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ABSTRACT

South East Queensland has experienced a series of recent catastrophic
climatic events. From December 2010 to January 2011 and in February 2022, heavy
rains caused flooding impacting over 2.5 million people and causing approximately 33
deaths. These events challenged the assumption of stationary conditions as no longer
viable. The persistent use of this baseline assumption could potentially lead to
misestimations in forecasting future floods. The severity and frequency of extremes
are escalating; thus, it is necessary to evaluate the impacts of land cover changes and
urbanisation, along with climate change. A framework of the trend analysis methods
to analyse temporal patterns, spatial analysis techniques utilising the Google Earth
Engine (GEE), Generalised Extreme Value (GEV) method, and land cover patterns
classification including Random Forest (RF) and Support Vector Machine (SVM) can
be useful for hydrometeorological variables extreme events analysis. This research
highlights the importance of using spatiotemporal techniques and trend analysis by
underscoring the changing frequency and severity of extreme events analysis. The
aim of this research is to evaluate extreme events under non-stationary conditions,
where the location parameter has a linear function with time. For this study, a unique
framework consisting of the hydrological model in line with the Process-informed Non-
Stationary Extreme Value Analysis (ProNEVA) GEV model and the ensemble of
General Circulation Models (GCMs), mapping land cover patterns using classification
methods within the GEE platform, were employed to comprehensively analyse the
impacts of climate variability and land cover changes on extreme hydrological events.
Runoff was projected under two scenarios for eight GCMs and by incorporating the
percentage of each land cover into the hydrological model for two horizons, (2020-
2065 and 2066-2085). The outcomes of this study suggest that neglecting non-
stationary assumptions of flood frequency can lead to underestimating the magnitude
of flooding. This, in turn, can lead to greater and increased risks to infrastructure
planning and design. The framework of this research paper is adaptable to various
geographical regions for the purposes of estimating extreme conditions; thereby
offering valuable insights for infrastructure design, planning, risk assessment, and the
sustainable management of future water resources in the context of long-term water

management plans.
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CHAPTER 1: INTRODUCTION

1.1. Background to research

The Intergovernmental Panel on Climate Change Assessment Report (IPCC)
(IPCC, 2007, 2014) indicates that climate change will be accompanied by a rise in the
frequency, severity and duration of extreme natural phenomena such as excessive
precipitation and extreme air temperature in the twenty-first century. The trends
suggest that the frequency and intensity of flood events are likely to rise globally due
to climate and land-use/cover changes attributed largely to urbanisation and
anthropogenic activities (IPCC, 2014; Wang, et al., 2020).

It is commonly known that there is a great deal of uncertainty in many worldwide
areas' climate estimates and scenarios, particularly when it comes to severe
occurrences like excessive precipitation (Bloschl & Montanari, 2010), and extreme
streamflow. It is imperative to conduct more research on hydrological extremes,
particularly in the areas where large climate change effects are known to exist
(Salas et al.,, 2018). The majority of research for Australia specifically addresses
climate change and suggests that changes in annual temperature maxima have
consequences for non-stationary flood frequency analysis (Wasko et al., 2023).

Southeast Queensland, Australia, faces a myriad of challenges stemming from
the increasing frequency and intensity of extreme climate events, exacerbated by the
ongoing effects of climate change. The region's vulnerability to such events, including
floods from December 2010, to January 2011 and in February 2022 and changes in
streamflow patterns, poses significant environmental risks. The interplay between land
cover changes, driven by urbanisation and land cover practices, further complicates
the dynamics of these hydrological processes. Despite advancements in climate
modelling and hydrological analysis, there remains a critical gap in our understanding
of the non-stationary nature of extreme climate events and their implications for future
streamflow regimes in this region. This research seeks to address this gap by
employing a novel non-stationary approach, which incorporates the temporal evolution
of flood and streamflow characteristics through the utilisation of a linear function for
the location parameter. Neglecting the non-stationary assumption in flood frequency
can lead to underestimating the amounts, which can, in turn, lead to more risks for the

related hydraulic structures.



Informed by the observations above, this study aims to offer valuable
perspectives for the design of infrastructure, planning, risk evaluation, and the
sustainable administration of forthcoming water resources within the framework of
enduring water management strategies.

The case research location, the Lockyer Catchment, is situated in Southeast
Queensland (SEQ), as Figure 1 shows. It is the primary watercourse that flows into
the Brisbane River from the east (Sarker et al., 2008). Within the bounds of the Lockyer
Valley Regional Council, Toowoomba Regional Council, Somerset Regional Council,
and Ipswich Regional Council local governments, the catchment lies west of Brisbane
and east of Toowoomba (Wetlandinfo, 2022). The importance of this catchment was
recognised by the appropriate infrastructure operators and decision-makers, including
the Queensland Department of Environment and Science and Seqwater (Kiem et al.,
2020). The average annual rainfall for the catchment is between 1000 and 2012 mm,
and it extends over 3000 km? (Vance et al., 2015).

However, there are notable variations in rainfall over time, leading to rivers that
remain dry for the majority of the year. Some of Australia's richest agricultural regions,
including lucrative vegetable farming and grazing, are included in the catchment
(Sarker et al., 2008). Significant rainfall is observed in both the northern and southern
parts of the Lockyer Catchment. However, during recent droughts in Australia, most
of the catchments experienced moderate to low precipitation levels (Lockyer Creek
wiki 2022). Collectively, they drain around 3000 km? of land altogether, or one-fourth
of the watershed of the Brisbane River. With a population of more than 35,000, the
Lockyer Catchment is significant from an economic, environmental, and social
standpoint.

In recent decades, this region has had several unusual climatic events, such as
the above-average rainfall that occurred between 1988 and 1989 and between 2000
and 2008 (Van Dijk et al., 2013), in which the region experienced an extensive and
severe drought that persisted over an extended period. In 2008, measures were put
in place to alleviate the effects of drought. Nonetheless, the area remains subject to
repetitive patterns of flood and drought emergencies, occasionally affecting the entire
nation for prolonged periods. Considering that prior research has demonstrated that
the stationarity assumption is no longer viable, the frequency of flood occurrences,

such as the one in 2022, may be misestimated under this assumption. Furthermore, it



has been noted that there is a non-stationary connection between rainfall and runoff
in the Lockyer Catchment (Cui et al., 2018; Armstrong et al., 2020).

Thus, to improve the design and supervision of hydraulic structures that
minimise future losses in terms of human and financial, it is imperative to create unique
approaches to estimate non-stationary flood extremes, rainfall extremes,
evapotranspiration extremes, and water storage deficits.
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Figure 1. 1  The study area’s geographical position in Australia (left) and hydro-
meteorological stations are taken into consideration throughout the catchment (right).

In the past, the assumption of stationarity was introduced to make complex
statistics easier to understand. Under the assumption of a stationary climate, the
conditions of the return level and return duration provide crucial information for
planning, making decisions, and evaluating the effects of climatic events.

Typically, this was considered a reasonable assumption because our historical
data records were limited, resulting in minimal changes observed over a short time
period. Moreover, earlier scholars lacked the computational resources available today
and modern researchers have, leading them to rely on simplified assumptions for
practicality.

The risks associated with repeatedly presuming stationarity are mostly related

to the availability of longer data sets and climate shifts. Static return levels, which



assume that the frequency of extremes does not change over time, have been the
foundation of infrastructure design methodologies for a long time (Cheng et al., 2014).

Conversely, the frequency of extreme events has been undergoing alterations
and is anticipated to persist in changing over time (IPCC, 2007), recent research has
revealed that hydrological data in certain areas exhibit non-stationary characteristics,
manifesting in either increasing, decreasing, or mixed patterns. While hydrological
parameters were traditionally viewed as stationary, this assumption may no longer
hold true due to the influences of climate change and human activities, leading to
non-stationary behaviour (Salas et al., 2018).

Given that many extreme events include spatial processes, one area of ongoing
research on framework development has been the challenge of including spatial
information inside extreme value analysis methodologies (Cooley, 2009; Love et al.,
2022). Therefore, models that can take into consideration non-stationary climatic and
hydrologic extremes are needed (Cooley, 2013; Salas & Obeysekera, 2014).

Southeast Queensland (SEQ) stands out as among Australia’s regions most
susceptible to flooding (Abbs et al., 2007). Due to its varied range of climatic regimes
and status as the driest inhabited continent in the world, Australia is particularly
sensitive to the extreme variations in climate that occur there year over year
(Head et al., 2014). Projected changes in climate are anticipated to have noticeable
effects on the frequency of hydrological elements such as runoff, rainfall, and
evapotranspiration (ET) across various regions (Al-Safi & Sarukkalige, 2017,
Ramezani et al., 2023). Distinguishing between the impacts of climate change and
land-use changes on observed hydrological shifts is often challenging due to their
concurrent occurrence in most regions, both climate change and land-use alterations
(Lamichhane & Shakya, 2019; Ramezani et al., 2023). As such, a framework that
incorporates land cover patterns and the ensemble of GCMs can be helpful.

Extreme hydrological events are seen to be significantly influenced by climate
change (Meaurio et al., 2017) and the land cover changes caused by human activities.
It is widely acknowledged that climate projections and scenarios, especially
concerning extreme events including extreme precipitation (Bloschl & Montanari,
2010), and extreme streamflow exhibit significant uncertainty across many global
regions. Research on hydrological extremes is critically needed, especially for the
locations where the consequences of climate change are known to be significant
(Salas et al., 2018).



Land use/cover changes (LUCC) have been identified as another influential
factor for changing hydrological regimes (Wang et al., 2020). It should be highlighted
that the majority of research on land cover is based on historical land-use statistics
(Burn et al., 2010) and has given less attention to the combined effects of land cover
change and climate change. Therefore, it is important to estimate future land-use
scenarios and determine their impacts on extreme hydrological events. In the realm of
land cover management and planning, two machine learning algorithm models are
employed in Google Earth Engine (GEE): Random Forest (RF) (Gislason et al., 2006)
and Support Vector Machine (SVM) (Gualtieri & Cromp, 1999).

Furthermore, the Generalised Extreme Value (GEV) distributions and the Log
Pearson Type 3 (LP3) are commonly employed in the frequency analysis of
hydroclimatic extremes (Ragno et al., 2019). In hydrology and climate research, these
statistical distributions are commonly employed to examine the frequency and intensity
of severe occurrences. The GEV distribution was utilised in earlier studies to produce
Temperature Duration Frequency (TDF) curves (Ouarda & Charron, 2018; Mazdiyasni
et al., 2019). Furthermore, it has been suggested by the Australian Rainfall and Runoff
(ARR) guideline (Ball et al., 2019) that the GEV distribution be used to determine
design floods and rainfalls.

A Bayesian inference framework that supports both non-stationary and
stationary estimations was introduced by (Cheng & AghaKouchak). The concept of
non-stationarity is useful in hydroclimatology to analyse extremes since many natural
phenomena occur in non-stationary environments. According to their research, the
Non-stationary Extreme Value Analysis (NEVA) model (Cheng et al., 2014) provides
an efficient way to compute extreme return levels and variables. The economy,
infrastructure, agriculture, natural ecosystems, and public health are all negatively
impacted by the persistence of hydroclimatic extremes (Huth et al., 2000; Rainham &
Smoyer-Tomic, 2003; Khaliq et al., 2005; Jones et al., 2018; Ouarda & Charron, 2018).
Process-informed Non-stationary Extreme Value Analysis (ProNEVA) software can be
used to undertake a frequency analysis of extremes and examine changes in the
extremes' return period to identify design extremes at various recurrence intervals and
durations. (Ragno et al., 2019). This model can integrate the changing extremes into

intensity and frequency analysis (Cheng & AghaKouchak, 2014).



1.2. Research aim and objectives

This research aims to assess the hydroclimatic variabilities based on stationary
and non-stationary assumptions in the Lockyer Catchment in Southeast Queensland
by combining the effects of land cover and climate change, and spatial distribution
analysis. The geeSEBAL method, which uses meteorological analysis data and
Landsat images (Gorelick et al., 2017) to estimate evapotranspiration at regional sizes,
was developed utilising GEE infrastructure. The SEBAL algorithm was included in
GEE using the JavaScript APIs. To determine the accuracy of geeSEBAL, the results
of spatiotemporal distribution of potential evapotranspiration, and rainfall from global
climate datasets in comparison with the results of the same variables derived from
ground-based observation.

Moreover, The spatiotemporal maps of water storage achieved from a lumped
water balance analysis as well as land covers have been evaluated. By developing a
multi-framework for assessing the return levels of extremes in the past and future
hydrological consequences of climate change, the limitation of the assumption of a
stationary climate will be overcome. To the best of my knowledge according to the
literature review thus far, there hasn’t been a multi-framework with non-stationary
assumptions for past and future scenarios for the Lockyer Catchment, and only a few
scholars globally have employed this approach. This study has focused on
determining the physical system in terms of cause and effect by incorporating land
cover projections and GEV distribution. Furthermore, this shows how ignoring the non-
stationary assumption in extreme events analysis may lead to inaccurate estimations
of design floods (return levels) which will have detrimental effects on infrastructure

planning and design.



1)

2)

3)

4)

1)

2)

3)

The Research Objectives are to:
Assess and map the spatiotemporal distribution and the overall trends of
hydro-climatological data using spatial distribution in the GEE and their impacts on

changes in surface water availability.

Develop a framework to assess non-stationary conditions in extreme
hydrometeorological events such as extreme rainfall, evapotranspiration, and
water storage deficit. To evaluate the impacts of land cover changes and

urbanisation by applying SVM and RF classification in GEE and climate change.

Perform the hydrological simulations for each landcover classification separately
under ensembles of General Circulation Models (GCMs) under Representative
Concentration Pathways (RCPs) and landcover changes in the baseline, and the

near and far future horizons.

Analyse the intensity and frequency of projected streamflow extreme events,
rainfall extremes, evapotranspiration extremes and water storage deficit extremes
under both stationary and non-stationary conditions using the GEV model for the

estimation of different return levels.

The key Research Questions investigated in this thesis are:
Does the spatial distribution of the remotely sensed dataset can substitute ground-
based observations in the sparsely gauged catchments? Does the spatial
distribution of global climate datasets agree significantly well with ground-based

observations?

How can the frequency, intensity, and duration of extreme hydrometeorological
events in the catchment be determined? How can an evaluation of the
effectiveness of landcover classification methods to generate future landcover be

conducted?

How do hydrological simulations vary across different land cover classifications
when subjected to ensembles of GCMs under different climate and landcover
scenarios, considering both baseline conditions and projected land cover changes

for near and far future horizons?



4) How can the frequency, intensity, and duration of extreme climate events (flood
extremes) in the catchment be determined? Can the limitation of climatic models

to evaluate extremes be eliminated using the GEV model?

Thus, in this research, the streamflow is considered based on stationary and
non-stationary assumptions. This study assesses the streamflow characteristics in the
Lockyer Catchment of Southeast Queensland, Australia, to establish return levels. The
study aims to develop a methodology and identify the combined effects of land cover
and climate change on extreme events. So, this research presents new insight into
extreme events analysis such as flood extremes to explore the methodology that
integrates the hydrological model with ensembles of GCMs under RCPs and projected
landcover scenarios along with the GEV model to improve extremes predictions under
the instantaneous impact of climate change and human activities. The results of the
study will help in understanding the spatial variation of the streamflow extreme events
at the catchment scale. The investigation of adaptation techniques to handle probable
future extremes will be assisted by this new framework for water planners and
decision-makers.

The study's findings may help decision-makers better understand extreme
events by taking into account both stationary and non-stationary assumptions. This
will help them choose the right materials for infrastructure development, emergency
response, disaster preparedness, and health care services. This new paradigm will
help water planners and decision-makers investigate adaptation strategies to deal with
likely future extremes.

The outcomes of the study could be useful in understanding the extreme events
by incorporating both stationary and non-stationary assumptions, thereby assisting
decision-makers in making informed decisions for emergency response operations,
disaster preparedness, health care services and the selection of appropriate materials
for infrastructure development. The investigation of adaptation techniques to handle
probable future extremes will be assisted by this new framework for water planners

and decision-makers.



1.3. Thesis structure

Chapter 1 introduced the research conducted in this thesis by initially offering
background on the project’s start and the selection of the Lockyer Creek catchment as
the studied area. It emphasised the significance of non-stationary assumptions for
frequency analysis of return levels of extremes in a changing environment and its
implications for extreme events such as flood extremes in the near and distant future.

The significance of the research was emphasised by this foundational work,
which also served as a guide for developing the study objectives and preliminary
enquiries for this thesis. This chapter outlines the comprehensive methodology
employed to accomplish the objectives of all four research papers.

To further understand the hydroclimatological extremes, Chapter 2 covers
literature on non-stationary extremes by reviewing the probabilistic methods. The
second chapter reviews the examinations of hydrological frequency and intensity. This
review helps determine the proper distribution and methodologies for assessing the
hydroclimatic extremes in this study. Moreover, an ensemble of GCMs under climate
scenarios concepts was incorporated into the extreme analysis. This approach is
undertaken as additional concepts for the extreme analysis of future extremes for
ensuring sustainability in the face of a changing environment.

The original research conducted as a section of this thesis through publication
is presented in Chapters 3 through to Chapter 6. The first research paper in Chapter
3 presents the spatial analysis of hydroclimatic trends in the Doosti dam basin as an
ungagged basin with an area of 55141 km?. The decision to focus on ungagged
catchment calibration in Iran provided a unique opportunity to test the applicability of
one of their methods in sparsely gauged basins. The feasibility of our research is
undertaken in the ungagged basin in the transboundary river basin as the Australian
catchments have records of access to high-quality data.

NEVA model employs the Mann-Kendall trend test, allowing users to choose
their desired level of significance. This test is utilised to detect trends and non-
stationarity in extreme data. To assess the significance of climatic time series trends,
the Mann-Kendall statistical test was conducted. The trend analysis methods with
spatial pattern distribution were validated in the first paper. The Mann-Kendall test was
applied in the second paper by applying the Bayesian approach for estimating GEV
parameters under the non-stationary assumption. In this paper, ETa derived from the

geeSEBAL algorithm and WS from a lump water balance



The second paper presented in Chapter 4, proposed an integrated framework
that combines geeSEBAL, NEVA GEV model and spatial distribution analysis pattern
to return the frequency, intensity and return levels of extreme events including extreme

evapotranspiration events, extreme rainfall events and extreme water storage deficit.
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In the third paper, published here in Chapter 5, it is proposed that an integrated
framework for assessing the past and future hydrological consequences of climate
change be developed. This framework integrates hydrological models, machine
learning method on the GEE platform for landcover changes projection; ProNEVA
model and climate projections under different scenarios based on the Generalised
Extreme Value (GEV) model in stationary and non-stationary conditions (Pakdel et al.,
2023), and explores the impacts of future climate change on the streamflow. The GEV
model and spatial distribution of the second paper show the effectiveness of these
methods in extreme analysis. This chapter investigates the extreme flood events under
land cover changes and RCPs scenarios in the near and far future periods in the
Lockyer Catchment.

The fourth paper, published here in Chapter 6 explored annual maximum
temperature extremes and durations from one to 15 days using GEV distribution under
stationary and non-stationary conditions where the parameters were estimated using
the Monte Carlo Bayesian inference approach across Australia. Extreme temperatures
pose a significant risk to communities, industry and our natural environment. So, these
temperature-duration-frequency (TDF) curves, depicting design temperatures, offer
insight into the fluctuation of extreme temperatures in relation to duration and
recurrence frequencies.

The main conclusions are reviewed and possibilities for further study are
outlined in Chapter 7. Regarding the research articles that were published as part of
this study, the major research issues that were first introduced in Chapter 1 are
thoroughly addressed. Figure 2 depicts the general thesis structure schematically (see

overleaf).
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Understanding the non-stationary extreme events

Figure 1. 2 Thesis structure
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1.4. Research scope and limitations
The scope of this study is as follows::

e The research focuses on the extreme events analysis in the Lockyer Catchment,
Southeast Queensland, with an emphasis on understanding the impacts of climate
change and land cover changes.

e Data that was used contains ground-based measurements, remotely sensed data,
geospatial data and climate data.

e Methodologies were developed for assessing future land cover changes and
simulating hydrological responses under different climate scenarios, with a specific
emphasis on extreme event analysis.

e An evaluation was performed into the effectiveness of non-stationary assumptions
in extreme event analysis and explored the implications for water resource

management and infrastructure development in the region.

This thesis should be interpreted with the following constraints in mind:

e The effectiveness of future land cover projections and hydrological simulations
depends on the accuracy of input data and assumptions made in the modelling
process.

e There are natural constraints that limit the accuracy of future projections including
uncertainties associated with climate projections and scenarios.

¢ Incorporating different landcover into the conceptual hydrological model was

limited to the landcover projections through RF and SVM methods.

1.5. Conclusions

This thesis's first chapter gave a thorough overview of the research background
while emphasising its significance and demonstrating its need. Chapter 1 has given
the research a distinct direction by outlining the goals and objectives of the study.
In Chapter 2, an extensive literature review is presented, focusing on the research
aims and objectives to underscore the specific gap in knowledge that this study aims

to address.
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CHAPTER 2: LITERATURE REVIEW

2.1. Overview

The literature that is relevant to the goals of the research is thoroughly reviewed
in the parts that follow, along with additional information on the gap in the literature
that this study is trying to address. The examined literature explains why this

methodology was chosen for this study.

2.2. Significance of Research Problems

The main research problem addressed in this study is the changing intensity
and frequency of extreme events under non-stationary conditions, considering the
physical system in terms of cause and effect. This necessitates assessing the impacts
of land cover change, urbanisation and climate change. By developing a multi-
framework, the study aims to improve the prediction of extreme events, especially
flood extremes, by taking into account the direct effects of climate change and human
activities. Highlighting the importance of non-stationary conditions is crucial for

understanding and managing these evolving extreme events.

2.3. Stationary and Non-stationary assumptions in hydrology

Stationarity and non-stationarity are fundamental concepts in hydrology that
profoundly influence the understanding of hydrological processes and the accuracy of
predictions. Stationarity refers to the assumption that the statistical properties of
hydrological variables, such as streamflow, remain constant over time. In contrast,
non-stationarity acknowledges that these properties can change due to various
factors, including climate change, landcover alterations, and anthropogenic
interventions. The importance of considering stationarity or non-stationarity lies in their
implications for hydrological modelling, risk assessment, and water resources
management. For example, making assumptions about stationarity when they do not
hold might result in inaccurate forecasts of future hydrological conditions and biased

assessments of exceptional occurrences.
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2.3.1. Stationary assumptions

The conventional methods of developing hydraulic systems that protect against
extremes often focus on risk and return period. They assume that the frequency of
severe events is independently generated and that they originate from a stationary
distribution.

Prior research, as demonstrated by (Pakdel et al., 2023; Pakdel et al., 2024),
suggested that stationarity might simplify complicated statistical analyses. Assuming
a steady climate, it provided important insights into decision-making, planning, and
understanding the impacts of climatic events. However, presuming stationarity is
riskier than ever due to longer data sets and a changing environment. Under the
presumption of a fixed climate, the terms return period duration and return level
provide crucial information for design, decision-making, and evaluation of the
significance of unexpected meteorological and climatic events.

It is considered that the data in a stationary model come from a probability
distribution function with constant parameters. However, the parameters of the
underlying probability distribution function in a non-stationary model vary over time or
in reaction to a specific covariate (Sadegh et al., 2015).

As a result, specialists in water resources have been concentrating more on
evaluating if conventional methods are appropriate under stationary settings or if new
methods are required when non-stationarity is seen. Within the water resources
industry, this topic has attracted attention from project planners, governmental
authorities, research organisations, and academic institutions worldwide. When
developing and evaluating water infrastructure, they are actively looking for novel ways

to take the changing hydrological circumstances into account (Salas et al., 2018).

2.3.2. Non-stationary assumptions

In order to "update” design events based on historical data, basic regression
techniques for modelling changes in the variance, mean, and skewness are examined.
These approaches include mixing such non-stationary moments with different
probability distribution functions (pdf). The fundamental ideas, and techniques, as well
as the best way to choose a design event in light of non-stationarity and future
uncertainty, remain unsettled (Obeysekera & Salas, 2014). In conditions of non-

stationarity, the occurrence frequency of extreme events also fluctuates over time.
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The rising worry about climate change brought on by a rise in greenhouse gas
concentrations in the environment is yet another factor contributing to the growing
emphasis on non-stationarity (IPCC, 2007, 2021).

2.3.3. Stationary and non-stationary assumptions in NEVA & ProNEVA

Non-stationary situations arise because the stationary assumption might not be
valid for changes brought about by human and climate variables. NEVA uses a
Differential Evolution Markov Chain methodology for global optimisation throughout
the parameter field to determine the extreme value in a Bayesian way (Cheng et al.,
2014). EVT offers two basic distributions to describe extremes: the block maxima
approach using the GEV distributions (Morrison & Smith, 2002) or the peaks-over-
threshold method using the GPD (Coles et al., 2001; Moisello, 2007; Durocher et al.,
2019). NEVA normally consists of two parts: 1. The GEV distribution is utilised for
annual maximal evaluation or block maxima. 2. The GPD is employed in the peak-
over-threshold (POT) technique to analyse extremes above a particular limit.

ProNEVA allows for non-stationary research using user-defined variables,
which can be time or a physical variable. The capacity to include physical constraints
in a statistical model is the advantage of performing stationary assessments with
covariates connected to the physical component (Ragno et al., 2019).

2.4. Applying machine learning for the classification and projection of
landcover changes

The Landsat satellite images (from TM, ETM+ and OLI 1&2 sensors), and ESA
global land cover dataset were accessed and used through GEE (Pakdel et al., 2022)
for conducting the classifications and modelling of changes in land cover and urban
growth. Geospatial datasets of road networks, population density, and Hydrologically
Enforced Digital Elevation Model (DEM-H) product with 30m spatial resolution
(Mission, 2013) datasets were used as supplementary data inputs during landcover
projection analysis. As the distance from roads and population density maps were
originally in vector format, both maps were first converted into the raster format and
resampled to the 30 m spatial resolution and used for the projection of landcover

changes.
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SVM was one of the most reliable and widely applied supervised
non-parametric statistical machine learning techniques (Cortes & Vapnik, 1995;
Esmaeili et al., 2023). To discriminate between various categories, the SVM method
translates the training data into two-dimensional space and fits the best hyperplane.
The kernel functions, which are non-linear mapping functions, are used to define the
optimal hyperplane that divides the classes. The SVM module (Pal & Mather, 2005) is
employed for training and classification, utilising a radial basis function (RBF) kernel.
Moreover, a radial basis function is characterised by its computational speed and
straightforward implementation, involving the tuning of two parameters. These
parameters include cost 'sigma(C)," a substantial value used to fine-tune the error
associated with misclassifying instances in the training dataset, and 'gamma (y),'
which represents the kernel width.

A non-parametric machine learning method RF (Gislason et al., 2006) was
created based on the idea of a learning strategy. To create a single classification, RF
combines many tree-based classifiers into an ensemble of decision trees, where each
tree provides a vote to choose which class should be assigned to the input data (Briem
et al., 2002; Pal & Mather, 2005; Xie & Niculescu, 2021). To project the landcover
changes, first, the main land cover types were classified into six classes and following
ESA global landcover classification (Zanaga et al., 2022) discriminated from other
features in Landsat images for the years 2000, 2010 and 2020 using two supervised
classification models including SVM and RF. The Image collection of Landsat images
was called for the years 2000, 2010 and 2020 in GEE, separately. The code that was
developed in the GEE, was deployed to enable the user to perform the classification
using both SVM and RF approaches as two main machine learning models. The user
can easily switch between SVM and RF and all statisical indices are produced after
running the code.

2.5. Hydrologic modelling

Choosing an appropriate hydrological modelling platform is crucial since
incorporating climate projections and scenarios in simulation modelling involves
intricate, data-intensive, and perhaps lengthy computations. To analyse the impacts
of climate change on runoff at various sizes, ranging from small locations to huge

geographic areas, hydrological models have been widely implemented.
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The study found that when subjected to the same climate change scenario,
other hydrological models that provide acceptable findings for an observable baseline
period may behave differently (Gosling & Arnell, 2011; Haddeland et al., 2011).

Moreover, a similar study, by integrating 3 GCMs and different large-scale
hydrological models (GHMs) declared that the results of several hydrological models
should be used in estimations of climate change impacts as the uncertainty for
hydrological change dependant largely on the selection of the hydrological model
(Hagemann et al., 2013). The concept of selecting an appropriate hydrological model
has been proven by Jahandideh-Tehrani et al. (2019) that in the Australian region,
lumped conceptual hydrological models (Petheram et al., 2012) such as AWBM well-
suited to use for runoff simulation. AWBM is mostly made up of three basic surface
storage configurations.

The depths of these storage tanks are equal to the C1, C2, and C3
(three surface moisture stores) parameters to create the coefficient of runoff
simulation. For each time step, the water balance of each partial region is determined
(Esmaeili-Gisavandani et al., 2021). As demonstrated by (Ramezani et al., 2023), in
this study, runoff from impermeable surfaces was taken into account by recoding and
changing the AWBM.

2.6.  Future climate projections and scenarios

GCMs project precipitation and evapotranspiration, among other climatic
variables, under hypothetical future scenarios or historical trajectories (Jahandideh-
Tehrani et al., 2019). Individual CMIP5 models' capability to predict the Australian
climate varies depending on whatever part of the modelling process is studied. These
models are the most accurate instruments for predicting the reaction of regional
climates in the twenty-first century (Kirono et al., 2020). Based on the third and fifth
stages of the CMIP, Alexander and Arblaster (2017) conducted detailed evaluations
of anticipated changes in extreme climate events over Australia.

Projected runoff by implementing baseline climate data can be estimated or
focused on assumptions of climate models (Chiew, 2006; Fu et al., 2007), and another
method is applying hydrological models. The best method for estimating the
hydrological implications of climate change is to drive a hydrological model with
climatic forecasts generated from ensembles of multiple GCMs pushed with different

emissions scenarios (Thompson et al., 2013).
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Thompson et al. (2013) stated that throughout these climate change
hydrological effect evaluations, a number of uncertainties are incorporated. Therefore,
selecting well-suited GCMs and RCPs will be a solution to these uncertainties.

