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ABSTRACT 

South East Queensland has experienced a series of recent catastrophic 

climatic events. From December 2010 to January 2011 and in February 2022, heavy 

rains caused flooding impacting over 2.5 million people and causing approximately 33 

deaths. These events challenged the assumption of stationary conditions as no longer 

viable. The persistent use of this baseline assumption could potentially lead to 

misestimations in forecasting future floods.  The severity and frequency of extremes 

are escalating; thus, it is necessary to evaluate the impacts of land cover changes and 

urbanisation, along with climate change. A framework of the trend analysis methods 

to analyse temporal patterns, spatial analysis techniques utilising the Google Earth 

Engine (GEE), Generalised Extreme Value (GEV) method, and land cover patterns 

classification including Random Forest (RF) and Support Vector Machine (SVM) can 

be useful for hydrometeorological variables extreme events analysis. This research 

highlights the importance of using spatiotemporal techniques and trend analysis by 

underscoring the changing frequency and severity of extreme events analysis. The 

aim of this research is to evaluate extreme events under non-stationary conditions, 

where the location parameter has a linear function with time. For this study, a unique 

framework consisting of the hydrological model in line with the Process-informed Non-

Stationary Extreme Value Analysis (ProNEVA) GEV model and the ensemble of 

General Circulation Models (GCMs), mapping land cover patterns using classification 

methods within the GEE platform, were employed to comprehensively analyse the 

impacts of climate variability and land cover changes on extreme hydrological events. 

Runoff was projected under two scenarios for eight GCMs and by incorporating the 

percentage of each land cover into the hydrological model for two horizons, (2020-

2065 and 2066-2085). The outcomes of this study suggest that neglecting non-

stationary assumptions of flood frequency can lead to underestimating the magnitude 

of flooding. This, in turn, can lead to greater and increased risks to infrastructure 

planning and design. The framework of this research paper is adaptable to various 

geographical regions for the purposes of estimating extreme conditions; thereby 

offering valuable insights for infrastructure design, planning, risk assessment, and the 

sustainable management of future water resources in the context of long-term water 

management plans. 
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CHAPTER 1: INTRODUCTION 

1.1. Background to research 

The Intergovernmental Panel on Climate Change Assessment Report (IPCC) 

(IPCC, 2007, 2014) indicates that climate change will be accompanied by a rise in the 

frequency, severity and duration of extreme natural phenomena such as excessive 

precipitation and extreme air temperature in the twenty-first century. The trends 

suggest that the frequency and intensity of flood events are likely to rise globally due 

to climate and land-use/cover changes attributed largely to urbanisation and 

anthropogenic activities (IPCC, 2014; Wang, et al., 2020).  

It is commonly known that there is a great deal of uncertainty in many worldwide 

areas' climate estimates and scenarios, particularly when it comes to severe 

occurrences like excessive precipitation (Bloschl & Montanari, 2010), and extreme 

streamflow. It is imperative to conduct more research on hydrological extremes, 

particularly in the areas where large climate change effects are known to exist  

(Salas et al., 2018). The majority of research for Australia specifically addresses 

climate change and suggests that changes in annual temperature maxima have 

consequences for non-stationary flood frequency analysis (Wasko et al., 2023).  

Southeast Queensland, Australia, faces a myriad of challenges stemming from 

the increasing frequency and intensity of extreme climate events, exacerbated by the 

ongoing effects of climate change. The region's vulnerability to such events, including 

floods from December 2010, to January 2011 and in February 2022 and changes in 

streamflow patterns, poses significant environmental risks. The interplay between land 

cover changes, driven by urbanisation and land cover practices, further complicates 

the dynamics of these hydrological processes. Despite advancements in climate 

modelling and hydrological analysis, there remains a critical gap in our understanding 

of the non-stationary nature of extreme climate events and their implications for future 

streamflow regimes in this region. This research seeks to address this gap by 

employing a novel non-stationary approach, which incorporates the temporal evolution 

of flood and streamflow characteristics through the utilisation of a linear function for 

the location parameter. Neglecting the non-stationary assumption in flood frequency 

can lead to underestimating the amounts, which can, in turn, lead to more risks for the 

related hydraulic structures.  
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Informed by the observations above, this study aims to offer valuable 

perspectives for the design of infrastructure, planning, risk evaluation, and the 

sustainable administration of forthcoming water resources within the framework of 

enduring water management strategies. 

The case research location, the Lockyer Catchment, is situated in Southeast 

Queensland (SEQ), as Figure 1 shows. It is the primary watercourse that flows into 

the Brisbane River from the east (Sarker et al., 2008). Within the bounds of the Lockyer 

Valley Regional Council, Toowoomba Regional Council, Somerset Regional Council, 

and Ipswich Regional Council local governments, the catchment lies west of Brisbane 

and east of Toowoomba (WetlandInfo, 2022). The importance of this catchment was 

recognised by the appropriate infrastructure operators and decision-makers, including 

the Queensland Department of Environment and Science and Seqwater (Kiem et al., 

2020). The average annual rainfall for the catchment is between 1000 and 2012 mm, 

and it extends over 3000 km2 (Vance et al., 2015).  

However, there are notable variations in rainfall over time, leading to rivers that 

remain dry for the majority of the year. Some of Australia's richest agricultural regions, 

including lucrative vegetable farming and grazing, are included in the catchment 

(Sarker et al., 2008). Significant rainfall is observed in both the northern and southern 

parts of the Lockyer Catchment. However, during recent droughts in Australia, most 

of the catchments experienced moderate to low precipitation levels (Lockyer Creek 

wiki 2022). Collectively, they drain around 3000 km2 of land altogether, or one-fourth 

of the watershed of the Brisbane River. With a population of more than 35,000, the 

Lockyer Catchment is significant from an economic, environmental, and social 

standpoint.  

In recent decades, this region has had several unusual climatic events, such as 

the above-average rainfall that occurred between 1988 and 1989 and between 2000 

and 2008 (Van Dijk et al., 2013), in which the region experienced an extensive and 

severe drought that persisted over an extended period. In 2008, measures were put 

in place to alleviate the effects of drought. Nonetheless, the area remains subject to 

repetitive patterns of flood and drought emergencies, occasionally affecting the entire 

nation for prolonged periods. Considering that prior research has demonstrated that 

the stationarity assumption is no longer viable, the frequency of flood occurrences, 

such as the one in 2022, may be misestimated under this assumption. Furthermore, it 
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has been noted that there is a non-stationary connection between rainfall and runoff 

in the Lockyer Catchment (Cui et al., 2018; Armstrong et al., 2020).  

Thus, to improve the design and supervision of hydraulic structures that 

minimise future losses in terms of human and financial, it is imperative to create unique 

approaches to estimate non-stationary flood extremes, rainfall extremes, 

evapotranspiration extremes, and water storage deficits. 

 
 

 
Figure 1. 1   The study area’s geographical position in Australia (left) and hydro-
meteorological stations are taken into consideration throughout the catchment (right). 

 

In the past, the assumption of stationarity was introduced to make complex 

statistics easier to understand. Under the assumption of a stationary climate, the 

conditions of the return level and return duration provide crucial information for 

planning, making decisions, and evaluating the effects of climatic events. 

Typically, this was considered a reasonable assumption because our historical 

data records were limited, resulting in minimal changes observed over a short time 

period. Moreover, earlier scholars lacked the computational resources available today 

and modern researchers have, leading them to rely on simplified assumptions for 

practicality. 

The risks associated with repeatedly presuming stationarity are mostly related 

to the availability of longer data sets and climate shifts. Static return levels, which 
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assume that the frequency of extremes does not change over time, have been the 

foundation of infrastructure design methodologies for a long time (Cheng et al., 2014). 

Conversely, the frequency of extreme events has been undergoing alterations 

and is anticipated to persist in changing over time (IPCC, 2007), recent research has 

revealed that hydrological data in certain areas exhibit non-stationary characteristics, 

manifesting in either increasing, decreasing, or mixed patterns. While hydrological 

parameters were traditionally viewed as stationary, this assumption may no longer 

hold true due to the influences of climate change and human activities, leading to  

non-stationary behaviour (Salas et al., 2018).  

Given that many extreme events include spatial processes, one area of ongoing 

research on framework development has been the challenge of including spatial 

information inside extreme value analysis methodologies (Cooley, 2009; Love et al., 

2022). Therefore, models that can take into consideration non-stationary climatic and 

hydrologic extremes are needed (Cooley, 2013; Salas & Obeysekera, 2014). 

Southeast Queensland (SEQ) stands out as among Australia’s regions most 

susceptible to flooding (Abbs et al., 2007). Due to its varied range of climatic regimes 

and status as the driest inhabited continent in the world, Australia is particularly 

sensitive to the extreme variations in climate that occur there year over year  

(Head et al., 2014). Projected changes in climate are anticipated to have noticeable 

effects on the frequency of hydrological elements such as runoff, rainfall, and 

evapotranspiration (ET) across various regions (Al-Safi & Sarukkalige, 2017; 

Ramezani et al., 2023). Distinguishing between the impacts of climate change and 

land-use changes on observed hydrological shifts is often challenging due to their 

concurrent occurrence in most regions, both climate change and land-use alterations 

(Lamichhane & Shakya, 2019; Ramezani et al., 2023). As such, a framework that 

incorporates land cover patterns and the ensemble of GCMs can be helpful. 

Extreme hydrological events are seen to be significantly influenced by climate 

change (Meaurio et al., 2017) and the land cover changes caused by human activities. 

