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Abstract: Study region: North Johnstone catchment, located in the north east of Australia. The 

catchment has wet tropical climate conditions and is one of the major sediment contributors to the 

Great Barrier Reef. Study focus: The purpose of this paper was to identify soil erosion hotspots 

through simulating hydrological processes, soil erosion and sediment transport using the Soil and 

Water Assessment Tool (SWAT). In particular, we focused on predictive uncertainty in the model 

evaluations and presentations—a major knowledge gap for hydrology and soil erosion modelling 

in the context of Great Barrier Reef catchments. We carried out calibration and validation along with 

uncertainty analysis for streamflow and sediment at catchment and sub-catchment scales and 

investigated details of water balance components, the impact of slope steepness and spatio-temporal 

variations on soil erosion. The model performance in simulating actual evapotranspiration was 

compared with those of the Australian Landscape Water Balance (AWRA-L) model to increase our 

confidence in simulating water balance components. New hydrological insights for the region: The 

spatial locations of soil erosion hotspots were identified and their responses to different climatic 

conditions were quantified. Furthermore, a set of land use scenarios were designed to evaluate the 

effect of reforestation on sediment transport. We anticipate that protecting high steep slopes areas, 

which cover a relatively small proportion of the catchment (4–9%), can annually reduce 15–26% 

sediment loads to the Great Barrier Reef. 

Keywords: catchment modelling; uncertainty analysis; water balance; sediment; actual 

evapotranspiration 

 

1. Introduction 

The Great Barrier Reef (GBR) is the world’s largest coral reef extending over 2000 km off the 

Queensland coastline. During the 20th century, the landscape of GBR catchments was altered 

dramatically as a result of expanding sugarcane, banana and livestock production. To expand 

agricultural lands and improve productivity, many natural waterways were replaced by drainage 

systems, native vegetative cover was removed, soil structure disturbed and natural wetlands emptied 

[1]. Vegetation clearance rules in Queensland were minimal until the mid-2000s when the 

enforcement of clearing restrictions came into effect to preserve remaining forests and native 

vegetative cover [2]. In tropical regions of Queensland, where there is a potential for high soil erosion, 

it is estimated that around half of its primary rainforests (6700 km2 of 13,000 km2) have been destroyed 
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since the beginning of European colonisation [3,4]. These anthropogenic changes in GBR catchments 

have amplified soil erosion, increased sediment concentrations in the reef and consequently resulted 

in the degradation of the coral and seagrass ecosystems, which provide food and shelter for variety 

of marine species [5–9]. Specifically, the increased build-up of sediment in downstream waterbodies 

of GBR tropical catchments is likely to bring more ecological issues such as shrinking habitat and 

interstitial spaces, hence, disturbing the behaviour and lowering the survival rate of freshwater 

species [10]. 

Effective planning for controlling pollution and applying mitigation options necessitates 

improvement in our understanding of hydrological processes. Until now, various modelling efforts 

have been carried out to simulate streamflow and sediment loads flowing to the GBR including 

eWater Source and its plug-in, Dynamic SedNet, that have been developed and being used as 

industry standards for hydrology and water quality modelling for GBR catchments [11]. However, 

in most cases, details of the link between hydrological processes within catchments and delivered 

sediment loads to the GBR, as well as the uncertainty involved in model outputs and processes are 

not quantified [12–17]. Incorporating quantitative measures of uncertainty in a modelling approach 

reduces the effect of biases in the form of epistemic errors on decision making [18,19], increases our 

confidence in model outputs and eventually makes the approach more reliable for incorporating into 

ecological risk assessment [20,21]. 

In this research, an advanced process-based catchment model—Soil and Water Assessment Tool 

(SWAT) [22]—has been applied for the first time in the context of GBR catchments for modelling 

hydrology and soil erosion. The model has capabilities in the spatial and temporal simulation of 

runoff generation, soil erosion, sediment transport, plant/vegetative growth and agricultural 

management practices in an integrated system, plus the availability of supporting documents and 

additional tools such as SWAT-CUP [23] for analysing uncertainty through inverse modelling and 

parallel processing. We established a SWAT model for the North Johnstone catchment (a tropical 

catchment in the north-east of Australia), listed as a priority catchment for controlling sediment 

delivery to the GBR [24]. The model is calibrated and validated for daily streamflow rate and daily 

sediment load at the catchment and sub-catchment scales. We obtained sediment concentration data 

from two independent studies for two separate periods reflecting different climatic conditions from 

extreme wet to extreme dry. We also carried out a parameter sensitivity analysis and quantified 

predictive uncertainty in model outputs for both water balance components and the soil erosion from 

major land uses. 

Previous studies predicted that protecting degraded pastures through reforestation has the 

potential to increase soil water retention capacity, reduce runoff and stabilise soil, and therefore, 

control soil erosion and improve coral reef health [25–29]. In addition, recently, efforts have been 

made to investigate cost-effective methods of successful plant species selection for reforestation on 

degraded pastures in the upper section of North Johnstone catchment [30,31]. Here, we investigated 

four land use change scenarios for converting pasture areas to rainforests to quantify the extent to 

which reforestation can reduce sediment loads from the North Johnstone catchment to the GBR. 

2. Material and Methods 

2.1. Study Area 

The North Johnstone catchment is located between latitudes 17°38′ S and 17°16′ S and longitudes 

145°28′ E and 146°4′ E in the Wet Tropics Region in the northeast of Australia (Figure 1). This 

catchment covers an area of approximately 102,980 ha. 

The catchment has wet tropical climate conditions which mean that during austral summers the 

weather is hot, and humid with frequent and intensive rainfall while in austral winters, temperatures 

and rainfall are relatively low. Rainfall gradient is remarkable across  the catchment; 3600 mm mean 

annual rainfall at the coastal areas (e.g., Innisfail) while gradually decreasing to 2000 mm mean 

annual rainfall towards the upper section (e.g., Malanda). 
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Conserved natural rainforest and pasture areas (with native or modified vegetative cover under 

grazing or minimal uses) cover 37% and 51% of the catchment, respectively, and thus are the 

dominant land uses. Agricultural farms mostly comprise bananas (2.5%) and sugarcane (3.5%) which 

are located in the coastal zone. A marginal proportion (less than 1%) can be attributed to tea farms 

and tropical fruit trees in the upper section. Other land uses are commercial/residential/industrial 

areas comprising 3% of the whole catchment and a small proportion is also related to the water 

surface and wetlands (see Figure 2a for the spatial distribution of land uses). Coastal areas have basalt 

and alluvium soils while the dominant soils in the upper areas are red ferrosols, dermosols and red 

kandosols. 