In this research, According to the Australian Climate Change Technical Report
(CSIRO & BOM, 2015), these 8 climate models have been suggested for investigating
climate change impacts on Southeast Queensland.

The definition of stationary may no longer be applicable due to the climatic-
related stressors and effects of anthropogenic that create non-stationary conditions
(Salas et al.,, 2018). Recently researchers analysed flood and streamflow under
non-stationary assumptions (Strupczewski et al., 2011; Salinas et al., 2014; Debele et
al., 2017). The use of generalised extreme value (GEV) distribution to model extreme
climate events and their return periods is widely popular (Engeland et al., 2004).
As a result, utilising non-stationary data, new methods for analysing the frequency of
extremes should be developed.

The stationary assumption is used to estimate the largest instantaneous
extremes, and structures are built with this assumption in mind. As the impacts of
climate change are growing which means that non-stationary conditions will affect and
rise in the world. For instance, natural phenomena recently occurred in Southeast
Queensland especially Lockyer Catchment affected by a flood in February 2022 and
these extremes occurred in non-stationary assumption. Therefore, it is critical to take
a non-stationary approach to these issues.

However, to our knowledge, few studies have used similar methods to analyse
extremes of future periods by considering outputs of multi-GCMs after forcing into a
hydrological model in a non-stationary and stationary assumption. In Southeast
Queensland where extremes are persistently phenomenon, it is indicated that studies
of extremes through multi-modelling are crucial for water management in the future.

The outcome of this study from a catchment management perspective, is
improving the accuracy of analysis in less time and cost-effective way and might help
policymakers in sustainable water resources management. Employing the non-
stationary assumption for extreme climate analysis is a novel subject in the rainfall-
runoff simulation. This specific study compares hydro-climate variables such as
streamflow using different models. Because the research region contains residential
and agricultural areas and dams, estimating the return period values of extremes in

the future period is critical for water resource management.
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This research will help to identify extreme events in the two future periods and
the framework of this study can be used in activating emergency response operations

to tackle future extremes.

2.7. Conclusions

Chapter 2 of the thesis provides a comprehensive review of the literature that
is important to the objectives and aims of the research. This procedure led to the
straightforward identification of the research need in Chapter 2 that this study has
attempted to solve. Chapter 3 presents the research article that was published as part
of this study and discusses how it aligns with Research Objective 1.
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CHAPTER 3: METHODS

3.1. Research methodology overview
3.1.1. Overview

This thesis contains a series of four papers that investigate a
non-stationary approach by applying a multi-framework. These four research papers
explore a dynamic approach to analysing extreme events by employing various
methodologies and techniques. This includes trend analysis methods to analyse
temporal patterns, and spatial analysis techniques utilising GEE. These mentioned
methods were applied to an ungauged catchment at Doosti River Dam to test the
feasibility of methods and then applied in the Lockyer Catchment. This framework also
includes geeSEBAL, hydrological modelling to simulate water flow dynamics, and
climate modelling under two scenarios. Additionally, machine learning techniques are
utilised to project changes in land cover within the GEE platform. The GEV model is
then employed to assess the frequency and intensity of return levels for
hydrometeorological variables. By integrating these diverse approaches, the studies
aim to provide a comprehensive understanding of the complex interactions driving
extreme events and their implications for hydrological processes. Spatial analysis
techniques in GIS including interpolation, and overlay analysis. The approach is

summarised in Figure 3 (see overleaf).

3.1.2. Data

A rich time series of spatial analysis and gauge data has been used to gather
further details about the scope of this research. Daily meteorological data including
minimum and maximum air temperature (°C), minimum and maximum relative
humidity (%), wind speed (m/s), surface solar radiation (MJ/m?), and hydrological data
such as evapotranspiration (mm) and rainfall (mm) were sourced from two datasets:
ground-based observations and global climate products. The Australian Climate
Observations Reference Network — Surface Air Temperature (ACORN-SAT) dataset
of the Australian Bureau of Meteorology (BOM) provides daily maximum temperature
in degrees Celsius (°C), which has been developed in order to monitor climate
variability and change in the country (Trewin, 2018). The ACORN-SAT data are

adjusted, homogenised and peer-reviewed.
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The ground-based observations were obtained from SILO, an Australian
climate data source (http://www.longpaddock.gld.gov.au/silo) (Jeffrey et al., 2001,
CSIRO & BOM, 2015) that covers the period from 1990-2022. The 5 km-grid data

achieved through SILO are the most commonly used and most reliable climate data

for environmental studies in Australia (Ramezani et al., 2022). Daily streamflow
records for 143210B Lockyer Creek at Rifle Range Road station were received from
the Queensland Government Water Monitoring Information site (https://water-

monitoring.information.gld.gov.au/).

Fourteen SILO meteorological and hydrological stations were applied for this
research. First, the Inverse Distance Weighting (IDW) interpolation method was used
to interpolate the station data and rasterise the meteorological parameters. To run the
geeSEBAL algorithm, daily meteorological ground-based observations and the hourly
fifth generation ECMWF reanalysis (ERAS5) climate dataset with 9 km spatial resolution
were incorporated in GEE and were used separately for running geeSEBAL as well as
estimation of water storage. Landuse information was obtained from the Australian

government, Geoscience Australia (https://www.ga.gov.au/), for simulation purposes.

The Landsat satellite images (from TM, ETM+ and OLI 1&2 sensors), and the
ESA global land cover dataset were accessed and used through GEE (Pakdel et al.,
2022) for conducting the classifications and modelling of changes in land cover and
urban growth. Geospatial datasets of road networks, population density, and
Hydrologically Enforced Digital Elevation Model (DEM-H) product with 30 m spatial
resolution (Mission, 2013) dataset were used as supplementary data inputs during
landcover projection analysis. Since, the distance from roads and population density
maps were originally in vector format, both maps were first converted into the raster
format and resampled to the 30 m spatial resolution and used for projection of
landcover changes.

The three primary purposes of the geeSEBAL tool are (1) Image: derivation of
actual evapotranspiration from a particular image (accessible for JavaScript); (2)
ImageCollection: batch method to calculate ETa provided a date range and (3) Time
series: long-term ETa time series estimate at user-provided locations. All applications

and codes are freely accessible at https://github.com/et-brasil/geesebal. Additionally,

the Earth Engine programme (https://etbrasil.org/geesebal) offers a graphical user
interface version of geeSEBAL (Laipelt et al., 2021; Goncalves et al., 2022; Kayser et

al., 2022). For the purpose of running geeSEBAL, a series of Landsat images with the
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highest data quality were used. We used cloud cover filters using the CFMask method

(Foga et al., 2017), which generates a bitmask to identify each image’s pixels for

clouds, clouds with shadows, clouds with confidence and pixels for ice and snow.

Land cover was classified into six types using SVM and RF models. To train

the classification models, we mapped the boundaries of more than 200-point features

(335) representing six different classes: Tree cover, grassland, cropland, built-up, bare

soil/sparse vegetation, and water bodies using ESA global landcover and drawing

geometry tools in GEE. The training datasets were split up into groups for training and

validation. 70 percent of point features was assigned to the training and 30 percent

was used in the validation procedure.

Table 3. 1 Source of datasets.

Raster Time coverage Data Source Resolution/
Dataset format
Landsat 5 Google Earth Engine
™ 2000-2011 (LANDSAT/LTO05/C02/T1_L2) 30m
Google Earth Engine
(LANDSAT/LEOQ7/ C01/
LANDSAT 7 ETM+ 1999-2023 T1_SRLANDSAT/ 30 m
LEO7/C0O1/T1)
Google Earth Engine
i (LANDSAT/LCO08/ C01/
Landsat 8 OLI/TIRS 2013-2023 T1_SRLANDSAT/ 30m
LC08/C01/T1)
ESA global land Google Earth Engine
cover 2021 (ESA/WorldCover/v100) 10m
DEM-H: Australian
SRTM Google Earth Engine
Hydrologically 2010 (AU/GA/DEM_1SEC/v10/DE 30m
Enforced Digital M-H)
Elevation Model
Vector Source Data
Dataset format
Roads 2000 & 2023 Queensland Shapefile
Government (.shp)
Distance from roads 2023 Spatial analysis on road Shapefile
network (.shp)
. Australian Bureau of Shapefile
Population 2023 Statistics (.shp)
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3.1.3. Mann-Kendall trend and Sen’s slope test

Using GEE programming, the Mann-Kendall (MK) test and Sen's slope
estimator were used to calculate the statistical significance and long-term magnitude
of change on hydroclimate datasets. The MK test (Mann, 1945; Kendall, 1975;
Zolghadr-Asli et al., 2019) was applied to quantify the significance of trends in
meteorological time series (Tabari et al., 2011; Banerjee et al., 2020). Generalised
Extreme Value models including the NEVA model use the Mann—Kendall trend test at
the user-selected significance level to identify trends and non-stationarity in extremes
in data (Cheng et al., 2014). The Mann—-Kendall (MK) statistical test (Mann, 1945) was
undertaken to calculate the importance of climatic time series trends (Burkey, 2006;
Xu et al., 2006; Da Silva et al., 2015; Nyikadzino et al., 2020).

The MK test null hypothesis (HO) states that there is no monotonic trend at the
designated level of significance. In this test, the alternative hypothesis (Ha) exhibits a
monotonic trend with time. Additional information on Mann-Kendall may be found in
(Pakdel et al., 2022).

Cheecking the suitability of trend methods in GEE platform in ungauged catchment

Auto correlation . Developing Accuracy assessment of
analysis, step and Non-parameteric trend analysis spatial  pattern  of
trend test Mann-Kendall in hydrometeorological Paper 1
GEE variables

] f Applying validated

v P ET0.ETa
GeeSEBAL spatial ~ pattern  of |V , and WS with Paper 2
- GEV model ;
model hydrometeorological stationary and
variables non-stationary

Landcover change
Ensemble of GCMs | projections using AWBM model GEV model Paper 3
under RCPs : g i
machine learning in GEE

Step change and . _ Paper 4
[ trend analysis ]l_[ GEV model H TDF curves ] p

Figure 3. 1 Summary of papers of this research.
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3.1.4. Google Earth Engine application: The geeSEBAL algorithm

The development of geeSEBAL marks a significant advancement in the field of
hydrological modelling. Leveraging the robust infrastructure of GEE, the geeSEBAL
algorithm offers a powerful solution for estimating evapotranspiration at regional
scales. By integrating meteorological reanalysis data and Landsat imagery,
geeSEBAL provides researchers and practitioners with a comprehensive tool to
assess water fluxes and understand ecosystem dynamics. This innovative approach
not only enhances our ability to monitor and manage water resources but also
contributes to broader efforts in climate change adaptation and sustainable land
management.

The geeSEBAL (Laipelt et al., 2021) is based on the original approach
developed by Bastiaanssen et al. (Bastiaanssen & al., 1998) is the foundation for
which assumes that latent heat flux (LE) (W/m2) can be approximately represented as
surface energy balance. Using the geeSEBAL model, ET was automatically estimated
and validated against data from ET stations, as ET is a crucial sign of agricultural
drought. GeeSEBAL aims to improve understanding of how land cover changes over
the last few decades have affected ET. The latest iteration of geeSEBAL employs
Landsat imagery and reanalysis data to compute the ETa time series, exhibiting
positive results for regional-scale studies carried out in regions with limited data
accessibility (Laipelt et al., 2021). The fundamental principle of the Surface Energy
Balance Algorithm for Land (SEBAL) involves selecting endmembers representing the
hot (dry) and cold (wet) pixels to calculate the near-surface temperature gradient
(dT).(Bastiaanssen & al., 1998; Allen et al., 2007).

Previously, the manual identification of hot and cold pixels was standard
practice, but technological improvements have made it feasible to automate this
procedure. Employing the Normalised Difference Vegetation Index (NDVI) and
Ts percentiles, one such method is called Calibration using Inverse Modelling at
Extreme Conditions (CIMEC) (Allen et al., 2013), it is used to automatically identify
endmembers. In this study, a platform known geeSEBAL (https://github.com/et-

brasil/geesebal (accessed on 15 06 2023) was utilised in this study. It integrates the
capabilities of GEE with the SEBAL framework (Laipelt et al., 2021). This tool was

created to make use of the application programming interface (API) of the GEE
platform. It is an effective tool for a variety of remote sensing and evapotranspiration

estimating investigations.
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3.1.5. Classification and projection of land cover changes

To project the landcover changes, first, the main land cover types were
classified into six classes and following ESA global landcover classification (Zanaga
et al., 2022) discriminated from other features in Landsat images for the years 2000,
2010 and 2023 using two supervised classification models including SVM and RF.
Then, the landcover changes were simulated and projected using RF approaches in
the GEE platform.

3.1.6. Landcover changes projection

The probability of transitions from the RF learning procedure is employed in this
work to characterise the changes in land cover. The land cover maps for the start year
(2000) and the finish year (2010) are included in the model's first phase.
After importing the spatial variable factors such as DEM, population density and
distance from the road, into the model, a land cover change map is produced, from
which the research area's changing pattern between 2000 and 2010 is established.
The properties of the explanatory maps are extracted in the same raster format for all
datasets, with the exact geographical projected coordinates of EPSG 4326 and with a
resolution pixel size of 0.000269495 degrees.

To project the change in land cover, a script was written in GEE to calculate the
percentage of area change in a given year. It generates a transition matrix that shows
the proportion of pixels shifting from one land cover to another. The code also creates
an area change map that shows the change in the land between 2000 and 2010 in all
six classes; tree cover, grassland, cropland, built-up, bare soil, and water bodies. The
future land cover maps are predicted assuming that existing land cover patterns and
dynamics are continuing. Also, based on the classified raster images of 2000 and
2010, land cover transitions are predicted for 2040 and 2060. To model land cover
forecast, the RF and SVM classification technique was used to forecast the land cover

map.

3.1.7. Hydrological model

Australian Water Balance Model (AWBM) (Boughton, 1993; Boughton, 1995;
Boughton, 2004) has been used in other countries and has become one of Australia’s
most extensively used hydrological models (Boughton, 2004, 2006; Boughton, 2007).

The Rainfall-Runoff Library (RRL) is freely available for users, (further information is
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available at :https://toolkit.ewater.org.au/Tools/RRL). Yu and Zhu (2015) indicated that

AWBM is better for simulating climate-driven fluctuations in observed streamflow and
characterising the consequences of precipitation changes.

The concept of selecting an appropriate hydrological model has been proven
by Jahandideh-Tehrani et al. (2019) that in the Australian region, lumped conceptual
hydrological models (Petheram et al., 2012) such as AWBM well-suited to use for
runoff simulation. For simulation purposes, calibration (60%) and validation (40%)
were employed.

The availability of recorded runoff data determined the calibration and validation
timeframes for the Lockyer Catchment. So, runoff data were used for the 1990-2002
(calibration period) and 2003-2010 (for validation period). Daily rainfall, potential ET
(PET) and daily runoff were derived from SILO and WMIP throughout the catchment

respectively.

3.1.8. Future climate projections and greenhouse gas emissions scenarios

Coupled Model Intercomparison Project (CMIP) is the largest intercomparison
study, and it serves as a baseline for assessing GCMs' capacity to project observed
climate changes. In this study, climate change effects on streamflow in the Lockyer
Catchment were assessed using eight GCMs of CMIP5. The recently suggested RCPs
provide a broader range of possible futures by taking mitigation techniques and land
use changes into account (CSIRO & BOM, 2015). According to the aim of this research
study, it is imperative to select appropriate RCP scenarios.

As mentioned in the climate change technical report in Australia (CSIRO &
BOM, 2015), the Australian Water Availability Project (AWAP) observed temperature
and rainfall data (https://eo-data.csiro.au/projects/awap/) were used to create climatic
outputs, which have a resolution of 5 km. In this approach, the model data whose
resolution ranged from 100 to 310 km were initially applied to the observed data using
interpolation on a 5 km grid. In this research, According to the Australian Climate
Change Technical Report (CSIRO & BOM, 2015), these eight climate models have
been suggested for investigating climate change impacts on SEQ.

3.1.9. Assessing extremes in a non-stationary approach using the GEV model
Non-stationary situations arise because the stationary assumption might not be

valid for changes brought about by human and climate variables. Even with great
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progress (Cheng et al., 2014), there is still no complete framework that incorporates
the Extreme Value Analysis (EVA) statistical models GEV, Generalised Pareto (GP),
and Log-Pearson type Il (LP3)) under stationary and non-stationary assumptions
(parameters as a function of physical variables or time) (Ragno et al., 2019).

It is critical to recognise that non-stationary situations are becoming more
common globally as a result of the escalating effects of climate change. Given that
earlier research has shown that the frequency of flood events such as the one in 2022
may be underestimated under a stationarity assumption (Armstrong et al., 2020) and
has shown the assumption to no longer be valid. Therefore, adopting a
non-stationary perspective on these matters is crucial. To examine
non-stationary extremes, the NEVA software package (Cheng et al., 2014) and
ProNEVA software (Ragno et al., 2019) were utilised.

Section 1.3 has demonstrated an overview of the research methodology and
provided the modelling steps of how the research was carried out to achieve the

objectives of the study.
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CHAPTER 4: PAPER 1 - GOOGLE EARTH ENGINE AS A MULTI-
SENSOR OPEN-SOURCE TOOL FOR MONITORING STREAM FLOW
IN THE TRANSBOUNDARY RIVER BASIN: DOOSTI RIVER DAM

4.1. Introduction

Understanding the impacts of global change and human activities on water
resources relies heavily on surface water dynamics. A thorough examination of
hydroclimatic variations at a regional level is crucial for devising adaptation and
mitigation strategies to address the adverse effects of climate change. This research
paper investigates the hydroclimatic factors contributing to changes in surface water
availability in a specific area using multisensor satellite data from the Google Earth
Engine platform. The Mann—Kendall and Sens slope estimator tests were utilised to
analyse the spatial and temporal variations of hydroclimate variables. Statistical
analyses revealed decreasing trends in temperature and increasing trends in rainfall
based on available station data. Additionally, there was observed growth in
evapotranspiration and irrigated area development alongside a slight decline in snow
cover. The expansion of irrigated areas, particularly during winter growing seasons,
suggests a significant diversion of water to support agricultural needs. This study's
methodology could be applied to any geographical location to assess hydrological
conditions, spatiotemporal changes, and their drivers, including climate change and

human activities.

4.2. Published paper

Pakdel et al. (2022), “Google Earth Engine as multi-sensor open-source tool for
monitoring stream flow in the transboundary river basin: Doosti River Dam” is
published in SPRS International Journal of Geo-Information (2022), Volume 11, Issue
535.
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Abstract: Understanding the effects of global change and human activities on water supplies depends
greatly on surface water dynamics. A comprehensive examination of the hydroclimatic variations at
the transboundary level is essential for the development of any adaptation or mitigation plans to
deal with the negative effects of climate change. This research paper examines the hydroclimatic
factors that contribute to the desiccation of the Doosti Dam’s basin in the transboundary area using
multisensor satellite data from the Google Earth Engine (GEE) platform. The Mann-Kendall and
Sens slope estimator test was applied to the satellite datasets to analyse the spatial and temporal
variation of the hydroclimate variables and their trend over the transboundary area for 18 years from
2004 to 2021 (as the dam began operating in 2005). Statistical analysis results showed decreasing
trends in temperature and an increase in rainfall with respect to station-observed available data.
Evapotranspiration and irrigated area development followed the increasing pattern and a slight
decrease in snow cover. The results confirmed a large expansion of the irrigated area, especially
during the winter growing season. The increase in irrigated cultivated areas during both winter
and summer seasons is possibly the main reason for the diversion of water to meet the irrigation
requirements of the developed agriculture areas. The approach followed in this study could be
applied to any location around the globe to evaluate the hydrological conditions and spatiotemporal
changes in response to climate change, trend analysis and human activities.

Keywords: Google Earth Engine; spatiotemporal analysis; cloud-computing platform; Doosti Dam;
ungauged or sparsely gauged basin; Landsat; MODIS

1. Introduction

With an increase in human activities, socio-economic and environmental conditions
have impacted transboundary river basins [1]. For riparian nations, these increased ac-
tivities are raising fears about potential flow regime changes due to dam operations and
large-scale water withdrawal [2]. Data scarcity and a lack of data-sharing protocols are mak-
ing transboundary water-sharing management more difficult [3]. The scarce or imbalanced
geographical distribution of gauging is also a problem for understanding the hydrocli-
mate patterns and capturing their heterogeneity and spatiotemporal distribution [4]. The
situation is dire in ungauged basins, as is the case examined in this paper.

Remote sensing and satellite-based data have solved the data scarcity problem. This
study explores the use of multi-sensor open-source tools such as the Google Earth platform
to obtain relevant climate and environmental monitoring data for scientific study [5]. The
platform provides synoptic coverage for areas which were previously difficult to obtain
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due to geographical remoteness [6-8], and allows trend monitoring in real time. Processing
remote sensing data is sometimes difficult and very often the acquisition of valuable results
necessitates the analysis of large datasets [9]. These problems have been solved with the
help of the open source software QGIS (Quantum GIS) [10,11]. QGIS made it possible to
analyse remotely sensed data to obtain water levels across a sizable inaccessible area at
regular intervals for regional studies [12]. However, there are many challenges with using
these data, such as cloud contamination issues and the availability of reliable imagery [13].

For better analysis, Google Earth Engine (GEE) [14] via an internet-based application
programming interface (API) and a web-based interactive development environment [15]
enables the analysis of global environmental phenomena, changes and trends using satellite
pictures, and works with historical series [5,16]. Furthermore, its codes are free to down-
load [14]. Tt is promoted as the most powerful cloud-based geospatial processing platform
in the world, capable of overcoming processing issues experienced by traditional satellite
image-processing methods [14].

The growing water scarcity problems in northeastern Iran, and particularly the city of
Mashhad which is the second most populated city in Iran, compelled the Iranian govern-
ment to initiate water diplomacy with the neighboring Turkmen governments. The result
of these negotiations was an agreement between Iran and Turkmenistan to jointly build a
dam on the river basin called the Iran-Turkmenistan Friendship Dam (or Doosti Dam) in
2004 [17,18]. Although construction of the dam helped water authorities provide part of the
drinking water requirements, in recent years, due to several factors such as climate change
and excessive harnessing, the water entering the dam has been significantly reduced [19].

Drinking water in Mashhad city has been seriously affected by water shortages that
have forced water authorities to investigate the reasons for the reduction of water flow
from the Doosti Lake considering climatological and hydrological aspects and agricultural
expansion [20]. However, in most cases, realistic climatological data are not readily avail-
able, especially in the inaccessible ungauged part of the catchments. Consequently, GEE
provides better solutions for the analysis of hydroclimatic variations within the Doosti
Lake catchment.

The study found that a number of multi-source remote sensing data with different
spatial and temporal resolution are available. Moderate Resolution Imaging Spectrometer
(MODIS) [21,22], Landsat Thematic Mapper (TM) [23-25], Synthetic Aperture Radar [13,26]
and other passive and active remote sensors with visible and microwave bands have all
been employed to estimate inundation areas and delineate water borders. The Deltares
Aqua Monitor [27] and GEE [28] were used to examine changes in the Earth’s surface water
over the last 30 years. Automated systems, however, are not appropriate for a regional scale.
The variety of geographical characteristics causes a lack of consistency in the correctness of
studies’ results. The authors of [12] highlighted that analysis of the driving mechanisms
behind regional surface water dynamics and related studies is rare.

As concerns over Doosti Dam’s shrinking increase [29], so it is vital that authorities
identify the cause/s of shrinkage whether they are climatic or anthropogenic [20]. The
research area’s available gauge data in Iran and Turkmenistan do not have adequate
geographical or temporal coverage [28-31], and this study provides useful information.

This study acknowledges that there are knowledge gaps which can be filled by utilising
satellite-based remote sensing systems [20,32] which offer valuable sources of data and
observations capable of partially or fully replacing field survey and gauged data. The study
aims to determine the suitability of the use of GEE coupled with the QGIS platform to
understand the hydroclimatic behaviour and determine stream flow patterns, especially
for inaccessible [33-35] and transboundary areas. The specific objectives of this study are:
(1) To propose a novel approach to easily calculate yearly surface water to assist in

investigating long-term surface water variation. This will employ nonparametric

analysis and the application of the GEE platform [14,15];

(2) To analyse the causes of surface water variation in the Doosti Dam reservoir and
identify the trend;
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(3) To assess and map spatiotemporal distribution and the overall trends of the hydro-
climatological condition using several satellite gridded datasets for the last 20 years
and identify the possible factors causing the trend.

To assist decision-making on irrigation growth, techniques that increase irrigation
area accuracy are essential. We implemented multi-satellite products in the GEE platform
that enable the rapid processing of vast numbers of images and use a spatial method that
will help decision makers evaluate the trend of hydroclimate factors and the development
of irrigated areas. Previous research on trend and variability analyses of hydroclimatic
variables were limited to investigating a small number of observations because Iran lacks
a comprehensive record of data of the desirable quality [36]. Additionally, due to data
shortage, studies of the spatiotemporal variations of various hydroclimatic variables such
as evaporation, snow cover duration, land use and lake reservoir capacity have been limited
in the literature, particularly in Iran [37].

We investigated the spatiotemporal variability and trends of key hydroclimatic vari-
ables across the Doosti Dam basin from 2004 to 2021. The novel aspects of this research
are the selection of superior gridded multi-hydroclimatic satellite variables with non-
parametric tests, and the combination of multi-hydroclimatic gridded satellite variables
pre-processing with the GEE platform and QGIS. The use of finer spatial resolution data for
trend and variability analysis is necessary due to the significant variability of hydroclimatic
variables, particularly over location, time and climate zones [37]. Therefore, we imple-
mented the more accurate spatial resolution hydroclimatic datasets in GEE and discovered
a relationship between trends of multi-hydroclimatic variables and lake levels that had not
been investigated previously. It is anticipated that the findings will aid in the development
of future adaptation and mitigation, conservation policies and actions by helping policy-
makers and water authorities better understand how the Doosti Lake basin is responding
to climate change.

2. Materials and Methods
2.1. Study Region

The Doosti Dam'’s basin (Figure 1) is the biggest transboundary basin between two
countries, Iran and Turkmenistan, and is located between latitude 33° N to 36° N and
longitude 59° E to 67° E. The basin covers an area of approximately 55,141 km?, and the
climate of this region is semi-arid and the reservoir of the dam is a clear and relatively
deep lake with a maximum and mean depth of 35 m and 15 m, respectively [17,18]. The
Doosti Dam is important for Iran as the country relies on its role in supplying fresh water
to Mashhad, the second-most populous city in Iran with a population of around 3 million.
The dam provides drinking water for up to 76% of the population in Mashhad and its
principal tributaries, mostly for the purpose of storing water in reservoirs, irrigation for
agriculture, and producing electricity.

Mashhad is a great example of a city that depends heavily on outside imports of water
and power. Due to the city’s fast growth, climate change and severe droughts, and eightfold
expansion of the population, Mashhad'’s local water supplies are under a lot of stress. The
city is now considerably more dependent on water from far-off sources as a result [29].

Iran’s approach to water management is reactive rather than proactive, putting more
emphasis on quick fixes such as expanding the number of wells and dams and transporting
water from far-off sources rather than on looking for fresh opportunities and long-term
solutions to address any threats or issues before they arise.

2.2. Datasets
2.2.1. Ground Measurements

The daily hydroclimatologic parameters consisting of precipitation and temperature
collected from three local stations are presented in Table 1. Because of the lack of field
data, remotely sensed data could be a good alternative in this study. Faulty gauge stations
can create some gaps in the collection of hydrological time series data. Most often, the
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36

36

upstream and downstream data exchange between the two riverine countries has not been
effective. Data collecting across borders must be independent between nations in order to
quickly determine the amount of inundation for emergency response activities [38]. Remote
sensors mounted on satellites and aircraft have the capability to provide data [39].
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Figure 1. Location of Doosti Dam’s river basin drainage system. (a) Shows Iran (left) and Turk-
menistan (right), (b) shows the Doosti reservoir from NDWI Landsat datasets, (c) shows Doosti
Dam’s river basin.
Table 1. Specifications of ground-based data used in evaluation of satellite-based data.
Station Specifications Lungltude Latitade Elewation Time Scale Period
(m) (m) (m)
Torbat Jam Meleawlogy 60.56 35.29 950 Daily 2001-2020
station
Meteorology .
Sarakhs : 61.15 36.54 278 Daily 2001-2020
station

2.2.2. Satellite Data

Within each year, surface water varied on a regular basis and, in remote sensing, the
use of multispectral satellite data is known to be well suited for trend analysis given its
high-spectral correlation with open water surfaces and the accuracy of mapping [40].

We used a rich time series of remote sensing data to gather further details about the
scope of this study. The remote sensing data used in this study included the Climate Haz-
ards Group InfraRed Precipitation With Station (CHIRPS) dataset (500 m spatial resolution),
MODIS Terra Evapotranspiration (MOD16A2) (500 m spatial resolution), MODIS Terra
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snow cover MOD10A1 (500 m spatial resolution), MODIS LST MOD11A1 (1 Km spatial
resolution), MODIS NDVI MOD09GQ (250 m), Landsat TM/ETM+/OLI (30 m spatial
resolution), SRTM (NASA SRTM Digital Elevation 30 m) were obtained from the online
dataset provided by GEE. A framework of this study is presented in Figure 2.

[ Image Collection }
|

I
| CHIRPS ET SCE LST SR

: MOD16A2 MOD10A MOD11A1 MODO09GQ
\

Band
Selection Selection

P
g
3

\

[ Temporal and Check trend for each dataset Confidence intervals of Sems |
: spatial pattern of with non-parametric tests slope (for the significant |,
|| hydrometeorological tendencies of 95% confidence |
: variables Mann-Kendall test level)

1

Figure 2. Flowchart of the methods.

