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ABSTRACT Wind, being a clean and sustainable resource, boasts environmental advantages. However,
its electricity generation faces challenges due to unpredictable variations in wind speed (WS). Accurate
predictions of these variations would allow mixed grids to adjust their energy mix in real-time, ensuring
overall stability. For this purpose, the paper develops a new hybrid gated additive tree ensemble (H-GATE)
model for accurate multi-step-ahead WS predictions. First, the multivariate empirical mode decomposition
(MEMD) simultaneously demarcates the multivariate data into intrinsic mode functions (IMFs) and
residuals. These components represent underlying trends, periodicity, and stochastic patterns in WS
variations. The IMF and residual components are pooled in respective sets, and an opposition-based
whale optimization algorithm (OBWOA) is applied for dimensionality reduction. The selected features
are used by GATE tuned with Bayesian optimization (BO) to forecast the individual IMF and residual
components. The outputs are summed to obtain the final multi-step-ahead WS forecasts. The proposed
H-GATE is benchmarked against standalone (S-GATE, S-CLSTM, and S-ABR) and hybrid (H-CLSTM and
H-ABR) models. Based on all statistical metrics and diagnostic plots, H-GATE outperforms all comparative
models at all forecast horizons, accumulating the lowest mean absolute percentage error (MAPE) of
6.13 - 9.93% (at tL+1), 8.67 - 14.07% (at tL+2), and 11.60 - 18.37% (at tL+3) across all three sites. This
novel multi-step-aheadWS forecasting strategy can significantly benefit grid operators by helping anticipate
fluctuations in wind power generation. This can assist in optimizing energy dispatch schedules, reducing
reliance on backup power sources, and enhancing overall grid stability. Practical implementation of this
method can help meet the rising energy demands through renewable wind energy.

INDEX TERMS Wind speed forecasting, gated additive tree ensemble, multivariate empirical mode
decomposition, opposition-based whale optimization algorithm, Bayesian optimization.
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I. INTRODUCTION
Rapid economic development has increased human demand
for energy, which comes mostly from fossil fuels. As a
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result of the use of conventional fossil fuels, greenhouse
gases are released into the atmosphere, contributing to global
warming. Due to their non-renewable nature, fossil fuels
will eventually deplete. To overcome the environmental
burden and energy crisis, Sustainable Development Goal 7
(SDG 7) was implemented in 2015 to increase global energy
generation using clean renewable sources by 2030 [1]. Wind
energy is one of the most promising renewable energy
(RE) sources, which has received much attention globally
due to its benefits of being abundant, eco-friendly, and
cost-effective [2]. According to the Global Wind Energy
Council (GWEC) report [3], the latest installed capacity
of wind power in 2022 was 77.6 GW, which brings the
cumulative global wind capacity to 906 GW, a≈ 9% increase
since 2021. Further addition of wind power capacities
can bring considerable economic benefits and reduce the
adverse environmental effects caused by fossil fuels [4].
However, maximizing the utilization of wind power is
challenging considering that the wind energy conversion
systems pose serious risks to the power system stability
due to the intermittent nature of wind speed (WS) [5]. For
maximum wind energy generation and effective wind power
management, accurate and stableWS forecasting is essential.
Generally, WS forecasting is performed at different time

scales, including very short-term (< 30 minutes), short-term
(30 minutes - 6 hours), medium-term (6 hours - 1 day), and
long-term (> 1 day) [6]. This study tests the application of
short-term WS forecasting as this range is crucial for turbine
control, operational safety, and economic load dispatch [7].
Short-term WS forecasting helps promote better system
stability, security, and wind power quality [8]. To achieve
accurate WS forecasts, researchers have presented many
strategies grouped into physical, statistical, and artificial
intelligence (AI)-based methods, as summarized in Table 1.
Physical methods operate by simulating the underlying

meteorological and physical principles governing atmo-
spheric conditions and are mainly based on numerical
weather prediction (NWP) models [9]. NWP models gen-
erally require a large amount of data to perform complex
computations and are preferred for long-term forecasting [9].
NWP models are often combined with other methods to
improve the forecast accuracy. For instance, Table 1 shows
that the NWP model is combined with Gaussian process
regression (GPR) in [10] and Kalman filter (KF) in [11]
to correct the WS forecast errors. Despite bias correction,
both studies revealed notable discrepancies. This is common
for NWP models as uncertainties in parameterizations and
limitations in understanding certain atmospheric processes
can easily amplify forecast errors. Furthermore, the inherent
complexity of implementing physical models renders them
unsuitable for short-termWS forecasting [12].