 

Figure 1. The location of the North Johnstone catchment and its adjacent catchments in the Wet 

Tropics Region (a) and the upscaled North Johnstone catchment showing its river network and 

elevation gradient (b). 
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2.2. Soil and Water Assessment Tool (SWAT) 

SWAT is a process-based continuous daily time-step model, which enables users to simulate 

hydrological processes, crop growth, erosion, and pollutant transport in agricultural catchments to 

study the long-term impacts of the gradual build-up of pollutants on downstream water bodies [22]. 

SWAT has been applied successfully to various catchments with different type of environments 

around the world including tropical catchments in East Asia, Africa and South America [32–34]. 

SWAT is a semi-distributed model that delineates a catchment into sub-catchments and divides 

each sub-catchment into hydrologic response units (HRUs) based on uniform slope, land use and soil 

type. SWAT structure is built upon two main phases, i.e., land phase and channel phase. 

In the land phase, SWAT computes water balance in each HRU and then aggregates the results 

to sub-catchment outputs based upon the fraction of each HRUs. SWAT calculates water balance in 

each HRUs based on the Equation (1). 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑇𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

t

i=1

 (1) 

where 𝑆𝑊𝑡  is the final soil water content (mm), 𝑆𝑊0  is the initial soil water content on day i (mm), t 

is the time (days), 𝑅𝑑𝑎𝑦 is the amount of rainfall on day i (mm), 𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff 

on day i (mm), ETa is the amount of actual evapotranspiration on day i (mm), 𝑊𝑠𝑒𝑒𝑝 is the amount of 

water entering the vadose zone from the soil profile on day i (mm) and 𝑄𝑔𝑤 is the amount of return 

flow on day i (mm). 

To calculate surface runoff at daily time steps, SWAT uses the soil conservation service curve 

number (SCS) method [35]. The daily curve number can be calculated based on antecedent soil 

moisture or plant evapotranspiration of which the latter is selected for this research. For the 

computation of daily actual evapotranspiration, SWAT first needs to calculate potential 

evapotranspiration through one of the following methods: Penman–Monteith [36], Hargreaves [37] 

and Priestley–Taylor [38]. As wind data records are not available for the case study, potential 

evapotranspiration is simulated using the Priestley–Taylor method. This method requires solar 

radiation, air temperature and relative humidity. Further description regarding the details of the 

calculation of surface runoff, the movement of water in the vadose zone, ETa and groundwater 

recharge/discharge can be found in SWAT theoretical documentation [22]. 

To estimate sediment yield, SWAT employs the Modified Universal Soil Loss Equation (MUSLE, 

Equation (2)) [39]. While Universal Soil Loss Equation (USLE) predicts average annual gross erosion 

as a function of rainfall energy, in MUSLE the rainfall energy factor is replaced with a runoff factor, 

which improves the sediment yield prediction, eliminates the need for delivery ratios, and allows the 

equation to be applied to individual storm events [40]. Nevertheless, MUSLE accounts for soil losses 

caused by sheet, rill, and rain splash but not the erosion caused by landslides and gullies. However, 

only 3% of sediment loads in the whole Wet Tropic Region comes from gully erosion while 70% and 

27% of sediment come, respectively, from hillslope and stream bank erosion [24]. 

𝑆𝑒𝑑 = 11.8 × (𝑄𝑠𝑢𝑟𝑓.𝑞𝑝𝑒𝑎𝑘.𝑎𝑟𝑒𝑎ℎ𝑟𝑢)0.56 .𝐾𝑈𝑆𝐿𝐸. 𝐶𝑈𝑆𝐿𝐸. 𝑃𝑈𝑆𝐿𝐸 .𝐿𝑆𝑈𝑆𝐿𝐸 .𝐶𝐹𝑅𝐺  (2) 

where 𝑆𝑒𝑑 is the sediment yield on a given day (t∙ha−1), 𝑄𝑠𝑢𝑟𝑓 the surface runoff volume (mm), 𝑞𝑝𝑒𝑎𝑘 

is the peak runoff rate (m3/s), 𝑎𝑟𝑒𝑎ℎ𝑟𝑢 is the area of the HRU (ha), 𝐾𝑈𝑆𝐿𝐸 is the MUSLE soil erodibility 

factor (0.013 metric ton m2 hr/(m3- metric ton cm)), 𝐶𝑈𝑆𝐿𝐸 is the MUSLE cover and management factor, 

𝑃𝑈𝑆𝐿𝐸 is the MUSLE support practice factor, 𝐿𝑆𝑈𝑆𝐿𝐸 is the MUSLE topographic factor and CFRG is the 

coarse fragment factor. 

In the channel phase, SWAT routes sub-catchment outputs through a river reach in the channel 

network to the output/s of the catchment. SWAT has five stream power equations for calculating 

maximum sediment concentration, modelling bank and bed erosions in a channel containing various 

bed materials and sediment disposition. In this study, due to the lack of data regarding the floodplain 

and the material of the channel bed, the simplified version of Bagnold [41] is used to calculate the 

maximum amount of sediment that can be transported in a stream segment. The Bagnold stream 

power equation calculates the maximum sediment concentration based on Equation (3) and then 
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calculates deposition and degradation by comparing the sediment concentration in the channel and 

the calculated maximum sediment concentration based on Equations (4) and (5). 

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 = 𝑐𝑠𝑝.𝑣𝑐ℎ ,𝑝𝑘
𝑠𝑝𝑒𝑥𝑝 (3) 

If 

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 > 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑎𝑥  𝑆𝑒𝑑𝑑𝑒𝑝 = (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 − 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥).𝑉𝑐ℎ (4) 

If  

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 < 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑎𝑥 𝑆𝑒𝑑𝑑𝑒𝑔 = (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥 − 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖). 𝑉𝑐ℎ.𝐾𝐶𝐻. 𝐶𝐶𝐻 (5) 

where 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑚𝑥  is the maximum amount of sediment that can be transported (kg/L), 𝑣𝑐ℎ,𝑝𝑘 is 

the peak channel velocity (m/s) while 𝑐𝑠𝑝 is a coefficient (SPCON), spexp is an exponent (SPEXP), 

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 is the concentration of sediment in time step i (kg/L), 𝐾𝐶𝐻 is the channel erodibility factor 

(CH_COV1), 𝑉𝑐ℎ is the volume of water in the reach segment (m3) and 𝐶𝐶𝐻 is the channel cover 

factor (CH_COV2). 