In order to assess the effectiveness of the satellite-based rainfall data, different satellite-
based rainfall data were examined. Table 2 demonstrates the results of descriptive statistics
that show reasonable spatial agreement with gauge and gridded data. All the rainfall
satellite datasets overestimated the stations’ rainfall, with R? and Pearson correlation in the
Sarakhs and Torbat-Jam stations varying from 0.71 and 0.85 for CHIRPS to 0.56 and 0.75
for ERA5, and from 0.77 and 0.88 for CHIRPS to 0.71 and 0.84 for GPM, respectively. The
minimum RMSE was represented by CHIRPS (5.6 mm) for Sarakhs and CHIRPS (48.57 mm)
for Torbat, whereas ERA5 exhibited maximum RMSE (35.59 mm) and (66.16 mm). CHIRPS
was chosen for trend analysis as it represents better performance for all the gauge stations
(Table 2); and it has a spatial resolution of 5 km which is more accurate compared to other
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gridded rainfall data and has low systematic bias. Similarly, Land Surface Temperature
(LST) overestimated the stations’ temperature with R2 0.66 and 0.61 and RMSE 9.25 °C and
4.56 °C in Torbat-Jam and Sarakhs stations, respectively.

Table 2. Comparing observed and gridded datasets’ (CHIRPS, GPM and ERAS for rainfall and LST
for temperature) spatial similarities using statistical indices for the period from 2001 to 2020.

Rainfall Rainfall Rainfall Rainfall Rainfall Rainfall Temperature Temperature
- Station Station Station Station Station Station Station Station
Statistical (mm), (mm), (mm), (mm), (mm), (mm), o), €0,
Measurements Sarakhs Sarakhs Sarakhs Torbat Torbat Torbat Sarakhs Torbat
CHIRPS GPM ERA5 CHIRPS GPM ERAS5 LST LST
R2 0.71 0.74 0.56 0.77 0.71 0.73 0.61 0.66
e 0.85 0.86 0.75 0.8 0.84 0.85 0.77 081
correlation
RMSE 2527 34.28 35.59 48.57 49.23 66.16 4.56 9.25
Bias 5.6 19.7 —2.36 40.40 37.55 59.12 4.44 8.75
MBias 1.02 113 0.98 1.31 1.23 1.45 1.16 1.32

Figure 3a—f shows Pearson correlation for both observational and gridded data, reveal-
ing strong spatial agreement with CHIRPS. All three gridded datasets were well matched,
although CHIRPS had greater agreement with the Sarakhs station (r = 0.85) and Torbat
station (0.88) than GPM (0.86) and ERAS reanalysis (0.75). Figure 3g-h illustrates the
similar relationship with the LST datasets. According to the results, LST overestimated
temperature for the two stations” data, Sarakhs and Torbat, in the region.

MODIS Data

LST is an extremely important parameter that controls the exchange of longwave
radiation and sensible heat flux between the Earth’s surface and the atmosphere. Therefore,
trend analysis of LST is essential for the study of the hydroclimatology behaviour of basins.
Generally, LST products are derived from thermal infrared (TIR) sensors (e.g., AVHRR,
MODIS or METEOSAT) [41].

Among the TIR sensors, the LST products of MODIS aboard the Terra and Aqua
platforms” data have high quality, global coverage and accurate geolocation [42]. Daily
MODIS LST products [43] are retrieved at 1 km pixels by the generalised split-window
algorithm. The daily average land surface temperature was extracted from the MODIS [44].

Because of snow’s influence on Earth’s climate and its role in supplying water re-
sources, in many mountainous areas such as upstream of Doosti Dam, it is necessary to
monitor snow cover extent (SCE) and snow properties in both high temporal and spa-
tial resolutions. For more than three decades, optical, infra-red (AVHRR, MODIS) and
passive microwave satellite sensors (SSMI/S, AMSR-E) have been used to monitor the
extent of snow areas effectively [45]. Although cloud cover often obscures the snow from
visible/infra-red spaceborne sensors, due to high spatial and temporal resolution, the
MODIS snow products (MOD10A1) [46] with a resolution of 500 m at daily scale are
preferred for snow-cover monitoring.

To quantify the vegetation dynamics over space and time and derive the irrigated
cultivated lands, MODIS surface reflectance (MODIS/ Terra MOD09GQ) [47] with 250 m
spatial resolution and daily temporal resolution was implemented from 2001 to 2021.
Maximum NDVI maps in the periods of April to June and July to September were used to
derive the cultivated areas in the winter and summer agriculture seasons, respectively. A
threshold value of 0.5 for NDVI was considered as an indicator of the cultivated agriculture
area. Considering the prevalence of surface irrigation in the region, the irrigated cultivated
lands were derived by applying a defined elevation range from the river baseline on the
DEM map. Topographic information, including the catchment’s elevation, was collected
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using the Shuttle Radar Topography Mission (SRTM) and digital elevation models (DEMs)
90 m from GEE. For evapotranspiration, MODIS/Terra Net MOD 16A2 evapotranspiration
(version 6, 8 day L4 datasets) was launched from 2000 with a pixel resolution of 500 m

applied [48].
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Figure 3. The relationship between gauge datasets and the gridded rainfall (a-f) and relationship
between gauge datasets and LST (g-h) for the period from 2001 to 2020.

Landsat Images

Water surface arcas are regularly determined from optical satellite imagery such as
MODIS and Landsat products [49,50]. Changes in lake distribution have been monitored
using the MODIS and Landsat datasets [51]. Landsat has a high resolution (30 m), which
is its main benefit, but it also has a low repetition frequency [4]. To produce the water
mask of the Doosti reservoir, NDWI maps derived from Landsat images from 2001 to 2020
were implemented. Landsat images consisting of ETM+ [52] and OLI data were acquired
from GEE. NDWI maps [53,54] were generated based on Green [55] and NIR bands, and
the pixels with positive value were assigned as water class. Specifications of all satellite
data used in this research are listed in Table 3. A code was developed within the GEE
environment to compute the time series of lake area statistics (maximum, minimum, mean
and standard deviation) from 2004 to 2021.
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Table 3. Specifications of used datasets of satellite imagery available in Google Earth Engine.

Parameters Terip ox:al Product Information Bp aha'l Time Period
Resolution Resolution
y Climate Hazards Group InfraRed Precipitation
RS Dty with Station Data (Version 2.0 final) S Ll
GPM Daily Global Precipitation Measurement (GPM) 10 km 2001-2020
European Centre for Medium-Range Weather
ERAS Forecasts (ECMWF) Climate Reanalysis Zokm 20012020
Daily Surface reflectance (MOD09Q) 250 m
Daily Snow cover (MOD10A1) 500 m
MODIS Terra Daily Land Surface Temperature (MOD11A1) 1 km 2004-2021
8-Day Evapotranspiration (MOD16A2) 500 m
Landsat 5 TM 16 days Level 1 30 m 2004-2021
Landsat 7 ETM 16 days Level 1 30m 2004-2021
Landsat 8 OLI 16 days Level 1 30m 2013-2021
DEM 1 SRTM 90 m -
2.3. Methods

The GEE platform contains a substantial amount of satellite data acquired by other
missions and it also hosts other ancillary data such as digital elevation models, vector-based
datasets, land cover and meteorological data [56]. Since data hosted by GEE is analysis-
ready, the need for pre-processing is circumvented as these data have been found to be
consistent over time and well-suited for time series analysis and estimating long-term
trends [14]. By applying the date filter function to the image collections, the desired time
periods (2004-2021) were separated from the whole datasets. The spatial filter function was
used to limit the borders to the Doosti Dam watershed. Then, using the trend functions
(Mann-Kendall, Sen’s slope) in GEE, evaluation of the pixel-based long-term spatiotempo-
ral trend for the gridded datasets was carried out to analyse the trend and its intensity. The
Mann-Kendall expression (alpha 0.05 and Z statistics = 1.96, generated from the standard
normal table) was used to assess the Sen’s slope [57].

2.3.1. Mann-Kendall Trend and Sen’s Slope Test

The Mann-Kendall (MK) and Sen’s slope estimator was applied using programming
in GEE to compute the long-term magnitude of change on hydroclimate datasets and their
statistical significance. The MK statistical test [58-60] was used to quantify the significance
of trends in meteorological time series [57,61]. The MK test null hypothesis (HO0) says that
there is no monotonic trend at the specified level of significance. This may be used to detect
the monotonic trend in a time series. In this test, the alternative hypothesis (Ha) suggests
that the data exhibit a monotonic trend over time that is described by Equation (1):

n—1 n
St 0 = Loiet Ljeisr 587 (X 0~ it ) @

where 1 is the number of data points, X ) and Xj( |y are the data values in the time
series i and j (j > i), respectively, k and / indicate point location in the data matrix and

sgn (Xj( k1) — Xi(k, 1)) is the sign function, as illustrated in Equation (2).

ok ,if Xik, 1) = Xje, 1) >0
" (Xj(k' n =i, ’)) =30 i Xig =X, =0 )

-1 if X n—Xjx, n=0
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In cases where the sample size n > 30, the standard normal test statistic Zs ) is
computed using Equation (3):

Sk, n—1 :
—_— i S >0
Vv Var(Se, 1) f 5w
ZS(k, )i 5 0 : lf S(k, 1 =0 (3)
Tt .
e i S <0
V”r(sik, ,,) f (k. 1)

Positive values of Zg; ) indicate increasing trends while negative Zs( ») values show
decreasing trends. A two-tailed test was conducted using the hypothesis test technique at
alpha = 50% level of significance, with the null hypothesis being no monotonic trend in
time series at the 95% level of significance (Hp : T = 0) and the alternative hypothesis being
a substantial monotonic trend in time series in the 95% significance level (H, : 7 = 0) [62].

Sen’s nonparametric method [63] was used to estimate the magnitude of trends in the
time series:

Xk — X

j—m

Tigx = (C)]

In this equation, X; and X} represent data values at time j and 1, respectively, Consider

T(NOl)/Z N is odd

Qigx) = _ . 5)
% (TN/Z + T(N |,2)/2> N is even.

A positive Q;( ) value represents an increasing trend and a negative Q;(jx) value
represents a decreasing trend over time.

2.3.2. Descriptive Statistics

To ensure high-quality satellite rainfall data with respect to station observed data,
several statistical indices were employed to check the effectiveness and performance of
satellite datasets [57]. Statistical measurements [6], including the correlation coefficient (R?),
bias, multiplicative bias root (MBias), mean absolute error (MAE) and root mean square
error (RMSE), were performed to assess data distribution and the relative performance of
the satellite datasets, thus ensuring high-quality satellite data (rainfall, lake water) with
regard to gauge measurements as follows (Equations (6)—(9)):

157 (Xabs—Xobs) Ksat=Xeat) \ 2
R2 — ( n ) (6)

Xobs X Xsat

2
RMSE = Z;\ (XS‘AQ _nXObS) (7)

):?(Xsat — Xobs)

Bias = = 8)
T (Xew)
= ) il

In which, X,;; and Xyt show the gauge and satellite time series, respectively; n is the
total number of observations; and X, the average of station values.

3. Results
3.1. Temporal Pattern of Different Hydroclimatic Factors

The underlying structure of the Doosti Dam basin’s images, monitored from 2004 to
2021, was investigated (Figure 4). The satellite images reveal a downward trend until 2018.
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Figure 4 shows the extent of the Doosti Dam'’s reservoir in the early spring of the years
between 2004 and 2021. As illustrated in Figure 4, the water stored in the dam reservoir
has decreased over time from 2013 to 2018, which is a sign of the reduction in water input.
During these 18 years, the reservoir has had the lowest area in 2018 and the highest area in
the early spring of 2009-10.

3.2. Spatiotemporal Distribution of Rainfall in the Doosti Dam Basin (2004-2021)

To identify the trends of precipitation and provide better insight into how precipitation
is distributed over the catchment, the spatial-temporal variation of the annual CHIRPS
precipitation [64] for the period of 2004-2021 is displayed in Figure 5. In this figure, the
areas with the highest precipitation are shown in red and the areas with the lowest precipi-
tation are colored light orange. Rainfall is highest in the mountainous region southeast of
the catchment, located mainly on the Turkmenistan borders, upstream (500 mm) especially
in 2009, 2011, 2015, 2019 and 2020. However, in lower elevation areas, the basin down-
stream experienced the lowest rainfall (100 mm). The annual precipitation varied from
100 mm to approximately 600 mm. The effects of climate change at a local level must be
evaluated because it is a global issue and analysing rainfall trends is a necessary first step
in determining how climate change may affect the availability of water and food security.
The years 2018, 2019 and 2009 experienced the maximum increase (600 mm) in the whole
basin, especially the mountainous areas in the west and east. The years 2005, 2008 and
2021 experienced marked minimum rainfall (100 mm). The results also confirm that the
mountainous regions of the basin are the wettest regions.

Figure 6 shows the spatial distribution of trends in the annual precipitation based on
CHIRPS estimates for the period from 2004 to 2021. The spatial pattern of the MK test shows
that precipitation increased in most regions of the Doosti Dam’s basin (Figure 6a), and from
the statistical point of view, this trend is significant at a 95% level of confidence for annual
precipitation. Figure 6b, shows an increasing trend in rainfall in the middle and west re-
gions of the basin with a Sen’s slope calculation which varies from 0.00043 (upper limit) to
—0.00012 (lower limit) (p-value < 0.05) for upward and downward trends for the significant
tendencies at 95% confidence level, respectively. Moreover, a statistically significant increas-
ing tendency was detectable across the center and downstream of the region (+0.00043).
The p-value is less than alpha = 0.05, indicating that there was a trend in the time series. So,
the results clearly demonstrate that in most parts of basin, especially center to downstream
(p-value = 0.5), an upward trend with a 95% confidence level is observed; however, there
was no significant trend in the upstream, as illustrated in Figure 6¢. In Figure 6b, the
Sen’s slope and MK test indicate that rainfall trends show climate change has occurred in
the basin.

3.3. Spatio-Temporal Distribution of Temperature (LST) in the Doosti Dam Basin (2004-2021)

Temperature extremes are detrimental to agriculture, health, and infrastructure such as
hydraulic structures and economic activity. This study investigates the annual temperature
distribution and trend of LST from the MODIS Terra (MOD11A1) for the period 2004-2020.
As predicted, temperature is strongly influenced by elevation. Figure 7 shows that the
highest annual LST (averaging 30.85 °C) occurred at the lowest elevation level surface
(Doosti Dam’s basin upstream). As shown in this figure, LST follows the topography
of the earth, and the highest elevation areas have lower temperatures (Doosti Dam’s
basin upstream). Most agricultural lands are located alongside the Doosti Dam’s river
downstream, where higher temperatures were observed. The temperature varied from
26.85 °C to 36.85 °C. There is greater annual spatial variability at the lower elevation area,
ranging between 31.85 °C and 41.85 °C. The results also illustrate that the central south
area of the basin experienced the highest temperatures for the period 2004 to 2021.
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Figure 4. Area of Doosti Dam’s reservoir from 2004 to 2021 using GEE.
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Figure 5. The spatial-temporal distribution of annual rainfall (mm) from the CHIRPS product derived

from GEE in the period of 2004-2021.
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Figure 6. (a) Spatial distribution map of trend status of precipitation based on CHIRPS using Kendall
estimator, (b) spatial distribution of trend intensity of precipitation (mm) using Sen’s slope estimator
(Z = 1.96 at 95% confidence level), (c) spatial distribution of trend significance using p factor, over the
18-year period (2004-2021) at Doosti Dam’s basin.

Figure 8a shows the spatial distribution of trends in the annual temperature, based
on MODIS (MOD11A1) estimates for the period between 2004 and 2021. The spatial
pattern of the Mann-Kendall test showed that temperature decreased in the centre to
east of the Doosti Dam’s basin (Figure 8a) with a 95 % confidence level, as shown in
Figure 8c (p-value < 0.05). The increase in slope of temperature distinguished by Sen’s
slope is illustrated in Figure 8b. LST exhibits a variation of 29 °C to 31.85 °C, with low
annual precipitation varying from 100 mm to 400 mm, indicating that agriculture in these
areas is not possible without irrigation.

3.4. Spatio-Temporal Distribution Annual Evapotranspiration from MODIS in the Doosti Dam’s
Basin (2004-2021)

An analysis of annual distribution and the trend of evapotranspiration offers a more
detailed illustration of the increase in water demand causing more water deviation from
the river. Figure 9 depicts the importance of evapotranspiration losses which varied from
100 to 200 mm in the basin. From this figure, it can be seen that the periods from 2004 to
2008 had low evaporation loss areas, while the period from 2009 to 2020 experienced high
water demand. It also shows that the high elevation areas were underwent higher evapo-
transpiration (near 200 mm) than the downstream areas (Iranian side). The river line in
the center shows the slight and constant evapotranspiration and water demand expanding
from the west to the east. Mean annual evapotranspiration (2005-2020) in the Doosti Dam
River was observed to be 200 mm across the basin. Interestingly, both precipitation and
evapotranspiration have almost identical trends. The precipitation and evapotranspiration
exhibited the highest increases in the year 2009 (~500 mm) and (~170 mm), and for year
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2019 (~550 mm) and (~200 mm), respectively. This also confirms that the whole basin
represents an increasing trend, especially the mountainous areas in the east and alongside
the river.

Figure 10 shows the spatial distribution of trends in the annual evapotranspiration
based on the MODIS product (MOD16A2) estimates for the period from 2004 to 2021.
The spatial pattern of the MK test shows that evapotranspiration is rising in the whole
region of the Doosti Dam’s basin (Figure 10a), and from the statistical point of view, this
increasing trend is significant with the positive trend at a 95% level of confidence for annual
evapotranspiration. In Figure 10b, evapotranspiration is observed to have an increasing
trend (+0.00043) during the years 2004-2021 in the whole study area.

This figure reveals a rising trend in evapotranspiration in the regions of the basin with
a Sen’s slope calculation which varies from +0.00043 (upper limit) to —0.0012 (lower limit)
for upward and downward trends for the significant tendencies at a 95% confidence level,
respectively. Moreover, a statistically significant increasing tendency is detectable across
the region (+0.00043). Figure 10c shows that evapotranspiration rose in the whole basin as
the p-value is less than alpha = 0.05 and with a 95% level of confidence which is significant.
This figure also confirms a significant rise in the trend (p < 0.05) of evapotranspiration
values from 2004 to 2021. The increasing trend in evapotranspiration during the years
2004-2021 is almost identical to the rainfall trend.

3.5. Spatio-Temporal Distribution Annual Snow Cover Duration from MODIS in the Doosti
Dam'’s Basin (2004-2021)

In areas with higher elevations, the MODIS/Terra sensor has ample capability to detect
SCD. The MODIS/Terra 8-day snow cover product (MOD10A1) was used to monitor the
SCD maps in the Doosti Dam’s river basin (Figure 11). The effects of elevation on annual
SCD for the period of 2004-2021 was observed in this figure as lower elevation regions
experienced less snow cover throughout the period.

The SCD varied from zero to nearer 100 % and followed the topography. Figure 10
indicates the variation of snow pixel numbers (SPN) as an indicator of SCE and in the
region and the extent of Doosti Dam'’s reservoir for the period of 2004 to 2021. Maximum
SCD occurred in the high elevated areas (50%). Although statistically insignificant, it
indicates that the yearly snow cover generally decreased somewhat at higher elevations and
remained constant at lower elevations (approximately 20%). The whole basin (especially
the mountainous areas) received the SCD (50%) in the year 2008.

Figure 12 shows the spatial distribution of trends in the annual evapotranspiration
based on MOD10A1 estimates for the period from 2004 to 2021. The spatial pattern of the
MK test shows that snow cover duration had no significant trend in a large area of the
basin (Figure 12a) and in Figure 12¢ no trend was identified for most of Doosti Dam'’s basin;
however, the significant trend was recognised upstream.

Figure 12b shows a decreasing trend for SCD in the western part of the basin with
a Sen’s slope calculation of —0.0012 (lower limit) indicating a downward trend for the
significant tendencies at a 95% confidence level.

3.6. Spatio-Temporal Distribution for Summer Irrigated Cultivated Areas in the Doosti Dam Basin
(2001-2021)

The map presented in Figure 13 shows the irrigated cultivated areas for the summer
growing season. Figure 13a demonstrates that irrigated land predominates in the water
management region along the Doosti Dam’s river. The dominance of the irrigated region
supports the fact that irrigation receives most of the freshwater resources available. The
irrigated cultivated areas in both the winter and summer growing seasons were extracted
by deriving the maximum NDVI maps in the winter (APR-JUN) and summer (JUL-SEP)
growing seasons and applying threshold values to the NDVI maps and elevation from
Doosti Dam'’s river basin baseline. It also shows that the downstream and river line in the
centre identify irrigated areas.

43




ISPRS Int. ]. Geo-Inf. 2022, 11, 535

15 of 28

N N
h A
2004 2005
LST (°C LST (°C)
- o s isom e | o e
1685 3185 4685 1685 3185 4685
" N
A A
WO
- . o 75 150Mm
1685 3185 4685
" N
A A
2008 2009
LST (°C LST (°C)
R o 75 1sokm = -
1685 3185 4685 1685 3185 4685 —
» N
A A
2010 2011
LST (°C) LST (°C}
o o s o o i s
16.85  31.85 46.85 1685  31.85 46.85
» N
A A
2012 2013
T S
j o e e i an
1685 3185  46.85 1685 3185 4685
u N
A A
2014 2015
LST (°C) LST (°C]
e | o 75 1s0km r-__ A
1685 3185 4685 1685 3185 4685 -
g N
A A
2016 2017
LST (°C LST (°C)
LR - . o5 sokm
1685 3185 4685 1685 3185 4685 —
. N
A A
2018 2019
LST(°C) 1ST(
- = o5 uowm - e
1685 3185 4685 1685 1385 4685
» N
A A
2020 2021
LST (°C
LST (°C) o
| o 75 150km - . o 75  150km
1685 3185 4685 1685 3185 4685 —

Figure 7. The spatial-temporal distribution of annual land surface temperatures (°C) from the MODIS
(MOD11A1) product derived from GEE in the period of 2004-2021.
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Figure 8. (a) Spatial distribution map of trend status of land surface temperature (°C) in the Doosti
Dam’s basin based on MODIS LST dataset (MOD11) using Kendall estimator, (b) spatial distribution
of trend intensity of LST (°C) using Sen’s Slope Estimator (Z = 1.96 at 95% confidence level), (c) spatial
distribution of significant trends using p factor, over the 18-year period (2004-2021) in the Doosti
Dam'’s basin.

Figure 13b illustrates the strong correlation between irrigated areas in summer and
precipitation. The cultivated areas increased from 451 km? to 1029 km? as a result of
increase in rainfall from 272 mm to 375 mm during 2004 to 2020. This increase does not
necessarily indicate a change in the amount of land irrigated; it just indicates that certain
agricultural areas that were not irrigated before 2017 were irrigated in 2018. Agriculture’s
status as a vital industry in the basin, permitting it to continue working throughout the
COVID-19 pandemic lockdown period, is the key contributing factor in the increases in
the irrigated area in 2020. Since many individuals lost their other means of income during
lockdown, agriculture emerged as a substitute.

It is worth mentioning that the cultivated areas ranging from 2001 to 2020 containing
three months of data for summer and winter are from January to January, respectively.
From Figure 13b, it can be seen that in the periods from 2001 to 2005, the cultivated areas
tripled from 200 km? to 600 km? and between 2006 and 2018, the cultivated areas fluctuated.
Between 2006 and 2018, high rainfall in 2009 (343 mm) and 2012 (384 mm) exhibited an
increase in the cultivated areas for the basin and subbasin from 320 km? to 530 km? in 2009
and, 430 km? to 630 km? in 2012, respectively. Moreover, irrigated areas witnessed a sharp
increase for the basin and subbasin which varied from 350 km? (2018) to 1029 km? (2020)
and from 250 km? (2018) to 800 km? (2020), respectively.
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Figure 9. The spatial-temporal distribution of annual evapotranspiration (mm) from the MODIS
product (MOD16A2) derived from GEE in the period of 2004-2021.
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Figure 10. (a) Spatial distribution map of trend of annual evapotranspiration (mm) over the Doosti
Dam’s basin based on MODIS evapotranspiration dataset (MOD16A2) using Kendall estimator,
(b) spatial distribution of trend intensity of evapotranspiration (mm) using Sen’s slope estimator
(Z =1.96 at 95% confidence level), (c) spatial distribution of trend significance using p factor, over
the 18-year period (2004-2021) for the Doosti Dam’s basin.

Figure 13c shows a significant ascending trend in the irrigated areas in the summer
season which is an indicator of an increase or densification of vegetation cover in this
region. Interestingly, both the irrigated areas and Doosti Dam’s Lake showed an identical
trend for the highest increase for the year 2006 (320 km?) and (56 km?), and the year 2020
(800 km?2) and (45 km?), respectively. This also confirmed that whole basin experienced an
increase in irrigated areas alongside the Doosti Lake.

3.7. Spatio-Temporal Distribution Winter Irrigated Cultivated Areas in the Doosti Dam Basin's
(2001-2020)

The map presented in Figure 14 shows the irrigated cultivated areas for the winter
growing season. Figure 14a illustrates that irrigated land predominated in the water
management region. During the winter season, the cultivated areas increased from 632 km?
to 1563 km? as a result of increased rainfall from 273 mm to 400 mm over the period 2004
to 2020 (Figure 14b). Figure 14c represents a sharp ascending trend in the irrigated areas in
the winter season, which is an indicator of an increase in cultivated areas along the Doosti
Dam Lake. The irrigated areas and Doosti Dam’s Lake showed similar trends with the
highest increase in the year 2020 (985 km?) and (45 km?) over the 20 years, respectively.

Although the irrigated areas in the winter growing season were significantly higher
compared to the summer season, the trend of changes in the cultivated areas from 2011 to
2018 was not significant (Figure 13b and 14b).
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Figure 11. The spatial-temporal distribution of annual snow cover duration (%) from the MODIS
(MOD10A1) product derived from GEE in the period of 2004-2021.
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Figure 12. (a) Spatial distribution map of trend status of snow cover duration (%) over the Doosti
Dam’s basin based on the MODIS product (MOD10A1) derived from GEE using Kendall estimator,
(b) spatial distribution of trend intensity of SCD (%) using Sen’s slope estimator (Z = 1.96 at 95%
confidence level), (c) spatial distribution of trend significance using p factor, over the 18-year period
(2004-2021) for the Doosti Dam'’s basin.
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Figure 13. (a) Spatial distribution of irrigated cultivated lands in Doosti Dam’s basin as well as
changes that occurred between 2001 and 2020, (b) correlation between rainfall (CHIRPS), irrigated
cultivated areas of basin (km?) in summer growing season based on the MODIS NDVI (MOD09Q)
product derived from GEE during 2001-2020 (c) Correlation between rainfall time series (CHIRPS),
irrigated cultivated areas (km?) of subbasin in summer growing season and Doosti lake based on
Landsat, NDWI index product during 2001-2020.
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Figure 14. (a) Spatial distribution of irrigated cultivated lands in Doosti Dam’s basin as well as
changes that occurred between 2001 and 2020, (b) correlation between rainfall (CHIRPS), irrigated
cultivated areas of basin (km?) in winter growing season based on the MODIS NDVI product
(MOD09Q) derived from GEE during 2001-2020, (c) correlation between rainfall time series (CHIRPS),
irrigated cultivated areas (km?) of subbasin in winter growing season and Doosti lake based on

Landsat, NDWI index product during 2001-2020.
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4. Discussion

Using three-gauge measurements and multi-hydroclimatic gridded datasets at various
elevation ranges (from 278 m to 4163 m), this study analyses trends and spatiotemporal
variability in multi-hydroclimatic variables over the past two decades. A significant in-
creasing trend in precipitation is apparent over the eastern regions of Iran leading to a
positive annual trend over the pixels [30]. Unlike the findings of previous studies [37,65],
temperature demonstrated a slight decrease, which might be as a result of the different
research periods and various precipitation dataset types (point and pixel-based) employed
for trend analysis. Indeed, while a satellite product calculates precipitation variables across
a region, a rain gauge measures variables at a particular location [30]. The investigation of
the trends of evapotranspiration indicated the positive increasing trend over the regions of
Iran, confirming the results of a previous study in Iran [66].

Snow cover generally declined slightly over the period 2004-2021, higher elevation
areas experienced an increase in SCA alongside a declining temperature trend [67,68].
Land-use changes and the construction of dams, reservoirs and irrigation canals have
been identified as the primary anthropogenic activities causing variations in runoff [69].
Irrigated areas in both the winter (APR-JUN) and summer (JUL-SEP) growing seasons
increased through the nonparametric tests across the basin. Human activities increased
the irrigated areas and so are considered to be the most significant possible driver of the
diversion of runoff in the basin [69]. The results also confirmed that the strong correlation
between precipitation and irrigated areas and both irrigated areas and the Doosti lake
showed an identical trend.

The GEE platform has two advantages: (1) due to data limitations in the inaccessible,
sparsely gauged basin, it facilitated data collection in some regions which have few weather
stations and (2) it enabled us to process and analyse numerous hydroclimatic variables,
including land use, snow cover, lake reservoir, evapotranspiration, integrating the publicly
available big geospatial data.

Considering the spatiotemporal variability of numerous hydroclimatic variables in
data-sparse regions, this research provides insights for the policy-maker seeking mitigation
strategies. On the other hand, the lack of access to long-term data of consistently high
quality, missing data and data with inadequate spatial and temporal coverage could have a
detrimental impact, leading to poor decision making. The absence of in situ measurements
for other hydroclimatic variables, in addition to temperature and precipitation, is another
limitation of this study.

