intensity of the spheroid have been provided in section 2.4.3.

The peripheral regions from non-peripheral regions were inde-

pendently defined to separate events (proteins) that may be

localised to either/or both of these regions. The ability to

distinguish between the two locations is important as this allows

us to also measure functional translocation events.

Also, for the relatively elongated or ellipsoid cases, we defined a

sophisticated function to segregate more areas at the two elongated

ends to study whether increasing integrin accumulation in this

phase was associated with accelerated PCa progression or not.

5. Conclusions
Finally, we report that PCaAnalyser is an effective, and

extendable analytical tool for high throughput analysis of images

acquired from cells grown in a 3D matrix. We have shown that the

software can reproducibly analyse immuno-staining of different

markers known to be involved in cancer progression including

CXCR4, a6 and b1 integrin subunits. Moreover, we have

reported the effects of such protein expression in response to both

ligand and drug treatment and at acquisitions of varying resolution

acquisition (610 and 620 objectives) and clarity. Specifically,

PCaAnalyser has been demonstrated to confirm the impact of

treatments and their effects on the distribution and intensity of key

biomarkers and proteins of interest.
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Figure 17. Nucleus and beta 1 integrin detection in morphometrically diverse PC3 cells. Panels show PC3 spheroids grown in a 3D matrix
following immuno-staining for dapi (nucleus; A) and Beta 1 integrin (C). (A) Original image of PC3 spheroid and nucleus. (B) Detected spheroid and
detected nucleus. (C) Original cytoplasm and membrane area image. (D) Classified read-areas for studying intensities. (E) Quantitation of Beta 1
intensities in PC3 cells treated with DHT.
doi:10.1371/journal.pone.0079865.g017

Figure 18. Sample report. Sub-layer-wise summary ,.csv report.
doi:10.1371/journal.pone.0079865.g018
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