2.3. Model Input Data 

Specific information regarding climate, soil properties, topography, vegetation cover and land 

use management practices are required by SWAT to directly simulate physical processes associated 

with hydrology, erosion, sediment transport and crop/plant growth for the catchment. The summary 

of model input data is provided in Table 1. 

Table 1. Summary of model input data. 

Data Scale Detail Source of Data 

Digital Elevation 

Model 
25 m Elevation, Slope and Length 

The State of Queensland, Department of 

Natural Resources, Mines and Energy 

(https://data.qld.gov.au/dataset/digital-

elevation-models-25metre-by-catchment-

areas-series) 

Land use map 
1:50,000 

(Figure 2b) 

Land use of the region, version 8 

classification 

Queensland Land Use Mapping Program, 

Australian Bureau of Agricultural and 

Resource Economics and Sciences [42] 

(https://www.qld.gov.au/environment/lan

d/vegetation/mapping/qlump-datasets) 

Soil map 

1:250,000  

22 separated 

soil profiles 

Physical properties for soil 

profiles including soil erodibility 

factor (USLE_k) dataset 

Australian Soil Resource Information 

System, level 4 specification [43] 

(http://www.asris.csiro.au/) 

Watercourses  

Watercourse, connector, stream, 

river, creek, gully, canal, drain, 

channel, drainage 

The state of Queensland, Department of 

Natural Resources, Mines and Energy, 2018 

(https://data.qld.gov.au/dataset/watercours

e-identification-map-queensland-series) 

Climate 

6 stations 

(1980–2012) 

(Figure 2d) 

Daily precipitation (mm), 

maximum/minimum temperature 

(°C), relative humidity (%) and 

solar radiation (MJ/m2) 

Gridded data of SILO (scientific 

information for land owners) 

(https://silo.longpaddock.qld.gov.au/point-

data) 

2.3.1. Hydrological Observation Data 

Daily records of streamflow rate for the calibration period (1991–1996) and validation period 

(2007–2012) for three monitoring stations were obtained from the Queensland Government Water 

Monitoring Information portal (https://water-monitoring.information.qld.gov.au/) (see Figure 2d for 

the location of stream gauges). 

Tung Oil station (112004A) is located at the end of the North Johnstone River receiving runoff 

from 92,500 ha—90% of the whole catchment. Glen Allyn (112003A) is located at the upper section of 

the catchment on the North Johnstone river receiving water from 16,500 ha (mostly pasture)—16% of 
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the whole catchment. Fisher Creek Station (112002A) is located on a tributary channel receiving 

runoff from 1500 h—1.5% of the whole catchment—of pasture, rainforest, sugarcane and banana 

farms. 

2.3.2. Sediment Loads Observation Data 

Daily sediment concentration data for the period between 1991 and 1996 were obtained from a 

previous study carried out in the region by Hunter and Walton [13]; they collected sediment 

concentration samples in 188 days at the Tung Oil station, 149 days at the Glenn Allyn station and 

113 days at Fisher Creek station. After Hunter and Walton [13], there was not any sediment 

monitoring until 2007 when the Queensland Department of Environment and Science started 

monitoring sediment concentration; however, this time only for the Tung Oil station. We used the 

sediment concentration data of this program for the validation period (2007–2012) in which sediment 

concentration samples recorded for 94 days. 

To calculate sediment loads, we multiplied the average sediment concentration by the average 

streamflow rate of a day. Depending on the number of collected samples on a given day, this method 

of calculating sediment loads, like any other method, can result in underestimation or overestimation 

[44]. Therefore, we considered 30% error in calculated sediment loads. This error range was used for 

calculating P-factor described in Section 2.6.1. 

2.4. Actual Evapotranspiration Database 

Actual evapotranspiration (ETa) is the major mechanism of removing water from any catchment 

while greatly influencing water balance components of the system. We compared ET a estimation of 

SWAT with an external source of ETa to increase our confidence in modelling water balance 

components. For this purpose, we obtained ETa from the Australian Landscape Water Balance 

(AWRA-L) (http://www.bom.gov.au/water/landscape). AWRA-L v6 [45] is a 5 km × 5 km gridded 

water balance model which provides daily estimates of ET a across Australia from 2005. 

We selected three locations to compare ETa including one pasture dominated area in the upper 

section with high altitude (765 m) and annual rainfall of 1900 mm (Figure 2d, location 1), one 

rainforest dominated area located in the midsection with low altitude (230 m) and high annual 

rainfall (3800 mm) (Figure 2d, location 2) and one mixed area of rainforest and pasture in the upper 

section with high altitude (1400 m) and moderate rainfall (2500 mm) (Figure 2d, location 3). 

2.5. SWAT Model Setup 

2.5.1. Model Setup 

SWAT2012 revision 670 was applied for this research, which was the latest version available at 

the time. Based on the DEM map, SWAT delineated the catchment into 91 sub-catchments and finally 

defined 1503 HRUs based on slope classifications, soil types and land use (see Figure 2). The SWAT 

model was set up for daily time step with 7 years as a warm-up/equilibrium period according to 

recommendations by Daggupati et al. [46]. 
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Figure 2. (a) land use map, (b) soil layer map, (c) slope classification and (d) catchment details 

including the location of weather stations, monitoring stations, catchment outlet, river and streams.  

Legends of the soil layers represent their soil feature names and associated feature ID numbers in the 

ASRIS database in which the Gh1 is red smooth-ped earths moderately undulating lands; KHB is 

Krasnozems of the undulating and rolling hills on; KLB is Krasnozems of the basalt lava plains; KUB 

is Krasnozems of the undulating basalt lava plains; LN1 is pale loams with a smooth-ped B horizon; 

LN2 is pale loams with a smooth-ped B horizon, high hills; Mf19 is yellow smooth-ped earths, 

strongly undulating; Mj8 is red smooth-ped earths, hilly high plateau; Mp18 is red smooth-ped earths, 

moderately undulating lands; Mp19 is red smooth-ped earths, low hilly to hilly basalt; RMV is red 

podzolics of the steep hills and mountains. 

2.5.2. Parameterisation of the Vegetative Cover 

Seasonal changes to the vegetative cover have a great influence on biomass production, runoff, 

actual evapotranspiration and soil erosion and SWAT requires specific parameters of leaf area index 

(LAI) of plants and crops during the growing cycle to simulate their seasonal development. 