As we only covered the trends with the MK and Sen’s slope, investigating season—
trend fit models such as antileakage least-squares spectral analysis [70-72] or least absolute
shrinkage and selection operator (LASSO) [73] is recommended. The Mann-Kendall test’s
essential requirement is that the data should be independent and mostly applied to an
annual-scale time series [30,37,61]. Therefore, before applying the Mann-Kendall test,
any positive or negative autocorrelation of the data should be removed [74]. Moreover,
in this research, Mann-Kendall was applied to annual-scale time series, so seasonality
is not present in annual-scale time series. However, prior to annual trend analysis, the
autocorrelation test was applied to ensure that there was no seasonality present and to
eliminate any existence of an autocorrelation impact on the data [75]. Furthermore, probable
changes in the future are generally studied by general circulation models (GCMs) [76-78]
and scenarios [79,80]. However, climate projections are uncertain for the detection of
extremes [81]. The probable changes in environmental flow release can be assessed by
applying the downscaled outputs of multi-GCMs forced into hydrological models [82]
under a non-stationary assumption [83], which can be further studied in the future. Hence,
study under non-stationary assumptions to reduce the damage caused by climate change
and human activities is suggested.
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5. Conclusions

Given the high spatial and temporal variations in hydroclimatic variables in trans-
boundary regions, it is necessary for water resource decision-makers to understand the
hydroclimatic behaviours through the analysis of the variables” heterogenicity. This study
investigated the spatiotemporal aspects of numerous hydroclimatic variables based on
GEE at the transboundary level. The nonparametric statistical tests (MK and Sen’s slope)
were applied coupled with an advanced web-based cloud computing platform (GEE) to
delineate the monotonic trend of data. This study provides a comprehensive understand-
ing of the long-term trend of hydroclimatic variables. The spatial and temporal changes
of hydrometeorological temperature (MODIS-Terra), evapotranspiration (MODIS-Terra),
snow cover distribution (MODIS-Terra), MODIS Terra NDVI in relation to precipitation
(CHIRPS), topography (DEM SRTM) and the LANDSAT NDWI index in the Doosti Dam’s
basin are presented for the period 2004 to 2021. The key findings of this study are as below:

(1) The study showed how well multisensory satellite data can be used to predict hy-
drometeorological spatiotemporal trends, especially in transboundary high elevation
areas when accessing station-observed data is a major challenge. It demonstrated that,
for most variables, these trends largely relied on elevation. This statistically upward
trend was seen in rainfall, evapotranspiration, and lower temperature during the
years 2004 to 2021, but did not have a remarkable effect on snow cover duration.

(2) This study was focused on understanding how the irrigated cultivated lands re-
sponded to different hydroclimatic variables. Because it is a transboundary region,
has diverse topography and climate change conditions, the monitoring of the irrigated
lands was difficult. Elevation had a significant influence on the climate and the Doosti
Dam, situated at a lower elevation, was employed to comprehend the long-term
spatiotemporal variability of the irrigated areas and related climatic and hydrological
causes. NDVI derived from MODIS indicated the strong correlation between the
NDVI and precipitation in the winter.

(3) Additionally, the findings demonstrate that GEE is an effective method for compil-
ing and establishing the spatiotemporal fluctuations in various variables and that
remotely sensed data products consistently represent ground observations in remote
transboundary areas. It is anticipated that the socio-ecological system in this trans-
boundary area would decline owing to unsustainable water management which will
negatively affect the conditions of the residents. It is important to consider the en-
vironmental right of the lakes to improve the conditions in the transboundary river
basin. GEE’s potential has not yet been fully realised, despite the fact that it has
gradually evolved into a platform for remote sensing research. With the help of GEE,
this study offers a rapid and feasible method for determining spatiotemporal climatic
trends. The methodology can be easily applied to other areas with comparable issues
when combined with the tools made available by GEE. The results of this study can
aid in the management of water resources and the preservation of the ecological
environment in the Doosti Dam’s basin and other transboundary regions.

(4) Inan area characterised by a complicated set of interactions between precipitation,
evapotranspiration, temperature, NDVI, snow cover, lake area and discharge, the
overall findings of this study could guide water resource management strategies.
Future research should take these elements into account in order to provide a full
forecast of the spatiotemporal climatic dynamics of transboundary areas, especially in
light of the current period of rapid climate change (both natural and anthropogenic).
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4.3. Links and implications

The first paper focused on analysing hydroclimatic variations in the Doosti
Dam’s basin using multisensor satellite data from the GEE platform. This paper
provided a comprehensive understanding of hydroclimatic trends and their
implications for water resource management. By engaging in this aspect of the project,
it was possible to achieve Research Objective 1: “Assess and map the spatiotemporal
distribution and the overall trends of hydro-climatological data using spatial distribution
in the GEE.”

A powerful web-based cloud computing platform (GEE) was used in
conjunction with non-parametric statistical tests (MK and Sen's slope) to explore the
spatiotemporal characteristics of various hydroclimatic variables. This allowed the
identification of the monotonic trend in the data. An in-depth understanding of the long-
term trend of hydroclimatic variables is provided by this study. The first paper
demonstrates the effectiveness of using multisensor satellite data, particularly from
platforms like GEE, to analyse hydroclimatic trends over large areas. This aligns with
the approach taken in the second paper, which also utilises remote sensing
techniques, in frequency analysis of extreme events. This paper offers a significant
contribution to knowledge in answering the Research Question: “Can the spatial
distribution of remotely sensed dataset substitute ground-based observations in the
sparse gauge catchments? Does the spatial distribution of global climate datasets
agree significantly well with ground-based observations?”. Both papers underscore
the importance of understanding hydroclimatic variability for water resource
management and address the impacts of climate change and human activities on
water resources. The first paper provides insights into long-term trends and spatial
patterns, while the second paper delves into the frequency and severity of extreme
events and non-stationary conditions, enhancing our understanding of the dynamic
nature of hydroclimatic systems.

This research facilitated the achievement of our research goal by utilising
statistical analyses and remote sensing methods to evaluate hydroclimatic patterns,
thereby establishing a foundation for methodologies employed in the second paper,

including GEV models and spatiotemporal analysis techniques.
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4.4. Conclusion

Chapter 3 of this thesis introduced the first paper that was published as a
component of this study. This paper established a foundation methodology applied in
the second and third papers for extreme analysis through the GEV model. The NEVA
model employs the Mann-Kendall trend test, to detect trends in extreme data.
Following previous research papers, the second paper is discussed in the subsequent

chapter, Chapter 4.
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CHAPTER 5: PAPER 2 - A MULTI-FRAMEWORK Of GOOGLE
EARTH ENGINE AND GEV FOR SPATIAL ANALYSIS OF EXTREMES
IN NON-STATIONARY CONDITION IN SOUTHEAST QUEENSLAND,
AUSTRALIA

5.1. Introduction

Extreme precipitation, extreme evapotranspiration, and extreme water storage
deficit events are examples of extremes whose frequency and intensity are changing.
Therefore, it is imperative to build a framework for estimating non-stationary
circumstances. In order to provide a framework that takes into account the cause and
effect of the physical system, this chapter used the geeSEBAL platform, Generalised
Extreme  Value models, and  spatiotemporal analytic  approaches.
Initially, the geeSEBAL platform facilitated the calculation of actual evapotranspiration
(ETa) with an unparalleled degree of spatial and temporal precision. Subsequently,
the Non-stationary Extreme Value Analysis methodology uses a Differential Evolution
Markov Chain technique to apply the Bayesian method and determine the magnitude
and frequency of extreme values throughout the parameter space. The study
employed station and global climate datasets to examine the rainfall, ETa, reference
evapotranspiration (ETo), and water storage variables in the Lockyer Valley, situated
in the SEQ region of Australia, both spatially and temporally. A GEV distribution was
used to do a frequency analysis of ETa, rainfall, and water storage deficit for 14 sites
under both stationary and non-stationary assumptions. The findings show that, in
comparison to conclusions generated from station data, global climate databases
underestimate the difference between stationary and non-stationary situations. Similar
to this, the data show that there is less change in water storage in stationary and
non-stationary situations, with a strong variation in rainfall and a moderate variation in
evapotranspiration following. The results of this investigation suggest that
underestimating the quantities of some hydrometeorological variables might result
from disregarding their non-stationary state. This paradigm offers useful insights for
disaster management, risk assessment, and infrastructure planning and design,

andmay be used to estimate severe situations in any geographic location.
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5.2. Published paper

Pakdel et al. (2023), “A Multi-Framework of Google Earth Engine and GEV for
Spatial Analysis of Extremes in Non-Stationary Condition in Southeast Queensland,
Australia” was published in ISPRS International Journal of Geo-Information (2023),

Volume 12, Issue 370.
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Abstract: The frequency and severity of extremes, including extreme precipitation events, extreme
evapotranspiration and extreme water storage deficit events, are changing. Thus, the necessity for
developing a framework that estimates non-stationary conditions is urgent. The aim of this paper is
to develop a framework using the geeSEBAL platform, Generalised Extreme Value (GEV) models and
spatiotemporal analysis techniques that incorporate the physical system in terms of cause and effect.
Firstly, the geeSEBAL platform has enabled the estimation of actual evapotranspiration (ET,) with an
unprecedented level of spatial-temporal resolution. Following this, the Non-stationary Extreme Value
Analysis (NEVA) approach employs the Bayesian method using a Differential Evolution Markov
Chain technique to calculate the frequency and magnitude of extreme values across the parameter
space. Station and global climate datasets have been used to analyse the spatial and temporal variation
of rainfall, reference evapotranspiration (ET,), ET, and water storage (WS) variables in the Lockyer
Valley located in Southeast Queensland (SEQ), Australia. Frequency analysis of rainfall, ET,, and
water storage deficit for 14 stations were performed using a GEV distribution under stationary and
non-stationary assumptions. Comparing the ET,, ET, and ERAS rainfall with station data showed
reasonable agreement as follows: Pearson correlation of 0.59-0.75 for ET,, RMSE of 45.23-58.56 mm
for ET,, Pearson correlation of 0.96-0.97 for ET,, RMSE of 73.13-87.73 mm for ET, and Pearson
correlation of 0.87-0.92 for rainfall and RMSE of 37.53-57.10 mm for rainfall. The lower and upper
uncertainty bounds between stationary and non-stationary conditions for rainfall station data of
Gatton varied from 550.98 mm (stationary) to 624.97 mm (non-stationary), and for ERA5 rainfall
datasets, 441.30 mm (stationary) to 450.77 mm (non-stationary). The results demonstrate that global
climate datasets underestimate the difference between stationary and non-stationary conditions by
9.47 mm compared to results of 73.99 mm derived from station data. Similarly, the results demonstrate
less variation between stationary and non-stationary conditions in water storage, followed by a
sharp variation in rainfall and moderate variation in evapotranspiration. The findings of this study
indicate that neglecting the non-stationary condition in some hydrometeorological variables can
lead to underestimating their amounts. This framework can be applied to any geographical area for
estimating extreme conditions, providing valuable insights for infrastructure planning and design,
risk assessment and disaster management.

Keywords: climate extremes; Google Earth Engine; geeSEBAL; non-stationary; GEV distribution

1. Introduction

Stationarity is an assumption that was historically made to simplify the already com-
plex statistics required. The terms of the return period and return level give vital informa-
tion for designing, decision-making and estimating the implications of climatic occurrences
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under the assumption of a stationary climate. This was generally a safe assumption as our
data records were shorter in the past; therefore, not much change occurred over that short
period of time. Furthermore, researchers of the past did not have the same computational
power that we now have, so they relied on simplifying assumptions to make the math
manageable. In particular, the availability of longer data records and the changing climate
introduce risks in persistently assuming stationarity. For a long time, infrastructure design
approaches have depended on stationary return levels which presume that the frequency
of extremes does not fluctuate over time [1]. The frequency of extremes, on the other
hand, has been shifting and is expected to continue to change in the future [2], and studies
have shown that hydrological records in some regions demonstrate non-stationarity in
the form of growing or decreasing patterns as well as their combination. Hydrological
parameters are considered stationary over time, but the stationary condition may no longer
be applicable as climatic and human effects create non-stationary behaviour [3].

The difficulty of incorporating spatial information within extreme value analysis ap-
proaches has been one focus of current studies on framework development given that many
extreme occurrences involve spatial processes [4,5]. As a result, non-stationary climatic and
hydrologic extremes require models that can account for them [6,7]. Southeast Queensland
(SEQ) is one of Australia’s most flood-prone zones [8] and the Intergovernmental Panel on
Climate Change (IPCC) has recognised it as one of the “hotspots” for climate change [2].
According to Mpelasoka et al. [9], the soil-moisture-based drought frequency in SEQ catch-
ments is expected to rise by 80 percent by 2070. In a major catchment in eastern Australia,
Zhang, Wang [10] projected that during the next 80 years, real ET will rise significantly
while water storage will decline.

This study aims to investigate non-stationary scenarios of rainfall (Rain), actual evapo-
transpiration (ET,) and water storage (WS) variables obtained through the global climate
datasets and ground-based measurements across various stations in the Lockyer Valley in
SEQ. To achieve this goal, a geeSEBAL algorithm and NEVA model were employed in both
stationary and non-stationary conditions. GeeSEBAL was used to automatically estimate
ET, allowing for validation against ET station data. Considering that geeSEBAL does not
depend on any ground-level measurements as input data, it is expected that this tool will
be beneficial for the examination of water balances for worldwide application, as well as
for water resource management in areas with limited data [11]. They also mentioned that
the purpose of geeSEBAL is to enhance the comprehension of the effects of land cover
alterations on ET during the past few decades. The recent version of geeSEBAL utilises
Landsat imagery and reanalysis data to calculate the time series of ET,, demonstrating
encouraging outcomes for regional-scale investigations conducted in areas with limited
data availability [11].

Changes in water storage are expected to result in changes in precipitation and evapo-
transpiration patterns, subsequently affecting plant phenology [12,13]. Since the intensity
of extremes including extreme precipitation events, extreme evapotranspiration events and
extreme deficit of water storage depend on several factors, such as vegetation cover [14], rel-
ative humidity, evapotranspiration [15] and topography, identifying the drivers of extremes
helps us quantify, predict and project extremes [16]. Given the complexity of heat and
energy exchanges between the land and the atmosphere, quantifying ET is regarded as a dif-
ficult undertaking [17]. Our capacity to analyse the ET process has substantially increased
as a result of the advancement of various remote sensing technologies, particularly the cre-
ation and use of multiple surface energy balance (SEB) models [18]. Although, ET cannot be
measured directly from satellites [19], it can be calculated using Mapping Evapotranspira-
tion at High Resolution with Internalised Calibration (METRIC) [20] and the Surface Energy
Balance Algorithm for Land (SEBAL) [17,21]. The core mechanism of the SEBAL, which is
based on choosing endmembers that reflect the extremes of the hot (dry) and cold (wet) pix-
els, estimates the near-surface temperature gradient (dT) [17,20]. Previously, the process of
identifying hot and cold pixels was performed manually, but advancements in technology
have made it possible to automate this task. One such technique, known as Calibra-
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tion using Inverse Modelling at Extreme Conditions (CIMEC) [22], utilises the Normalised
Difference Vegetation Index (NDVI) and Ts percentiles to automatically determine endmem-
bers. In this study, a platform called geeSEBAL (https://github.com/et-brasil/ geesebal
(accessed on 15 June 2023)) was used. It combines the capabilities of Google Earth Engine
(GEE) with the Surface Energy Balance Algorithm for Land (SEBAL) framework [11]. It is
an application or tool developed to leverage the GEE platform’s application programming
interface (API) and serves as a powerful tool for conducting various analyses related to
remote sensing and evapotranspiration estimation.

A Bayesian inference framework that supports both non-stationary and stationary
estimations was proposed by Cheng et al. [23]. As numerous natural phenomena happen
under a non-stationary context, the idea of non-stationarity has been shown to be quite
helpful in the field of hydroclimatology for analysing extremes. Their study findings sug-
gested that NEVA calculates extreme return levels and variables effectively. The persistence
of hydroclimatic extremes is destructive to the economy, natural ecosystems, agriculture,
infrastructures and human health [24-28]. Identifying design extremes at different recur-
rence intervals and durations can be accomplished by performing a frequency analysis of
extremes and looking at changes in the return period of the extremes using NEVA [1]. This
model allows us to incorporate shifting extremes in intensity and frequency analysis [23].

Generalised Extreme Value (GEV) distributions and the Log Pearson Type 3 (LP3) are
frequently utilised to conduct intensity analyses of hydroclimatic extremes. These statistical
distributions are widely used for studying the occurrence and magnitude of extreme
events in hydrology and climate research. Previous research used the GEV distribution to
create Temperature Duration Frequency (TDF) curves [28,29]. Additionally, the Australian
Rainfall and Runoff (ARR) guideline [30] has recommended the use of the GEV distribution
for calculating design floods and rainfalls.

The study aimed to achieve the following specific objectives: (1) To evaluate the actual
evapotranspiration derived from geeSEBAL by feeding two different climate datasets
(ground-based observations and global climate products); (2) to compare the spatiotemporal
distribution of the P and ET, derived from a global climate dataset with the results of the
same variables derived from ground-based observation and determine the model accuracy;
(3) to evaluate and map the spatiotemporal distribution of water storage derived from a
lump water balance for the last 32 years by considering two climate datasets and comparing
the results incorporating physical drivers in terms of cause and effect; (4) to analyse the
intensity and frequency of rainfall extreme events, evapotranspiration extremes and water
storage deficit extremes under both stationary and non-stationary conditions using the
GEV model for the estimation of different return levels.

In this study, we propose an integrated framework that combines geeSEBAL, NEVA-
GEV and spatial distribution analysis to evaluate the return levels of extremes, including
extreme rainfall events, extreme evapotranspiration events and extreme water storage
deficit. We believe that the physical disturbance within a catchment alters the underlying
process and results in temporal fluctuation in parameter values. As hydroclimatic variables
can significantly vary over time, space, and climate zones, it is necessary to employ accurate
data with higher spatial resolution for variability analysis [31]. So, we provided the geeSE-
BAL results by incorporating high quality datasets and considering the physical system
drivers and their relationship. The outcomes of the study could be useful in understanding
the spatial variation of rainfall, evapotranspiration and water storage by incorporating both
stationary and non-stationary assumptions, thereby assisting decision-makers in making
informed decisions for disaster preparedness, emergency response, health care services
and the selection of appropriate materials for infrastructure development.

2. Materials and Methods

Figure 1 shows the main methods and data sets used in this study. The steps in
this study are as follows: (a) deriving ET, from the geeSEBAL algorithm and WS from
a lump water balance, (b) accuracy assessment of P, ET, and ET, derived from station

64




ISPRS Int. |. Geo-Inf. 2023, 12, 370

40f 25

and global climate datasets, (c) spatial analysis of extremes, including P, ET, and WS and

(d) investigating the extreme events analysis using the GEV model.
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events analysis (Modified [11]).
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2.1. Study Region

The Lockyer Catchment is the case study area which is located in SEQ as illustrated
in Figure 2. Lockyer Creek is the main stream which runs eastward into the Brisbane
River then enters Moreton Bay [32]. The catchment is located east of Toowoomba and
west of Brisbane, within the local government boundaries of the Lockyer Valley Regional
Council, Somerset Regional Council, Toowoomba Regional Council and Ipswich Regional
Council [33]. Recognising its significance, the relevant infrastructure operators and decision-
makers, such as the Queensland Department of Environment and Science and Seqwater,
acknowledged the importance of this catchment [34]. It covers approximately 3000 km?,
with an average annual rainfall of 1000-2012 mm [35].
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Figure 2. Geographical location of studied area in Australia (Left). Hydro-meteorological stations
considered along the Lockyer Catchment (Right).

However, there is a significant temporal fluctuation, resulting in rivers that are dry for
most of the year. The watershed comprises some of Australia’s richest farmed areas, with
high-value vegetable cultivation and grazing [32]. The northern and southern sections of
the Lockyer watershed receive a lot of rain. The majority of the basin received moderate
to low rainfall and during Australia’s recent droughts and the Lockyer Creek valley was
one of the driest catchments in Queensland [36]. Collectively, they drain around 3000 km?
of land, about a fourth of the Brisbane River’s watershed. The Lockyer Catchment, which
has a population of over 35,000 people, has considerable environmental, economic and
social importance.

In this region, there have been several unique climatic events in recent decades, such
as between 1988 and 1989, when there was above average rainfall, and from 2000 to 2008,
when there was a catastrophic and prolonged drought. Drought relief measures were
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implemented in 2008. However, the region continues to experience reoccurring cycles of
drought and flood crises, sometimes impacting the entire country for an extended duration.
The frequency of flood events, like the one in 2022, may be misestimated under a stationarity
assumption given that previous studies have shown the assumption to no longer be valid.
Moreover, it has been observed that the relationship between runoff and rainfall in the
Lockyer Catchment is non-stationary [37,38]. Therefore, it is crucial to develop novel
methods to estimate non-stationary rainfall extremes, evapotranspiration extremes and
water storage deficit to enhance the design and management of hydraulic structures which
minimise human and financial losses in the future.

2.2. Observed and Global Climate Dataset

Daily meteorological data including minimum and maximum air temperature (°C),
minimum and maximum relative humidity (%), wind speed (m/s), surface solar radia-
tion (MJ/m?2) and hydrological data, such as evapotranspiration (mm) and rainfall (mm),
were sourced from two datasets: ground-based observations (Figure 2) and global cli-
mate products. The ground-based observations were obtained from SILO, an Australian
climate data source (http:/ /www.longpaddock.qld.gov.au/silo (accessed on 15 January
2023)) [39,40] that covers the period from 1990 to 2022. SILO data are the most commonly
used and most reliable climate data for environmental studies in Australia [41]. Fourteen
SILO meteorological and hydrological stations were applied for this research. First, the
Inverse Distance Weighting (IDW) interpolation method was used to interpolate the sta-
tion data and rasterise the meteorological parameters. To run the geeSEBAL algorithm,
daily meteorological ground-based observations and the hourly fifth generation ECMWEF
reanalysis (ERA5) climate dataset with 9 km spatial resolution were incorporated in GEE
and were used separately for running geeSEBAL, as well as estimation of water storage.
Land use information was obtained from the Australian government, Geoscience Australia
(https://www.ga.gov.au/, accessed on 15 January 2023), for simulation purposes. A Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) [42] dataset with a grid
size of 90 m was used as input for the geeSEBAL algorithm.

2.3. Google Earth Engine Application: The geeSEBAL Algorithm

The initial method created by Bastiaanssen et al. [17] is the foundation for the geeSE-
BAL [11], which makes the assumption that latent heat flux (LE) (W/ m?2) can be approxi-
mated as a residual of the surface energy balance.

LE=R,—G-H (€]

where R, is the net radiation; G is the soil heat flux (W/mz); H is the sensible heat flux
(W/m?). Given that both H and the aerodynamic resistance to turbulent heat transport (r,;)
are unknown, H was calculated by an iterative procedure.
_ pa CpdT

Tan

H @
where Cj, is the specific heat capacity, r,; aerodynamic resistance to turbulent heat transmis-
sion between two heights, dT represents the near-surface temperature difference between
two heights p, is air density [17]. A linear connection between T and (dT) is provided and
cold and hot endmember selection is required to solve the iterative approach. The a and b
coefficients are calculated individually for each picture.

dT = a+bT; (©)

Comprehensive documentation for the formulation and calibration of the SEBAL
algorithm is covered in [17]. GEE infrastructure was used to develop the geeSEBAL algo-
rithm [43], which enables the estimation of evapotranspiration at regional scales by using
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meteorological reanalysis data and Landsat imagery [11]. The schematic representation
of geeSEBAL is illustrated in Figure 1, highlighting the factors that were considered in
the present study. The JavaScript APIs were used to integrate the SEBAL algorithm into
GEE [11].

The three primary purposes of the geeSEBAL tool are: (1) Image: derivation of actual
evapotranspiration from a particular image (accessible for JavaScript); (2) ImageCollection:
batch method to calculate ET, provided a date range and (3) Timeseries: long-term ET, time
series estimate at user-provided locations. All applications and codes are freely accessible
at https:/ /github.com/et-brasil /geesebal (accessed on 15 January 2023). Additionally,
the Earth Engine programme (https://etbrasil.org/geesebal, accessed on 15 January 2023)
offers a graphical user interface version of geeSEBAL [11,44,45]. For the purpose of running
geeSEBAL, a series of Landsat images with the highest data quality were used. We used
cloud cover filters using the CFMask method [46], which generates a bitmask to identify
each image’s pixels for clouds, clouds with shadows, clouds with confidence and pixels
for ice and snow. The characteristics of Landsat collections used in this study are included
in Table 1.

Table 1. The datasets available in the GEE platform that are used in geeSEBAL.

Product GEEID Resolution Time Coverage
LANDSAT
8 OLI/TIRS LANDSAT/LC08/C01/T1_SRLANDSAT/LC08/C01/T1 30 m Apr/2013-Present
LANDSAT 7 ETM+ LANDSAT/LE07/C01/T1_SRLANDSAT/LE07/C01/T1 30m Jan/1999-Present
LANDSAT LANDSAT/LT05/C01/T1_SR
5TM LANDSAT/LT05/C01/T1 Hm Maey/ T384-Magi/ 2012

The geeSEBAL algorithm was run separately using ERA5 reanalysis data and station
data. Advised hot and cold endmembers percentiles were applied to determine the hot
and cold pixels. The selection of candidates for the cold endmembers involved identifying
densely vegetated areas, whereas sparsely vegetated regions were considered for the hot
endmembers. The candidate with the lowest Ts (20%) and greatest NDVI (5%) percentiles
was selected to represent the cold end. Conversely, the hot endmember was determined
by selecting the candidate with the highest Ts percentile (20%) and the lowest NDVI
(10%) percentiles.

Long-term ET, was generated using the geeSEBAL algorithm, and the gaps between
the Landsat images were filled by multiplying a ratio map of the last available simultaneous
maps of ET, and reference evapotranspiration, ET,, to the new ET, map [47]. It is vital to
consider the non-stationary condition of rainfall and storage (Equation (4)) in a catchment,
especially when the relationship between rainfall and runoff is non-stationary. In this
equation, P is daily precipitation (mm), g is runoff (mm) 20% of precipitation [30,48], and
ET, is daily actual evapotranspiration (mm) derived from the geeSEBAL algorithm.

s
T =P—q-ET, @

2.4. Assessing Extremes in a Non-Stationary Approach Using GEV Model

A stationary time series is defined as one in which all finite dimensional distribu-
tions are time invariant [49]. The stationary assumption may not be valid in relation
to changes caused by human and climatic factors, which results in non-stationary sit-
uations [3]. The simplifying assumption of stationarity is used to estimate the largest
instantaneous extremes, and structures are built with this assumption in mind. It is impor-
tant to acknowledge that the impacts of climate change are growing, leading to an increase
in non-stationary conditions worldwide. The frequency of flood events like the one in 2022
may be misestimated under a stationarity assumption given that previous studies [38] have
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shown the assumption to no longer be valid. Therefore, it is critical to take a non-stationary
approach to these issues (Figure 1). In order to analyse the non-stationary extremes, the
NEVA software package [1] was utilised.

NEVA calculates the extreme value in a Bayesian method using a Differential Evolution
Markov Chain technique for global optimisation across the parameter field [1]. Extreme
Value Theory (EVT) provides two fundamental distributions for describing extremes: either
the peaks-over-threshold approach using the Generalised Pareto Distribution (GPD) [50-52]
or the block maxima (or minima) approach using the Generalised Extreme Value (GEV)
family of distributions [53]. NEVA typically contains two sections: 1. GEV distribution for
yearly maximum analysis (block maxima) and 2. The peak-over-threshold (POT) approach
uses the GPD for analysis of extremes over a specific threshold. The GEV method has
been applied in this study. The GEV distribution’s cumulative distribution function (cdf) is
represented using the following equations:

F(x)=exp{*<1+e(%}—l>>rl} ©)
(Hs(%“)) >0 ©)

The GEV distribution is incredibly adaptable to simulate the behaviour of many
severe occurrences since it just has three parameters (i, £, 7). The location, scale and shape
parameters are defined by y, ¢ and ¢, respectively [52].

The GEV becomes the Gumbel, Fréchet and Weibull distributions, respectively, when
£=0,e<0and ¢ >0, respectively.

In NEVA, the shape and scale parameters are assumed to be constant while the
location parameter is considered to represent a linear function of time to accommodate for
non-stationary [1].

() = pat+po @)

NEVA uses the Mann-Kendall trend test at the user-selected significance level to
identify trends and non-stationarity in extremes in data [1]. The Mann-Kendall (MK)
statistical test [54] was undertaken to calculate the importance of climatic time series’
trends [55-58]. There is no monotonic trend at the specified level of significance according
to the null hypothesis (H0) of the MK test. The alternative hypothesis (Ha) in this test shows
a monotonic trend over time. More details about Mann-Kendall are documented in [31].
The Bayesian approach employs a generic inference methodology. The Bayes theorem for
estimating GEV parameters under the non-stationary assumption can be defined as follows
under the assumption that observations are independent of one another [1,52]:

P(ﬁ

vx) e p (¥ |B.x)p((BIx) ®

p(y|B.x) =TT pwelB x(1)) =TT, plyslut), o) )

For the components, which are 8 without x(t), the stationarity may be thought of as a
specific instance of the aforementioned equation:

p(6]) «p(¥]0) p®) = T, » (16) p(6) (10)

Thus, according to the non-stationary assumption, x(t) stands for the collection of all
B, x) reveal the
parameters’ behaviour under stationarity 6 = (1, £, o) or non-stationarity B = (11, po, €, 0).

covariate values. The derived posterior distributions p(@‘?) and p(;
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3. Results

The research introduces a comprehensive approach by combining geeSEBAL with
two climate data sets (global data and station data), NEVA-GEV and spatial distribution
analysis. This integrated framework aims to assess the return levels of extreme events, such
as heavy rainfall, evapotranspiration and water storage deficit, by taking into account the
physical factors and their interactions within the system.

3.1. Station Data and ERA5 Land Reanalysis Feeding into geeSEBAL as Meteorological Inputs

GeeSEBAL was run by ERA5 reanalysis and station data with advised percentiles. The
cold (wet) endmember was selected in the area with the highest concentration of vegetation,
consisting of the coldest 20% T; of the top 5% vegetated pixels according to NDVI, and the
hot (dry) endmember was chosen in the area with the lowest concentration of vegetation,
consisting of the warmest 20% T’ of the lowest 10% NDVI vegetated pixels. To identify the
spatial pattern of four parameters among stations and ERAS5 reanalysis are displayed in
Figures 3 and 4 at Lockyer Catchment. These two figures provide better insight into how
rain, ET,, ET, and WS are distributed over the catchment for the period of 2000 to 2022.
Rainfall follows a similar trend in the upstream and downstream parts of the catchment
during these years. The rainfall and ET, have almost identical trends which indicates the
highest rise in the year 2010.