Contrary to physical methods, statistical models, includ-
ing autoregressive (AR), autoregressive moving average
(ARMA), and autoregressive integrated moving average
(ARIMA), exhibit distinct advantages in the short-term WS

forecasting domain [13]. These models operate efficiently
with relatively simple computations and excel in capturing
and predicting short-term trends and patterns in time
series data. For instance, Table 1 shows that ARMA used
in [14] and ARIMA employed in [15] registered a low
percentage of forecast errors when trained with univariate
data. While AR-based variants work exceptionally well with
linear univariate data, their applicability is unsuitable for
nonlinear data with multivariate features [16]. Hence, using
multivariate data with nonlinearity and complex fluctuations
made statistical models inapt for this study. Contrariwise,
AI-based machine learning (ML) and deep learning (DL)
are superior in mapping nonlinear data with better self-
learning capability [17]. Hence, ML and DL models have
gained widespread acceptance over physical and statistical
approaches.

The commonly applied ML methods for short-term WS
forecasting include artificial neural network (ANN), support
vector regression (SVR), and tree-based regressors like
decision tree (DTR), random forest (RFR), adaptive boosting
(ABR), gradient boosting (GBR), and extreme gradient
boosting (XGBR) [18]. The prevalence of these models is
evident in numerous studies, some highlighted in Table 1. For
instance, ANN excels in multi-step-ahead wind speed (WS)
forecasting in [19], outperforming ARIMA across all forecast
horizons. Another study [20] applies a single-step forecasting
approach using SVR, yielding reliable outcomes for short-
term WS forecasting. In the tree-based category, ABR is
employed in [21] for seasonal WS forecasting, investigating
the stochastic nature of wind in different seasons. Despite
notable achievements in these studies, these models exhibit
certain limitations. ANN often gets stuck in local minima
during model training, failing to locate the global minimum
of the loss function [22]. While SVR can effectively reach
the global solution, its scalability for large datasets is limited
due to its computational and memory requirements [23].
Tree-based models are sensitive to outliers, and when used
with larger datasets, a single tree may develop a large
number of nodes, which causes overfitting [18]. To overcome
these limitations, DL techniques are preferred, which can
effectively capture complex hidden patterns in larger datasets.

Recurrent neural network (RNN) is a widely applied
DL model for temporal dependence modelling but is prone
to the vanishing and exploding gradient issue [24], [25].
Gated recurrent unit (GRU) [26] and long short-term
memory (LSTM) [27] emerge as improved RNN variants,
particularly prevalent in WS forecasting (Table 1). GRU is
computationally less intensive, having only two gates and
a single hidden state. Given its simple gating structure,
GRU outperformed LSTM, SVR, and ANN in [28] for
short-termWS forecasting. However, LSTM dominates GRU
in tasks that require modelling long-term dependencies by
capturing complex patterns in sequential data using its two
separate memory cells [18]. For instance, LSTM used for
short-term WS forecasting in [29] outperformed GRU and
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ML-based XGBR, extreme learning machine (ELM), SVR,
and ANN models. Additionally, LSTM applied for medium-
term WS forecasting in [30] outperformed a statistical-based
nonlinear AR (NAR) model by registering an average of
36.16% decrease in mean absolute percentage error (MAPE).
The superior predictive performance of LSTM is due to its
additional gates andmemory cells, which offer added benefits
in remembering longer sequences in data. LSTM can be
further enhanced through bidirectional processing, enabling
the network to capture information from past and future
time steps [31]. This is evident in [18], where bidirectional
LSTM (BiLSTM) outperformed LSTM, RNN, ANN, and
RFR for short-term WS forecasting. Moreover, a one-
dimensional (1)-D) convolutional neural network (CNN) is
another DL architecture that uses convolutional kernels for
time series-based feature extraction [32]. CNN was fused
with LSTM (CLSTM) in [33], where CNN extracted the
spatial correlation of meteorological variables, and LSTM
used the reconstructed input for multi-step-ahead wind power
forecasting. The MAPE of CLSTM reduced by 8.55%
and 23.49% compared to LSTM and CNN, respectively.
Additionally, CNN is merged with the attention mechanism
(AM) and BiLSTM in [34] for optimal short-term WS
prediction. These studies show that the feature extraction
capability of 1-D CNN has proven essential in improving
the prediction accuracy of time series data. However, the
convolutional filters are applied across the entire sequence
simultaneously, which causes a loss of temporal context [35].
Therefore, acknowledging the limitations of the reviewedML
and DLmodels, this study uses a gated additive tree ensemble
(GATE) model [36], which is a novel high-performance DL
architecture for tabular data.