For the pasture areas, we adjusted the leaf area index (LAI) parameters of SWAT plant dataset 

to simulate LAI of pasture plant as much as possible close to a processed time series we retrieved 

from MODIS Collection 6 (MODIS15A2H) remote sensing data (http://reverb.echo.nasa.gov/) for 

Location 1 in the upper section of the catchment (Figure 2d). The maximum LAI of pas ture plant, 

maximum potential biomass, and potential heat units are, respectively, considered to be 3 m2/m2, 10 

t∙ha−1 and 2000. 

LAI parameters of sugarcane plant are adjusted based on one study for a widely known 

genotype of sugarcane in Mexico with rainfed conditions [47] and two comprehensive studies for 

assessing and modelling yield and LAI expansion of Australian sugarcane [48,49]. The maximum 

LAI of sugarcane plant, maximum potential biomass, and potential heat units are, respectively, 

considered to be 6.5 m2/m2, 90 t∙ha−1 and 5500. We also considered one plant and two ratoons for 

sugarcane cultivation. Planting was considered to take place between September and November, and 

the first harvesting would happen in the next 12 months. For the two subsequent ratoons, we 

considered that harvesting would happen in the next 10 months; 90% of sugarcane biomass would 
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be removed at ratooning events, and 10% of the removed biomass would remain on the surface as 

residue. Among sugarcane HRUs, different planting years are also considered to keep the 

heterogeneity of the time of agricultural activities in the region. 

For bananas, we checked the seasonal change in LAI values with a previous study for tropical 

bananas [50], considering the maximum LAI up to 4.5 m2/m2, while having around 100 t∙ha−1 biomass 

in full maturity and gaining 30–50 t∙ha−1∙year−1 after harvesting/ratooning with potential heat units of 

5500. 

The LAI of the rainforest is below 5 m2/m2, which is (as a result of frequent cyclones in the region) 

relatively lower comparing to other rainforests across the world [51]. Thus, rainforest LAI parameters 

were adjusted to have a mostly consistent LAI of 4.5 m2/m2 and an average biomass of 200 t∙ha−1. 

2.6. Model Calibration and Validation 

2.6.1. Measuring the Model Performance 

Based on suggestions by Moriasi et al. [52], two dimensionless statistical indicators—Nash 

Sutcliff efficiency (NSE) and the ratio of root mean square error to the standard deviation of the 

observations (RSR)—and one error index—percent bias (PBIAS)—were used to measure the 

goodness of fit of the best simulation during calibration and validation. NSE indicates a “very good” 

performance (for both streamflow and sediment) when it is more than 0.75 and “unsatisfactory” 

when it is less than 0.5; RSR indicates a “very good” performance (for both streamflow and sediment) 

when it is less than 0.5 and “unsatisfactory” when it is more than 0.7. However, for streamflow, when 

PBIAS is less than ±10%, it indicates very good performance and unsatisfactory when it is more than 

±25%. For sediment loads, PBIAS less than ±15% shows a “very good” performance and 

“unsatisfactory” when it is more than ±55%. 

We also used two indicators for evaluating the overall performance of the predictive uncertainty 

in model outputs including P-factor which is the percentage of observation (± error) captured by 95% 

prediction uncertainty (95PPU) and R-factor which is the thickness of the 95PPU envelope [53]. The 

range of P-factor is between 0 and 1 and the range of R-factor is between 0 and infinity. A P-factor 

close to 1 and R-factor less than 1 confirm the acceptable performance of the model. 

2.6.2. Model Calibration 

The calibration, validation, sensitivity and uncertainty analyses are carried out by employing 

the sequential uncertainty fitting algorithm-version 2 (SUFI-II)—an inverse modelling procedure 

based on Latin hypercube sampling [54] developed by Abbaspour et al. [55]. 

SUFI-II starts by assuming a large parameter uncertainty within a physically justifiable range, 

so that the measured data initially fall within the 95PPU, then reduce the uncertainty in the next step 

based on fitted parameters found for the best simulation in the previous step [53]. Overall, with SUFI-

II, we repeat these steps several times for calibration until the simulations capture most of our 

observations in the 95PPU envelope (P-factor~1) while reaching to a small envelope (R-factor < 1) of 

simulations. 

Furthermore, before conducting calibration/validation, we carried out a one-at-a-time sensitivity 

analysis for each parameter followed by several global sensitivity analyses for a number of 

combinations of parameters to identify the most sensitive ones involved in hydrological processes, 

erosion and sediment transport for the case study. Table 2 shows a description of the parameters that 

have been selected for the model calibration. 
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Table 2. Identified sensitive parameters involved in hydrological processes, soil erosion and sediment 

transport in the Soil and Water Assessment Tool (SWAT) model. 

Parameters Description 

Groundwater and baseflow 

GW_DELAY Groundwater delay 

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur 

ALPHA_BF Baseflow recession coefficient 

Evapotranspiration 

GW_REVAP Groundwater revap * coefficient 

CANMX Maximum canopy storage 

REVAPMN Threshold depth of water in the shallow aquifer for revap to occur 

EPCO Plant uptake compensation factor 

Runoff and Streamflow 

SOL_K Saturated soil conductivity 

CH_K1 Effective hydraulic conductivity in tributary channel 

CH_K2 Effective hydraulic conductivity in the main channel 

CH_N1 Manning′s “n” value for tributary channels 

CH_N2 Manning′s “n” value for the main channel 

CN2 SCS daily curve number 

OV_N Manning’s “n” value for overland flow 

Soil erosion parameters 

USLE_K USLE soil erodibility factor 

USLE_C USLE cover and management factor 

USLE_P USLE support practice factor 

Sediment transportation 

SPCON Coefficient in sediment transport equation 

SPEXP Exponent in sediment transport equation 

CH_COV1 Channel erodibility factor 

CH_COV2 Channel cover factor 

* Water that moves from shallow aquifer to the overlying unsaturated zone. 

To maintain the heterogeneity of hydrological processes within the model, some of these 

parameters were regionalised and considered adaptive to land uses. For example, ALPHA_BF and 

SOL_K were regionalised for two sections of the catchment. The upper section includes 35 sub -

catchments and is pasture dominated with lower rainfall. The second section, including the coastal 

zone and the midsection of the catchment, a high annual rainfall region, consists of 56 sub -

catchments. In addition, other parameters such as CN2, OV_N and USLE_C were considered to be 

different for four groups of land use (pasture, rainforest, sugarcane and banana). The initial range of 

values for USLE_C of pasture, rainforests, banana and sugarcane farms were obtained from Armour 

et al. [14] for the region. 