Between December 2010 and January 2011, flooding of historic proportions swept across
large areas of Queensland due to prolonged rainfall [59], as illustrated in Figures 3 and 4. More
than 78% of the state was declared a disaster zone, affecting 2.5 million people negatively
and causing about 33 deaths [59]. The flood events affected approximately 29,000 homes
and businesses, with an estimated damage cost of over $5 billion [59]. Interestingly, the
estimation of spatial patterns derived from ERAS5 land reanalysis are almost identical with
station data for rain. Whereas in ET,, ERAS reanalysis overestimates the spatial variability
compared to station data. Accordingly, water storage for the year 2010 confirms that the
whole catchment reached its highest annually. The spatial pattern of figures for ERA5
reanalysis represents the more noticeable variation in the year 2005. The rain and water
storage deficit in station data range from (~1200 mm) to (~1500 mm) and from (~250 mm)
to (~500 mm), respectively (Figure 3). Similarly, Figure 4 shows the rain and water storage
in ERAS5, depicting the highest rise (~1500 mm) and (~500 mm) for years 2010 and 2020,
respectively, while potential evapotranspiration has a remarkable increase from (~1450 mm)
to (~1600 mm) in the year 2020 for both station and ERA5 reanalysis datasets. Water storage
for both the station and ERA5 data remain the same, whereas ET, for the station and ERA5
exhibit variation from approximately 100 mm to 700 mm and from 400 mm to 1000 mm,
respectively. ERA5 reanalysis overestimates ET, in comparison to the station.

So, the relationship between actual evapotranspiration and water storage is similar.
Irrigated areas were concentrated alongside the streams and the Gatton area, which is
known as the agricultural hub in Southeast Queensland. This also confirms the strong
correlation between water storage and irrigated areas. The Lockyer Valley includes some
of Australia’s richest farmed area, with high-value vegetable cultivation, and, as can be
observed, the highest water storage is concentrated in the irrigated areas [32]. So, the
relationship between actual evapotranspiration and water storage is similar.
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Figure 3. Changes in spatial pattern of hydroclimate parameters (annual cumulative rainfall
(column 1), reference evapotranspiration (column 2), actual evapotranspiration (column 3) and
water storage deficit (column 4)) from 2000 to 2020 based on geeSEBAL algorithm resulting from
station datasets over the Lockyer Catchment.
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Figure 4. Changes in spatial pattern of hydroclimate parameters (annual cumulative rainfall
(column 1), reference evapotranspiration (column 2), actual evapotranspiration (column 3) and
water storage deficit (column 4)) from 2000 to 2020 based on geeSEBAL algorithm resulted from
ERADS reanalysis datasets over the Lockyer Catchment.
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3.2. Validation of geeSEBAL ET, and ET, and Rain across Stations

To determine the model’s accuracy, we compared the geeSEBAL algorithm driven by
ERADS reanalysis data and the reported data in the stations. Descriptive statistics results
showed reasonable accuracy agreement between geeSEBAL ETj,, gridded ET, and ERA5
rainfall and stations (Table 2). All the stations presented R? and Pearson correlation for
rainfall ranging from 0.76 to 0.84 and from 0.87 to 0.92, respectively, and some of the stations’
results are presented in Table 2. The minimum RMSE was represented by Whitestone station
(37.53 mm) and West Haldon station (38.97 mm) for rainfall. Due to the lack of clear sky
images, R2 values of ET, were low, ranging from 0.35 to 0.56 for the Upper Tenthill and
Townson stations, respectively. Despite the low values of R?, ET, presented a similar
accuracy to rain and its RMSE, ranging from 45.23 mm (Whitestone) to 58.56 mm (Upper
Tenthill). On the other hand, ET, estimates indicated a high accuracy for the 32 years,
ranging from R? of 0.97 to 0.94, and Pearson’s correlation of 0.97 to 0.96 for Townson and
Placid Hills stations, respectively.

Table 2. Statistical comparison of annual cumulative rainfall, actual and potential evapotranspiration
derived from geeSEBAL with the gauging station data.

Variable R? Pearson’s RMSE

Rlatian. mm % Correlation ~ mm/Month Bias Mpiee
P 0.76 0.87 45.38 1.14 0.16
Gatton ET, 0.53 0.73 49.96 —34.07 0.15
ET, 0.94 0.96 83.73 —71.33 0.28
P 0.82 0.90 48.35 —4.63 0.16
Placid Hills ET, 0.42 0.65 54.34 —38.45 0.13
ET, 0.94 0.96 83.15 -69.19 0.28
P 0.84 0.92 44.09 —9.04 0.17
Thornton ET, 0.54 0.73 51.47 —35.77 0.14
ET, 0.94 0.97 80.25 —64.27 0.27
P 0.84 0.92 57.10 —19.70 0.17
Townson ET, 0.56 0.75 53.02 -39.15 0.14
ET, 0.95 0.97 77.29 —62.01 0.26
P 0.80 0.89 41.93 -0.17 0.16
Upper Tenthill ET, 0.35 0.59 58.56 —45.15 0.12
ET, 0.94 0.97 81.23 —65.86 0.28
P 0.82 0.90 38.97 —4.07 0.16
West Haldon ET, 0.51 0.72 49.14 —33.76 0.15
ET, 0.95 0.97 73.13 —56.93 0.29
P 0.83 0.91 37.53 3.14 0.16
Whitestone ET, 0.54 0.74 45.23 —30.51 0.15
ET, 0.944 0.97 74.33 —62.85 0.28

Figure 5a-u illustrates the nominated stations” Pearson correlation which revealed a
strong spatial agreement with ET,,. For all 14 stations, ET, had remarkable agreement, rang-
ing from 0.65 to 0.97. It also shows a similar relationship for the rain and ET,, respectively.
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Figure 5. The relationship between monthly cumulative rainfall, reference evapotranspiration and
actual evapotranspiration derived from geeSEBAL for the period 1990-2020 with the station datasets
(a-u) in the Lockyer Catchment.
3.3. Results of Trends
The null hypothesis (HO) identified that there is no monotonic trend at the specified
significance level (SL) in extremes. The alternative hypothesis (Ha) suggests that the data
exhibit a trend at the SL. The SLs of 0.01 (1%), 0.05 (5%) and 0.1 (10%) were investigated in
the calculation. The results in Table 3 show that there is a significant trend in the maximum
precipitation series for the stations Placid Hills (5% SL) and Townson (1%) and the global
climate dataset for Placid Hills (5% SL) and Townson (1% SL). Some stations and the global
climate dataset exhibit a trend; therefore, they are in the non-stationary form.
Table 3. Detailed statistical results of trend and step change analysis of rain extremes for gauging
stations in Lockyer Catchment.
Statistical . Critical Values
Test Tests p-Value Test Statistic SL=01 SL = 0.05 SL =0.01 Test Result
Placid Hills
Trend detection Mann-Kendall 0.028 =22 1.645 1.960 2.576 HO rejected at 5%
Global climate dataset
corresponding to Placid Hills
Trend detection Mann-Kendall 0.011 —25 1.645 1.960 2.576 HO rejected at 5%
Townson
Trend detection Mann-Kendall 0.009 —2.62 1.645 1.960 2.576 HO rejected at 1%
Global climate dataset
corresponding to Townson
Trend detection Mann-Kendall 0.016 —2.41 1.645 1.960 2.576 HO rejected at 5%

3.4. Results of Stationary and Non-Stationary Analysis for Rainfall

Studying the non-stationary aspects of the extremes is the goal of this research. Table 4
shows the return levels of rainfall for the stations and global climate data for 14 selected
stations in the Lockyer Catchment which are located in the southern part of Queensland.
Return levels of extreme were estimated using the NEVA software for the return periods of
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10 through 100 years, which are the standard design return periods used in hydrologic stud-
ies. The (100-year return period) and (10-year return period) station rainfall in Gatton and
Helidon range from 550.98 mm to 312 mm (stationary), from 624.97 mm to 324.47 mm (non-
stationary) and from 441.30 mm to 279.35 mm (stationary), from 450.77 mm to 282.12 mm
(non-stationary). The return levels of Townson and Placid Hills which are located next
to the Gatton agricultural hub of Southeast Queensland are indicated in Table 4. Placid
Hills exhibits a variation of design rainfall for (20-year return period) to (50-year return
period), from 371.52 mm (stationary) to 387.93 mm (non-stationary), and from 467.35 mm
(stationary) to 491.09 mm (non-stationary), respectively. However, for gridded rainfall,
Placid Hills indicates the highest variability of (50-year return period) from 354.20 mm
(stationary) to 624.46 mm (non-stationary). Moreover, design rainfall of Placid Hills for
(20-year return period) ranges from 305.19 (stationary) to 406.05 (non-stationary). Accord-
ing to Table 4, the extreme rainfall events under the non-stationary assumption are higher
than the extreme rainfall events under the stationary assumption in both ground-based
measurements and global climate data. The results also show that the difference between
the maximum rainfall events under the stationary and non-stationary assumptions in the
global climate data is generally greater than in the station data for different return periods.

Table 4. The maximum rainfall (mm) in different return periods for different stations in the
Lockyer Catchment.

Rainfall Rainfall

Return Period Station ERAS5 Data
Gatton Stationary Non-Stationary Stationary Non-Stationary
10 312.64 324.47 279.35 282.12
20 379.38 402.04 32541 328.86
50 472.53 520.23 388.93 394.75
100 550.98 624.97 441.30 450.77
Helidon
10 339.96 336.66 292.61 325.507
20 437.19 436.11 343.12 393.58
50 596.99 606.25 417.67 492.67
100 748.07 765.74 478.62 575.84
Placid Hills
10 310.52 323.20 267.89 298.30
20 371.52 387.83 305.19 406.05
50 467.35 491.09 354.20 624.46
100 560.60 583.60 390.19 874.67
Townson
10 434.12 419.51 289.18 303.4
20 528.48 513.25 344.46 365.64
50 670.93 657.57 424.26 460.33
100 796.57 788.64 493.24 544
Whitestone
10 311.75 325.49 285.94 285.94
20 370.14 390.83 340.92 340.92
50 452.33 479.13 42221 42221
100 512.60 546.52 499.93 499.93
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Table 4 shows the variation in gridded rainfall data for the 100-year return period
from 450.77 mm (non-stationary) to 441.30 mm (stationary) for Gatton and from 575.84 mm
(non-stationary) to 478.62 mm (stationary) for Helidon. For the design rainfall in Helidon
(gridded data), for a 100-year period, the change between stationary and non-stationary
was more noticeable; 97.22 mm compared to 9.45 mm in Gatton. Whereas in Helidon
(station data), the difference between stationary and non-stationary indicates less vari-
ability, 17.4 mm (100-year period) compared to Gatton, 73.99 mm (100-year period). Of
the 14 stations, the GEV distribution rainfall shows that 5 stations’ data (Helidon, Gatton,
Placid hills, Townson and Whitestone) and 3 gridded data (Helidon, Gatton and Placid
hills) represent the non-stationary condition, respectively (Table 4). As Gatton is identified
as the agricultural hub in Southeast Queensland, it is important to understand the short,
intense rainfall for water resource management. As can be seen from Table 4, Gatton station
represents the most remarkable variations in comparison to other stations. Rainfall return
levels at high return periods were found to have noticeable variation compared to low
return periods. The ERA5 estimates are noticeably lower than the station-based estimates
for the region, as shown in Table 4, especially at the 50 and 100-year return periods.

3.5. Results of Stationary and Non-Stationary Analysis for Evapotranspiration

For the management of water resources, a precise estimation of evapotranspiration is
necessary. Among the ET algorithms, SEBAL is the most promising methods for estimating
evapotranspiration [18]. The GEV distribution evapotranspiration confirmed that, of the
14 stations, 6 stations’ data (Helidon, Gatton, Placid hills, Thornton, Townson and Whitestone)
and 2 gridded data (Thornton and Whitestone) exhibited the non-stationary condition.

Figures 6 and 7 show the return levels for evapotranspiration derived from the geeSE-
BAL algorithm for both station and global climate data. According to Figure 6a—e, sta-
tions” actual evapotranspiration shows a range of 184.88 mm (stationary) to 169.02 mm
(non-stationary) for the 100-year return period and from 169.38 mm (stationary) to
157.86 mm (non-stationary) for the 10-year period in Gatton. Helidon also exhibits vari-
ation in ET,, ranging from 189.76 mm (stationary) to 161.98 mm (non-stationary), from
164.43 mm (stationary) to 153.41 mm (non-stationary) for (100-year period) and (10-year pe-
riod), respectively. The difference between stationary and non-stationary reaches 27.78 mm
in Helidon compared to 13.99 mm in Townson for the 100-year return period. Additionally,
this demonstrates that Helidon experiences significant variability compared to other sta-
tions. According to Figure 7a-d, ET, derived from the geeSEBAL algorithm ranges from
171.32 mm (stationary) to 170.62 mm (non-stationary) for the 100-year period and from
149.57 mm (stationary) to 146.22 mm (non-stationary) for the 10-year period in Thornton.
The least variation is observed from the 100-year to 10-year return level periods.

3.6. Results of Stationary and Non-Stationary Analysis for Water Storage

Due to a lack of field data for water storage, this variable was assessed based on
the satellite-derived images. The return levels of water storage for station and global
climate data are shown in Table 5. The 10-year and 100-year return levels” water storage
derived using the global climate data varies from 202.44 mm to 224.80 mm and from
95.45 mm to 108.70 mm for stationary and non-stationary, respectively in Gatton. The
results of the Gatton station data illustrate no variation between the stationary and non-
stationary conditions. Whitestone and Gatton act quite similarly when experiencing non-
stationary conditions in the global climate data. The GEV distribution for water storage in
Whitestone station varies from 321.33 mm (stationary) to 344.60 mm (non-stationary), from
99.57 mm (stationary) to 106.32 mm (non-stationary) for (100-year period) and (10-year
period), respectively, whereas the rest of the stations indicate a lack of variation in the
stationary condition.
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Figure 6. The output of NEVA’s non-stationary GEV framework, standard return levels with design
exceedance probability for ET, based on station data (a-e) (Figure generated using MATLAB).
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Figure 7. The output of NEVA’s non-stationary GEV framework, standard return levels with design
exceedance probability for ET, based on global climate data (a-d) (Figure generated using MATLAB).
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Table 5. The maximum water storage in different return periods of different stations in the

Lockyer Catchment.

Water Storage

Water Storage

Return Period

Based on Station

Based on ERA5 Data

Gatton Stationary Non-Stationary  Stationary Non-Stationary
10 100.71 100.71 95.45 108.70
20 144.89 144.89 126.97 142.55
50 202.65 202.65 168.84 188.3
100 247.64 247.64 202.44 224.80
Helidon

10 133.93 133.93 132.96 132.96
20 196.26 196.26 156.91 156.91
50 286.70 286.70 195.64 195.64
100 363.34 363.34 224.83 224.83
Placid Hills

10 120.79 120.79 113.70 113.70
20 179.07 179.07 136.92 136.92
50 255.67 255.67 163.25 158.23
100 316.06 316.06 180.55 176.99
Thornton

10 165.76 165.76 110.55 110.55
20 233.13 233.13 137.04 137.04
50 328.51 328.51 174.03 174.03
100 415.159 415.159 199.66 199.66
Townson

10 197.20 197.20 97.80 97.80
20 256.35 256.35 136.77 136.77
50 343.19 343.19 193.38 193.38
100 411.08 411.08 241.17 241.17
Whitestone

10 99.57 106.32 96.92 96.92
20 156.79 164.97 147.03 147.03
50 244.30 258.30 231.33 231.33
100 321.33 344.60 314.13 314.13

4, Discussion

This research study’s results clearly indicate that extreme events including extreme
rainfall, extreme evapotranspiration and water storage deficit under the stationary assump-
tion are mostly lower than the extreme events under the non-stationary assumption in
both station and global climate datasets. Like previous studies on rainfall IDF [60,61],
the annual rainfall extremes, evapotranspiration extremes and water storage extremes are
well-described by the GEV distribution. In a previous study, the global-scale models of
climate variability were considered in the development of nonstationary TDF curves in
Canada [28]. Another study on rainfall IDF shows that adoption of stationary assumption
underestimates the design climate extremes [23]. Since rainfall extremes are well-researched
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from both the stationary and nonstationary perspectives [62,63], a comparison can easily be
made. This study considered stationary and non-stationary assumptions. The reasons for
adopting this approach are its easy estimation procedure which is suitable for professional
applications. In the majority of instances, the gap between stationary and non-stationary
widens as the return period increases as it is highlighted in several studies [1,64]. Numerous
studies have been performed around the world to prove the effect of non-stationary on
extreme values [65,66]. Moreover, the extreme events in all studied variables and return
periods of the global climate data are lower than the extreme events of the ground-based
measurements. The spatial patterns derived from ERA5 land reanalysis data closely re-
semble the station data for water storage and rainfall. In ET,, ERA5 reanalysis and station
were approximately the same. However, the ERA5 land data of some years overestimates
the higher spatial variability compared to station data. Therefore, reanalysis data offers
satisfactory outcomes for estimating ET,, providing an intriguing option for assessing
spatial and temporal aspects across regional and continental scales.

A common pattern of uncertainty ranging between stationary and non-stationary
assumptions is noticed across all stations with varying variables, including extreme rainfall,
extreme ET, and extreme water storage deficit. The findings suggest that extreme rainfall
shows a greater disparity between ground-based measurements made under stationary
and non-stationary assumptions compared to data obtained from global climate products.
The uncertainty range expands from the 10-year period to 100-year period, with the water
storage deficit showing less variation between stationary and non-stationary conditions,
while rainfall exhibits a sharp variation, and evapotranspiration shows moderate vari-
ation. Evapotranspiration and water storage derived from ERAS5 land reanalysis data
follow the same uncertainty with stations’ data. The highest difference between stationary
and non-stationary 100-year station rainfall is observed in Thornton (89.25 mm), Gatton
(73.99 mm), Whitestone (33.92 mm), Placid Hills (23 mm) and Helidon (17.67 mm), re-
spectively. It is noted that the global climate data tends to underestimate the outcomes in
comparison to station data. Overall, this study highlights the importance of considering
non-stationary conditions in hydroclimatic analysis and provides valuable insights into the
performance of the geeSEBAL algorithm and NEVA methods for estimating and analysing
hydrological variables.

5. Conclusions

In this study, the non-stationary and stationary conditions for extreme rainfall, extreme
evapotranspiration and water storage deficit were investigated in Southeast Queensland
(SEQ), Australia. The geeSEBAL algorithm was used to generate actual evapotranspiration,
and the NEVA programme was used to estimate the intensity and frequency of extremes
using the GEV distribution. The estimation was likely based on the assumption that the
location parameter has a linear relationship with time. The key findings of this study are as
follows: (1) The ET, derived from geeSEBAL by feeding global climate products overesti-
mates ET, derived from geeSEBAL by feeding station data; (2) the statistical results indicate
reasonable accuracy agreement between global climate datasets, P, ET, and geeSEBAL ET,
and ground-based measurements; (3) the analysis of the spatiotemporal distribution of
rainfall is almost identical with two different climate datasets (ground-based observations
and global climate products). ETg from global climate datasets underestimates the results
compared to station data. Interestingly, rainfall and ET, have shown that the highest rise
is in the year 2010, which admits the historical flooding in SEQ; (4) the spatiotemporal
distribution of water storage derived from a lump water balance remains the same for both
climate datasets; (5) the intensity and frequency of rainfall extremes, evapotranspiration
extremes and water storage deficit extremes under the stationary assumption are mostly
lower than extreme events under the non-stationary assumption in both ground-based and
global climate datasets under different return levels.

This research utilised the geeSEBAL algorithm in the Google Earth Engine (GEE)
environment to estimate evapotranspiration (ET) at regional scales using Landsat imagery.
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Understanding the dynamics of evapotranspiration (ET) is essential to address the chal-
lenges related to freshwater scarcity and increased water demand for agriculture and food
production. While the GEV distribution approach was employed to analyse extremes,
further investigations into other mechanisms, such as evapotranspiration and water stor-
age, would provide a more comprehensive understanding of the underlying issues. The
examination of station data also demonstrated that, even though geeSEBAL primarily
relies on reanalysis data for meteorological input, the estimations of ET are similar to those
obtained when the algorithm is supplied with real ground-based observations of meteo-
rological conditions. The evaluation of ET, and water storage deficit demonstrated that
the geeSEBAL algorithm has the capability to enhance irrigation management in Gatton, a
prominent agricultural centre in the study area. By addressing the rising water needs for
food production and water supplies, it also has the ability to lessen the consequences of
drought [45]. This research can provide a foundation for future research and facilitate com-
parisons with existing studies by focusing on advanced statistical analysis. Understanding
the statistical properties and characteristics of extreme events is essential for risk assessment
and management and for the development of adaptation strategies. From the results, it
can be concluded that extreme events under the stationary assumption are lower than
extreme events under the non-stationary assumption in both global climate products and
ground-based measurements for this region. In this study, the framework used examined
the severity and coverage of various variables by analysing their frequency, intensity and
duration, thereby exploring their spatiotemporal evolution. This framework can be applied
to any geographical area, providing estimations of extreme conditions that are essential
for infrastructure planning and design, risk assessment and disaster management. As we
only covered the non-stationary conditions in extreme events with NEVA by incorporat-
ing the outputs of geeSEBAL, it is recommended that, in future studies, spatial Bayesian
Hierarchical Modelling methods and ProNEVA [67] that allow for the incorporation of
additional covariates for modelling the spatial variability observed in the GEV parameters
are applied.

The outcomes regarding extreme events highlight that failure to account for non-
stationary conditions and neglecting trends in extreme events results in inaccuracies when
estimating such events. These inaccuracies can lead to errors in infrastructure development
and design, causing financial losses and potential harm to human lives. Conducting
detailed investigations into the underlying causes of extremes can be interesting for future
studies. By quantifying the probabilities of extreme occurrences, decision-makers can
make informed choices regarding infrastructure development, resource allocation and
emergency planning.
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5.3. Links and implications

This paper focussed on developing a framework to assess non-stationary
conditions in extreme hydrometeorological events, specifically extreme rainfall,
evapotranspiration, and water storage deficit in Lockyer Catchment in Southeast
Queensland, Australia. This study utilises the geeSEBAL platform and NEVA model
to analyse spatial and temporal variations in hydrometeorological variables. Through
the development of considering non-stationary conditions in extreme event analysis to
avoid underestimation of their magnitudes. The ETa derived from geeSEBAL was
evaluated using the highest data quality and using the CFMask method.
The NEVA model provided the intensity and frequency of extreme events including
extreme precipitation events, extreme evapotranspiration events and extreme water
storage deficit events based on the assumption that the location parameter has a
linear relationship with time. This framework enabled the achievement of Research
Objective 4: “Analyse the intensity and frequency of vrainfall extremes,
evapotranspiration extremes and water storage deficit extremes under both stationary
and non-stationary conditions using the GEV model for the estimation of different
return levels.”

The geeSEBAL model accuracy has been determined by comparing the
geeSEBAL algorithm driven by ERAS reanalysis and the number of fourteen ground-
based observations for the period from 1990 to 2022. Spatial-temporal patterns and
descriptive statistics results showed reasonable accuracy agreement between
geeSEBAL ETa, gridded ETo and ERAS rainfall and 14 stations. The frequency
analysis of extreme events derived from 14 stations and gridded satellite data for
rainfall, derived from the geeSEBAL algorithm for ETa and global climate data for water
storage for a 100-year period to a 10-year period showed the recurrence interval of
return levels of extremes. By examining these extreme events across various periods,
researchers can gain insights into the frequency and magnitude of extreme weather
and hydrological events, such as intense rainfall, floods, droughts or changes in water
storage. This result enabled the achievement of Research Objectives 1 and 4.

The outcome of the framework that will be helpful for adaptation strategies for
water management, was provided. This framework can be applied to any catchment
around the world for estimating extreme conditions, providing valuable insights for

infrastructure planning and design, risk assessment and disaster management.
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This research highlighted that the approach highlighted the importance of
incorporating a physical system in terms of cause and effect.

This will add the benefit of considering the physical system drivers and their
relationship within a catchment in extreme analysis and answer Research Question 4:
‘How can the frequency, intensity, and duration of extreme climate events in the
catchment be determined?”. The author considers this to be a substantial contribution
to the field, offering practical hydrological experts a viable alternative approach to
comprehending non-stationary extreme events analysis within a catchment.
The second paper provides a foundational understanding of non-stationary conditions
in extreme hydrometeorological events, laying the groundwork for the third paper's

investigation into the impacts of climate change on flood extremes.

5.4. Conclusions

Chapter 5 of this thesis introduced the second paper published within the scope
of this study. This study paper finalised the conducted assessment of
hydrometeorological extreme events in this study, and the results could be employed
for the modelling and projection of extreme flood events. In Chapter 5, the third
research paper is introduced, to establish a framework for the projection of extreme

flood events with different return levels under non-stationary conditions.
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CHAPTER 6: PAPER 3 - VARIABILITY OF EXTREME CLIMATE
EVENTS AND PREDICTION OF LAND COVER CHANGE AND
FUTURE CLIMATE CHANGE EFFECTS ON THE STREAMFLOW IN
SOUTHEAST QUEENSLAND, AUSTRALIA

6.1. Introduction

The frequency and severity of extremes are changing; thus, it would be
necessary to evaluate the impacts of land cover changes, and urbanisation along
climate change. A comprehensive approach incorporating the GEV method, GEE, and
land cover classification techniques such as SVM and RF proves beneficial for
analysing the impact of streamflow. In this research, a novel framework has been
created for analysing maximum instantaneous floods in non-stationary catchment
conditions in Southeast Queensland by taking into account the physical system in
terms of cause and effect.

Various independent variables including the Digital Elevation Model (DEM),
population density, slope, road networks, and distance from roads, along with an
integrated RF-SVM methodology, are utilised as spatial predictors to forecast their
impacts on land cover changes for both near and distant futures. The results indicate
that physical factors significantly influence the layout of the Ilandscapes.
Results highlight the significant influence of physical factors on landscape
arrangement. Evapotranspiration and rainfall projections from eight GCMs under two
climate change scenarios (RCP4.5 and RCP8.5) are analysed.

The study employs the hydrological model calibrated with daily streamflow to
simulate historical runoff (1990-2010) and project runoff under future scenarios (2020-
2065 and 2066-2085) considering land cover percentages. The ProNEVA approach,
utilizing Bayesian methods with Differential Evolution Markov Chain technique,
evaluates the frequency and magnitude of runoff extremes across parameter space.

The study's conclusions suggest that underestimating flood frequency due to
the non-stationary state may increase the danger to the associated hydraulic
infrastructure. This framework, transferable to diverse geographical contexts, aids in
estimating extreme conditions, informing infrastructure planning, risk assessment, and

sustainable water resource management.
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6.2. Published paper

Pakdel et al. (2024), “Variability of Extreme Climate Events and Prediction of
Land Cover Change and Future Climate Change Effects on the Streamflow in
Southeast Queensland, Australia” is published in ISPRS International Journal of Geo-

Information (2024), Volume 13, Issue 4.
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Abstract: The severity and frequency of extremes are changing; thus, it is becoming necessary to
evaluate the impacts of land cover changes and urbanisation along with climate change. A frame-
work of the Generalised Extreme Value (GEV) method, Google Earth Engine (GEE), and land cover
patterns’ classification including Random Forest (RF) and Support Vector Machine (SVM) can be
useful for streamflow impact analysis. For this study, we developed a unique framework consisting
of a hydrological model in line with the Process-informed Nonstationary Extreme Value Analysis
(ProNEVA) GEV model and an ensemble of General Circulation Models (GCMs), mapping land
cover patterns using classification methods within the GEE platform. We applied these methods
in Southeast Queensland (SEQ) to analyse the maximum instantaneous floods in non-stationary
catchment conditions, considering the physical system in terms of cause and effect. Independent
variables (DEM, population, slope, roads, and distance from roads) and an integrated RF, SVM
methodology were utilised as spatial maps to predict their influences on land cover changes for the
near and far future. The results indicated that physical factors significantly influence the layout of
landscapes. First, the values of projected evapotranspiration and rainfall were extracted from the
multi-model ensemble to investigate the eight GCMs under two climate change scenarios (RCP4.5
and RCP8.5). The AWBM hydrological model was calibrated with daily streamflow and applied to
generate historical runoff for 1990-2010. Runoff was projected under two scenarios for eight GCMs
and by incorporating the percentage of each land cover into the hydrological model for two horizons
(2020-2065 and 2066-2085). Following that, the ProNEVA model was used to calculate the frequency
and magnitude of runoff extremes across the parameter space. The maximum peak flood differences
under the RCP4.5 and RCP8.5 scenarios were 16.90% and 15.18%, respectively. The outcomes of
this study suggested that neglecting the non-stationary assumption in flood frequency can lead to
underestimating the amounts that can lead to more risks for the related hydraulic structures. This
framework is adaptable to various geographical regions to estimate extreme conditions, offering valu-
able insights for infrastructure design, planning, risk assessment, and the sustainable management of
future water resources in the context of long-term water management plans.

Keywords: hydrological extremes; non-stationary; land cover change; climate change; GEV distribution;
Google Earth Engine

1. Introduction

The Intergovernmental Panel on Climate Change Assessment Report (IPCC) [1,2] on
climate change indicates that climate change will be accompanied by a rise in the frequency,
severity, and duration of extreme natural phenomena such as excessive precipitation and

ISPRS Int. |. Geo-Inf. 2024, 13, 123. https:/ /doi.org/10.3390/ijgi13040123
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extreme air temperatures in the twenty-first century. The trends suggest that the frequency
and intensity of flood events are likely to rise globally due to climate and land use/cover
changes attributed largely to urbanisation and anthropogenic activities [2,3]. Ding et al. [4]
claimed that one of climate change’s most significant implications is the increased frequency
and occurrence of severe weather conditions. As hydrological events are more prone to
be frequent and extreme, it is becoming increasingly crucial to assess how hydrological
events respond to future land use and climate conditions [5]. During extremes, an efficient
and economical strategy for achieving situational awareness is essential to enhancing the
management of emergency responses. The ability to forecast the occurrence and scale of
extreme events is crucial for both infrastructure and emergency management.