It is widely acknowledged that climate projections and scenarios, especially 

concerning extreme events including extreme precipitation (Bloschl & Montanari, 

2010), and extreme streamflow exhibit significant uncertainty across many global 

regions. Research on hydrological extremes is critically needed, especially for the 

locations where the consequences of climate change are known to be significant 

(Salas et al., 2018).  
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Land use/cover changes (LUCC) have been identified as another influential 

factor for changing hydrological regimes (Wang et al., 2020). It should be highlighted 

that the majority of research on land cover is based on historical land-use statistics 

(Burn et al., 2010) and has given less attention to the combined effects of land cover 

change and climate change. Therefore, it is important to estimate future land-use 

scenarios and determine their impacts on extreme hydrological events. In the realm of 

land cover management and planning, two machine learning algorithm models are 

employed in Google Earth Engine (GEE): Random Forest (RF) (Gislason et al., 2006) 

and Support Vector Machine (SVM) (Gualtieri & Cromp, 1999). 

Furthermore, the Generalised Extreme Value (GEV) distributions and the Log 

Pearson Type 3 (LP3) are commonly employed in the frequency analysis of 

hydroclimatic extremes (Ragno et al., 2019). In hydrology and climate research, these 

statistical distributions are commonly employed to examine the frequency and intensity 

of severe occurrences. The GEV distribution was utilised in earlier studies to produce 

Temperature Duration Frequency (TDF) curves (Ouarda & Charron, 2018; Mazdiyasni 

et al., 2019). Furthermore, it has been suggested by the Australian Rainfall and Runoff 

(ARR) guideline (Ball et al., 2019) that the GEV distribution be used to determine 

design floods and rainfalls. 

A Bayesian inference framework that supports both non-stationary and 

stationary estimations was introduced by (Cheng & AghaKouchak). The concept of 

non-stationarity is useful in hydroclimatology to analyse extremes since many natural 

phenomena occur in non-stationary environments. According to their research, the 

Non-stationary Extreme Value Analysis (NEVA) model (Cheng et al., 2014) provides 

an efficient way to compute extreme return levels and variables. The economy, 

infrastructure, agriculture, natural ecosystems, and public health are all negatively 

impacted by the persistence of hydroclimatic extremes (Huth et al., 2000; Rainham & 

Smoyer-Tomic, 2003; Khaliq et al., 2005; Jones et al., 2018; Ouarda & Charron, 2018). 

Process-informed Non-stationary Extreme Value Analysis (ProNEVA) software can be 

used to undertake a frequency analysis of extremes and examine changes in the 

extremes' return period to identify design extremes at various recurrence intervals and 

durations. (Ragno et al., 2019). This model can integrate the changing extremes into 

intensity and frequency analysis (Cheng & AghaKouchak, 2014). 
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1.2. Research aim and objectives 

This research aims to assess the hydroclimatic variabilities based on stationary 

and non-stationary assumptions in the Lockyer Catchment in Southeast Queensland 

by combining the effects of land cover and climate change, and spatial distribution 

analysis. The geeSEBAL method, which uses meteorological analysis data and 

Landsat images (Gorelick et al., 2017) to estimate evapotranspiration at regional sizes, 

was developed utilising GEE infrastructure. The SEBAL algorithm was included in 

GEE using the JavaScript APIs. To determine the accuracy of geeSEBAL, the results 

of spatiotemporal distribution of potential evapotranspiration, and rainfall from global 

climate datasets in comparison with the results of the same variables derived from 

ground-based observation.  

Moreover, The spatiotemporal maps of water storage achieved from a lumped 

water balance analysis as well as land covers have been evaluated. By developing a 

multi-framework for assessing the return levels of extremes in the past and future 

hydrological consequences of climate change, the limitation of the assumption of a 

stationary climate will be overcome. To the best of my knowledge according to the 

literature review thus far, there hasn’t been a multi-framework with non-stationary 

assumptions for past and future scenarios for the Lockyer Catchment, and only a few 

scholars globally have employed this approach. This study has focused on 

determining the physical system in terms of cause and effect by incorporating land 

cover projections and GEV distribution. Furthermore, this shows how ignoring the non-

stationary assumption in extreme events analysis may lead to inaccurate estimations 

of design floods (return levels) which will have detrimental effects on infrastructure 

planning and design. 
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The Research Objectives are to: 

1)  Assess and map the spatiotemporal distribution and the overall trends of  

hydro-climatological data using spatial distribution in the GEE and their impacts on 

changes in surface water availability.  

2) Develop a framework to assess non-stationary conditions in extreme 

hydrometeorological events such as extreme rainfall, evapotranspiration, and 

water storage deficit. To evaluate the impacts of land cover changes and 

urbanisation by applying SVM and RF classification in GEE and climate change. 

3) Perform the hydrological simulations for each landcover classification separately 

under ensembles of General Circulation Models (GCMs) under Representative 

Concentration Pathways (RCPs) and landcover changes in the baseline, and the 

near and far future horizons. 

4) Analyse the intensity and frequency of projected streamflow extreme events, 

rainfall extremes, evapotranspiration extremes and water storage deficit extremes 

under both stationary and non-stationary conditions using the GEV model for the 

estimation of different return levels. 

 

The key Research Questions investigated in this thesis are: 

1) Does the spatial distribution of the remotely sensed dataset can substitute ground-

based observations in the sparsely gauged catchments? Does the spatial 

distribution of global climate datasets agree significantly well with ground-based 

observations? 

2) How can the frequency, intensity, and duration of extreme hydrometeorological 

events in the catchment be determined? How can an evaluation of the 

effectiveness of landcover classification methods to generate future landcover be 

conducted? 

3) How do hydrological simulations vary across different land cover classifications 

when subjected to ensembles of GCMs under different climate and landcover 

scenarios, considering both baseline conditions and projected land cover changes 

for near and far future horizons?  



 

8 

4) How can the frequency, intensity, and duration of extreme climate events (flood 

extremes) in the catchment be determined? Can the limitation of climatic models 

to evaluate extremes be eliminated using the GEV model?  

Thus, in this research, the streamflow is considered based on stationary and 

non-stationary assumptions. This study assesses the streamflow characteristics in the 

Lockyer Catchment of Southeast Queensland, Australia, to establish return levels. The 

study aims to develop a methodology and identify the combined effects of land cover 

and climate change on extreme events. So, this research presents new insight into 

extreme events analysis such as flood extremes to explore the methodology that 

integrates the hydrological model with ensembles of GCMs under RCPs and projected 

landcover scenarios along with the GEV model to improve extremes predictions under 

the instantaneous impact of climate change and human activities. The results of the 

study will help in understanding the spatial variation of the streamflow extreme events 

at the catchment scale. The investigation of adaptation techniques to handle probable 

future extremes will be assisted by this new framework for water planners and 

decision-makers.  

The study's findings may help decision-makers better understand extreme 

events by taking into account both stationary and non-stationary assumptions. This 

will help them choose the right materials for infrastructure development, emergency 

response, disaster preparedness, and health care services. This new paradigm will 

help water planners and decision-makers investigate adaptation strategies to deal with 

likely future extremes. 

The outcomes of the study could be useful in understanding the extreme events 

by incorporating both stationary and non-stationary assumptions, thereby assisting 

decision-makers in making informed decisions for emergency response operations, 

disaster preparedness, health care services and the selection of appropriate materials 

for infrastructure development. The investigation of adaptation techniques to handle 

probable future extremes will be assisted by this new framework for water planners 

and decision-makers. 
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1.3. Thesis structure 

Chapter 1 introduced the research conducted in this thesis by initially offering 

background on the project’s start and the selection of the Lockyer Creek catchment as 

the studied area. It emphasised the significance of non-stationary assumptions for 

frequency analysis of return levels of extremes in a changing environment and its 

implications for extreme events such as flood extremes in the near and distant future. 

The significance of the research was emphasised by this foundational work, 

which also served as a guide for developing the study objectives and preliminary 

enquiries for this thesis. This chapter outlines the comprehensive methodology 

employed to accomplish the objectives of all four research papers. 

To further understand the hydroclimatological extremes, Chapter 2 covers 

literature on non-stationary extremes by reviewing the probabilistic methods. The 

second chapter reviews the examinations of hydrological frequency and intensity. This 

review helps determine the proper distribution and methodologies for assessing the 

hydroclimatic extremes in this study. Moreover, an ensemble of GCMs under climate 

scenarios concepts was incorporated into the extreme analysis. This approach is 

undertaken as additional concepts for the extreme analysis of future extremes for 

ensuring sustainability in the face of a changing environment. 

The original research conducted as a section of this thesis through publication 

is presented in Chapters 3 through to Chapter 6. The first research paper in Chapter 

3 presents the spatial analysis of hydroclimatic trends in the Doosti dam basin as an 

ungagged basin with an area of 55141 km2. The decision to focus on ungagged 

catchment calibration in Iran provided a unique opportunity to test the applicability of 

one of their methods in sparsely gauged basins. The feasibility of our research is 

undertaken in the ungagged basin in the transboundary river basin as the Australian 

catchments have records of access to high-quality data. 

NEVA model employs the Mann-Kendall trend test, allowing users to choose 

their desired level of significance. This test is utilised to detect trends and non-

stationarity in extreme data. To assess the significance of climatic time series trends, 

the Mann-Kendall statistical test was conducted. The trend analysis methods with 

spatial pattern distribution were validated in the first paper. The Mann-Kendall test was 

applied in the second paper by applying the Bayesian approach for estimating GEV 

parameters under the non-stationary assumption. In this paper, ETa derived from the 

geeSEBAL algorithm and WS from a lump water balance  
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The second paper presented in Chapter 4, proposed an integrated framework 

that combines geeSEBAL, NEVA GEV model and spatial distribution analysis pattern 

to return the frequency, intensity and return levels of extreme events including extreme 

evapotranspiration events, extreme rainfall events and extreme water storage deficit. 
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In the third paper, published here in Chapter 5, it is proposed that an integrated 

framework for assessing the past and future hydrological consequences of climate 

change be developed. This framework integrates hydrological models, machine 

learning method on the GEE platform for landcover changes projection; ProNEVA 

model and climate projections under different scenarios based on the Generalised 

Extreme Value (GEV) model in stationary and non-stationary conditions (Pakdel et al., 

2023), and explores the impacts of future climate change on the streamflow. The GEV 

model and spatial distribution of the second paper show the effectiveness of these 

methods in extreme analysis. This chapter investigates the extreme flood events under 

land cover changes and RCPs scenarios in the near and far future periods in the 

Lockyer Catchment. 