To take into account the processes involved in groundwater contribution to baseflow, an 

automated baseflow separation and recession analysis technique developed by Arnold et al. [56] was 

used to separate baseflow and streamflow during calibration. This automated separation procedure 

can also estimate the initial range for ALPHA_BF, which was used to route the groundwater recharge 

to the stream. 

After identifying sensitive parameters, the model was calibrated for daily streamflow and 

sediment loads for the three stations for the period between 1991 and 1996. The model was then 

validated for the six-year period between 2007 and 2012 for streamflow of the three stations and daily 

sediment loads of Tung Oil station. For the subsequent analyses on water balance components and 

soil erosion, the model was executed for a 22-year period between 1991 and 2012 and 500 iterations 

using parameters range found in calibration. 

We divided the recorded annual rainfall of the catchment into three statistical intervals. The first 

interval represents extreme dry years with annual rainfall less than mean minus one standard 

deviation (annual rainfall less than 2298 mm); the second interval represents normal years with 
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annual rainfall within plus one and minus one standard deviation of the mean (annual rainfall 

between 2295 mm and 3928 mm); and the third interval represents extreme wet years with annual 

rainfall more than mean plus one standard deviation (more than 3928 mm). Accordingly, the 

calibration period consists of five normal years (1991 and 1993–1996) and one extreme dry year (1992 

with 2250 mm annual rainfall); the validation period consists of five normal years (2007 –2009 and 

2011–2012) and one extreme wet year (2010 with 4214 mm annual rainfall). For the whole 22 years of 

simulation, 1999 was the most extreme wet year (5151 mm annual rainfall) and 2002 was the most 

extreme dry year (1467 mm annual rainfall). 

3. Results 

3.1. Model Calibration and Validation Results 

Table 3 shows the global parameter sensitivity analysis for the calibration period (the smaller of 
p-value and larger absolute value of t-state determine the sensitivity ranking of the parameters). The 

parameters including USLE_C for pasture areas, USLE_K for the whole of the region, CH_N1 for all 

tributary channels in the region, USLE_C for farmlands (banana and sugarcane), CH_K1 for all 

tributary channels, CN2 and OV_N for pasture areas have the highest sensitivity. Generally, the 
parameters in the MUSLE have higher sensitivity because the observed data for sediment are fewer 

than those of streamflow. Additionally, pasture areas cover the highest proportion of the catchment, 

thus, although the soil erosion from farmlands is higher, much of the sediment loads is contributed 

by pasture areas, thus justifying the highest sensitivity of the model to USLE_C for pasture areas. The 

other parameters such as CN2, OV_N and CH_K1 also show high sensitivities since calculating peak 

flows (events that carry the highest amount of sediment) is highly dependent on the value of these 

parameters. 

Figure 3 shows the results of calibration and uncertainty analyses of streamflow. Most of the 

observations at either catchment scale or sub-catchment scale are captured by the 95PPU (P-factor 

ranges from 0.85 to 0.93) with an acceptable band thickness (R-factor ranges from 0.55 to 0.74). 

Moreover, the model performance statistic measures (NSE, RSR and PBIAS) show a very good 

agreement between the best simulations and the observations. Also, the small extracted graphs in 

Figure 3 clearly show that the event peak flows and daily baseflow observations are well captured 

by SWAT simulations. 

Figure 4 shows the results of sediment calibration and uncertainty quantification. More than 

77% of all observed sediment loads are captured by the simulations at the Tung Oil station and the 

Glenn Allyn station with an acceptable band thickness (R-factor is 0.53 and 0.70, respectively). 

Reasonable agreements are also achieved between the best simulation and observation for these two 

stations as NSE values are more than 0.6, RSR values are less than 0.65 and absolute values for PBIAS 

are less than 25% (see Figure 4a,b). While the P-factor and NSE for Fisher Creek station is not 

desirable, the calibration performance for this station is still acceptable given the small drainage area 

of Fisher Creek station and the inherent errors in recording sediment concentrations and calculating 

sediment loads for such a sub-catchment with short lag time in the hydrograph. It should be noted 

that but most of the extreme sediment loads are captured by 95PPU (Figure 4c). 

Table 3. Results of global parameter sensitivity analysis with Nash Sutcliff efficiency (NSE) as the 

objective function, including the lower and upper bound of parameters and the fitted value. 

Parameters 
Sensitivity 

Ranking 

Sensitivity Land Use/Sub-

Catchments 

Lower 

Bound 

Upper 

Bound 

Fitted 

Value p-Stat t-Stat 

USLE_C 1 0.00 
−38.8

1 
Pasture 0.01 0.03 0.01 

USLE_K * 2 0.00 
−16.8

0 
All land uses −0.2 0 −0.20 

CH_N1 3 0.00 16.48 All sub-catchments 0.1 0.2 0.13 

USLE_C 4 0.00 
−10.5

5 
Banana and sugarcane 0.01 0.08 0.06 
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CH_K1 5 0.00 9.00 All sub-catchments 0 50 27.29 

CN2 6 0.00 −7.33 Pasture 50 65 52.58 

OV_N 7 0.00 3.39 Pasture 0.2 0.4 0.34 

SOL_K * 8 0.04 2.06 
Midsection and coastal 

zone sub-catchments 
−0.2 0 −0.16 

ALPHA_BF 9 0.04 2.02 
Upper section sub-

catchments 
0.03 0.1 0.06 

CH_N2 10 0.05 1.93 All sub-catchments 0.01 0.04 0.03 

CH_COV2 11 0.07 −1.85 All sub-catchments 0.01 0.04 0.02 

USLE_C 12 0.10 −1.63 Rainforest 0.001 0.006 0.00 

USLE_P 13 0.11 −1.60 Banana 0.8 1 0.80 

SPCON 14 0.13 −1.52 All sub-catchments 0.001 0.005 0.00 

CN2 15 0.13 −1.52 Rainforest 45 60 53.27 

GWQMN 16 0.14 1.49 All sub-catchments 500 1000 836.17 

ALPHA_BF 17 0.18 1.33 
Midsection and coastal 

zone sub-catchments 
0.03 0.1 0.05 

CN2 18 0.22 1.23 Banana 70 85 79.27 

SOL_K * 19 0.22 1.22 
Upper section sub-

catchments 
−0.1 0.1 −0.06 

OV_N 20 0.30 1.04 Banana 0.05 0.09 0.08 

GW_DELAY 21 0.32 1.00 All sub-catchments 50 350 284.50 

CN2 22 0.32 −0.99 Sugarcane 70 85 83.63 

CH_COV1 23 0.34 −0.96 All sub-catchments 0.01 0.04 0.02 

CH_K2 24 0.61 0.51 All sub-catchments 20 70 59.17 

SPEXP 25 0.73 0.35 All sub-catchments 0.8 1.2 0.90 

GW_REVAP 26 0.76 0.31 All sub-catchments 0.01 0.2 0.41 

REVAPMN 27 0.78 −0.27 All sub-catchments 200 500 556.70 

EPCO 28 0.91 −0.11 All sub-catchments 0.7 0.9 0.79 

OV_N 29 0.97 −0.04 Rainforest 0.1 0.4 0.19 

USLE_P 30 0.96 0.05 Sugarcane 0.8 1 0.80 

OV_N 31 0.96 0.05 Sugarcane 0.1 0.2 0.10 

* Indicates a relative change in the initial value of the parameter (we multiply the value presented in this table 

to the initial value to get the final value). The values of other parameters without * are those replacing the initial 

values. 