Climates are tremendously changeable from year to year at various locations across the
world, including Australia, the world’s driest inhabited continent, where there is a diverse
range of climatic regimes, making it more vulnerable to climate change [6]. According to
research [7,8], projected changes in the climate are anticipated to have noticeable effects
on the frequency of hydrological elements such as runoff, rainfall, and evapotranspiration
(ET) across various regions. Distinguishing between the effects of climate changes and land
use changes on observed hydrological shifts is often challenging due to their concurrent
occurrence in most regions, with both climate change and land use alterations [8,9]. So, a
framework that incorporates land cover patterns and an ensemble of GCMs can be helpful.

Extreme hydrological events have been seen to be significantly influenced by climate
change [10] and land cover changes caused by human activities. It is widely acknowledged
that climate projections and scenarios, especially concerning extreme events, including
extreme precipitation [11] and extreme streamflow, exhibit significant uncertainty across
many global regions. Research on hydrological extremes is critically needed, especially for
locations where the consequences of climate change are known to be significant [12].

Stationarity was previously believed to make complex statistical studies simpler,
as studied by [13]. It offered significant insights into planning, making choices, and
comprehending the effects of climate events, assuming a stable climate. Longer data
records and a changing environment, however, make assuming stationarity riskier than
ever. Under the assumption of a stationary climate, the terms return a level return duration
and provide crucial information for decision making, design, and evaluating the effects
of outstanding meteorological and climatic events. Traditionally, infrastructure design
methods relied on the assumption of constant return levels, assuming that the occurrence of
extreme events remains consistent over time [14]. However, it has become evident that the
frequency of extreme events is evolving and is anticipated to keep changing in the future [1]
Research has also revealed that non-stationarity in hydrological records in certain regions is
characterised by increasing or decreasing patterns [13]. Since many extremes include spatial
information, the major focus of recent framework advancements has been the challenge of
combining spatial information with extreme value analysis strategies [15,16]. Therefore,
models capable of accommodating non-stationary climatic and hydrologic extremes are
essential [17,18].

Land use/cover changes (LUCC) have been identified as another influential factor for
changing hydrological regimes [5]. It should be highlighted that the majority of research on
LUCC is based on historical land use statistics [19] and has paid less attention to the linked
effects of land cover changes and climate change. Therefore, it is important to estimate
future land use scenarios and determine their impacts on extreme hydrological events.
In the realm of land cover management and planning, two machine learning algorithm
models are employed in Google Earth Engine (GEE): Random Forest (RF) [20] and Support
Vector Machine (SVM) [21].

The prolonged presence of extremes poses detrimental impacts on infrastructure, the
economy, and human health [22-26]. Applying Nonstationary Extreme Value Analysis
(NEVA) [14] grounded in Bayesian inference could identify design extremes at various re-
currence durations and intervals by performing a frequency analysis of extremes, observing
alterations in the return period [27].
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Various statistical distributions, such as Generalized Extreme Value (GEV) distribu-
tions [28], find extensive application in the examination of the intensity and frequency of
extreme events within climate and hydrology research. Moreover, it has been recommended
by the Australian Rainfall and Runoff (ARR) guideline [29] that the GEV distribution be
utilized for estimating extreme floods and rainfalls.

Thus, in this research, streamflow is considered based on stationary and non-stationary
assumptions. This study assesses the streamflow characteristics in the Lockyer catchment
of southeastern Queensland, Australia, to establish return levels. The study aims to develop
a methodology and identify the integrated effects of land cover and climate change on
extreme streamflow events. The objective of the research is to accomplish the following
specific objectives: (1) to explore a methodology that integrates a hydrological model
with ensembles of Global Climate Models (GCMs) under Representative Concentration
Pathways (RCPs) and projected landcover scenarios along with GEV to improve extremes
predictions under the instantaneous impacts of climate change and human activities;
(2) applying SVM and RF classification in GEE for projecting future land cover changes;
(3) investigating the trend of land cover changes in the basin and projecting these changes
with ensembles of GCMs under RCPs for future horizons; (4) performing hydrological sim-
ulations for each landcover classification separately under climatic scenarios and landcover
changes at baseline and for near and far future horizons; and (5) to apply the ProNEVA
model [28], which analyses and compares the return levels of projected streamflow under
stationary and non-stationary assumptions and maps the spatiotemporal distribution of
extreme events.

More work should be put into adding crucial physical processes to stochastic models,
according to [30], who also recommended stochastic-process-based models as a means
to bridge the gap between physically based models and statistical models. In this study,
we propose an integrated framework for assessing the past and future hydrological con-
sequences of climate change. This framework integrates hydrological models, a machine
learning method on the GEE platform, ProNEVA, and climate projections under differ-
ent scenarios based on the Generalised Extreme Value (GEV) model in stationary and
non-stationary conditions [13] and explores the effects of future climate change on the
streamflow. Firstly, we presented a technique for obtaining and evaluating the remotely
sensed temporal imagery [8] necessary for incorporating land cover into hydrological
modelling. Secondly, we assessed the outputs of the GCMs under RCPs projecting the
futurist climate simulations that were included in the hydrological model, as recommended
by [8,31]. Thirdly, we applied SVM and REF classification in the GEE platform for projecting
future land cover changes. Lastly, we applied the ProNEVA model to estimate return levels
and assess the frequency and severity of extreme events in streamflow under both assump-
tions, including non-stationary and stationary. This study’s findings will contribute to our
knowledge of how severe flood events vary spatially at the catchment level. Investigations
into adaptation techniques for handling probable future extremes will be assisted by this
new framework for water planners and decision makers.

2. Materials and Methods

The primary techniques and data employed in this investigation are depicted in
Figure 1. The procedures outlined in this study are as follows: (a) gaining projected climate
variables (rainfall and potential ET) derived from a GCM obtained from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) to evaluate climate change impacts on the study
area for historical and future periods, (b) calibrating and validating a hydrologic model
to analyse the changes in daily inflows that will be used for the streamflow projection,
(c) applying SVM and RF classification in GEE for projecting future land cover changes,
(d) deriving the runoff coefficient’s time series of classes (%) from historical LandSat images
and for the near and far future, and (e) evaluating the extremes analysis applying the
GEV model.
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Figure 1. Flowchart of GCMs projections, hydrological model, GEE, and GEV model to estimate
streamflow extremes.

2.1. Study Area

The case study region, Lockyer Catchment, is situated in SEQ, as shown in Figure 2.
Lockyer Creek, a tributary of Brisbane River, is the primary stream, surrounded by sev-
eral sub-catchments. The catchment covers an area of 3000 km?, experiencing an average
annual rainfall ranging from 1000 to 2012 mm [32]. The Lockyer catchment includes a
range of physical geographic attributes, encompassing the distance of water paths from 0
to 102,815 m, elevations ranging between 30 and 1073 m, basin slopes spanning from 0 to
66 degrees, channel network slopes ranging from 0 to 18 degrees, and a total channel net-
work length of 922,025.285 m. The Lockyer catchment provides significant environmental,
economic, and social values and Australia’s most fertile agricultural land for the cultivation
of highly valuable vegetables [33]. In Australia, floods are one of the frequently occurring
disasters that have accounted for substantial amounts of environmental and economic
losses in recent years; hence, mitigation of the risks associated with the impacts of these
events is necessary [34,35].
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Figure 2. The study’s area geographical position in Australia (Left) and hydro-meteorological stations
are taken into consideration throughout the catchment (Right).

There have been a number of exceptional weather occurrences in this area in recent
years. For example, in December 2010 and January 2011, continuous rains caused unprece-
dented levels of flooding to spread throughout significant regions of Queensland [34]. A
disaster zone was designated across 78% of the state due to the detrimental impact on
2.5 million people. Over 29,000 houses and businesses were impacted by the floods, which
are believed to have caused damage worth over AUD 5 billion [34].

Given that past research has proven the assumption of stationary to be no longer accu-
rate, the frequency of flood occurrences, like the one in February 2022, demonstrates that
this assumption is no longer applicable. Furthermore, it has been noted that the connection
between runoff and rainfall in this catchment is not constant over time [36,37]. In addition,
investigating the impacts of land cover changes and climate change on the streamflow
is important. To improve the design and management of hydraulic infrastructure and
reduce future human and financial losses, it is imperative to develop unique approaches
for estimating non-stationary runoff extremes [13].

2.2. Data Sources: Observed, Remotely Sensed Data and Geospatial Data

Daily hydrological data, including potential evapotranspiration (mm) and rainfall
(mm), were retrieved from the stations. The 5 km grid data were achieved through SILO,
an Australian climate data source (http://www.longpaddock.qld.gov.au/silo (accessed
on 15 January 2023)) [38,39], and cover the period from 1990-2005. Important rainfall
sites were selected because of their geographic variety and data quality, which comprised
long records with few missing values. Daily streamflow records for 143210B Lockyer
Creek at Rifle Range Road station were received from the Queensland Government Water
Monitoring Information site (https:/ /water-monitoring.information.qld.gov.au/ (accessed
on 15 January 2023)).

The Landsat satellite images (from TM, ETM+, and OLI 1&2 sensors) and ESA global
land cover dataset were accessed and used through GEE [40] for conducting the classifica-
tions and modelling of changes in land cover and urban growth. Geospatial datasets of road
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networks, population density, and the Hydrologically Enforced Digital Elevation Model
(DEM-H) product with a 30 m spatial resolution [41] dataset were used as supplementary
data inputs during the landcover projection analysis. Since the distance from roads and
population density maps were originally in vector format, both maps were first converted
into the raster format, resampled to the 30 m spatial resolution, and used for the projection
of landcover changes (Table 1).

Table 1. Sources of datasets.

Raster Dataset Time Coverage Data Source Resalution!
Format
Landsat 5 Google Earth Engine
™ 20d0-201 (LANDSAT/LT05/C02/T1_L2) m
Google Earth Engine
Landsat 8 OLI 2013-2023 (LANDSAT/LT08,/C02/T1_L2) 30m
ESA global land Google Earth Engine
cover 2021 (ESA /WorldCover/v100) 10m
DEM-H:
A;;g:ll?:;irjﬁy 2010 Google Earth Engine 30m
Tinforeed Dikitel. (AU/GA/DEM_1SEC/v10/DEM-H)
Elevation Model
Vector Dataset Source Data
Format
. Queensland %
Roads 2000 and 2023 P ——— Shapefile (.shp)
D‘Stj;‘:;:“’m 2023 Spatial analysis on road network ~ Shapefile (.shp)
Population 2023 Austealen Burescol Shapefile (.shp)

Statistics

2.3. Classification and Projection of Landcover Changes

To project the landcover changes, first, the main land cover types were classified into
six classes (Table 2), and, following ESA global landcover classification [42], discriminated
from other features in the Landsat images for the years 2000, 2010, and 2020 using two
supervised classification models, including Support Vector Machine (SVM) and Random
Forests (RF). The image collection of Landsat images was called for the years 2000, 2010,
and 2020 in GEE, separately. The images were filtered based on criteria related to cloud
conditions and vegetation cover. The remaining images in each collection were reduced to
a single multiband images using median reducers.

Table 2. Land cover classification scheme.

Land Cover Type Description
Tree cover Forest and tree cover land
Grassland Pastures, green spaces, parks, and bushlands
Cropland Farmland, agricultural
Bui Built-up area, residential, commercial, and other
uilt-up ;
infrastructure
Bare/sparse vegetation Bare soils, sand, rocks, and sparse vegetation
Water Bodies Lakes, ponds, reservoirs, and rivers

To train the classification models, we mapped the boundaries of more than 200 point
features (335) representing six different classes: tree cover, grassland, cropland, built-up,
bare soil/sparse vegetation, and water bodies using ESA global landcover and drawing
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geometry tools in GEE. The training datasets were split up into groups for training and
validation. In total, 70% of the point features were assigned to the training and 30 percent
were used in the validation procedure.

The spatial distribution of both the training and validation polygons is illustrated in
Figure 3a. After generating the landcovers for the years 2000, 2010, and 2020, the landcover
changes were simulated and projected using the SVM and RF approaches in the GEE
platform, which is shown in Figure 3b.

15200 15220 15240 15260 15280

A -

Sample Peints

Grassland

2800

15200 15220 15240 15260 15280

Landsat
Images

Supervised

Classification

(R.GB, NIR)

LC maps of
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2023

[ Explanatorymaps /

ptart: LC map 2000
End :LC map 2010

I
Geometric adjusments
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[

LC analysis and change areas ]

Roads network

( corrolations)

()

Figure 3. Land cover changes workflow chart (a) and spatial distribution of both training and
validation polygons (b).
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climate-driven fluctuations in observed streamflow and characterising the consequences of
precipitation changes. The concept of selecting an appropriate hydrological model has been
proven by Jahandideh-Tehrani, et al. [58], as in the Australian region, lumped conceptual
hydrological models [59] such as the AWBM are well-suited to use for runoff simulation.
The AWBM was created to minimise problems related to physically based hydrological
models such as different parameter estimations. For the study catchment, the AWBM
model was calibrated at the daily time step. For simulation purposes, calibration (60%) and
validation (40%) were employed. The availability of recorded runoff data determined the
calibration and validation timeframes for the Lockyer catchment. So, runoff data were used
for 1990-2002 (calibration period) and 2003-2010 (for validation period). Daily rainfall,
potential ET (PET), and daily runoff were derived from SILO and WMIP throughout the
catchment, respectively (Section 2.2).

The AWBM [60] structure and parameters are presented in Table 3. The AWBM is
mostly made up of three basic surface storage configurations. The depths of these storage
tanks are equal to the C1, C2, and C3 (three surface moisture stores) parameters to create
the coefficient of runoff simulation. For each time step, the water balance of each partial
region is determined [61]. As demonstrated by [8], in this study, runoff from impermeable
surfaces was taken into account by recoding and changing the AWBM. The eight calibrated
parameters are adjusted for accuracy in Table 3.

Table 3. Description of parameter values for the AWBM model [60].

Parameter ID Description Unit Default  Minimum Maximum
Al Partial area represented by - 0.134 0 1
A2 surface storage - 0.433 0 1
BFI Baseflow Index - 0.35 0 1
C1 mm 7 0 50
c2 Surface storage capacities mm 70 0 200
Cc3 mm 250 0 500
Ks Surface flow recession ) 0.90 0 1
constant
Kb Baseflow recession ) 0.90 0 1

constant

To analyse the impacts of climate change on runoff at various sizes, ranging from small
locations to huge geographic areas, hydrological models have been widely implemented.
The goal of this research is to estimate the effects of climate change on the streamflow in a
major catchment (the Lockyer Creek catchment). To accomplish this, a rainfall-runoff model
was adjusted and validated before being used to forecast runoff. So, the AWBM was under-
taken to assess the impact of climate variability on runoff. The most vital step in climate
change research is selecting climate models for future hydro-climatological projections.

The accuracy assessment of the models’ validation and calibration was performed based
on statistical measurements [62,63], including the correlation coefficient (R%), Nash-Sutcliffe
coefficient (E), Bias, and Root Mean Square Error (RMSE), as follows (Equations (1)-(4)):

2

) 1XF (Xobs —Xobs) (Xsat = Xsat)
Re= u i3
( Kobs X Xsat ) M
RMSE = 2)
T — .
Bias = El (XSat Xobs) (3)

n
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107 (Qubs—Quim)*
E=1-| —m @)
n

In which Qs and Qs;y, show the observed and simulated time series, respectively; n
is the total number of observations; and Qobs is the average of observational values.

2.5. Future Climate Projections and Greenhouse Gas Emissions Scenarios

The Coupled Model Intercomparison Project (CMIP) is the largest intercomparison
study and it serves as a baseline for assessing GCMs’ capacity to project observed climate
changes. In this study, climate change effects on the streamflow in the Lockyer catchment
were assessed using eight GCMs of CMIP5. The recently suggested RCPs provide a
broader range of possible futures by taking mitigation techniques and land use changes
into account [38]. According to the aim of this research study, it is imperative to select
appropriate RCP scenarios. RCP 8.5 scenarios [64], which represent high GHG scenarios,
have been selected and are currently trending in the same direction, and RCP 4.5 is a
depiction of a low-emission scenario and was chosen to analyse less severe situations.

Individual CMIP5 models’ capability to predict the Australian climate varies de-
pending on whatever part of the modelling process is studied. These models are the
most accurate instruments for predicting the reactions of regional climates in the twenty-
first century [65]. Based on the third and fifth stages of the CMIP, Alexander and Ar-
blaster [66] conducted detailed evaluations of anticipated changes in extreme climate
events over Australia.

As mentioned in the climate change technical report in Australia [38], the Australian
Water Availability Project (AWAP) observed temperature and rainfall data (https://eo-
data.csiro.au/projects/awap/ (accessed on 15 January 2023)) were used to create climatic
outputs with a resolution of 5 km. In this approach, the model data, whose resolution
ranged from 100 to 310 km, were initially applied to the observed data using interpolation
on a 5 km grid. In this research, according to the Australian climate change technical
report [38], these eight climate models have been suggested for investigating climate
change’s impacts on SEQ (Table 4).

Table 4. List of eight CMIP5 models used in this research [38].

g ¢ v Ocean Resolution Atmospheric Resolution

CMIP5 Model ID Modelling Centre, Country of Origin, Institution CLAT x °LON) LAT x °LON)
Commonwealth Scientific and Industrial Research

ACCESS-1.0 Organisation, Partnership between CSIRO and 1.0 x 1.0 19x%x12
BOM, Australia

CNRM-CMS5 National Center for Meteorological Research, 1.0 x 08 § Loseded
France
National Center for Atmospheric Research,

CESMI-CANS National Science foundation, United States 11 x06 12500

CanESM2 Canach-an Centre for Climate Modeling and 14 % 09 28 x 2.8
Analysis, Canada

GFDL-ESM2M gt»;(t)sshyswal Fluid Dynamics Laboratory, United 1.0 x 1.0 25 %20
MOHC (Met Office Hadley Centre for Climate

HadGEM2-CC Science and Services, United Kingdom) 105X 1.0 KIRL2
Centre for Climate System Research, Japan
Atmosphere and the University of Tokyo Ocean

MIRQCS Marine-Earth Science and Technology Research Lax 14 Ldscla
Institute

NorESM1-M Norwegian Climate Center (NCC) and University 115 0% 25%19

of Bergen, Norway
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2.6. Assessing Extremes in a Non-Stationary Approach Using the GEV Model

Non-stationary situations arise because the stationary assumption might not be valid
for changes brought about by human and climate variables. Even with great progress [14],
there is still no complete framework that incorporates the Extreme Value Analysis (EVA)
statistical models (Generalised Extreme Value (GEV), Generalised Pareto (GP), and Log-
Pearson type III (LP3)) under stationary and non-stationary assumptions (parameters
as a function of physical variables or time) [28]. The ProNEVA (https://amir.eng.uci.
edu/software.php (accessed on 15 January 2023)) software [28] was employed to examine
non-stationary extremes.

With user-defined covariates, which may be time or a physical variable, ProNEVA
enables non-stationary studies. The benefit of conducting a stationary analysis with co-
variates related to the physical aspect lies in the ability to incorporate physical limitations
into a statistical model. ProNEVA employs a Bayesian approach to evaluating extremes,
utilising a Differential Evolution Markov Chain methodology throughout the parameter
value [14]. The essential distributions offered by Extreme Value Theory (EVT) to describe
extremes are as follows: the use of Generalised Pareto Distribution (GPD) through the
peaks-over-threshold approach [67-69], with the block maxima technique employing the
LP3 and GEV family of distributions [70]. Additional details on the GEV distribution have
been demonstrated in this article [13].

3. Results

The study establishes a multi-framework by the combination of a hydrological model
in line with ProNEVA and an ensemble of GCMs under two RCPs, mapping land cover
patterns by implementing the machine learning classification methods in GEE. With con-
sideration for the physical components and how they interact with one another within the
system, this integrated approach attempts to evaluate the return levels of flood extremes.

3.1. Spatiotemporal Change Analysis and Land Cover Transition Analysis

When evaluating temporal changes within a collection of land cover categories, the
transition matrix is crucial. It showcases the proportions of pixels transitioning from one
land cover category to another. Table 5 illustrates the alterations in land cover categories
from 2000 to 2085. There is an indication of potential growth in built-up and tree cover
areas, from 1971.11 m? in 2000 to 12,766.39 m? in 2080, and from 172,661.60 m? in 2000 to
200,363.23 m? in 2080, respectively. The findings of grassland during this period from 2000
to 2080 indicate that grassland values decreased from 102,520.44 m? in 2000 to 81,101.62 m>
in 2020, followed by remarkable decrease to 68,640.10 m? in 2060 and by 66,685.44 m?
in 2080.

Table 5. Evaluation of land cover changes from 2000 to 2080.

fianid Cover 2000 2010 2020 2040 2060 2080
Classes Area in m? Area in m? Area in m? Area in m? Area in m? Area in m?
Treeland 172,661.60 191,975.49 188,810.53 202,955.36 202,396.27 200,363.23
Grassland 102,520.44 82,108.81 81,101.62 68,640.10 68,226.88 66,685.44
Cropland 18,844.68 18,383.25 19,151.94 16,865.49 17,086.66 16,796.67
Built-up 1971.11 2963.93 5861.84 8110.32 8868.36 12,766.39
Bare Soil 224.703 338.331 568.422 112.785 108.496 98.39
Water 629.633 1099.02 1357.82 168.116 165.5 142.041

As illustrated in Figure 4 and Table 5, there has been a consistent rise in built-up
areas, starting at 1971.11 m? in 2010 and increasing to 5861.84 m? by 2020. Table 5 also
shows a fourfold increase to 8868.36 m? in 2060 and sixfold increase to 12,766.39 m? in
2080. Evaluating the accuracy of classification methods is vital for understanding their
reliability [44]. As shown in Table 6, the results reveal that SVM has a slightly higher
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accuracy in the image classification. According to Table 6, the classes of treeland, grassland,
and water were classified with a higher accuracy, while the accuracy for built-up and bare
soil was slightly lower. The results clearly indicate that RF outperformed SVM in the
projection of landcover for the year 2020, yielding 0.71 (OA) and 0.65 (Kappa), which are
23% and 28% higher than those of the SVM model, respectively (Table 6). These results are
demonstrated by [71], where RF performs better than SVM. However, for the classification,
SVM, in the majority of instances, outperformed RF; for example, for the year 2000, it
yielded 0.88 (OA) and 0.85 (Kappa), which are 4% and 5% higher than those of the RF
model, respectively.

The classification SVM method in the year 2000 had an Overall Accuracy (OA) of
88%, Kappa of 85%, followed by User’s Accuracy (UA) of 100% for cropland and built-up
areas, followed by 86% for grassland. It also had a Producer’s Accuracy (PA) of 75% for
built-up areas and 72% for cropland. The Kappa and OA for the RF method were 80% and
84%, respectively. The UA results for cropland and built-up areas were similar to the SVM
method. Grassland and bare soil in terms of UA decreased to 75% and 55%.

The SVM and RF for the year 2010 showed 89% (Kappa) and 91% (OA), and 79%
(Kappa) and 82% (OA). In terms of individual class accuracy, the UA indicated 84% (SVM
method) and 69% (RF method) for treeland, while the PA was 100% for both methods. The
results of the OA (0.84) and Kappa (0.8) were the same in both the SVM and RF models
for the year 2020. However, for the individual classification, which contains two classes
(grassland and built-up), the SVM model generated a better user’s accuracy and producer’s
accuracy. As can be observed from Table 6, RF outperformed SVM in the projection of
landcover for the year 2020, and classified all six classes with a better accuracy than the SVM
in terms of the Kappa, OA, and PA. The model incorporates spatial elements like distance
from major roads, DEM, and population density to generate a map illustrating changes in
land cover, revealing the evolving patterns within the Lockyer catchment (Figure 5).
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Figure 4. Cont.
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Figure 4. Land cover changes from 2000 to 2080 in the Lockyer catchment.
Table 6. Accuracy assessment of landcover classification and projection using statistical indica-
tors including Kappa coefficient, User’s Accuracy (UA), Producer’s Accuracy (PA), and Overall
Accuracy (OA).
Y Classification Assessment Landcover Classes
Sak Method Index TreeLand GrassLand  CropLand Built-Up BareSoil Water
UA 0.71 0.86 1 il 0.77 1
PA 1 1 0.72 0.75 1 1
S Kappa 0.85
=3 OA 0.88
54 UA 0.77 0.75 1 1 0.55 1
PA L 1 0.8 0.45 1 1
RE Kappa 0.8
OA 0.84
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Table 6. Cont.
Y Classification =~ Assessment Landcover Classes
car Method Index TreeLand  GrassLand  CropLand Built-Up BareSoil Water
UA 0.84 0.83 1 il 0.7 1
PA 1 1 0.87 0.83 0.7 1
SYM Kappa 0.89
9 OA 091
5 UA 0.69 0.88 1 0.85 0.47 1
RF PA 1 0.88 0.8 0.58 0.7 1
Kappa 0.79
OA 0.82
UA 0.64 0.78 0.88 1 1 1
PA 1 0.72 0.8 1 0.7 0.71
SVM Kappa 0.8
S OA 0.84
& UA 0.71 0.77 0.94 0.83 1 1
RE PA 1 0.68 0.8 1 0.7 0.76
Kappa 0.8
OA 0.84
UA 0.87 0.52 0.86 0.25 0.97 0.98
) PA 0.41 0.38 0.39 0.9 0.07 0.68
§ e S M Kappa 0.37
T8 OA 047
3 % é UA 0.68 0.48 0.75 0.86 0.86 0.934
el S RE PA 0.89 0.85 0.62 0.51 0.51 0.84
P~ Kappa 0.65
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Figure 5. Spatial variables applied to the landcover changes projection in the Lockyer catchment.
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3.2. The Performance of Hydrological Model

A comparison between the simulated and observed discharge is used to assess the
results of the calibration and validation for the periods of 1990-2002 and 2003-2010, re-
spectively (Figures 6 and 7). The eight calibrated parameters are presented in Table 3. The
model’s output data were calibrated and validated using the daily streamflow records
from the 143210B Lockyer Creek at Rifle Range Road station as the outlet. As illustrated in
Figure 2, the Lockyer catchment contains eighteen rainfall-gauging stations. The model
utilised inputs consisting of the area’s average weighted daily evapotranspiration and
rainfall from these 18 gauging stations, along with daily records of discharge from the Rifle
Range Road station. The calibration and validation of the hydrologic model were carried
out for the periods of 1990-2002 and 2003-2010, respectively. Streamflow data were utilised,
allocating 60% for calibration and 40% for validation purposes. According to the results of
Table 7 and Figure 6, the findings indicate the model’s effective performance and its reliable
accuracy in estimating runoff.
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Figure 6. Scatter plot of observed and simulated daily runoff at the Lockyer valley over the calibration
(1990-2002) and validation periods (2003-2010).
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Figure 7. Observed and simulated daily runoff at the Lockyer Valley over the calibration (1990-2002)
and validation periods (2003-2010).
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Table 7. Daily operational data for the AWBM model during the calibration and validation periods.

Calibration (1990-2002) Validation (2003-2010)
R? 0.92 0.786
Nash 0.89 0.753
RMSE 0.005 0.409
BIAS 0.0004 1.206

Over the calibration, R? and Nash were very good, at 92% and 89%, respectively, for
the period of 1990-2002. Moreover, PBAIS indicated that the AWBM model performance
over the validation period was 1.206 m®/s (Table 7). Moreover, 78%, and 75% were the
calculated R? and Nash, respectively, over the validation period. According to Figure 6,
there is a good match between the observed and simulated daily discharge in the Lockyer
Valley catchment. Figure 6 indicates the model’s generally satisfactory performance in
simulating flow patterns, and although it slightly underestimates some peak flow instances,
it effectively aligns the overall patterns of storm events between the simulations and
observed records. Moreover, the accurate simulation of low-flow circumstances further
indicates the reliability and competence of the AWBM model in predicting discharge.
Ensemble projections depict the long-term average daily inflow at the Rifle Range Road
hydrometric station for near and far future periods (2020 to 2086) under the RCP 4.5 and
RCP 8.5 scenarios.

3.3. Changes in Projected Streamflow under Climate Change Scenarios

This study assessed changes in runoff factors using two climate change scenarios (RCP
4.5 and RCP 8.5) based on the combined average of eight GCMs. According to Figure 8, a
decline in runoff of the ensemble of climate models was generally noticed in the far future
(2066—-2085) compared to the near future (2020-2065) for almost all months. In February,
there was a greater variability in streamflow alterations for both RCP 4.5 and RCP 8.5,
suggesting increased uncertainty in the predictions for the two future periods, as indicated
by [62]. It can be concluded that the decline in streamflow will likely slow down in the far
future compared to the near future, particularly between June and September.
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Figure 8. Ensemble projections of long-term average daily inflow at Lockyer Creek at Rifle Range
Road station for near future (2020-2065) and far future (2066-2085) periods under RCP 4.5 and
RCP 8.5.

Runoff was projected to decline in January and February by 16% in the near future
and 18% in the far future. Figure 8 illustrates that the significant increase in projected
runoff in February is mostly caused by the increase in projected rainfall. Also, the RCP 8.5
scenario consistently showed lower projected streamflow compared to RCP 4.5 throughout
each month. February displayed the greatest span of long-term average daily streamflow
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Figure 9. NEVA’s non-stationary GEV framework output, standard return levels with the likelihood
of design exceedance for flood for future periods (2020-2086) under stationary and non-stationary
assumption. (Figure generated using MATLAB R2020b).