The fourth paper, published here in Chapter 6 explored annual maximum 

temperature extremes and durations from one to 15 days using GEV distribution under 

stationary and non-stationary conditions where the parameters were estimated using 

the Monte Carlo Bayesian inference approach across Australia. Extreme temperatures 

pose a significant risk to communities, industry and our natural environment. So, these 

temperature-duration-frequency (TDF) curves, depicting design temperatures, offer 

insight into the fluctuation of extreme temperatures in relation to duration and 

recurrence frequencies. 

The main conclusions are reviewed and possibilities for further study are 

outlined in Chapter 7. Regarding the research articles that were published as part of 

this study, the major research issues that were first introduced in Chapter 1 are 

thoroughly addressed. Figure 2 depicts the general thesis structure schematically (see 

overleaf). 
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Figure 1. 2   Thesis structure 
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1.4. Research scope and limitations 

The scope of this study is as follows:: 

• The research focuses on the extreme events analysis in the Lockyer Catchment, 

Southeast Queensland, with an emphasis on understanding the impacts of climate 

change and land cover changes. 

• Data that was used contains ground-based measurements, remotely sensed data, 

geospatial data and climate data.  

• Methodologies were developed for assessing future land cover changes and 

simulating hydrological responses under different climate scenarios, with a specific 

emphasis on extreme event analysis. 

• An evaluation was performed into the effectiveness of non-stationary assumptions 

in extreme event analysis and explored the implications for water resource 

management and infrastructure development in the region. 

 

This thesis should be interpreted with the following constraints in mind: 

• The effectiveness of future land cover projections and hydrological simulations 

depends on the accuracy of input data and assumptions made in the modelling 

process. 

• There are natural constraints that limit the accuracy of future projections including 

uncertainties associated with climate projections and scenarios.  

• Incorporating different landcover into the conceptual hydrological model was 

limited to the landcover projections through RF and SVM methods. 

 

1.5.  Conclusions 

This thesis's first chapter gave a thorough overview of the research background 

while emphasising its significance and demonstrating its need. Chapter 1 has given 

the research a distinct direction by outlining the goals and objectives of the study.  

In Chapter 2, an extensive literature review is presented, focusing on the research 

aims and objectives to underscore the specific gap in knowledge that this study aims 

to address. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Overview 

The literature that is relevant to the goals of the research is thoroughly reviewed 

in the parts that follow, along with additional information on the gap in the literature 

that this study is trying to address. The examined literature explains why this 

methodology was chosen for this study. 

 

2.2. Significance of Research Problems 

The main research problem addressed in this study is the changing intensity 

and frequency of extreme events under non-stationary conditions, considering the 

physical system in terms of cause and effect.  This necessitates assessing the impacts 

of land cover change, urbanisation and climate change. By developing a multi-

framework, the study aims to improve the prediction of extreme events, especially 

flood extremes, by taking into account the direct effects of climate change and human 

activities. Highlighting the importance of non-stationary conditions is crucial for 

understanding and managing these evolving extreme events. 

 

2.3. Stationary and Non-stationary assumptions in hydrology 

Stationarity and non-stationarity are fundamental concepts in hydrology that 

profoundly influence the understanding of hydrological processes and the accuracy of 

predictions. Stationarity refers to the assumption that the statistical properties of 

hydrological variables, such as streamflow, remain constant over time. In contrast, 

non-stationarity acknowledges that these properties can change due to various 

factors, including climate change, landcover alterations, and anthropogenic 

interventions. The importance of considering stationarity or non-stationarity lies in their 

implications for hydrological modelling, risk assessment, and water resources 

management. For example, making assumptions about stationarity when they do not 

hold might result in inaccurate forecasts of future hydrological conditions and biased 

assessments of exceptional occurrences. 
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2.3.1. Stationary assumptions 

The conventional methods of developing hydraulic systems that protect against 

extremes often focus on risk and return period. They  assume that the frequency of 

severe events is independently generated and that they originate from a stationary 

distribution.  

Prior research, as demonstrated by (Pakdel et al., 2023; Pakdel et al., 2024), 

suggested that stationarity might simplify complicated statistical analyses. Assuming 

a steady climate, it provided important insights into decision-making, planning, and 

understanding the impacts of climatic events. However, presuming stationarity is 

riskier than ever due to longer data sets and a changing environment. Under the 

presumption of a fixed climate, the terms return period duration and return level 

provide crucial information for design, decision-making, and evaluation of the 

significance of unexpected meteorological and climatic events. 

It is considered that the data in a stationary model come from a probability 

distribution function with constant parameters. However, the parameters of the 

underlying probability distribution function in a non-stationary model vary over time or 

in reaction to a specific covariate (Sadegh et al., 2015).  

As a result, specialists in water resources have been concentrating more on 

evaluating if conventional methods are appropriate under stationary settings or if new 

methods are required when non-stationarity is seen. Within the water resources 

industry, this topic has attracted attention from project planners, governmental 

authorities, research organisations, and academic institutions worldwide. When 

developing and evaluating water infrastructure, they are actively looking for novel ways 

to take the changing hydrological circumstances into account (Salas et al., 2018). 

 

2.3.2. Non-stationary assumptions 

In order to "update" design events based on historical data, basic regression 

techniques for modelling changes in the variance, mean, and skewness are examined. 

These approaches include mixing such non-stationary moments with different 

probability distribution functions (pdf). The fundamental ideas, and techniques, as well 

as the best way to choose a design event in light of non-stationarity and future 

uncertainty, remain unsettled (Obeysekera & Salas, 2014). In conditions of non-

stationarity, the occurrence frequency of extreme events also fluctuates over time.  
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The rising worry about climate change brought on by a rise in greenhouse gas 

concentrations in the environment is yet another factor contributing to the growing 

emphasis on non-stationarity (IPCC, 2007, 2021). 

 

2.3.3. Stationary and non-stationary assumptions in NEVA & ProNEVA 

Non-stationary situations arise because the stationary assumption might not be 

valid for changes brought about by human and climate variables. NEVA uses a 

Differential Evolution Markov Chain methodology for global optimisation throughout 

the parameter field to determine the extreme value in a Bayesian way (Cheng et al., 

2014). EVT offers two basic distributions to describe extremes: the block maxima 

approach using the GEV distributions (Morrison & Smith, 2002) or the peaks-over-

threshold method using the GPD (Coles et al., 2001; Moisello, 2007; Durocher et al., 

2019). NEVA normally consists of two parts: 1. The GEV distribution is utilised for 

annual maximal evaluation or block maxima. 2. The GPD is employed in the peak-

over-threshold (POT) technique to analyse extremes above a particular limit. 

ProNEVA allows for non-stationary research using user-defined variables, 

which can be time or a physical variable. The capacity to include physical constraints 

in a statistical model is the advantage of performing stationary assessments with 

covariates connected to the physical component (Ragno et al., 2019). 

 

2.4. Applying machine learning for the classification and projection of 

landcover changes 

The Landsat satellite images (from TM, ETM+ and OLI 1&2 sensors), and ESA 

global land cover dataset were accessed and used through GEE (Pakdel et al., 2022) 

for conducting the classifications and modelling of changes in land cover and urban 

growth. Geospatial datasets of road networks, population density, and Hydrologically 

Enforced Digital Elevation Model (DEM-H) product with 30m spatial resolution 

(Mission, 2013) datasets were used as supplementary data inputs during landcover 

projection analysis. As the distance from roads and population density maps were 

originally in vector format, both maps were first converted into the raster format and 

resampled to the 30 m spatial resolution and used for the projection of landcover 

changes. 
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SVM was one of the most reliable and widely applied supervised  

non-parametric statistical machine learning techniques (Cortes & Vapnik, 1995; 

Esmaeili et al., 2023). To discriminate between various categories, the SVM method 

translates the training data into two-dimensional space and fits the best hyperplane. 

The kernel functions, which are non-linear mapping functions, are used to define the 

optimal hyperplane that divides the classes. The SVM module (Pal & Mather, 2005) is 

employed for training and classification, utilising a radial basis function (RBF) kernel. 

Moreover, a radial basis function is characterised by its computational speed and 

straightforward implementation, involving the tuning of two parameters. These 

parameters include cost 'sigma(C),' a substantial value used to fine-tune the error 

associated with misclassifying instances in the training dataset, and 'gamma (γ),' 

which represents the kernel width.  

A non-parametric machine learning method RF (Gislason et al., 2006) was 

created based on the idea of a learning strategy. To create a single classification, RF 

combines many tree-based classifiers into an ensemble of decision trees, where each 

tree provides a vote to choose which class should be assigned to the input data (Briem 

et al., 2002; Pal & Mather, 2005; Xie & Niculescu, 2021).  To project the landcover 

changes, first, the main land cover types were classified into six classes and following 

ESA global landcover classification (Zanaga et al., 2022) discriminated from other 

features in Landsat images for the years 2000, 2010 and 2020 using two supervised 

classification models including SVM and RF. The Image collection of Landsat images 

was called for the years 2000, 2010 and 2020 in GEE, separately. The code that was 

developed in the GEE, was deployed to enable the user to perform the classification 

using both SVM and RF approaches as two main machine learning models. The user 

can easily switch between SVM and RF and all statisical indices are produced after 

running the code. 