GATE is a parameter-efficient DL structure, which uses a
gating mechanism inspired by GRU. It includes four main
components [36]: gated feature learning units (GFLUs),
differential nonlinear decision trees (DTs) as the key
inductive bias, self-attention between the DT outputs, and
additive ensemble of DT outputs to obtain the desired output.
The hierarchical gating mechanism in GATE facilitates
feature extraction at each decision step, allowing the model
to selectively retain valuable information while discarding
irrelevant details. Additionally, the adoption of stacked
soft oblivious DTs, where the output of preceding DTs
informs subsequent ones, has proven effective in enhancing
prediction accuracy, as evidenced in [37]. Thus, integrating
gating mechanisms and stacked DTs enhances the model’s
robustness and elevates its predictive capabilities, making
it a suitable choice for WS forecasting. To experimentally
explore its potential, Joseph and Raj [36] compared GATE
against state-of-the-art tree-based GBR and tabular DL-based
(i.e., NODE, Transformer, and TabNet) models using several
public datasets. GATE outperformed both tree-based and
DL-based models in terms of accuracy, was more efficient
than the DL counterparts, and handled a large number of
features effectively using its excellent feature representation

learning unit. Unlike most DL models, GATE offers higher
stability in achieving the least errors [36]. However, GATE
has more parameters than the soft tree-based models and its
performance is largely dependent on optimal hyperparameter
selection. An efficient Bayesian optimization (BO) [38] is
proposed for this task. BO is a probabilistic optimization
method, which aims to locate the global optimum of an
objective function while minimizing the number of function
evaluations. It efficiently explores the hyperparameter search
space, balancing ‘exploration’ to sequentially select new
promising regions and ‘exploitation’to narrow the search
around the best-known solutions [38]. The efficiency of BO
was explored in [18] to optimize BiLSTM for short-termWS
forecasting, where extensive data (i.e., 105,120 data points)
was used during model training and optimization. Despite
the large dataset used, the optimization time of BO was
significantly lower than the popular grid search and random
search methods. Therefore, given its excellent optimization
ability, BO is used to optimize GATE in this study.

Furthermore, WS data is erratic in nature; hence, utilizing
raw data to develop predictive models would result in
large errors [39], [40]. Data decomposition techniques are
proposed to reduce noise from such complex data [17].
Various multiresolution analysis (MRA) tools have been
tested to extract the embedded information within the
non-stationary data. Wavelet transform (WT) is the most
commonly used MRA tool for WS data decomposition,
being combined with several models including ARIMA [15],
SVR [20], and LSTM [41] for short-term WS forecasting.
Although WT is a powerful MRA tool, its dependence
on the pre-selection of the mother wavelet function is
one of its major drawbacks [42]. Unlike WT, empirical
mode decomposition (EMD) is an adaptive method, which
does not rely upon a predefined basis function, making
it well-suited for handling nonlinear signals [43]. EMD
helps segregate high-frequency raw data into several intrinsic
mode function (IMF) components and a residual component
of different frequencies without any information loss. The
effectiveness of EMD is evaluated in [44], where its
integration with Elman neural network (ENN) consistently
achieved the largest reduction in MAPE when compared
with persistent (−53.76%), ANN (−45.58%), and standalone
ENN (−29.82%).

The commonly used variants of EMD include ensemble
EMD (EEMD) [45], complete EEMD with adaptive noise
(CEEMDAN) [46], and improved CEEMDAN (ICEEM-
DAN) [47], which have been developed to alleviate the
shortcomings of their respective predecessors. These four
methods hybridized LSTM in [30], where the improve-
ments from basic EMD to advanced ICEEMDAN were
evident through a significant decrease in forecast errors.
The resulting MAPE scores demonstrated this improvement,
showcasing values of 17.76% for standalone LSTM, 11.04%
for EMD-LSTM, 7.38% for EEMD-LSTM, 7.34% for
CEEMDAN-LSTM, and 6.62% for ICEEMDAN-LSTM.
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EMD-variants help preserve the physical configurations of
the temporal input data. However, despite the progressive
evolution of these four MRA tools, their application is
limited to univariate data [48], [49]. These EMD-variants
can only decompose a single time series at once, and
the IMFs retrieved after processing multiple time series
data cannot assure a consistent frequency separation [50].
Hence, these variants are not suitable for this study since
multivariate data is used. Therefore, a modified multivari-
ate EMD (MEMD) [51] is used for simultaneous data
decomposition.