4. Discussion

Simple regression models are examined by scholars for modelling changes in the mean,
variance, and skewness and combining such non-stationary moments with various pdfs to
update design events, given historical research [12,73]. The increasing concern regarding
climate change brought on by a rise in greenhouse gas concentrations in the environment
is another factor contributing to the growing emphasis on non-stationarity [1,74]. So, in
this research, ProNEVA offers parameter estimation, uncertainty quantification, and a
comprehensive assessment that allows for a non-stationary analysis using user-defined
variables, which can be time or a physical variable. The advantage of performing a
stationary analysis with physically related covariates lies in the possibility of imposing
physical constraints on a statistical model [28].

In this research, both the non-stationary and stationary conditions for maximum
instantaneous flood were investigated. The purpose of this study was to look at the non-
stationary possibilities of the Lockyer catchment’s maximum instantaneous flood in the
future. To achieve this aim, we developed a multi-framework by integrating a hydrological
model, SVM and RF classifications in the GEE platform, an ensemble of GCMs under two
RCPs, and the ProNEVA model, for the aim of evaluating the impacts of climate change
on floods, streamflow, and water supply in both stationary and non-stationary conditions.
SVM and RF classifications in the GEE platform were used to estimate the projected land
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cover changes in the future period and, by assuming a linear relationship between the
location parameter and time, the ProNEVA model was applied to assess the magnitude
and frequency of extreme floods utilising the GEV distribution.

According to the ARR guideline, [29] states that the GEV distribution should be applied
for the purpose of designing floods and rainfalls. Earlier research on extremes [13,75,76]
aligns closely with the characteristics outlined in the GEV distribution. Even with notable
progress [77], there lacks an all-encompassing structure that integrates the commonly
employed EVA statistical models, specifically, GEV, GP, and LP3, accounting for both
stationary and non-stationary assumptions (where parameters vary with time or specific
covariates) [28]. This research examines both the ProNEVA and land cover classification
approaches to account for the cause-and-effect dynamics within the physical system. The
model incorporates spatial factors like DEM, distance from road, and population density
along with the SVM and RF classification models to produce a map illustrating land
cover changes.

ProNEVA [28] incorporates the underlying physical drivers triggering extreme events,
serving as a crucial instrument for quantifying the probability of extreme occurrences
in a particular area or timeframe. This study investigates both ProNEVA and land cover
classification to comprehensively address the cause-and-effect dynamics within the physical
system. Since our focus was solely on non-stationary conditions in extreme events, using
ProNEVA with a time covariant by incorporating the outputs of the ensemble of GCMs
under different scenarios from the hydrological model and GEE classification approach,
it is recommended that, in future studies, ProNEVA allows for the incorporation of the
physical drivers as additional covariates for flood frequency analysis and modelling.

A script was coded using GEE to compute the percentage of area change per year,
generating a transition matrix demonstrating the pixel shifts between different land covers.
This approach was chosen due to its straightforward estimation process, which is well-
suited for practical use. Enhancing the lumped conceptual hydrological model projection
involves integrating various land covers by recognizing distinct land cover types and
understanding how these types affect the model parameters, guided by the land cover
classification map. This integration considers the influences of different land covers on
evapotranspiration processes. The outcomes distinctly demonstrate that the inclusion of
each land cover within the hydrological model leads to improved accuracy in the model’s
results. Studies have consistently emphasised the disparity between stationary and non-
stationary when incorporating the non-stationary condition [13,28,75]. Therefore, using
the classification method through GEE presents an appealing option for assessing spatial
and temporal aspects across regional and continental scales. The maximum instantaneous
flood in the non-stationary assumption generally shows greater values compared to the
maximum peak floods in the stationary assumption in both the RCP 4.5 and RCP 8.5
scenarios for different return levels. Generally, the range of uncertainty between station-
ary and non-stationary conditions tends to widen from 50 year to 75 year return level
periods. Under the RCP 8.5 scenario, there is comparatively less variation between sta-
tionary and non-stationary conditions, whereas RCP 4.5 demonstrates a more pronounced
difference. The outcomes of the trend analysis on future periods’ maximum peak flood
data reveal a growing disparity in the maximum instantaneous flood between stationary
and non-stationary assumptions. This suggests that the increasing difference may be a
compelling reason to analyse extremes with non-stationary conditions. Moreover, exploring
the variability of the scale parameter over time, both linearly and non-linearly, is possible.
Analysing the impact of simultaneously incorporating non-stationarity assumptions in
both scale and shape parameters on the outcomes is also a potential area of investigation
for future studies.

5. Conclusions

The outputs from this study can be utilised in risk assessments and for devising
adaptation strategies for state government authorities and local councils. This framework
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applies to diverse geographic regions, delivering vital information about extreme events
such as floods necessary for risk evaluation, infrastructure design, and disaster response.
Examining the non-stationary assumption in extreme flood events analysis presents a novel
concern in the Lockyer catchment. Given the presence of water reservoirs, urban and rural
zones, and cultivable lands in this area, forecasting the return period values for extreme
floods in future periods becomes crucial, which will assist water planners, decision makers,
and local communities in constructing water systems and managing resources by activating
emergency response operations.

ProNEVA outcomes, when considering the physical drivers, highlight that disregard-
ing the non-stationary condition and trends in extreme flood data leads to inaccuracies in
estimating these floods across various return periods, often resulting in underestimations.
This leads to flaws in the construction of hydraulic infrastructure and results in human and
financial losses. Through the quantification of the likelihood of extreme events, decision
makers can make well-informed decisions related to infrastructure development, resource
allocation, and emergency planning. The findings of this study will assist water planners
in exploring potential adaptation strategies while considering expected future alterations.
It should be noted that the effectiveness of future land cover projections and hydrologi-
cal simulations depends on the accuracy of the input data and assumptions made in the
modelling process.

There are natural constraints that limit the accuracy of future projections, including
uncertainties associated with climate projections and scenarios. The study recommends
using a multi-framework approach that integrates both physical system understanding
and statistical methods to gain a deeper understanding of non-stationary assumptions
in extreme events at the catchment scale. The research could lead to future studies that
incorporate comprehensive uncertainty analysis techniques to assess model predictions’
reliability under various climate change scenarios. Furthermore, investigating innovative
techniques for capturing and integrating non-stationary trends in hydrological processes
could improve model predictability and facilitate more robust decision making.
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6.3. Links and implications

This paper marks the conclusion of the research by utilising the
hydrometeorological extreme results generated in paper 2 and continuing it through
the hydrological model's calibration and projection of an ensemble of GCMs to
estimate flood extremes in the past. Subsequently, projecting the flood extremes in
the near and far future period. This paper achieved Research Objectives 2, 3 and 4:
“To evaluate the impacts of land cover changes and urbanisation by applying SVM
and RF classification along with climate change,”, “Perform the hydrological
simulations for each landcover classification separately under ensembles of GCMs
under different RCPs and landcover changes in the baseline and the near and far
future horizons,” and “Analyse the intensity and frequency of projected streamflow
extreme events, under both stationary and
non-stationary conditions using the GEV model.”

To achieve these objectives, a multi-framework was developed by integrating
the hydrological model, SVM and RF classifications in the GEE platform, an ensemble
of GCMs under two scenarios, and the ProNEVA model, to evaluate the impact of
climate change on floods, streamflow, and water supply.
The SVM and RF classification in the GEE platform was applied to estimate the
projected land cover changes in the future period and by assuming that the location
parameter has a linear relationship with time, the ProNEVA model was applied to
assess the magnitude and frequency of extreme flood utilising the GEV distribution.
ProNEVA (Ragno et al., 2019) incorporates the underlying physical drivers triggering
extreme events, serving as crucial instruments for quantifying the probability of
extreme occurrences in a particular area or timeframe.

This research examines both ProNEVA and landcover classification to account
for the physical system in terms of cause and effect. This research covers
non-stationary conditions in extreme events with ProNEVA with time covariant by
incorporating the outputs of the ensemble of GCMs under different scenarios from the
hydrological model and GEE classification approach. It is recommended that, in future
studies, ProNEVA allow for the incorporation of physical drivers as additional

covariates for modelling floods.
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6.4. Conclusion

Chapter 5 of this dissertation introduced the third research paper crafted within
the scope of this study. This paper discussed flood extremes in various scenarios
using multiple GCMs and projected changes in land cover under non-stationary

conditions in future periods.
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CHAPTER 7: PAPER 4 — EXTREME TEMPERATURES AND
TEMPERATURE-DURATION-FREQUENCY (TDF) RELATIONSHIP IN
VARYING CLIMATIC ZONES ACROSS AUSTRALIA

7.1. Introduction

The climate is undergoing significant change, leading to shifts in the frequency
and severity of extreme temperatures. This dynamic climate landscape necessitates
the development of robust tools to predict and understand these temperature extremes
for various applications, including infrastructure design, urban planning, and
environmental management.

The escalating frequency and duration of these events underscore the urgency
to better comprehend their variability and potential impacts. TDF curves offer a
systematic approach to exploring the relationship between extreme temperatures,
duration, and recurrence levels. By analysing historical temperature data through TDF
curves, researchers can discern trends, identify step changes, and assess the spatial
variability of extreme temperatures across different regions.

This study focuses on investigating the presence of trends and step changes in
extreme temperatures across nine locations in Australia. Utilising a GEV distribution
and employing Monte Carlo Bayesian inference techniques, the frequency analysis of
annual maximum temperatures for durations ranging from one to 15 days was
conducted. The findings revealed rising trends and step changes in several cities,
highlighting the spatial heterogeneity of extreme temperature patterns across the
continent.

Understanding the characteristics of extreme temperatures and the
development of TDF curves offer practical insights for various sectors, including
healthcare, agriculture, infrastructure management, and natural disaster
preparedness. By integrating TDF curves into decision-making processes,
stakeholders can enhance risk assessment, optimising infrastructure design, and
improve public health interventions in response to extreme temperature events.

While previous studies have explored similar concepts in different geographic
contexts, this research contributes to the developing field of TDF curve development

in Australia.

114



By applying robust statistical methodologies and considering both stationary
and non-stationary assumptions, this study provides a comprehensive analysis of
extreme temperature variability, laying the groundwork for future investigations and
informed decision-making.

In conclusion, the development of TDF curves represents a crucial step towards
enhancing our understanding of extreme temperatures and their impacts on society
and the environment. By leveraging these curves; policymakers, planners, and
stakeholders can effectively mitigate risks, adapt to changing climate conditions,

and foster resilience in the face of evolving temperature extremes.

7.2. Submitted paper

Chowdhury et al. (2024), “Extreme Temperatures and Temperature-Duration-
Frequency (TDF) Relationship in Varying Climatic Zones Across Australia” is
submitted to Urban Climate Journal.
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human performance (Zander et al., 2015; Zander et al., 2019). Apart from health impacts, infrastructure and
utilities such as electricity transmission networks and transport systems are substantially affected by heatwaves
(Steffen et al., 2014). The economic loss from the 2009 heatwaves in southeast Australia was estimated to be
AU$800 million, which was largely caused by power outages and transport disruptions (Chhetri et al., 2012). In
terms of natural hazards, a vast region of Australia is susceptible to drought and bushfires with both hazards being
exacerbated by prolonged temperature extremes. Furthermore, the risk of fire hazards is expected to increase with
the projected rise of extreme temperatures (Lucas et al., 2007). While these curves may not directly explain the
underlying causes or analyze the physical system, they serve as valuable tools for understanding the probability
of extreme temperature events and identifying the frequency and magnitude of these extremes. The practical
significance of TDF curves for extreme temperatures lies in their ability to undertake risk assessment,
infrastructure design, and decision-making processes. By incorporating these curves into planning and design,
we can plan to manage risk to infrastructure, human exposure to extreme heat events and manage the impacts our
natural environment to these events..

Frequency analysis of temperature extremes and the development of temperature-duration-frequency (TDF)
curves are useful in determining design temperatures at various recurrence intervals and durations. To the best of
our knowledge, TDF curves have not yet been developed in Australia, but a small number of studies have been
carried out in North America. Kharin and Zwiers (2000) performed frequency analysis of temperature extremes,
but the duration of the extremes was not considered in their study. Motivated by rainfall intensity-duration-
frequency (IDF) curves, Ouarda and Charron (2018) developed a method for nonstationary TDF curves in Canada
using frequency analysis of the annual maximum temperature series. Very recently, Mazdiyasni et al. (2019)
developed heatwave IDF curves for different cities located in the United States. They applied a multivariate copula
function to relate heatwave duration and intensity and considered mean daily temperature series, instead of annual
maximum series. Both studies performed frequency analysis of heatwaves for durations ranging from one to ten
days. The Generalised Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions are often used for
frequency analysis of hydroclimatic extremes. Previous studies applied the GEV distribution for the development
of TDF curves (Mazdiyasni et al., 2019; Ouarda and Charron, 2018). The Australian Rainfall and Runoff (ARR)
(Ball et al., 2019) guideline has also recommended the GEV distribution for estimating design rainfalls and floods.
In terms of parameter estimation, both stationary and nonstationary approaches were applied in previous studies
(Ouarda and Charron, 2018). The nonstationary approach was adopted on the basis that climate change alters
hydroclimatic extremes (Cheng and AghaKouchak, 2014).

Understanding the characteristics of temperature extremes, design temperatures and TDF curves are uselul for
different sectors of the community including healthcare, agriculture, natural disaster management, infrastructure
and energy production. Similar to design rainfall and flood information, design temperatures can be useful in the
planning and risk assessment across many areas. Therefore, this study explores the characteristics of extreme
temperatures at several major cities in Australia (Table 1) based on the Australian Climate Observations Reference
Network—Surface Air Temperature (ACORN-SAT) to develop TDF curves. It applies robust statistical techniques
for characterizing extreme temperatures and applies GEV distribution for frequency analysis. The TDF curves are
developed for durations ranging from one to fifteen days, and for different annual exceedance probability (AEP)
levels. The outcomes of the study could be useful in understanding the spatial variation of design temperatures,
selection of appropriate materials for infrastructures, appropriate preparedness for natural hazards, health care
services and [or public awareness.

Table 1. Details of ACORN-SAT stations used in the study

Site no.  Site name Latitude Longitude  Elevation Study period  Missing
(m) data (%)
31011  Cairns 16.87 °S 14575°E 2 1910-2017 0.34%
40842  Brisbanc Airport 27.39°S 153]13°B 3 1949-2016 0.1%
66062  Sydney 33.86 °S 15121°E 39 1910-2017 0.08%
86338  Mclbournc 37.83°S 14498°E 8 1910-2018 0.01%
94029  Hobart 42.89 °S 14733°E 51 1918-2018 0.12%
23090  Adelaide (Kent Town) 34.92°S 138.62°E 48 1910-2018 0.17%
09021 Perth Airport 31.93 °S 115.98 °E 15 1910-2018 0.028%
14015  Darwin Airport 12.42°S 130.89 °E 30 1910-2018 0.786%
15590  Alice Springs Airport 23.80°S 133.89°E 546 1910-2018 0.275%
2
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2. Materials and Methods

2.1. Study region

The Australian Climate Observations Reference Network — Surface Air Temperature (ACORN-SAT) dataset of
the Australian Bureau of Meteorology provides daily maximum temperature in degree Celsius (°C), which has
been developed in order to monitor climate variability and change in the country (Trewin, 2018). For frequency
analysis, it is necessary that time series data are free from trends/jumps caused by equipment drift and logistics
problems like change of equipment, station location and sampling frequency (Ouarda and Charron, 2018). The
ACORN-SAT data are adjusted, homogenised and peer reviewed. The first and the current version of ACORN-
SAT data was published in 2011 and 2018, respectively. Australian summer season extends from December to
February, but in many years the maximum daily temperatures were observed in other months (October or March,
for example). Therefore, temperature extremes data were extracted for each water year (October to September).
The details of stations used in this study are provided in Table 1, which show that the missing data is comparatively
very low (less than 1%), and no attempt was taken in this study to fill these missing values.

It should be noted that nominated stations consists of the high quality homogenised and validated data from
Australia’s Bureau of Meteorology (BOM). The BOM has adopted a rigorous process to validate its historic
temperature records to ensure that any changes in temperature readings are not due to local or human impacts.
The issue of heat islands and urbanisation have been addressed through the quality assurance and data validation
process undertaken by the BOM. Additionally, the location of the recording stations at these major centres is
usually in areas of open space and grassland (such as airports) and located away from the urban centres (usually
15-20km from the city centres) where the impact of heat islands may be highest. The data homogenisation utilises
the mean temperature increases across the chosen stations to correlate closely with the overall analysis across all
of Australia and reflect Australia wide trends. It should be highlighted that stations selected are major cities in
different climatic zones around Australia. The distribution and availability of high quality and long-term data
climatic data is often limited to major centres where most of the Australian population is concentrated. Therefore,
the choice of stations was base both on climatic zones and availability of high-quality long-term data (Figure 1).

The annual maximum temperature series have been estimated for one to fifteen days of durations. Duration is
defined as a run of consecutive days of highest average daily maximum temperatures. A D-day duration of
temperature extremes is the largest average of D-consecutive days of daily maximum temperatures. The extreme
temperaturc time scrics of D-day duration can be denoted by 7p. For year n, T is the largest valuc of average
daily maximum temperatures observed consistently for any D-day duration during the year (October to
September). When the duration is more than 1 day, a moving average method having a window of width D>1 day
(D=2,3,4,...,15) was used. The concept was previously applied in several relevant studies (Javelle et al., 2002;
Khaliq et al., 2005; Ouarda and Charron, 2018), in particular the concept is well adopted in rainfall IDF curves
development, where frequency analysis of time-averaged rainfall intensities is performed at various durations
(Hosking and Wallis, 1993; Ouarda et al., 2001).
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Figure 1. The locations of meteorological stations in geographical locations of Australia.

2.2. Analysis of trend and step change

The temperature extremes data series were analysed for the presence of trends and step change or jump. Three
statistical tests were performed to confirm the presence or absence of trends. They were the Spearman rank
correlation test (Dahmen and Hall, 1990; Siegel and Castellan), the Mann—Kendall test (Kendall, 1948) and the
linear regression test. Both Mann-Kendall and Spearman tests are rank-based non-parametric tests and the linear
regression test is one of the most common tests for trend (Kundzewicz et al., 2000). These tests were previously
applied in several trend studies (Chowdhury and Beecham, 2010; Chowdhury et al., 2015; Khaliq et al., 2005;
Pakdel et al., 2022).

Step changes in data series were tested by using four statistical tests. The Mann-Whitney or Rank-sum test, is a
rank-based test, that detects the point of change in the mean between two independent sample groups (Chiew and
McMabhon, 1993; Kundzewicz et al., 2000; Ouarda et al., 2001). The cumulative sum (CUSUM), which is also a
rank-based test, compares the successive observations with the median of the time series (Chiew and McMahon,
1993). The cumulative deviation test (Buishand, 1982) is based on the rescaled cumulative sum of the deviations
from the mean of the series and it is used to detect a change point towards the centre of the time series. The
Student’s t-test (Snedecor and Cochran, 1989), a parametric test, and the Worsley likelihood ratio test (Worsley,
1979) were used for testing whether two samples have different means. To perform these step change tests, the
time series were divided into two non-overlapping subsamples of approximately equal length.

2.3. Probability distribution

The GEV distribution has been applied for frequency distribution of annual maximum series of exireme
temperature (TD). The GEV distribution is recommended for Australian hydro-climatological conditions (Ball et
al.,, 2019) and it has been widely applied for frequency analysis of flood peaks and natural extreme events
including heatwaves (Bauer, 1996; Courty et al., 2019; Hosking et al., 1985; Khaliq et al., 2005; Mazdiyasni et
al., 2019; Morrison and Smith, 2002; Ouarda and Charron, 2018; Stedinger and Lu, 1995). The cumulative
distribution function (cdf) of GEV distribution can be written as (Courty et al., 2019):

exp [—(T_T")'/“] , k%0
T_

expoxp (-] k=0

where T is the temperature variable, and 1, 6 and k are the location, scale and shape parameter, respectively. When

the shape parameter k = 0, k < 0 and k > 0, the GEV simplifies to the Gumbel, Fréchet and Weibull distribution,
respectively. The quantile function of the GEV distribution can be written as:

F(T) = ()]

T (D,p) = up + 0py )

where, D is temporal duration, p is annual exceedance probability (AEP), and y is expressed in terms of p as:
1

y=1(1-[-In(1-p)]} ®

Therefore, the q;xanlile functions can be written as:
i — Ik
T,,(p)={"+k(1 [-In(1-p)J¥), k#0 @
p—oln[—-In1-p)] , k=0
For a given value of AEP (p), the quantile estimates TD(p) can be obtained by substituting estimated values of
the parameters to the quantile function.
2.4. GEV parameter estimation
The Monte Carlo Bayesian inference of the extreme value analysis package TUFLOW Flike (TUFLOW Flike
5.0.300.0, http:/flike.tuflow.com/) was used for parameter estimation (Kuczera, 1999). The TUFLOW Flike
software starts the search for the most probable parameters by setting the shape parameter k = 0 and uses the
Gumbel method-of-moments estimates of the location (i) and scale (o) parameters fitted to the temperature
extreme data. It involves two search algorithms, global and quasi-Newton, to locate the model parameters which
maximise the posterior density. The global search algorithm was applied in this study. The shape parameter was
initially assigned a value 0 (x = 0) so the distribution became Gumbel. No prior information was assumed, and
99,000 parameter samples were generated in the Bayesian inference method. The chi-squared test statistic
(Snedecor and Cochran, 1989) was used for the goodness of the fit test. Results show that the GEV distribution
fits well within the annual maximum temperature series at 5% significance level.
A general inference method is followed in the Bayesian approach. The approach uses a probability distribution to
describe what is known about the parameters. The posterior probability density of the parameters 5 given the data
T can be expressed as (Kuczera, 1999):
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where &(B) is the prior probability density of the parameters and f(T|B) is the sampling distribution of the data

for a chosen probability distribution and parameters 8. For an annual maximum series data length of n years, say,

Q= {ql, q2.....qn), the sampling distribution of Q can be defined as the joint probability density function (pdf)

of n data:

FQIA) = (41,92 . 4x|B) = [Tiz1 f(4:l B) (6)

where f(q|pB) is the pdf of the frequency model (GEV, for example), q is statistically independent data and 3 is a

vector of parameters. The Bayesian distribution of q explicitly accounts for parameter uncertainty. The expected

exceedance probability of q exceeding qp can be defined as:

P(q>q,|T) = [,P(a> q,|B)§BIT) dp ©)

where P(q -2 q,,| B) is the probability of q exceeding qp given that f is the true parameter vector. Applying the

Monte Carlo technique (random sampling from a probability distribution), the expected exceedance probability

for qp can be written as:

P(a>q,lT) = [,P(a> 4,8) EL18) ap ®

where I1() is the importance pdf. Sampling of N independent and identically distributed samples from I() yicld

{B1, B2, ..., BN}, therefore Eq. 8 can be written as:

P(q> q,|T) = (T, P(q > q,|BIW)/ T, Wi ©

§(BIT)
1(8)

The Monte Carlo sampling gencrates a scquence of parameters and their normalised weights {B;,p;, i =

1,2,..., N}, where the normalised weight p; = w;/ Y- w;. Sampling from N values of B; according to the

probability p; yields samples drawn from &(B|T). The quantile q,(B) can be defined as P|q > q,,(B)] = p, where

p is AEP. After ranking of N quentiles {qp(Bi), i=1,...,N}, the upper and lower confidence levels are the quantiles

whose excecdance probabilitics are the closest to /2 and (1- a/2), respectively, where o is the significance level.

The 10% and 90% confidence levels are considered in this study.

2.4. GEV parameter estimation

For all stations and durations, design extreme temperatures have been estimated for different AEPs using the

quantile equation (Eq. 2) and estimated GEV parameters. Stationary TDF curves have been developed by plotting

design temperatures and AEPs at the vertical and horizontal axis respectively. The logarithm (log10) scale is used

for the horizontal axis. While the design temperatures were estimated from 1 in 1-year AEP to 1 in 100000-year

AEPs, the TDF curves were plotted for 1 in 2-year to 1 in 100-year AEPs in Figures 5 to 13. Each curve represents

a duration (one to fificen days).

3. Results

3.1. Trend and step change

The null hypothesis (H,,) was defined as the absence of trend and step change in temperature extremes. The H,

was rejected when the test statistic value was higher than the critical value at a significance level (SL). Three SLs

were considered, 0.01 (1%), 0.05 (5%) and 0.1 (10%). Table 2 shows the detailed statistical tests results for a

station (Perth airport, 1-day duration). The 1-day annual maximum temperature series including 5-year moving

average line for the same station is plotted in Figure A. 1. For step change analysis, the time series were divided

into two equal sub-series, and the mean and median values were calculated for each sub-series. As an example,

the mean (and median) extreme temperatures for Perth during 1910-1964 and 1965-2018 period were estimated

to be 41.28°C (41.1°C) and 42.06°C (41.95°C), respectively.

Table 2. Delailed statistical results of trend and step change analysis of 1-day temperature extremes [or Perth airport (site no.

09021)

where, w; = is the weight.

Critical values

Test Statistical tests Test statistic Test result
SL=0.1 SL=0.05 SL=0.01
Trend Mann-Kendall 2.603 1.645 1.960 2.576 Ho rejected at 1%
detEctioi Spearman's Rho 2.840 1.645 1.960 2.576 Ho rejected at 1%
Lincar regression ~ 2.523 1.661 1.984 2.626 Ho rejected at 5%
Step change CUSUM 17.000 12.737 14.199 17.018 Ho rejected at 5%
5
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1.464

3.098

2.748
2.061

1.170

2.869

1.645
1.661

1.291

3.159

1.960
1.984

1.551

3.790

2.576
2.626

Ho rejected at 5%

Ho rejected at 10%

Ho rejected at 1%
Ho rejected at 5%

Table 3 shows the outcomes of trend and step change analysis for all stations and durations. The presence of a
statistically significant increasing trend and step change (H, rejected) is denoted by red (1% SL), brown (5% SL)
and yellow (10% SL) cell colours. A green cell colour denotes the absence of a statistically significant trend or
step change (H, accepted) in the data. Five locations (Hobart, Adclaide, Perth, Darwin and Alice Springs) cxhibit
the cxistence of significant trend and step change in the observed temperature extremes for all durations. Among
them, Adclaide, Perth and Darwin arc located in the south, west and north of Australia, respectively. Alice Springs
is positioned in the middle of the country and Hobart is located on the island of Tasmania (south of mainland
Australia). Cairns, which is located in the north-cast region, docs not exhibit the presence of a significant trend
for any of the durations explored. A significant step change was also absent in Cairns, except that the CUSUM
test predicted a step change for longer durations (9 to 15 days). For Brisbane, which is also located in the same
region, a significant trend at 5% SL was not identified for any duration, however at 10% SL a trend was observed
for 3- to 5-day durations. Except for 3 to 5-day durations, a significant step change at 5% SL was not identified
for Brisbane. Hence, temperature extremes at Cairns and Brisbane, which are in the north-castern state of
Queensland, do not exhibit existence of significant trend and shift.

1[2]3]4]5]6]7]8
3-day

1[2]3]4]5]6]7]8
2-day

Test |1][2]3[4][5[6]7]8

Site 1-day

Cairns
Brisbane
Sydney
Meclbourne
Hobart
Adclaide
Perth
| Darwin
Alice
Springs

4-day 5-day 6-day

Cairns
Brisbanc
Sydney
Melbourne
Hobart
Adclaide
Perth
Darwin
Alice
Springs

7-day 8-day 9-day

_Cairns
Brisbanc

Melbourne
Hobart I
Adclaide
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Perth

Alice
Springs

10-day 11-day 12-day

Cairns
Brisbanc

Melbourne
Hobart
Adclaide

13-day 14-day 15-day

Cairns
Brisbanc !
Sydne
Melbourne
Hobart
Adclaide
Perth
Darwin
Alice
Springs

Table 3. Color diagram of statistical test results for trend and step change analysis of temperature extremes for all duration.
Statistical tests are denoted by numbers, where 1 (Mann-Kendall), 2 (Spearman), 3 (linear regression), 4 (cumulative sum), 5
(cumulative deviation), 6 (Worsley likelihood), 7 (Rank sum) and 8 (Student’s t). Tests 1 to 3, and 4 to 8 are used for trend
and step change analysis, respectively. Cell colors indicate statistical significance levels, where red, brown, and yellow
represents 1%, 5%, and 10% significance levels, respectively. Green cells indicate statistically nonsignificant outcomes.

Sydney, located in the southeast region, demonstrates the presence of a statistically significant trend and step
change in extreme temperatures for 3- to 15-day durations. Interestingly, while the 1-day duration reveals the
cexistence of a statistically significant trend (5% SL) and step change (10% SL), the 2-day duration did not show
a significant trend. Whereas for Melbourne, also located in the southeast region, a statistically significant trend
(5% SL) was detected for 2-day and 13- to 15-day durations, but not for 1-day and 3- to 12-day duration
temperature extremes. However, a trend at 10% SL was observed for durations from 8- to 12-day. A statistically
significant step change at 5% SL was only observed for prolonged durations (12- to 15-day) in Melbourne. Results
from Sydney and Melbourne stations reveal that the trend and step change in extreme temperatures in the southeast
region of Australia exhibit variability across the durations.

3.2. GEV distribution parameters

The GEV distribution (Pakdel et al., 2023) was found to fit well within the temperature extremes for all stations
and durations. Distribution parameters were estimated using the Bayesian inference method. Figure 2 displays the
spatial-temporal variability of location, scale, and shape parameters, respectively. Overall, the location parameter
(), which specifies the centre of the distribution, decreases with the increasc of duration for all stations. However,
the decrease is remarkable for Perth, Adelaide, Melbourne, Sydney, and Hobart. A significant drop in the location
parameter value was observed from 1-day to 7-day duration, thereafter the drop was not noticeable. For other
stations (Alice Springs, Darwin, Cairns and Brisbane), a change (decrease) of location parameter with duration
was not evident, which indicates less spatio-temporal variability of extreme temperatures. The maximum and
minimum value of 1 was observed in Alice Springs and Hobart, respectively.
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Figure 2. Spatial -temporal variation of (a) location parameter (p), (b) scale parameter (), (¢) shape parameter (k).