Water 2020, 12, 2179 12 of 28 

 

 

Figure 3. Streamflow calibration and uncertainty analysis: (a) Tung Oil station near the outlet of the 

catchment, (b) Glenn Allyn station in the upper section, and (c) Fisher Creek station. 
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Figure 4. Results of calibration for sediment loads, showing aggregated values for each month in the 

calibration period of the best simulation, 95PPU, and the observation. The scatter plots show the best 

simulation versus the observation while the main graphs represent the monthly aggregated sediment 

loads: (a) Tung Oil station, (b) Glenn Allyn station, and (c) Fisher Creek station. 

Figure 5 shows the results of the best streamflow simulation (using fitted values found from the 

best simulation in the calibration period) and uncertainty analysis (using the parameter range found 

from the calibration) for the validation period (2007–2012). Acceptable 95PPU was achieved for all 

gauging stations with P-factor ranging from 0.78 to 0.92 and R-factor ranging from 0.45 to 0.58. In 

addition, the best simulation predicted a reasonable estimation relative to observation for all gauging 

stations for the validation period (NSE between 0.62 and 0.87, RSR between 0.43 and 0.63 and PBIAS 

between −5 and 33%). The small extracted graphs in Figure 5 clearly show that the peak flows and 

daily base flow observations are well simulated by the model. 

Similarly, as shown in Figure 6, good model predictive performance was achieved for sediment 

loads for the Tung Oil station—the only sediment monitoring station—as P-factor is 0.70 and R-factor 

is 0.44 while for the best simulation the NSE is 0.9, PBIAS is 12.5% and RSR is 0.56. 
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Figure 5. Daily streamflow validation (the period between 2007 and 2012) and 95PPU: (a) Tung Oil 

station; (b) Glenn Allyn station; and (c) Fisher Creek station. 

 

Figure 6. Results of validation and uncertainty analysis for sediment loads, showing aggregated 

values for each month of the best simulation, 95PPU, and the observation in the period between 2007 

and 2012 at the Tung Oil station. The scatter plots show the best simulation versus the observation 

while the main graphs represent the monthly aggregated sediment loads. 
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3.2. Water Balance and Sediment Budget 

Table 4 shows the 95PPU and the annual average values for simulated water balance 

components over the 22 years of simulation. The results show that the average annual rainfall falling 

within the catchment is 3113 mm of which about 36% returns to the atmosphere through 

evapotranspiration. Predicted annual water yield is between 1860 and 2208 mm of which 977–1400 

mm is surface runoff (around 31–44% of the whole rainfall), 248–292 mm is lateral flow, 469–855 mm 

and 35–48 mm are, respectively, return flows from shallow groundwater and deep aquifers and 12–

313 mm leaves the system by transmission losses. 

As illustrated in Figure 7, during summer months (November to April), the difference between 

rainfall and total amount of water leaving the catchment (water yield and ET a) is positive which 

indicates recharging groundwater and increasing stored water in soil. During the winter months 

(May to October), this value is negative, indicating a reduction in stored water in soil and the 

contribution of groundwater return flow to baseflow. 

The simulated average annual soil erosion rate of the North Johnstone catchment ranges from 

0.7 to 2.13 t∙ha–1. The average monthly water balance and soil erosion rate show a close correlation 

between water yield and soil erosion, with the highest soil erosion rate (0.25 t∙ha–1) in February, the 

month with the highest water yield and rainfall (Figure 7). 

Table 4. The 95PPU and average amounts of water balance components at the catchment scale for 22 

years (1991–2012) where 95PPU is the result of 500 simulations. Rainfall is the average of six weather 

stations based on the area they represent. 

Water Balance Components Minimum (2.5%) Average Maximum (97.5%) 

Rainfall (mm) 3113 3113 3113 

Surface runoff (mm) 977 1224 1400 

Lateral flow (mm) 248 270 292 

Shallow groundwater return flow (mm) 469 657 855 

Deep groundwater return flow (mm) 35 42 48 

REVAP (capillary flow) (mm) 8.4 146 285 

Deep aquifer recharge (mm) 35 42 47 

Total aquifer recharge (mm) 717 902 959 

Total water yield (mm) 1860 2027 2208 

Percolation (mm) 561 669 829 

ETa (mm) 1045 1104 1165 

Transmission losses (mm) 12 168 313 

Annual soil erosion (t/ha) 0.7 1.29 2.13 

 

Figure 7. Average monthly rainfall, total water yield, actual evapotranspiration and sediment yield 

at catchment scale for 22 years simulation period (1991–2012) and 500 simulations. 
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The spatial distribution of average annual surface runoff, groundwater return flow, ETa and 

rainfall in the North Johnstone catchment with respect to standard deviation are depicted in Figure 

8. Our simulation results show that annual ETa in the upper section with high altitude is between 886 

and 1077 mm and annual ETa in the midsection (rainforest dominated area) is between 1239 and 1489 

mm. The results of the SWAT simulation show that rainforest dominated areas support the baseflow 

and a significant amount of groundwater return flow is generated from the rainforest areas in the 

middle section of the catchment while the upper section seldom contributes to baseflow. 

 

Figure 8. Spatial average annual amount of (a) groundwater return flow, (b) surface runoff, (c) ETa, 

and (d) rainfall with respect to the standard deviation (STDEV). 
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3.3. SWAT Performance in Simulating ETa Compared to AWRA-L 

Average annual ETa simulated by SWAT for the pasture dominated area (Figure 9a) is between 

794 mm and 961 mm, for the rainforest dominated location (Figure 9b) is between 1400 mm to 1485 

mm and for the mixed pasture and rainforest location (Figure 9c) is between 872 mm and 1016 mm. 