 

2.5. Hydrologic modelling 

Choosing an appropriate hydrological modelling platform is crucial since 

incorporating climate projections and scenarios in simulation modelling involves 

intricate, data-intensive, and perhaps lengthy computations. To analyse the impacts 

of climate change on runoff at various sizes, ranging from small locations to huge 

geographic areas, hydrological models have been widely implemented.  
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The study found that when subjected to the same climate change scenario, 

other hydrological models that provide acceptable findings for an observable baseline 

period may behave differently (Gosling & Arnell, 2011; Haddeland et al., 2011).  

Moreover, a similar study, by integrating 3 GCMs and different large-scale 

hydrological models (GHMs) declared that the results of several hydrological models 

should be used in estimations of climate change impacts as the uncertainty for 

hydrological change dependant largely on the selection of the hydrological model 

(Hagemann et al., 2013). The concept of selecting an appropriate hydrological model 

has been proven by Jahandideh-Tehrani et al. (2019) that in the Australian region, 

lumped conceptual hydrological models (Petheram et al., 2012) such as AWBM well-

suited to use for runoff simulation. AWBM is mostly made up of three basic surface 

storage configurations.  

The depths of these storage tanks are equal to the C1, C2, and C3  

(three surface moisture stores) parameters to create the coefficient of runoff 

simulation. For each time step, the water balance of each partial region is determined 

(Esmaeili-Gisavandani et al., 2021). As demonstrated by (Ramezani et al., 2023), in 

this study, runoff from impermeable surfaces was taken into account by recoding and 

changing the AWBM. 

 

2.6.  Future climate projections and scenarios 

GCMs project precipitation and evapotranspiration, among other climatic 

variables, under hypothetical future scenarios or historical trajectories (Jahandideh-

Tehrani et al., 2019). Individual CMIP5 models' capability to predict the Australian 

climate varies depending on whatever part of the modelling process is studied. These 

models are the most accurate instruments for predicting the reaction of regional 

climates in the twenty-first century (Kirono et al., 2020). Based on the third and fifth 

stages of the CMIP, Alexander and Arblaster (2017) conducted detailed evaluations 

of anticipated changes in extreme climate events over Australia.  

Projected runoff by implementing baseline climate data can be estimated or 

focused on assumptions of climate models (Chiew, 2006; Fu et al., 2007), and another 

method is applying hydrological models. The best method for estimating the 

hydrological implications of climate change is to drive a hydrological model with 

climatic forecasts generated from ensembles of multiple GCMs pushed with different 

emissions scenarios (Thompson et al., 2013).  
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Thompson et al. (2013) stated that throughout these climate change 

hydrological effect evaluations, a number of uncertainties are incorporated. Therefore, 

selecting well-suited GCMs and RCPs will be a solution to these uncertainties. 

In this research, According to the Australian Climate Change Technical Report 

(CSIRO & BOM, 2015), these 8 climate models have been suggested  for investigating 

climate change impacts on Southeast Queensland. 

The definition of stationary may no longer be applicable due to the climatic-

related stressors and effects of anthropogenic that create non-stationary conditions 

(Salas et al., 2018).  Recently researchers analysed flood and streamflow under  

non-stationary assumptions (Strupczewski et al., 2011; Salinas et al., 2014; Debele et 

al., 2017). The use of generalised extreme value (GEV) distribution to model extreme 

climate events and their return periods is widely popular (Engeland et al., 2004). 

As a result, utilising non-stationary data, new methods for analysing the frequency of 

extremes should be developed. 

The stationary assumption is used to estimate the largest instantaneous 

extremes, and structures are built with this assumption in mind. As the impacts of 

climate change are growing which means that non-stationary conditions will affect and 

rise in the world. For instance, natural phenomena recently occurred in Southeast 

Queensland especially Lockyer Catchment affected by a flood in February 2022 and 

these extremes occurred in non-stationary assumption. Therefore, it is critical to take 

a non-stationary approach to these issues.  

However, to our knowledge, few studies have used similar methods to analyse 

extremes of future periods by considering outputs of multi-GCMs after forcing into a 

hydrological model in a non-stationary and stationary assumption. In Southeast 

Queensland where extremes are persistently phenomenon, it is indicated that studies 

of extremes through multi-modelling are crucial for water management in the future. 

The outcome of this study from a catchment management perspective, is 

improving the accuracy of analysis in less time and cost-effective way and might help 

policymakers in sustainable water resources management. Employing the non-

stationary assumption for extreme climate analysis is a novel subject in the rainfall-

runoff simulation. This specific study compares hydro-climate variables such as 

streamflow using different models. Because the research region contains residential 

and agricultural areas and dams, estimating the return period values of extremes in 

the future period is critical for water resource management.  

file:///C:/Hadis%20Pakdel%2020210907/RES9503/S2,%202021%20courses/RES9503%20Doctoral%20Research%20Project%202%20(High%20cost)/Extreme%20Climate%20Events/AUSTRALIA%20Extreme%20Climate%20&%20drought/Feng,%202019_%20Drought_RS.pdf
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This research will help to identify extreme events in the two future periods and 

the framework of this study can be used in activating emergency response operations 

to tackle future extremes. 

 

2.7. Conclusions 

Chapter 2 of the thesis provides a comprehensive review of the literature that 

is important to the objectives and aims of the research. This procedure led to the 

straightforward identification of the research need in Chapter 2 that this study has 

attempted to solve. Chapter 3 presents the research article that was published as part 

of this study and discusses how it aligns with Research Objective 1. 
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CHAPTER 3: METHODS 

 

3.1. Research methodology overview 

3.1.1. Overview 

This thesis contains a series of four papers that investigate a  

non-stationary approach by applying a multi-framework. These four research papers 

explore a dynamic approach to analysing extreme events by employing various 

methodologies and techniques. This includes trend analysis methods to analyse 

temporal patterns, and spatial analysis techniques utilising GEE. These mentioned 

methods were applied to an ungauged catchment at Doosti River Dam to test the 

feasibility of methods and then applied in the Lockyer Catchment. This framework also 

includes geeSEBAL, hydrological modelling to simulate water flow dynamics, and 

climate modelling under two scenarios. Additionally, machine learning techniques are 

utilised to project changes in land cover within the GEE platform. The GEV model is 

then employed to assess the frequency and intensity of return levels for 

hydrometeorological variables. By integrating these diverse approaches, the studies 

aim to provide a comprehensive understanding of the complex interactions driving 

extreme events and their implications for hydrological processes. Spatial analysis 

techniques in GIS including interpolation, and overlay analysis. The approach is 

summarised in Figure 3 (see overleaf). 

 

3.1.2. Data 

A rich time series of spatial analysis and gauge data has been used to gather 

further details about the scope of this research. Daily meteorological data including 

minimum and maximum air temperature (°C), minimum and maximum relative 

humidity (%), wind speed (m/s), surface solar radiation (MJ/m2), and hydrological data 

such as evapotranspiration (mm) and rainfall (mm) were sourced from two datasets: 

ground-based observations and global climate products. The Australian Climate 

Observations Reference Network – Surface Air Temperature (ACORN-SAT) dataset 

of the Australian Bureau of Meteorology (BOM) provides daily maximum temperature 

in degrees Celsius (oC), which has been developed in order to monitor climate 

variability and change in the country (Trewin, 2018). The ACORN-SAT data are 

adjusted, homogenised and peer-reviewed.  
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The ground-based observations were obtained from SILO, an Australian 

climate data source (http://www.longpaddock.qld.gov.au/silo) (Jeffrey et al., 2001; 

CSIRO & BOM, 2015) that covers the period from 1990-2022. The 5 km-grid data 

achieved through SILO are the most commonly used and most reliable climate data 

for environmental studies in Australia (Ramezani et al., 2022). Daily streamflow 

records for 143210B Lockyer Creek at Rifle Range Road station were received from 

the Queensland Government Water Monitoring Information site (https://water-

monitoring.information.qld.gov.au/).  

Fourteen SILO meteorological and hydrological stations were applied for this 

research. First, the Inverse Distance Weighting (IDW) interpolation method was used 

to interpolate the station data and rasterise the meteorological parameters. To run the 

geeSEBAL algorithm, daily meteorological ground-based observations and the hourly 

fifth generation ECMWF reanalysis (ERA5) climate dataset with 9 km spatial resolution 

were incorporated in GEE and were used separately for running geeSEBAL as well as 

estimation of water storage. Landuse information was obtained from the Australian 

government, Geoscience Australia (https://www.ga.gov.au/), for simulation purposes. 

The Landsat satellite images (from TM, ETM+ and OLI 1&2 sensors), and the 

ESA global land cover dataset were accessed and used through GEE (Pakdel et al., 

2022) for conducting the classifications and modelling of changes in land cover and 

urban growth. Geospatial datasets of road networks, population density, and 

Hydrologically Enforced Digital Elevation Model (DEM-H) product with 30 m spatial 

resolution (Mission, 2013) dataset were used as supplementary data inputs during 

landcover projection analysis. Since, the distance from roads and population density 

maps were originally in vector format, both maps were first converted into the raster 

format and resampled to the 30 m spatial resolution and used for projection of 

landcover changes. 

The three primary purposes of the geeSEBAL tool are (1) Image: derivation of 

actual evapotranspiration from a particular image (accessible for JavaScript); (2) 

ImageCollection: batch method to calculate ETa provided a date range and (3) Time 

series: long-term ETa time series estimate at user-provided locations. All applications 

and codes are freely accessible at https://github.com/et-brasil/geesebal. Additionally, 

the Earth Engine programme (https://etbrasil.org/geesebal) offers a graphical user 

interface version of geeSEBAL (Laipelt et al., 2021; Gonçalves et al., 2022; Kayser et 

al., 2022). For the purpose of running geeSEBAL, a series of Landsat images with the 

http://www.longpaddock.qld.gov.au/silo
https://water-monitoring.information.qld.gov.au/
https://water-monitoring.information.qld.gov.au/
https://www.ga.gov.au/
https://github.com/et-brasil/geesebal


 

23 

highest data quality were used. We used cloud cover filters using the CFMask method 

(Foga et al., 2017), which generates a bitmask to identify each image’s pixels for 

clouds, clouds with shadows, clouds with confidence and pixels for ice and snow. 