Spatial variation of scale parameter () can be clearly observed in Figure 2 (b). Interestingly, the value of ¢ and
its temporal variation pattern are almost identical for Hobart and Sydney, Cairns and Brisbane and for Melbourne
and Adeclaide. Comparatively, less temporal variability was observed for Alice Springs, Perth, and Darwin. The
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scale parameter defines the deviation around p and its large value indicates the presence of variability in the data
serics. For 1-day duration temperature extremes, Sydney and Hobart station exhibited the maximum variability,
but the o value decreased rapidly from 1-day to 7-day duration. For all other durations, the maximum value of ¢
was observed for Adelaide and Melbourne stations, which represents the existence of high variability in extreme
temperatures, whereas the minimum ¢ value was identified for Darwin for all durations indicating the existence
of less variability of Darwin’s extreme temperatures.

The variability of the shape parameter (k), which indicates the tail behaviour of the distribution, is shown in Figure
2 (c). Except for Cairns for the 2- to 6-day duration, a positive skewness was observed for all stations and for all
durations. Comparatively, a smaller temporal variability of k was observed for Alice Springs and Perth. The k
value exhibited a decreasing trend from 1- to 3- or 4-day durations for Cairns, Sydney, Hobart, Perth and Alice
Springs, but an increasing trend was observed for Darwin. Temperature extremes for Cairns exhibited the
minimum k value among all the stations, whereas the maximum « value was identified for Darwin from the 4-day
duration.

While previous studies (Courty et al., 2019) on rainfall IDF using the GEV distribution observed scaling properties
of stationary GEV parameters with rainfall duration, this study shows that scaling of stationary GEV parameters
with temperature duration was absent, particularly for the scale and shape parameters. Therefore, it can be
postulated that the distribution parameters should be estimated for each duration of interest.

3.3. Temperature-Duration-I'requency (TDF) curves

The quantile function (Eq.2) was used to estimate design temperatures for various durations and AEPs. The TDF
curves were developed by plotting design temperatures against the AEP for each of 1- and 15-day duration. Each
line in the TDF curves represents a duration (D) distributed from 1-D (1-day) to 15-D (15-day). The 10% and
90% confidence level (CL) estimates of design temperatures are only shown for 1-day duration. The general
relation of TDF curves is that design temperature increases with recurrence interval and is inversely related to
duration (increases at short duration).

Figures 3 and 4 show the TDF curves for Cairns and Brisbane, respectively, which are located in the northeast
region of Australia. The 1% and 99% AEP design temperatures in Cairns vary from 36°C (15-day) to 42°C (1-
day), and from 32°C (15-day) to 34.5°C (1-day), respectively. Design temperatures in Cairns vary in a narrow
range, which indicates the existence of less variability in extreme temperatures. Figure 3 (b) depicts non-stationary
assumptions based on 5 and 95% posterior probability intervals of the ensemble. The 1% AEP (100-year return
period) and 99% AEP (1-year return period) design temperatures in Caimns vary from 36°C (15-day) to 42°C (1-
day), and from 33.5°C (15-day) to 36.7°C (1-day). For the design temperatures in Cairns, for a 1-year period, the
difference between the non-stationary 36.7°C (l-day) and stationary 34.5°C (l-day) temperature was
approximately 2.2°C. Whereas in Brisbane (Figure 4 (a)), design temperatures vary from 33°C (15-day) to 42°C
(1-day) for 1% AEP and from 29°C (15-day) to 32°C (1-day) for 99% AEP. Changes of design temperatures
between 1- to 3-day duration were more noticeable in Brisbane. Figure 4 (b) exhibits temperatures in non-
stationary analysis vary from 30.5°C (15-day) to 35.5°C (1-day) for 99% AEP (l-year return period). The
difference between the non-stationary 30.5°C (15-day) and stationary 29°C (15-day) temperature is approximately
1.5°C. In other words, a stationary assumption will underestimate the extreme temperature (Cheng and
AghaKouchak, 2014). The uncertainty range (difference between 90% and 10% CL) reaches more than 2°C from
2% AEP and from 20% AEP for Cairns and Brisbane, respectively. This also confirms the existence of high
variability of temperature extremes in Brisbane.

The TDF curves for Sydney and Melbourne, which are in the southeast of Australia, are shown in Figures 5 and
6. Sydney exhibits a variation of design temperatures from 32°C (15-day) to 45°C (1-day) for 1% AEP and from
26°C (15-day) to 33°C (1-day) for 99% AEP. On the other hand, Melbourne exhibits a variation from 25°C (15-
day) to 38°C (1l-day) and from 25°C (15-day) to 36°C (l-day), respectively. According to Figures 5 (b),
temperatures in a non-stationary condition for Sydney vary from 27°C (15-day) to 39°C (1-day) for 99% AEP (1-
year return period). Melbourne, as identified in Figures 6 (b) represents a variation from 33°C (15-day) to 45°C
(1-day) for 1% AEP (100-year return period) and from 29°C (15-day) to 40.8°C (1-day) for 99% AEP (1-year
return period). Design temperatures in Melbourne, for 99% AEP and 1% AEP, show that the difference between
the non-stationary and stationary temperatures have a high variability that is approximately 14°C and 12°C (1-
day), and 8°C and 4°C (15-day) respectively. The concept of non-stationary has proven (o be a valuable tool for
understanding extremes in hydro climatology since natural phenomena occurred in non-stationary conditions. As
stationary assumptions underestimate extremes such as floods and drought, planners and decision-makers can
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consider non-stationary assumptions for planning, and construction of hydraulic structures. Design temperature
at high AEP levels (low recurrence interval, frequently observed) for Melbourne was found to vary more
considerably between the durations which indicates the presence of high temporal variability of temperature
extremes. Both Sydney and Melbourne stations exhibit a high variation in design temperatures from 1- to 7-day
duration. In terms of the uncertainty range, both stations behave quite similarly — with the range reaching more
than 2°C from 2% AEP.
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Figure 3. (a)TDF curves for Cairns (D is day and CL is confidence level plotted for 1-D) (b) the output of NEVA’s non-
stationary GEV framework, standard return levels with design exceedance probability (figure generated using MATLAB)

The TDF curves for Hobart, located south of mainland Australia, and for Adelaide, located in South Australia, are
shown in Figures A. 2 and A. 3, respectively. Design temperature at 1% AEP varies from 27.5°C (15-day) to
41.5°C (1-day) and from 38.5°C (15-day) to 46.5°C (1-day) for Hobart and Adelaide, respectively, whereas the
low recurrence interval design temperatures at 99% AEP varies from 21°C (15-day) to 29°C (1-day), and from
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29°C (15-day) to 37.5°C (1-day), respectively. This clearly shows the existence of higher design temperatures for
mainland South Australia compared to the island of Tasmania. The variation of design temperatures with duration
is more noticeable for Hobart than Adelaide. Interestingly, design temperatures for Perth (Figure A. 4), which is
located in the southwest region of Australia, are almost identical to Adelaide. The uncertainty range reaches to
over 2 °C from 2% AEP and from 5% AEP for Adelaide and Hobart, respectively. Whereas in Perth, this starts
from 0.5% AEP, indicating the existence of less variability in design temperatures. According to the Figures A. 2
(b) and A. 3 (b), the low recurrence interval design temperatures in the non-stationary condition at 99% AEP (1-
year period) varies from 22.5°C (15-day) to 33°C (1-day), and from 33°C (15-day) to 42°C (1-day) for Hobart and
Adelaide, respectively. Design temperatures in Hobart and Adelaide, for 99% AEP, the difference between the
non-stationary and stationary temperatures is approximately 4°C and 4.5°C (1-day), and 1.5°C and 4°C (15-day)
respectively. Moreover, in Perth at the low recurrence interval design temperatures at 99% AEP varies from 3°C
(15-day) to 5°C (1-day).

The design temperatures of Darwin, which is in the northern region of Australia, exhibit a lower variability with
frequency and duration (Figure A. 5). The high recurrence interval (1% AEP) design temperature for Darwin
varies from about 35 °C (15-day) to 39 °C (1-day), whereas the low recurrence level (99% AEP) temperature in
the stationary and non-stationary conditions vary from 33 °C to 35.5 °C, and 34.5 °C to 38.5 °C (Figure A. 4 (b)).
Alice Springs, which is located in the central part of Australia, also exhibits less variability in design temperatures
with duration and frequency (Figure A. 6). For Alice Springs, the 1% AEP 1-day and 15-day design temperatures
are estimated to be 45 °C and 43 °C respectively, whereas they are 38.5 °C and 36 °C for 99% AEP. This clearly
shows the presence of lower variability in design temperatures across the recurrence interval and duration for both
Darwin and Alice Springs stations. The uncertainty range also exhibits the existence of low variability for both
stations. The range reaches to more than 2 °C from 0.01% AEP and 0.2% AEP, respectively. Alice Springs, in the
non-stationary condition at the low recurrence interval design temperatures at 99% AEP, varies from 41 °C (1-
day) to 39°C (15-day) (Figure A. 6 (b)).

For all stations, a general behavior of uncertainty range is observed. The uncertainty range decreases from 100%
AEP to 80% AEP, and then less variation is noticed until 20% AEP, thereafter a sharp increase is observed from
10% AEP to more rare frequencies. It is mostly likely that higher uncertainty is expected in high recurrence
interval extremes. The highest uncertainty range for 1% AEP 1-day design temperature is observed for Brisbane
(5.63°C), followed by Cairns (2.71°C), Sydney (2.45 °C) and Hobart (2.3 °C). For other stations, the range was
found to be less than 2 °C. The lowest uncertainty range was observed for Darwin (0.83 °C), which is logical
considering the existence of less variability in design temperatures across duration and recurrence interval.
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Figure 5. (a) TDF curves for Sydney (D is day and CL is confidence level plotted for 1-D) (b) the output of NEVA’s non-
stationary GEV framework, standard return levels with design exceedance probability (figure generated using MATLAB)
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stationary GEV framework, standard return levels with design exceedance probability (figure generated using MATLAB)

4. Discussion

While the development of TDF curves is a comparatively new addition to scientific rescarch, their analysis follows
a concept well-established for rainfall IDF curve development. Both TDF and rainfall IDF curves are developed
by using climate extremes (extreme temperature and rainfall, respectively). Like previous studies on rainfall IDF
(Courty et al., 2019; Papalexiou and Koutsoyiannis, 2013), the annual maximum temperature extremes are well-
described by the GEV distribution. Unlike the GEV parameters for rainfall IDF (Courty et al., 2019), a robust
scaling relationship with duration is not identified in this study (Figure 2). Generally, a high value of location
parameter (pt) indicates a more intense overall distribution and the presence of high temperature extremes in the
data series, whereas a higher scale parameter (o) confirms the presence of more extreme events in the tail of the
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distribution. This study shows that p estimates exhibit a decreasing tendency towards longer duration, but ¢ and
particularly the shape parameter (k), show a high degree of variability indicating an absence of the scaling
property. The latter two parameters are influenced by the less probable extremes in the data series.

Several factors influence the characteristics of extreme temperatures. Previous studies support that an increase of
mean temperature changes the variability, frequency, duration and intensity of temperature extremes (Coumou
and Rahmstorf, 2012; Im et al., 2018; Im et al., 2017; Perkins et al., 2012). The large-scale climate variability
modes (El-Nifio Southern Oscillation ENSO, for example) also influence the characteristics of extreme
temperatures (Ouarda and Charron, 2018). Several studies explored the teleconnection between large-scale
climate variability models and hydro-climatological variables, including extreme temperatures (Chowdhury and
Beecham, 2010; Loikith and Broccoli, 2014). In Australia, the El Nifio phenomenon decreases average rainfall,
but increases average temperature and frequency of extreme temperatures (Alexander et al., 2009; Arblaster and
Alexander, 2012; Kenyon and Hegerl, 2008; Min ct al., 2013).

The high degree of variability of TDF curves represents Australia’s high spatial variability of climate conditions.
A tropical/sub-tropical climate exists in the north and northeast region, where Darwin, Cairns and Brisbane
stations are located. The ENSO and Madden-Julian Oscillation (MJO) phenomena influence the climate in this
zone. The El-Nifio phenomenon causes a rise of temperature and prevailing dry conditions with occurrence of
droughts in the eastern Australian region. Five stations, Sydney, Melbourne, Hobart, Adelaide and Perth, fall in
the temperate climate zone in the south, southeast and southwest regions of Australia. In addition to ENSO, the
sub-tropical ridge (a high-pressure belt) and the Southern Annular Mode (SAM) phenomena affect the climate in
this region. The Alice Springs station falls in an arid or desert climate zone. The climate is influenced by the
Indian Ocean Dipole (I0D), a positive IOD phenomenon is associated with warm temperatures in this zone.

As shown in Table 3, temperature extremes in some stations (Hobart, Adelaide, Perth, Darwin and Alice Springs)
exhibit a statistically significant trend and step change and their climate is influenced by some global climate
variability indices (discussed in the previous paragraphs). Consequently, adoption of a stationary assumption
(temperature extremes will not significantly vary over time) for TDF curves development may not reflect the
influence of the wider global climate extremes. In a previous study, the global-scale modes of climate variability
were considered in the development of nonstationary TDF curves in Canada (Ouarda and Charron, 2018). Another
study on rainfall IDF shows that adoption of stationary assumption underestimates the design climate extremes
(Cheng and AghaKouchak, 2014). Since rainfall IDF curves are well-researched from both the stationary and
nonstationary perspectives, a comparison can easily be made. This study considered stationary and non-stationary
assumptions. The reasons for adopting this approach are its easy estimation procedure which is suitable for
professional applications, and the method is similar to the current practice of rainfall IDF curves in Australia. In
the current practice, stationary IDF data are increased by a factor (a fixed percent value) in order to consider the
influence of climate change and variability conditions. Cheng and AghaKouchak (2014) provided a Bayesian
inference framework for stationary and non-stationary estimates. The results of their study indicated that NEVA
software can estimate extreme variables and the return levels. The concept of non-stationary has proven to be a
valuable tool for extremes, hydro climatology since natural phenomenon occurred in non-stationary conditions
(Cheng et al., 2014; Pakdel et al., 2023). As a result, utilising non-stationary data, new methods for analysing the
frequency of extremes should be developed. As stationary assumptions underestimate the extremes such as
temperature, thus, the planner and decision-makers can consider non-stationary assumption for planning and
construction of hydraulic structures.

Information of design temperatures in the form of TDF curves could be useful in different sectors such as human
health, ecosystem assessment and infrastructure management. The human body operates at about 37°C
temperature and it is comfortable within a narrow range of conditions. If the temperature increases (o 38°C for
several hours, heat exhaustion can occur which impairs the mental and physical capacity of humans (Berry et al.,
2010; Parsons, 2007). An excessively high temperature for a short period can also be very dangerous. Parsons
(2007) reported that a 42°C core temperature for a few hours can cause heat stroke and death. Therefore, cooling
as well as heating requirements and thermal design will be more effective if the design temperatures at different
frequency and durations are known. For infrastructure design, the Australian Building Codes Board divided the
whole country into eight National Construction Code (NCC) climate zones. Cairns and Brisbane fall in Zone 1
and 2, respectively. Zone 1 represents high humidity summer and warm winter, whereas Zone 2 is characterized
by warm humid summer and mild winter. Sydney and Melbourne both fall in Zone 6, which represents a mild
temperate climate. Hobart falls in Zone 7 (cool temperate climate), whereas Adelaide and Perth fall in Zone 5
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(warm temperate climate). Darwin and Alice Springs fall in Zone 1 and 3, respectively. While Zone 3 is
characterised by hot dry summers and a warm winter climate, Zone 1 represents a hot humid summer and a warm
winter climate. Each of these NCC climate zones are spatially homogeneous and do not represent the spatial
variability of design temperatures. Therefore, TDF data can potentially be utilised for design of infrastructures,
where temperature related changes are inevitable such as electrical grids and power plants.

5. Conclusions

This study investigated the extreme temperature under stationary and non-stationary assumptions. Hydrological
processes rely heavily on stationarity over time, however for hydrology, the validity of the stationarity of long
term temperature data may become more problematic as climatic and human effects create non stationary
conditions (Salas et al., 2018). Thus, in this research, extreme temperature was considered across a sample of
Australian sites based on a non-stationary assumption. The location parameter (¢) was considered to have a lincar
connection to time. Nine geographical distributed stations were investigated in this study using the GEV
distribution with Bayesian inference for parameter estimation. The GEV distribution statistically fits well within
the annual maximum temperature at different durations. However, it may be possible that a different distribution
(Log Pearson, for example) and different parameter estimation techniques (L-moments, for example) could also
fit the frequency distribution. To the best of our knowledge, TDF curves have not yet been established in Australia.
The method used in this study is applicable to any location for the development of TDF curves and can be used
to support decision making in areas such as health risk management of heatwaves, the design of infrastructure
where temperature-related changes may impact the infrastructure, and for readiness for natural hazards like
bushfires and droughts. In future studies, an increased number of stations could help explore the more detailed
spatial variability of design temperatures across Australia and could be useful in developing homogeneous regions
having similar design temperatures.

The regional frequency analysis may be useful for determining temperature quantiles at locations where reliable
long term and high-quality data is limited. Furthermore, it is feasible to look at non-linear and linear variations of
the scale and shape parameter over time. This research can provide a foundation for future research and facilitate
comparisons with existing studies by focusing on advanced statistical analysis. Once the TDF curves are
established, they can be used as inputs for further investigations, such as assessing the vulnerability of different
bioregions, evaluating the effectiveness of adaptation measures, or estimating potential damages and losses.
Moreover, the impact on our natural environments (flora, fauna, and eco-systems), agriculture and different land
use pattern effects on the temperature can be addressed. Conducting detailed investigations into the underlying
causes of extreme temperatures can be interesting for future studies. Lastly, through the quantification of the
probabilities of extreme temperature occurrences, decision-makers can make informed choices regarding
infrastructure development, environmental management, resource allocation, and emergency planning.
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Figure A. 1. Time scrics plot of 1-day temperature extreme for the Perth airport station (site no. 09021), blue dots represent

1-day annual maximum temperature, and their 5-year moving average is represented by solid black line. Average temperature
during 1910-1964 and 1965-2018 periods arc 41.28°C and 42.06°C.
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Figure A. 2. (a) TDF curves for Hobart (DD is day and CL is confidence level plotted for 1-D) b) the output of NEVA’s non-
stationary GEV framework, standard return levels with design exceedance probability (figure generated using MATLAB)

(a)
Adelaide
48
1 1-D
] 2-D
46 3 o
T ] 4D
g 43 5D
30 ] 6D
2,42 & 7.D
§ 8D
S 40 7 9D
g T 10-D
E 38 ] 11D
= ] 12-D
&, ]
s 36 1 13-D
A 1 14D
34 1 15D
] - === 10%CL
32 ] . ——————t . — e P Ch
1% 10%

Annual Exceedance Probability (AEP)

(b)

b. N 'y at Adelaide 1-D

4

a o @
> 3 1Y

return level( C)
5

44

10 20 30 40 50 60 70 80 920 100
return period (Year)

20

return level(' C)

b. Non-stationary at Adelaide 15-D

10 20 30 40 50 60 70 80 90 100
return period (Year)

135




655

638
659
660
661
662
663
664
665
666
667
668

Figure A. 3. (a) TDF curves for Adelaide (D is day and CL is confidence level plotted for 1-D) b) the output of NEVA’s non-
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7.3. Links and implications

This paper aligns with papers 2 and 3 to generate the extreme temperature
using TDF curves and GEV distributions in the whole of Australia. This paper provides
the concept of design temperatures, which serve as reliable indicators of extreme
temperature events that are crucial for planning and decision-making processes.
Extreme temperature events, whether heatwaves or cold spells, pose significant risks
to human health, agriculture, ecosystems, and infrastructure. This paper achieved
Research Objective 4: “Analyse the intensity and frequency of extreme events, under
both stationary and non-stationary conditions using the GEV model.”

To achieve these objectives, this research developed annual maximum
temperature extremes and durations from 1 to 15 days across Australia using GEV
distributions. Through the utilisation of TDF curves to analyse past temperature
records, researchers can detect trends, recognise abrupt shifts, and evaluate the
geographical diversity of extreme temperatures across various areas. Detecting the
trends was the main focus of the first paper and it applied to the second, third and
fourth papers before determining the non-stationary assumptions.

This paper consequently follows the aim of the third paper on infrastructure
design and management. The second paper discusses the significance of design
temperatures for infrastructure planning in relation to temperature-related changes.
These implications suggest potential synergies in addressing infrastructure challenges
related to both water and temperature extremes. It is suggested that future research
explores the underlying causes of extreme temperatures and assesses the

effectiveness of adaptation measures.

7.4. Conclusion

Chapter 6 of this dissertation introduced the fourth research paper crafted within
the scope of this study. This paper discussed extreme temperatures under different
return levels. In Chapter 7, additional analysis is offered on the conducted research,
addressing the initial research inquiries from Chapter 1, and drawing conclusive

remarks while suggesting potential avenues for future research.
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CHAPTER 8: DISCUSSION AND CONCLUSION

8.1. Introduction

This thesis has evaluated the non-stationary scenarios of maximum
instantaneous flood and rainfall extremes under climate change and landcover change
scenarios in the Lockyer Valley catchment in SEQ, Australia in the future period.
The thesis demonstrated the comprehensive methodology for evaluating landcover
and climate change's long-term hydrological consequences. The research showed
that the land cover classification, hydrological model, and ensemble of GCMs under
different RCPs along with the GEV model shows the uncertainty bounds between
stationary and non-stationary tend to widen in the highest return period. According to
the ARR guideline (Ball et al., 2019), the GEV distribution should be applied for
designing systems that account for floods and rainfall. Under the RCP 8.5 scenario,
there is comparatively less variation between stationary and non-stationary conditions,
whereas RCP 4.5 demonstrates a more pronounced difference. This research showed
that extreme analysis of future periods' maximum peak flood data reveals a growing
disparity in the maximum instantaneous flood between stationary and non-stationary
assumptions. This suggests that the increasing difference may be a compelling reason
to analyse extreme with non-stationary conditions. The following sections summarise
the main conclusions of this thesis concerning the research topics, how it has

advanced knowledge in the subject, and potential prospects for future study.

8.2. Assess and map hydro-climatological trends and their impacts on surface
water using GEE. Develop aframework for extreme hydrometeorological events.

Papers 1 and 2 of this research developed a spatial pattern method in the GEE
platform and proved that using multi-sensor satellite data, particularly from platforms
like GEE, to analyse hydroclimatic trends which aligns with validating the trend
analysis before applying extreme analysis. Understanding hydroclimatic variability for
water resource management was directly determined through the trend analysis.
The necessity of extremes in non-stationary assumptions is to determine the trends of

variables.

The first paper provides insights into long-term trends and spatial patterns.
Consequently, the second paper delves into trend analysis, extreme events and

non-stationary conditions, enhancing our understanding of the dynamic nature of

140



hydroclimatic systems. The comparison of ETa, ETo, and ERA5 rainfall data with
station records indicates generally good agreement. ETa showed moderate Pearson
correlations ranging from 059 to 0.75 and reasonable RMSE values.
ETo exhibited strong correlations of 0.96—0.97 but higher RMSE values ranging from
73.13 to 87.73 mm. Rainfall demonstrated solid correlations and RMSE values.
Analysis of rainfall data from Gatton revealed differences in uncertainty bounds
between stationary and non-stationary conditions, with global climate datasets
underestimating this disparity compared to station data by approximately 9.47 mm
(73.99 mm for station data versus 64.52 mm for global climate datasets). The variation
between stationary and non-stationary conditions was least pronounced in water

storage, more significant in rainfall, and moderate in evapotranspiration.

8.3. Develop a framework for assessing extreme events and land cover
impacts using SVM and RF in GEE. Perform hydrological simulations under
GCM ensembles, RCPs, and land cover changes.

Paper 3 of this research developed a framework for evaluating past and future
extreme floods under climate change and land cover scenarios. The proposed
framework combines hydrological modelling, land cover projections using machine
learning techniques, climate projections and RCPs, ProNEVA model accounting for
both stationary and non-stationary conditions. Through this integrated methodology,
this paper aims to investigate the changes of future climate change on streamflow
patterns.

It is widely acknowledged that climate GCMs and scenarios, especially
concerning extreme events including extreme precipitation (Bloschl & Montanari,

2010), and extreme streamflow show significant uncertainty.

Research on hydrological extremes is critically needed, especially for the
locations where the consequences of climate change are known to be significant
(Salas et al., 2018).

In analysing extremes, it's crucial to consider both real (physical) and perceived
(statistical) processes. Montanari and Koutsoyiannis (2014) emphasised the
importance of incorporating relevant physical mechanisms into stochastic models.
They advocated for the development of stochastic-process-based models as a means

to reconcile the gap between physically-driven models lacking statistical components
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and statistical models devoid of physical insights. The temporal shifts have been
assessed among various land cover categories using a transition matrix, which
delineated the proportions of pixels transitioning between different categories.
The model incorporates spatial elements like distance from major roads, DEM, and
population density to generate future maps depicting changes in land cover, revealing
the evolving patterns within the Lockyer Catchment.

Undertaking changes in runoff factors using two climate change scenarios
(RCP4.5 and RCP 8.5) based on the multi GCMs. The results clearly indicate that a
decline in runoff of the ensemble of climate models is generally noticed in the far future
(2066-2085) compared to the near future (2020-2065) almost for all months. In
February, there is greater variability in streamflow alterations for both RCP 4.5 and
RCP 8.5, suggesting increased uncertainty in the predictions for the two future periods
as indicated by (Tehrani et al., 2021). It can be concluded that the decline in
streamflow will likely slow down in the far future compared to the near future,

particularly between June and September.

8.4. Determine extreme climate events in the catchment. Assess the
effectiveness of GEV models in overcoming climatic model limitations for
evaluating extremes.

Papers 2 and 3 of this research provided NEVA and ProNEVA models to derive
different return levels of extreme events. Paper 4 evaluated annual maximum
temperature extremes using NEVA GEV and TDF curves for frequency analysis of
annual maximum temperatures from 1 to 15-day durations. Return levels of rainfall,
evapotranspiration and water storage for the stations and global climate data for 14
selected stations in the Lockyer Catchment were evaluated.

Return levels of extreme events including temperature were estimated using
the NEVA software for the return periods of 10 through 100 years, which are the
standard design return periods used in hydrologic studies. For flood extremes, the
non-stationary conditions of the flood were investigated under two climate scenarios
projected from the averaged ensemble of eight GCMs under two scenarios RCP 4.5
and RCP 8.5 during future periods for 66 years.

The results indicated that the highest floods in the stationary assumption
generally appear smaller compared to the maximum sudden floods in the

non-stationary assumption across both scenarios. As the return period extends, shows
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a decline most of the time. Additionally, the findings indicate the contrast between the
peak sudden flood assuming stationary versus non-stationary conditions in both
scenarios for the period 2020 to 2086. The difference between non-stationary and
stationary in RCP 4.5 is greater than RCP 8.5 in all return periods. Peak flood return
levels at low return level periods were indicated to have noticeable variation compared

to high return periods.

8.5. Contribution to knowledge

This research contributed significantly to our understanding of flood extremes
and the impact it has on the non-stationary assumption. Firstly, GeeSEBAL was
employed to automatically estimate ET, facilitating validation against ET station data.
Given its independence from ground-level measurements as input, GeeSEBAL is
anticipated to be advantageous for analysing water balances globally and for
managing water resources in data-scarce regions (Laipelt et al., 2021).

The authors also emphasised that the aim of GeeSEBAL is to deepen
understanding of the impact of land cover changes on ET over recent decades.
The latest iteration of GeeSEBAL utilises Landsat imagery and reanalysis data to
compute ETa time series, showing promising results for regional-scale investigations
in areas with limited data availability (Laipelt et al., 2021).
By incorporating non-stationary conditions in extreme events frequency analysis using
the ProNEVA model, the study highlights the importance of accounting for changing
environmental factors over time. This enhances the accuracy of flood magnitude
estimation and helps mitigate risks associated with hydraulic infrastructure and human

settlements.

The utilisation of Support Vector Machine (SVM) and Random Forest (RF)
classification techniques in conjunction with the Google Earth Engine (GEE) platform
enables the mapping of land cover patterns and estimation of future changes.
This innovative approach enhances the spatial resolution and accuracy of land cover
analysis, providing valuable insights for water resource management and
infrastructure planning. The results highlight the significance of considering non-
stationary conditions in extreme flood frequency analysis, as neglecting this aspect
can lead to underestimation of flood magnitudes and increased risks for hydraulic

structures. Through the incorporation of TDF curves in decision-making, stakeholders
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can improve risk evaluation, refine infrastructure planning, and enhance public health
strategies during extreme temperature occurrences. While previous investigations
have delved into related themes across various regions, this study adds to the evolving
domain of TDF curve formulation within Australia. The framework developed in this
study provides valuable insights for infrastructure planning, risk assessment, and

sustainable water resource management.

8.6. Future research direction

This study should serve as a foundation for the use of multi-framework by
considering both physical system and statistical approaches to comprehend the non-
stationary assumption in extremes in the catchment scale. The following is expected

to be the next research direction that this study will lead to.

1) Future studies could incorporate comprehensive uncertainty analysis
techniques to assess the robustness and reliability of model predictions under

different climate change scenarios.

2) Applying a non-stationary model for the Lockyer Catchment by considering the
assumptions that the scale and shape parameters have linear functions with
time. This adjustment will enhance the modelling approach, improving the
capture of flood variations over time and increasing prediction accuracy and

reliability.

3) Exploring alternative statistical models beyond the GEV model to capture non-

stationary behaviour in extreme event distributions.

4) Incorporating hydraulic modelling techniques, to assess the hydraulic
performance of dams under various scenarios, including extreme flood events

and reservoir operation conditions.

5) Evaluate the effectiveness of existing dam infrastructure and spillway designs
in mitigating hydraulic risks and identify potential vulnerabilities or areas for

improvement.

6) Undertaking a similar developed framework to other geographic regions with
different climatic, hydrological, and land cover characteristics could provide
valuable insights into regional variations in flood risk and vulnerability.
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