For the same order, ETa by AWRA-L is estimated at 1089 mm, 1332 mm and 1071 mm. A direct 

comparison between SWAT and AWRA-L is not applicable as they are modelling ETa at different 

scales with different methods for estimating potential ET and water balance; however, the monthly 

ETa values simulated by SWAT are underestimated for location 1 and 3 (PBIAS values are 

respectively 16.1% and 8.0%), and overestimated for location 2 (with PBIAS of −8.3%) relative to 

monthly ETa values simulated by AWRA-L. 

 

Figure 9. Monthly ETa simulated by SWAT and AWRA-L. (a) is the pasture dominated area, (b) is the 

rainforest dominated area and (c) is the mixed pasture and rainforest area. 
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3.4. Soil Erosion 

Figure 10 shows simulated annual time series of soil erosion with 95PPU for (a) banana HRUs 

(b) pasture HRUs (c) sugarcane HRUs and (d) rainforest HRUs over the 22 years of simulation (1991–

2012). The 95PPU here represents the annual weighted average of soil erosion among the HRUs with 

the same land use based on their total land use area. Among the land uses, banana HRUs appear to 

have the highest annual soil erosion rate and associated predictive uncertainty, following by pasture 

HRUs and sugarcane HRUs. The rainforest HRUs appear to have lowest annual soil erosion as well 

as predictive uncertainty. 

Table 5 shows the 95PPU of soil erosion rates among HRUs for the whole simulation period 

(1991–2012), classified based on slope range and land use. The median and mean of soil erosion rate 

are also included to show the tendency of simulated annual soil erosion rates. Accordingly, for a 

similar slope range, soil erosion rates in banana and sugarcane HRUs are about 1.5–2 times more than 

those of pasture HRUs and 10–12 times more than soil erosion in rainforests. For example, the 95PPU 

of soil erosion rates in pasture HRUs with less than 10% slope is between 0.03 and 2.73 t∙ha–1∙year−1 

while the soil erosion for sugarcane and banana HRUs ranges from 0.19 to 5.63 t∙ha–1∙year−1 and 0.13 

to 6.27 t∙ha–1∙year−1 respectively. 

It should be noted that the highest proportion of pasture areas is located in the upper section 

where precipitation is half of the average of the catchment and surface runoff is relatively less than 

in the coastal zone where sugarcane and bananas are located (Figure 8b). The lower amount of 

rainfall/runoff plus the lower range of USLE_C values for the pasture HRUs are the main reasons 

behind less simulated soil erosion rate in pasture HRUs with the same slope range compared to 

sugarcane and bananas HRUs. However, when considering the annual weighted average of soil 

erosion rates among land uses (accounting for the effect of slope steepness), the annual weighted 

average of simulated soil erosion in banana and pasture HRUs is higher than in sugarcane HRUs, as 

12% of banana HRUs and 39% of pasture HRUs are located on slope ranges of more than 10%, while 

this value is only 3% for sugarcane HRUs. The highest soil erosion for all land uses occurred in 1999—

the most extreme wet year—that the mean of the annual weighted average (M95PPU) for bananas 

HRUs was 8.2 t∙ha–1∙year−1, for pasture HRUs was 4.65 t∙ha–1∙year−1, for sugarcane HRUs was 2.12 t∙ha–

1∙year−1 and for rainforest HRUs was 0.96 t∙ha–1∙year−1. Moreover, the lowest soil erosion occurred in 

2002 where the values of M95PPU for all land uses are less than 1 t∙ha–1∙year−1. 
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Figure 10. The 95PPU and average of 95PPU (M95PPU) of soil erosion in (a) banana farms, (b) pasture 

HRUs, (c) sugarcane HRUs, and (d) rainforests HRUs where 95PPU here represents the annual 

weighted average of soil erosion among the HRUs with the same land use based on their total land 

use area.  
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Table 5. The 95PPU, median and mean of soil erosion rate (t∙ha–1∙year−1) in major land uses for the 

simulation period (1991–2012) classified based on slope range. 

Slope 
Area (ha) Lower (2.5%) Upper (97.5%) Median Mean 

Forests 

0–10% 10,105 0.001 0.52 0.02 0.08 

10–20% 8182 0.001 1.44 0.04 0.21 

20–30% 2391 0.002 2.56 0.10 0.39 

30–40% 6074 0.001 3.42 0.07 0.46 

40–50% 8444 0.002 5.51 0.11 0.83 

50–60% 1518 0.004 6.65 0.15 0.83 

60–70% 72 0.009 14.17 1.52 3.44 

Pasture 

0–10% 33,763 0.027 2.73 0.58 0.78 

10–20% 12,382 0.108 8.63 1.64 2.36 

20–30% 5270 0.141 14.66 2.73 3.96 

30–40% 4043 0.125 20.72 3.71 5.43 

40–50% 29 0.381 48.94 9.85 14.50 

Banana 

0–10% 2291 0.134 6.27 1.19 1.96 

10–20% 256 1.052 16.15 5.53 6.89 

20–30% 59 1.888 27.13 9.67 12.24 

30–40% 11 3.873 28.90 12.63 14.07 

Sugarcane 

0–10% 3444 0.185 5.63 1.03 1.70 

10–20% 76 2.050 14.36 5.96 6.80 

20–30% 13 3.093 20.00 8.53 9.67 

Figure 11 depicts the spatial maps of soil erosion under the extreme dry year (2002), the average 

of the simulation period (1991–2012) (Figure 11b), and the extreme wet year (1999) (Figure 11c). 

Average annual soil erosion rate for the catchment in the extreme dry year is 0.44 t∙ha–1∙year−1, while 

the average for the simulation period is 1.88 t∙ha–1∙year−1 and for the extreme wet year is 4.32 t∙ha–

1∙year−1. The standard deviation of soil erosion rates for all land uses for the extreme dry year is 0.96, 

for the average of simulation period is 3.20 and for the extreme wet year is 7.34. The 97.5 percentile 

of soil erosion among all land uses for the extreme dry year is 0.96, for average of the simulation 

period is 9.88 t∙ha–1∙year−1 and for the extreme wet year is 20.75 t∙ha–1∙year−1. The coastal zone and the 

upper section of the catchment, dominated by sugarcane, bananas and pasture HRUs, are sensitive 

to rainfall, while the middle section of the catchment, dominated by rainforests, seldom changes with 

fluctuations in rainfall as they generate relatively low surface runoff as shown in Figure 8b. 
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Figure 11. Spatial maps of (a) average simulated soil erosion for the extreme dry year (2002), (b) 

average simulated soil erosion of the simulation period (1991–2002), and (c) average simulated soil 

erosion for the extreme wet year (1999). 
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4. Discussion 

4.1. Comparison Soil Erosion with Previous Studies 

In previous modelling efforts, the sediment and soil erosion for this catchment has been 

estimated, however, we designed this research to further investigate the details of water balance 

components, the impact of slope steepness and spatio-temporal variations on soil erosion across the 

North Johnstone catchment. The SWAT simulated streamflow rate, ET a and sediment loads were in 

reasonable agreement with observed values and the predictive uncertainty of model simulations 

could capture most of the observation with an acceptable error band thickness. This indicates that the 

model provided a good representation of catchment hydrology and soil erosion. 