Land cover was classified into six types using SVM and RF models. To train 

the classification models, we mapped the boundaries of more than 200-point features 

(335) representing six different classes: Tree cover, grassland, cropland, built-up, bare 

soil/sparse vegetation, and water bodies using ESA global landcover and drawing 

geometry tools in GEE. The training datasets were split up into groups for training and 

validation. 70 percent of point features was assigned to the training and 30 percent 

was used in the validation procedure.  

Table 3. 1 Source of datasets.  

Raster 
Dataset 

Time coverage Data Source 
Resolution/ 

format 

Landsat 5 
TM 

2000-2011 
Google Earth Engine 

(LANDSAT/LT05/C02/T1_L2) 
30 m 

LANDSAT 7 ETM+ 1999-2023 

Google Earth Engine 
(LANDSAT/LE07/ C01/ 

T1_SRLANDSAT/ 
LE07/C01/T1) 

30 m 

Landsat 8 OLI/TIRS 2013-2023 

Google Earth Engine 
(LANDSAT/LC08/ C01/ 

T1_SRLANDSAT/ 
LC08/C01/T1) 

30 m 

ESA global land 
cover 

2021 
Google Earth Engine 

(ESA/WorldCover/v100) 
10 m 

DEM-H: Australian 
SRTM 

Hydrologically 
Enforced Digital 
Elevation Model 

2010 
Google Earth Engine 

(AU/GA/DEM_1SEC/v10/DE
M-H) 

30 m 

    

Vector 
Dataset 

 Source 
Data 

format 

Roads 2000 & 2023 
Queensland 
Government 

Shapefile 
(.shp) 

Distance from roads 2023 
Spatial analysis on road 

network 
Shapefile 
(.shp) 

Population 2023 
Australian Bureau of 

Statistics 
Shapefile 
(.shp) 
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3.1.3. Mann-Kendall trend and Sen’s slope test  

Using GEE programming, the Mann-Kendall (MK) test and Sen's slope 

estimator were used to calculate the statistical significance and long-term magnitude 

of change on hydroclimate datasets. The MK test (Mann, 1945; Kendall, 1975; 

Zolghadr-Asli et al., 2019) was applied to quantify the significance of trends in 

meteorological time series (Tabari et al., 2011; Banerjee et al., 2020).  Generalised 

Extreme Value models including the NEVA model use the Mann–Kendall trend test at 

the user-selected significance level to identify trends and non-stationarity in extremes 

in data (Cheng et al., 2014). The Mann–Kendall (MK) statistical test (Mann, 1945) was 

undertaken to calculate the importance of climatic time series trends (Burkey, 2006; 

Xu et al., 2006; Da Silva et al., 2015; Nyikadzino et al., 2020).  

The MK test null hypothesis (H0) states that there is no monotonic trend at the 

designated level of significance. In this test, the alternative hypothesis (Ha) exhibits a 

monotonic trend with time. Additional information on Mann-Kendall may be found in 

(Pakdel et al., 2022). 

 

Figure 3. 1   Summary of papers of this research. 
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3.1.4. Google Earth Engine application: The geeSEBAL algorithm 

The development of geeSEBAL marks a significant advancement in the field of 

hydrological modelling. Leveraging the robust infrastructure of GEE, the geeSEBAL 

algorithm offers a powerful solution for estimating evapotranspiration at regional 

scales. By integrating meteorological reanalysis data and Landsat imagery, 

geeSEBAL provides researchers and practitioners with a comprehensive tool to 

assess water fluxes and understand ecosystem dynamics. This innovative approach 

not only enhances our ability to monitor and manage water resources but also 

contributes to broader efforts in climate change adaptation and sustainable land 

management.  

The geeSEBAL (Laipelt et al., 2021) is based on the original approach 

developed by Bastiaanssen et al. (Bastiaanssen & al., 1998) is the foundation for 

which assumes that latent heat flux (LE) (W/m2) can be approximately represented as 

surface energy balance. Using the geeSEBAL model, ET was automatically estimated 

and validated against data from ET stations, as ET is a crucial sign of agricultural 

drought. GeeSEBAL aims to improve understanding of how land cover changes over 

the last few decades have affected ET. The latest iteration of geeSEBAL employs 

Landsat imagery and reanalysis data to compute the ETa time series, exhibiting 

positive results for regional-scale studies carried out in regions with limited data 

accessibility (Laipelt et al., 2021). The fundamental principle of the Surface Energy 

Balance Algorithm for Land (SEBAL) involves selecting endmembers representing the 

hot (dry) and cold (wet) pixels to calculate the near-surface temperature gradient 

(dT).(Bastiaanssen & al., 1998; Allen et al., 2007).  

Previously, the manual identification of hot and cold pixels was standard 

practice, but technological improvements have made it feasible to automate this 

procedure. Employing the Normalised Difference Vegetation Index (NDVI) and  

Ts percentiles, one such method is called Calibration using Inverse Modelling at 

Extreme Conditions (CIMEC) (Allen et al., 2013), it is used to automatically identify 

endmembers. In this study, a platform known geeSEBAL (https://github.com/et-

brasil/geesebal  (accessed on 15 06 2023) was utilised in this study. It integrates the 

capabilities of GEE with the SEBAL framework (Laipelt et al., 2021). This tool was 

created to make use of the application programming interface (API) of the GEE 

platform. It is an effective tool for a variety of remote sensing and evapotranspiration 

estimating investigations. 

https://github.com/et-brasil/geesebal
https://github.com/et-brasil/geesebal
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3.1.5. Classification and projection of land cover changes 

To project the landcover changes, first, the main land cover types were 

classified into six classes and following ESA global landcover classification (Zanaga 

et al., 2022) discriminated from other features in Landsat images for the years 2000, 

2010 and 2023 using two supervised classification models including SVM and RF. 

Then, the landcover changes were simulated and projected using RF approaches in 

the GEE platform. 

3.1.6. Landcover changes projection 

The probability of transitions from the RF learning procedure is employed in this 

work to characterise the changes in land cover. The land cover maps for the start year 

(2000) and the finish year (2010) are included in the model's first phase.  

After importing the spatial variable factors such as DEM, population density and 

distance from the road, into the model, a land cover change map is produced, from 

which the research area's changing pattern between 2000 and 2010 is established. 

The properties of the explanatory maps are extracted in the same raster format for all 

datasets, with the exact geographical projected coordinates of EPSG 4326 and with a 

resolution pixel size of 0.000269495 degrees. 

To project the change in land cover, a script was written in GEE to calculate the 

percentage of area change in a given year. It generates a transition matrix that shows 

the proportion of pixels shifting from one land cover to another. The code also creates 

an area change map that shows the change in the land between 2000 and 2010 in all 

six classes; tree cover, grassland, cropland, built-up, bare soil, and water bodies. The 

future land cover maps are predicted assuming that existing land cover patterns and 

dynamics are continuing. Also, based on the classified raster images of 2000 and 

2010, land cover transitions are predicted for 2040 and 2060. To model land cover 

forecast, the RF and SVM classification technique was used to forecast the land cover 

map.  

 

3.1.7. Hydrological model 

Australian Water Balance Model (AWBM) (Boughton, 1993; Boughton, 1995; 

Boughton, 2004) has been used in other countries and has become one of Australia’s 

most extensively used hydrological models (Boughton, 2004, 2006; Boughton, 2007). 

The Rainfall-Runoff Library (RRL) is freely available for users, (further information is 
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available at :https://toolkit.ewater.org.au/Tools/RRL). Yu and Zhu (2015) indicated that 

AWBM is better for simulating climate-driven fluctuations in observed streamflow and 

characterising the consequences of precipitation changes.  

The concept of selecting an appropriate hydrological model has been proven 

by Jahandideh-Tehrani et al. (2019) that in the Australian region, lumped conceptual 

hydrological models (Petheram et al., 2012) such as AWBM well-suited to use for 

runoff simulation. For simulation purposes, calibration (60%) and validation (40%) 

were employed.  

The availability of recorded runoff data determined the calibration and validation 

timeframes for the Lockyer Catchment. So, runoff data were used for the 1990-2002 

(calibration period) and 2003-2010 (for validation period). Daily rainfall, potential ET 

(PET) and daily runoff were derived from SILO and WMIP throughout the catchment 

respectively. 

 

3.1.8. Future climate projections and greenhouse gas emissions scenarios 

Coupled Model Intercomparison Project (CMIP) is the largest intercomparison 

study, and it serves as a baseline for assessing GCMs' capacity to project observed 

climate changes. In this study, climate change effects on streamflow in the Lockyer 

Catchment were assessed using eight GCMs of CMIP5. The recently suggested RCPs 

provide a broader range of possible futures by taking mitigation techniques and land 

use changes into account (CSIRO & BOM, 2015). According to the aim of this research 

study, it is imperative to select appropriate RCP scenarios.  

As mentioned in the climate change technical report in Australia (CSIRO & 

BOM, 2015), the Australian Water Availability Project (AWAP) observed temperature 

and rainfall data (https://eo-data.csiro.au/projects/awap/) were used to create climatic 

outputs, which have a resolution of 5 km. In this approach, the model data whose 

resolution ranged from 100 to 310 km were initially applied to the observed data using 

interpolation on a 5 km grid. In this research, According to the Australian Climate 

Change Technical Report (CSIRO & BOM, 2015), these eight climate models have 

been suggested for investigating climate change impacts on SEQ. 

 

3.1.9. Assessing extremes in a non-stationary approach using the GEV model 

Non-stationary situations arise because the stationary assumption might not be 

valid for changes brought about by human and climate variables. Even with great 

https://toolkit.ewater.org.au/Tools/RRL
file:///C:/Hadis%20Pakdel%2020210907/RES9503/S2,%202021%20courses/RES9503%20Doctoral%20Research%20Project%202%20(High%20cost)/AWBM%20model
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progress (Cheng et al., 2014), there is still no complete framework that incorporates 

the Extreme Value Analysis (EVA) statistical models GEV, Generalised Pareto (GP), 

and Log-Pearson type III (LP3)) under stationary and non-stationary assumptions 

(parameters as a function of physical variables or time) (Ragno et al., 2019).  

It is critical to recognise that non-stationary situations are becoming more 

common globally as a result of the escalating effects of climate change. Given that 

earlier research has shown that the frequency of flood events such as the one in 2022 

may be underestimated under a stationarity assumption (Armstrong et al., 2020) and 

has shown the assumption to no longer be valid. Therefore, adopting a  

non-stationary perspective on these matters is crucial. To examine  

non-stationary extremes, the NEVA software package (Cheng et al., 2014) and 

ProNEVA software (Ragno et al., 2019) were utilised.  

Section 1.3 has demonstrated an overview of the research methodology and 

provided the modelling steps of how the research was carried out to achieve the 

objectives of the study.  
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CHAPTER 4: PAPER 1 – GOOGLE EARTH ENGINE AS A MULTI-

SENSOR OPEN-SOURCE TOOL FOR MONITORING STREAM FLOW 

IN THE TRANSBOUNDARY RIVER BASIN: DOOSTI RIVER DAM 

 

4.1. Introduction 

Understanding the impacts of global change and human activities on water 

resources relies heavily on surface water dynamics. A thorough examination of 

hydroclimatic variations at a regional level is crucial for devising adaptation and 

mitigation strategies to address the adverse effects of climate change. This research 

paper investigates the hydroclimatic factors contributing to changes in surface water 

availability in a specific area using multisensor satellite data from the Google Earth 

Engine platform. The Mann–Kendall and Sens slope estimator tests were utilised to 

analyse the spatial and temporal variations of hydroclimate variables. Statistical 

analyses revealed decreasing trends in temperature and increasing trends in rainfall 

based on available station data. Additionally, there was observed growth in 

evapotranspiration and irrigated area development alongside a slight decline in snow 

cover. The expansion of irrigated areas, particularly during winter growing seasons, 

suggests a significant diversion of water to support agricultural needs. This study's 

methodology could be applied to any geographical location to assess hydrological 

conditions, spatiotemporal changes, and their drivers, including climate change and 

human activities. 

 

4.2. Published paper 

Pakdel et al. (2022), “Google Earth Engine as multi-sensor open-source tool for 

monitoring stream flow in the transboundary river basin: Doosti River Dam” is 

published in SPRS International Journal of Geo-Information (2022), Volume 11, Issue 

535. 
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4.3. Links and implications 

The first paper focused on analysing hydroclimatic variations in the Doosti 

Dam’s basin using multisensor satellite data from the GEE platform. This paper 

provided a comprehensive understanding of hydroclimatic trends and their 

implications for water resource management. By engaging in this aspect of the project, 

it was possible to achieve Research Objective 1: “Assess and map the spatiotemporal 

distribution and the overall trends of hydro-climatological data using spatial distribution 

in the GEE.”  

 A powerful web-based cloud computing platform (GEE) was used in 

conjunction with non-parametric statistical tests (MK and Sen's slope) to explore the 

spatiotemporal characteristics of various hydroclimatic variables. This allowed the 

identification of the monotonic trend in the data. An in-depth understanding of the long-

term trend of hydroclimatic variables is provided by this study. The first paper 

demonstrates the effectiveness of using multisensor satellite data, particularly from 

platforms like GEE, to analyse hydroclimatic trends over large areas. This aligns with 

the approach taken in the second paper, which also utilises remote sensing 

techniques, in frequency analysis of extreme events. This paper offers a significant 

contribution to knowledge in answering the Research Question: “Can the spatial 

distribution of remotely sensed dataset substitute ground-based observations in the 

sparse gauge catchments? Does the spatial distribution of global climate datasets 

agree significantly well with ground-based observations?”. Both papers underscore 

the importance of understanding hydroclimatic variability for water resource 

management and address the impacts of climate change and human activities on 

water resources. The first paper provides insights into long-term trends and spatial 

patterns, while the second paper delves into the frequency and severity of extreme 

events and non-stationary conditions, enhancing our understanding of the dynamic 

nature of hydroclimatic systems.  

This research facilitated the achievement of our research goal by utilising 

statistical analyses and remote sensing methods to evaluate hydroclimatic patterns, 

thereby establishing a foundation for methodologies employed in the second paper, 

including GEV models and spatiotemporal analysis techniques.  
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4.4. Conclusion 

Chapter 3 of this thesis introduced the first paper that was published as a 

component of this study. This paper established a foundation methodology applied in 

the second and third papers for extreme analysis through the GEV model. The NEVA 

model employs the Mann-Kendall trend test, to detect trends in extreme data. 

Following previous research papers, the second paper is discussed in the subsequent 

chapter, Chapter 4.  
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CHAPTER 5: PAPER 2 – A MULTI-FRAMEWORK Of GOOGLE 

EARTH ENGINE AND GEV FOR SPATIAL ANALYSIS OF EXTREMES 

IN NON-STATIONARY CONDITION IN SOUTHEAST QUEENSLAND, 

AUSTRALIA 

5.1. Introduction 

Extreme precipitation, extreme evapotranspiration, and extreme water storage 

deficit events are examples of extremes whose frequency and intensity are changing. 

Therefore, it is imperative to build a framework for estimating non-stationary 

circumstances. In order to provide a framework that takes into account the cause and 

effect of the physical system, this chapter used the geeSEBAL platform, Generalised 

Extreme Value models, and spatiotemporal analytic approaches.  

Initially, the geeSEBAL platform facilitated the calculation of actual evapotranspiration 

(ETa) with an unparalleled degree of spatial and temporal precision. Subsequently, 

the Non-stationary Extreme Value Analysis methodology uses a Differential Evolution 

Markov Chain technique to apply the Bayesian method and determine the magnitude 

and frequency of extreme values throughout the parameter space. The study 

employed station and global climate datasets to examine the rainfall, ETa, reference 

evapotranspiration (ETo), and water storage variables in the Lockyer Valley, situated 

in the SEQ region of Australia, both spatially and temporally. A GEV distribution was 

used to do a frequency analysis of ETa, rainfall, and water storage deficit for 14 sites 

under both stationary and non-stationary assumptions. The findings show that, in 

comparison to conclusions generated from station data, global climate databases 

underestimate the difference between stationary and non-stationary situations. Similar 

to this, the data show that there is less change in water storage in stationary and  

non-stationary situations, with a strong variation in rainfall and a moderate variation in 

evapotranspiration following. The results of this investigation suggest that 

underestimating the quantities of some hydrometeorological variables might result 

from disregarding their non-stationary state. This paradigm offers useful insights for 

disaster management, risk assessment, and infrastructure planning and design, 

andmay be used to estimate severe situations in any geographic location. 
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5.2. Published paper 

Pakdel et al. (2023), “A Multi-Framework of Google Earth Engine and GEV for 

Spatial Analysis of Extremes in Non-Stationary Condition in Southeast Queensland, 

Australia” was published in ISPRS International Journal of Geo-Information (2023), 

Volume 12, Issue 370.  
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5.3. Links and implications 

This paper focussed on developing a framework to assess non-stationary 

conditions in extreme hydrometeorological events, specifically extreme rainfall, 

evapotranspiration, and water storage deficit in Lockyer Catchment in Southeast 

Queensland, Australia. This study utilises the geeSEBAL platform and NEVA model 

to analyse spatial and temporal variations in hydrometeorological variables. Through 

the development of considering non-stationary conditions in extreme event analysis to 

avoid underestimation of their magnitudes. The ETa derived from geeSEBAL was 

evaluated using the highest data quality and using the CFMask method.  

The NEVA model provided the intensity and frequency of extreme events including 

extreme precipitation events, extreme evapotranspiration events and extreme water 

storage deficit events based on the assumption that the location parameter has a 

linear relationship with time. This framework enabled the achievement of Research 

Objective 4: “Analyse the intensity and frequency of rainfall extremes, 

evapotranspiration extremes and water storage deficit extremes under both stationary 

and non-stationary conditions using the GEV model for the estimation of different 

return levels.” 

The geeSEBAL model accuracy has been determined by comparing the 

geeSEBAL algorithm driven by ERA5 reanalysis and the number of fourteen ground-

based observations for the period from 1990 to 2022. Spatial-temporal patterns and 

descriptive statistics results showed reasonable accuracy agreement between 

geeSEBAL ETa, gridded ETo and ERA5 rainfall and 14 stations.  The frequency 

analysis of extreme events derived from 14 stations and gridded satellite data for 

rainfall, derived from the geeSEBAL algorithm for ETa and global climate data for water 

storage for a 100-year period to a 10-year period showed the recurrence interval of 

return levels of extremes. By examining these extreme events across various periods, 

researchers can gain insights into the frequency and magnitude of extreme weather 

and hydrological events, such as intense rainfall, floods, droughts or changes in water 

storage. This result enabled the achievement of Research Objectives 1 and 4. 

The outcome of the framework that will be helpful for adaptation strategies for 

water management, was provided. This framework can be applied to any catchment 

around the world for estimating extreme conditions, providing valuable insights for 

infrastructure planning and design, risk assessment and disaster management.  
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This research highlighted that the approach highlighted the importance of 

incorporating a physical system in terms of cause and effect.  

This will add the benefit of considering the physical system drivers and their 

relationship within a catchment in extreme analysis and answer Research Question 4: 

“How can the frequency, intensity, and duration of extreme climate events in the 

catchment be determined?”. The author considers this to be a substantial contribution 

to the field, offering practical hydrological experts a viable alternative approach to 

comprehending non-stationary extreme events analysis within a catchment.  