Our modelling results were also in agreement with Hunter and Walton [13] that used the 

Hydrological Simulation Program—FORTRAN (HSPF) model to simulate constituent loads 

including sediment fluxes from North and South Johnstone to GBR. The authors est imated sediment 

fluxes from banana (4.0 ± 2.5 t∙ha–1∙year−1), sugarcane (3.8 ± 2.5 t∙ha–1∙year−1), rainforests and pasture 

areas (1.2 ± 1.1 t∙ha–1∙year−1). However, although we found a similar level of soil erosion in banana 

and sugarcane farms within the same slope range (Table 5), when taking into account the effect of 

slope steepness, we found that annual weighted average of soil erosion among banana and pasture 

HRUs is higher than in sugarcane HRUs as only 3% of sugarcane areas have slope range more than 

10%, while this value is 12% for banana land use and 39% for pasture land use. 

4.2. Hillslope Soil Erosion Modelling for GBR Catchments 

The RUSLE model which is a derivative version of the USLE model with some improvement in 

erosion controlling factors has been widely used for estimating hillslope soil erosion for Australian 
catchments. However, continuous research showed that RUSLE generally overestimates soil erosion, 

especially for steep rainforest areas [14,57]. To resolve this overestimation, in current modelling 
sediment loads for GBR by the Reef Water Quality Protection Plan, the RUSLE model is only being 

applied for grazing land use and the Event Mean Concentration/Dry Weather Concentration 

(EMC/DWC) model being used for modelling erosion in rainforests and banana farms [17]. However, 

EMC/DWC cannot account for hillslope erosion and further improvement is required [17]. A clear 
example for overestimation of RUSLE is Teng et al. [58] who used the RUSLE to estimate soil erosion for 

the Australian continent. Teng et al. [58] reported that based on their modelling results, the Johnstone 

catchment has large rates of soil erosion and predicted more than 50 t∙ha–1∙year−1 soil erosion for the 

rainforest dominated area in the middle section of the catchment. In a notable contrast, the SWAT 
model which uses the MUSLE model and replaces the rainfall erosivity factor in RUSLE by the runoff 

factor, predicted more accurately a significantly lower amount of soil erosion for the rainforest 

dominated area. Furthermore, our soil erosion results for banana land use can be directly compared 

with a recent paddock scale sediment monitoring in the Johnstone catchment [59] which showed 

during the water year of 2010–2011 that the farm received more than 5000 mm rainfall, and the soil 

erosion (the farm had no management practices such grassed inter row) was around 11 t∙ha–1∙year−1. 

Our modelling results also show that in an extreme wet year with more than 5000 mm rainfall, the 

weighted average of soil erosion for banana HRUs can be as low as 3 t∙ha–1∙year−1 and as high as 13 

t∙ha–1∙year−1. However, although using MUSLE could more accurately predict soil erosion, this approach 

required a sophisticated and computationally extensive calibration and validation for both hydrology 

and sediment load. 

4.3. The Effectiveness of Reforestation on Steep Slopes 

The hypothesis that reforestation can reduce sediment is examined here by using a set of 

scenarios and with the assistance of the SWAT model validated for this region. For this purpose, we 

designed four land-use change scenarios from pasture to rainforests based on four slope groups for 

a six-year period (Figure 12). As reforestation is not an instantaneous process, we considered that 

reforestation in designated pasture areas initiated in 1991 and restored forests reached full maturity 
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in 2007. Hence, for the first scenario, we converted all pasture land uses with more than 30% slope 

(4071 ha) to rainforests. The results show that changing land use in these steep slope areas to 

rainforests reduced 15% sediment loads within six years which is equal to 25,000 tonnes per year. In 

the second scenario, pasture areas with more than 20% slope (9342 ha) are converted into rainforest 

which resulted in 26% reduction in sediment delivery to GBR (equal to 45,000 tonnes per year). In the 

third scenario, all pasture areas with more than 10% slope (21,724 ha) are converted into rainforests 

and resulted in a 40% reduction in sediment loads at the end of the catchment. Finally, converting all 

pasture areas to rainforest (55,487 ha) showed just a subtle difference from the third scenario (47% 

reduction in total sediment loads). 

Overall, based on these modelling results, further management practices (e.g., reforestation and 

grassed inter row) for reducing soil erosion should be prioritised in high slope areas, specifically in 

pasture areas and banana farms. The identified sediment hotspots in this study can be considered for 

implanting further monitoring stations or used for carrying out soil erosion studies. Moreover, to 

reduce predictive uncertainty for simulating soil erosion from banana farms in the future modelling, 

a database that shows the spatial map of management practices can significantly improve the output. 
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Figure 12. Monthly soil erosion affected under different land use scenarios: (a) pasture with slope 

more than 30% to forest, (b) pasture with a slope more than 20% to forest, (c) pasture with slope more 

than 10% to forest, (d) all pasture to forest (2007–2012). 

5. Conclusions 

In this research, we assessed hydrological processes and soil erosion and identified hotspots for 

management interventions in a tropical catchment of GBR. The SWAT model was applied to the 

North Johnstone catchment. The parameterisation of biophysical processes such as plant growth and 

ground cover were carried out using remote sensing database or field based studies. We calibrated 

and validated the model and quantified predictive uncertainty in simulating streamflow and 

sediment loads at the catchment and sub-catchment scale. The results were in reasonable agreement 

to observed values. For further analysis, the impact of slope steepness and spatio-temporal variations 

on soil erosion across the catchment were rigorously investigated. Finally, four land use change 

scenarios were applied to evaluate the effectiveness of converting pasture areas to rainforests in 
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reducing sediment fluxes to GBR. Our results show that converting pasture areas with slopes more 

than 30% and 20% which cover 4% and 9% of the catchment, can potentially reduce 15% and 26% of 

the annual sediment loads to GBR. 
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