The second paper provides a foundational understanding of non-stationary conditions 

in extreme hydrometeorological events, laying the groundwork for the third paper's 

investigation into the impacts of climate change on flood extremes. 

 

5.4. Conclusions 

Chapter 5 of this thesis introduced the second paper published within the scope 

of this study. This study paper finalised the conducted assessment of 

hydrometeorological extreme events in this study, and the results could be employed 

for the modelling and projection of extreme flood events. In Chapter 5, the third 

research paper is introduced, to establish a framework for the projection of extreme 

flood events with different return levels under non-stationary conditions. 
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CHAPTER 6: PAPER 3 – VARIABILITY OF EXTREME CLIMATE 

EVENTS AND PREDICTION OF LAND COVER CHANGE AND 

FUTURE CLIMATE CHANGE EFFECTS ON THE STREAMFLOW IN 

SOUTHEAST QUEENSLAND, AUSTRALIA 

 

6.1. Introduction 

The frequency and severity of extremes are changing; thus, it would be 

necessary to evaluate the impacts of land cover changes, and urbanisation along 

climate change. A comprehensive approach incorporating the GEV method, GEE, and 

land cover classification techniques such as SVM and RF proves beneficial for 

analysing the impact of streamflow. In this research, a novel framework has been 

created for analysing maximum instantaneous floods in non-stationary catchment 

conditions in Southeast Queensland by taking into account the physical system in 

terms of cause and effect.  

Various independent variables including the Digital Elevation Model (DEM), 

population density, slope, road networks, and distance from roads, along with an 

integrated RF-SVM methodology, are utilised as spatial predictors to forecast their 

impacts on land cover changes for both near and distant futures. The results indicate 

that physical factors significantly influence the layout of the landscapes.  

Results highlight the significant influence of physical factors on landscape 

arrangement. Evapotranspiration and rainfall projections from eight GCMs under two 

climate change scenarios (RCP4.5 and RCP8.5) are analysed.  

The study employs the hydrological model calibrated with daily streamflow to 

simulate historical runoff (1990-2010) and project runoff under future scenarios (2020-

2065 and 2066-2085) considering land cover percentages. The ProNEVA approach, 

utilizing Bayesian methods with Differential Evolution Markov Chain technique, 

evaluates the frequency and magnitude of runoff extremes across parameter space. 

The study's conclusions suggest that underestimating flood frequency due to 

the non-stationary state may increase the danger to the associated hydraulic 

infrastructure. This framework, transferable to diverse geographical contexts, aids in 

estimating extreme conditions, informing infrastructure planning, risk assessment, and 

sustainable water resource management. 
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6.2. Published paper 

Pakdel et al. (2024), “Variability of Extreme Climate Events and Prediction of 

Land Cover Change and Future Climate Change Effects on the Streamflow in 

Southeast Queensland, Australia” is published in ISPRS International Journal of Geo-

Information (2024), Volume 13, Issue 4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 

 

 

 



 

92 

 

 

 



 

93 

 

 

 



 

94 

 

 

 



 

95 

 

 

 



 

96 

 

 

 



 

97 

 

 

 



 

98 

 

 

 



 

99 

 

 

 



 

100 

 

 

 



 

101 

 

 

 



 

102 

 

 

 



 

103 

 

 

 



 

104 

 

 

 



 

105 

 

  

 



 

106 

 

 

 



 

107 

 

 

 



 

108 

 

 

 



 

109 

 

 

 



 

110 

 

 

 



 

111 

 

 



 

112 

6.3. Links and implications 

This paper marks the conclusion of the research by utilising the 

hydrometeorological extreme results generated in paper 2 and continuing it through 

the hydrological model's calibration and projection of an ensemble of GCMs to 

estimate flood extremes in the past. Subsequently, projecting the flood extremes in 

the near and far future period. This paper achieved Research Objectives 2, 3 and 4: 

“To evaluate the impacts of land cover changes and urbanisation by applying SVM 

and RF classification along with climate change,”,“Perform the hydrological 

simulations for each landcover classification separately under ensembles of GCMs 

under different RCPs and landcover changes in the baseline and the near and far 

future horizons,” and “Analyse the intensity and frequency of projected streamflow 

extreme events, under both stationary and  

non-stationary conditions using the GEV model.”  

To achieve these objectives, a multi-framework was developed by integrating 

the hydrological model, SVM and RF classifications in the GEE platform, an ensemble 

of GCMs under two scenarios, and the ProNEVA model,  to evaluate the impact of 

climate change on floods, streamflow, and water supply.  

The SVM and RF classification in the GEE platform was applied to estimate the 

projected land cover changes in the future period and by assuming that the location 

parameter has a linear relationship with time, the ProNEVA model was applied to 

assess the magnitude and frequency of extreme flood utilising the GEV distribution. 

ProNEVA (Ragno et al., 2019) incorporates the underlying physical drivers triggering 

extreme events, serving as crucial instruments for quantifying the probability of 

extreme occurrences in a particular area or timeframe.  

This research examines both ProNEVA and landcover classification to account 

for the physical system in terms of cause and effect. This research covers  

non-stationary conditions in extreme events with ProNEVA with time covariant by 

incorporating the outputs of the ensemble of GCMs under different scenarios from the 

hydrological model and GEE classification approach. It is recommended that, in future 

studies, ProNEVA allow for the incorporation of physical drivers as additional 

covariates for modelling floods. 
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6.4. Conclusion 

Chapter 5 of this dissertation introduced the third research paper crafted within 

the scope of this study. This paper discussed flood extremes in various scenarios 

using multiple GCMs and projected changes in land cover under non-stationary 

conditions in future periods.  

  



 

114 

CHAPTER 7: PAPER 4 – EXTREME TEMPERATURES AND 

TEMPERATURE-DURATION-FREQUENCY (TDF) RELATIONSHIP IN 

VARYING CLIMATIC ZONES ACROSS AUSTRALIA 

 

7.1. Introduction 

The climate is undergoing significant change, leading to shifts in the frequency 

and severity of extreme temperatures. This dynamic climate landscape necessitates 

the development of robust tools to predict and understand these temperature extremes 

for various applications, including infrastructure design, urban planning, and 

environmental management.  

The escalating frequency and duration of these events underscore the urgency 

to better comprehend their variability and potential impacts. TDF curves offer a 

systematic approach to exploring the relationship between extreme temperatures, 

duration, and recurrence levels. By analysing historical temperature data through TDF 

curves, researchers can discern trends, identify step changes, and assess the spatial 

variability of extreme temperatures across different regions. 

This study focuses on investigating the presence of trends and step changes in 

extreme temperatures across nine locations in Australia. Utilising a GEV distribution 

and employing Monte Carlo Bayesian inference techniques, the frequency analysis of 

annual maximum temperatures for durations ranging from one to 15 days was 

conducted. The findings revealed rising trends and step changes in several cities, 

highlighting the spatial heterogeneity of extreme temperature patterns across the 

continent. 

Understanding the characteristics of extreme temperatures and the 

development of TDF curves offer practical insights for various sectors, including 

healthcare, agriculture, infrastructure management, and natural disaster 

preparedness. By integrating TDF curves into decision-making processes, 

stakeholders can enhance risk assessment, optimising infrastructure design, and 

improve public health interventions in response to extreme temperature events. 

While previous studies have explored similar concepts in different geographic 

contexts, this research contributes to the developing field of TDF curve development 

in Australia.  
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By applying robust statistical methodologies and considering both stationary 

and non-stationary assumptions, this study provides a comprehensive analysis of 

extreme temperature variability, laying the groundwork for future investigations and 

informed decision-making. 

In conclusion, the development of TDF curves represents a crucial step towards 

enhancing our understanding of extreme temperatures and their impacts on society 

and the environment. By leveraging these curves; policymakers, planners, and 

stakeholders can effectively mitigate risks, adapt to changing climate conditions,  

and foster resilience in the face of evolving temperature extremes. 

 

7.2. Submitted paper 

Chowdhury et al. (2024), “Extreme Temperatures and Temperature-Duration-

Frequency (TDF) Relationship in Varying Climatic Zones Across Australia” is 

submitted to Urban Climate Journal. 
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7.3. Links and implications 

This paper aligns with papers 2 and 3 to generate the extreme temperature 

using TDF curves and GEV distributions in the whole of Australia. This paper provides 

the concept of design temperatures, which serve as reliable indicators of extreme 

temperature events that are crucial for planning and decision-making processes. 

Extreme temperature events, whether heatwaves or cold spells, pose significant risks 

to human health, agriculture, ecosystems, and infrastructure. This paper achieved 

Research Objective 4: “Analyse the intensity and frequency of extreme events, under 

both stationary and non-stationary conditions using the GEV model.”  

To achieve these objectives, this research developed annual maximum 

temperature extremes and durations from 1 to 15 days across Australia using GEV 

distributions. Through the utilisation of TDF curves to analyse past temperature 

records, researchers can detect trends, recognise abrupt shifts, and evaluate the 

geographical diversity of extreme temperatures across various areas. Detecting the 

trends was the main focus of the first paper and it applied to the second, third and 

fourth papers before determining the non-stationary assumptions. 

This paper consequently follows the aim of the third paper on infrastructure 

design and management. The second paper discusses the significance of design 

temperatures for infrastructure planning in relation to temperature-related changes. 

These implications suggest potential synergies in addressing infrastructure challenges 

related to both water and temperature extremes. It is suggested that future research 

explores the underlying causes of extreme temperatures and assesses the 

effectiveness of adaptation measures.  

 

7.4. Conclusion 

Chapter 6 of this dissertation introduced the fourth research paper crafted within 

the scope of this study. This paper discussed extreme temperatures under different 

return levels. In Chapter 7, additional analysis is offered on the conducted research, 

addressing the initial research inquiries from Chapter 1, and drawing conclusive 

remarks while suggesting potential avenues for future research. 
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CHAPTER 8: DISCUSSION AND CONCLUSION 

8.1. Introduction 

This thesis has evaluated the non-stationary scenarios of maximum 

instantaneous flood and rainfall extremes under climate change and landcover change 

scenarios in the Lockyer Valley catchment in SEQ, Australia in the future period.  

The thesis demonstrated the comprehensive methodology for evaluating landcover 

and climate change's long-term hydrological consequences. The research showed 

that the land cover classification, hydrological model, and ensemble of GCMs under 

different RCPs along with the GEV model shows the uncertainty bounds between 

stationary and non-stationary tend to widen in the highest return period. According to 

the ARR guideline (Ball et al., 2019), the GEV distribution should be applied for 

designing systems that account for floods and rainfall. Under the RCP 8.5 scenario, 

there is comparatively less variation between stationary and non-stationary conditions, 

whereas RCP 4.5 demonstrates a more pronounced difference. This research showed 

that extreme analysis of future periods' maximum peak flood data reveals a growing 

disparity in the maximum instantaneous flood between stationary and non-stationary 

assumptions. This suggests that the increasing difference may be a compelling reason 

to analyse extreme with non-stationary conditions. The following sections summarise 

the main conclusions of this thesis concerning the research topics, how it has 

advanced knowledge in the subject, and potential prospects for future study. 

 

8.2. Assess and map hydro-climatological trends and their impacts on surface 

water using GEE. Develop a framework for extreme hydrometeorological events. 

Papers 1 and 2 of this research developed a spatial pattern method in the GEE 

platform and proved that using multi-sensor satellite data, particularly from platforms 

like GEE, to analyse hydroclimatic trends which aligns with validating the trend 

analysis before applying extreme analysis. Understanding hydroclimatic variability for 

water resource management was directly determined through the trend analysis.  

The necessity of extremes in non-stationary assumptions is to determine the trends of 

variables. 

The first paper provides insights into long-term trends and spatial patterns. 

Consequently, the second paper delves into trend analysis, extreme events and  

non-stationary conditions, enhancing our understanding of the dynamic nature of 
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hydroclimatic systems. The comparison of ETa, ETo, and ERA5 rainfall data with 

station records indicates generally good agreement. ETa showed moderate Pearson 

correlations ranging from 0.59 to 0.75 and reasonable RMSE values.  

ETo exhibited strong correlations of 0.96–0.97 but higher RMSE values ranging from 

73.13 to 87.73 mm. Rainfall demonstrated solid correlations and RMSE values. 

Analysis of rainfall data from Gatton revealed differences in uncertainty bounds 

between stationary and non-stationary conditions, with global climate datasets 

underestimating this disparity compared to station data by approximately 9.47 mm 

(73.99 mm for station data versus 64.52 mm for global climate datasets). The variation 

between stationary and non-stationary conditions was least pronounced in water 

storage, more significant in rainfall, and moderate in evapotranspiration. 

8.3. Develop a framework for assessing extreme events and land cover 

impacts using SVM and RF in GEE. Perform hydrological simulations under 

GCM ensembles, RCPs, and land cover changes. 

Paper 3 of this research developed a framework for evaluating past and future 

extreme floods under climate change and land cover scenarios. The proposed 

framework combines hydrological modelling, land cover projections using machine 

learning techniques, climate projections and RCPs, ProNEVA model accounting for 

both stationary and non-stationary conditions. Through this integrated methodology, 

this paper aims to investigate the changes of future climate change on streamflow 

patterns.  

It is widely acknowledged that climate GCMs and scenarios, especially 

concerning extreme events including extreme precipitation (Bloschl & Montanari, 

2010), and extreme streamflow show significant uncertainty.  

Research on hydrological extremes is critically needed, especially for the 

locations where the consequences of climate change are known to be significant 

(Salas et al., 2018).  

In analysing extremes, it's crucial to consider both real (physical) and perceived 

(statistical) processes. Montanari and Koutsoyiannis (2014) emphasised the 

importance of incorporating relevant physical mechanisms into stochastic models. 

They advocated for the development of stochastic-process-based models as a means 

to reconcile the gap between physically-driven models lacking statistical components 
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and statistical models devoid of physical insights. The temporal shifts have been 

assessed among various land cover categories using a transition matrix, which 

delineated the proportions of pixels transitioning between different categories.  

The model incorporates spatial elements like distance from major roads, DEM, and 

population density to generate future maps depicting changes in land cover, revealing 

the evolving patterns within the Lockyer Catchment.  

Undertaking changes in runoff factors using two climate change scenarios 

(RCP4.5 and RCP 8.5) based on the multi GCMs. The results clearly indicate that a 

decline in runoff of the ensemble of climate models is generally noticed in the far future 

(2066-2085) compared to the near future (2020-2065) almost for all months. In 

February, there is greater variability in streamflow alterations for both RCP 4.5 and 

RCP 8.5, suggesting increased uncertainty in the predictions for the two future periods 

as indicated by (Tehrani et al., 2021). It can be concluded that the decline in 

streamflow will likely slow down in the far future compared to the near future, 

particularly between June and September.  

8.4. Determine extreme climate events in the catchment. Assess the 

effectiveness of GEV models in overcoming climatic model limitations for 

evaluating extremes. 

Papers 2 and 3 of this research provided NEVA and ProNEVA models to derive 

different return levels of extreme events. Paper 4 evaluated annual maximum 

temperature extremes using NEVA GEV and TDF curves for frequency analysis of 

annual maximum temperatures from 1 to 15-day durations. Return levels of rainfall, 

evapotranspiration and water storage for the stations and global climate data for 14 

selected stations in the Lockyer Catchment were evaluated.  

Return levels of extreme events including temperature were estimated using 

the NEVA software for the return periods of 10 through 100 years, which are the 

standard design return periods used in hydrologic studies. For flood extremes, the 

non-stationary conditions of the flood were investigated under two climate scenarios 

projected from the averaged ensemble of eight GCMs under two scenarios RCP 4.5 

and RCP 8.5 during future periods for 66 years.  

The results indicated that the highest floods in the stationary assumption 

generally appear smaller compared to the maximum sudden floods in the  

non-stationary assumption across both scenarios. As the return period extends, shows 
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a decline most of the time.  Additionally, the findings indicate the contrast between the 

peak sudden flood assuming stationary versus non-stationary conditions in both 

scenarios for the period 2020 to 2086. The difference between non-stationary and 

stationary in RCP 4.5 is greater than RCP 8.5 in all return periods. Peak flood return 

levels at low return level periods were indicated to have noticeable variation compared 

to high return periods. 

 

8.5. Contribution to knowledge 

This research contributed significantly to our understanding of flood extremes 

and the impact it has on the non-stationary assumption. Firstly, GeeSEBAL was 

employed to automatically estimate ET, facilitating validation against ET station data. 

Given its independence from ground-level measurements as input, GeeSEBAL is 

anticipated to be advantageous for analysing water balances globally and for 

managing water resources in data-scarce regions (Laipelt et al., 2021).  

The authors also emphasised that the aim of GeeSEBAL is to deepen 

understanding of the impact of land cover changes on ET over recent decades.  

The latest iteration of GeeSEBAL utilises Landsat imagery and reanalysis data to 

compute ETa time series, showing promising results for regional-scale investigations 

in areas with limited data availability (Laipelt et al., 2021).  

By incorporating non-stationary conditions in extreme events frequency analysis using 

the ProNEVA model, the study highlights the importance of accounting for changing 

environmental factors over time. This enhances the accuracy of flood magnitude 

estimation and helps mitigate risks associated with hydraulic infrastructure and human 

settlements. 

The utilisation of Support Vector Machine (SVM) and Random Forest (RF) 

classification techniques in conjunction with the Google Earth Engine (GEE) platform 

enables the mapping of land cover patterns and estimation of future changes.  

This innovative approach enhances the spatial resolution and accuracy of land cover 

analysis, providing valuable insights for water resource management and 

infrastructure planning. The results highlight the significance of considering non-

stationary conditions in extreme flood frequency analysis, as neglecting this aspect 

can lead to underestimation of flood magnitudes and increased risks for hydraulic 

structures. Through the incorporation of TDF curves in decision-making, stakeholders 
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can improve risk evaluation, refine infrastructure planning, and enhance public health 

strategies during extreme temperature occurrences. While previous investigations 

have delved into related themes across various regions, this study adds to the evolving 

domain of TDF curve formulation within Australia. The framework developed in this 

study provides valuable insights for infrastructure planning, risk assessment, and 

sustainable water resource management.  

 

8.6. Future research direction 

This study should serve as a foundation for the use of multi-framework by 

considering both physical system and statistical approaches to comprehend the non-

stationary assumption in extremes in the catchment scale. The following is expected 

to be the next research direction that this study will lead to. 

1) Future studies could incorporate comprehensive uncertainty analysis 

techniques to assess the robustness and reliability of model predictions under 

different climate change scenarios. 

2) Applying a non-stationary model for the Lockyer Catchment by considering the 

assumptions that the scale and shape parameters have linear functions with 

time. This adjustment will enhance the modelling approach, improving the 

capture of flood variations over time and increasing prediction accuracy and 

reliability. 

3) Exploring alternative statistical models beyond the GEV model to capture non-

stationary behaviour in extreme event distributions. 

4) Incorporating hydraulic modelling techniques, to assess the hydraulic 

performance of dams under various scenarios, including extreme flood events 

and reservoir operation conditions. 

5) Evaluate the effectiveness of existing dam infrastructure and spillway designs 

in mitigating hydraulic risks and identify potential vulnerabilities or areas for 

improvement. 

6) Undertaking a similar developed framework to other geographic regions with 

different climatic, hydrological, and land cover characteristics could provide 

valuable insights into regional variations in flood risk and vulnerability. 
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