The variability of WS is dependent on many mete-
orological factors including wind direction, temperature,
humidity, sea level pressure, solar radiation, rainfall, etc [18].
These variables need to be appropriately decomposed into
sub-series with consistent frequency division. MEMD helps
achieve this by resolving the mode alignment issue in
the joint analysis of multi-oscillatory components within
n−dimensional data [52].

The application of MEMD has shown remarkable results
in forecasting solar radiation using RFR [42], [53], solar
photovoltaic power using LSTM [54], evapotranspiration
with LSTM [55], and building heat load using SVR [50].
Using MEMD in these studies preserved the cross-variable
relationships in the decomposed components, allowing for
a more accurate representation of the interdependencies
between different variables employed. For more robust
performance, hybrid singular spectrum analysis (SSA) and
MEMD method are used in [34] for WS forecasting using
CNN combined with AM and BiLSTM. In this study,
SSA denoised the original multivariate data and MEMD
decomposed the denoised series to obtain superior forecast
accuracy. The use of MEMD in various domains affirms its
effectiveness as a multichannelMRA tool. Yet, its application
is not fully explored in short-termWS forecasting, especially
with the GATE model. Thus, this study aims to narrow this
research gap.

The multivariate data decomposed via MEMD generates
numerous sub-series of IMFs and residual components. For
each IMF of the target WS data, there are several corre-
sponding IMFs of the predictor variables. To achieve optimal
model performance, relevant predictors must be selected
using a suitable feature selection (FS) method. The efficacy
of a wrapper-based Boruta FS technique is highlighted
in [31], successfully addressing challenges related to the
curse of dimensionality and overfitting. Another study [18]
integrated Boruta with a filter-based RReliefF method for
FS, achieving notably accurate results in short-term WS
forecasting. However, the study reported that integrating
different FS techniques can be time-consuming, especially
for large datasets. For ideal FS outcomes, meta-heuristics
have become widely recommended for the following rea-
sons [56]: ease of implementation, not needing any gradient
information, and can bypass local optima. Meta-heuristics
mainly mimic the physical and biological behaviour of
nature [57].

Among these methods, the algorithms inspired by the
intelligence of natural swarms are widely used. Some
examples include particle swarm optimization (PSO) [58],
grey wolf optimization (GWO) [59], firefly algorithm
(FA) [60], crow search algorithm (CSA) [61], and whale
optimization algorithm (WOA) [56]. Recently, WOA has
been applied successfully in WS forecasting studies [62],
[63] for hyperparameter selection. The WOA, which mimics
the hunting behaviour of humpback whales, has many
properties that allow it to locate the optimal solution for
optimization problems. The implementation of WOA is
easy and it has minimal algorithm-specific parameters to
tune, which are adjusted along the iterations [64]. However,
during optimization, some search agents (i.e., whales) update
their location based on the position of the best solution.
In real, the best solution might be in the opposite direction.
This causes poor exploration ability and a tendency to get
trapped in local optima solutions [65]. To resolve this,
opposition-based WOA (OBWOA) is proposed [66], which
explores the search space in two directions at the same
time to obtain a global optimum solution. Leveraging its
advanced exploration capabilities within the search space,
OBWOA is implemented to formulate accurate mechanisms
for estimating solar cell parameters in [65], yielding robust
outcomes. Consequently, in this study, OBWOA is employed
to harness similar advantages for optimizing the performance
of FS for accurateWS forecasting.

The contributions and novelty of this paper are summarized
as follows:

1) A new gated additive tree ensemble (GATE) archi-
tecture is employed to forecast short-term hourly WS
usingmultivariate ground-basedmeteorological inputs.
Within its architectural framework, GATE boasts
exceptional gated feature representation learning units,
demonstrating a superior ability for feature extraction
compared to the popularly used CNN.

2) Most data decomposition strategies in the literature
focus on univariate data segregation. When applied
to multivariate data, these methods do not guarantee
consistent frequency division. Consequently, a multi-
variate empirical mode decomposition (MEMD) tool is
applied to concurrently decompose multichannel data
into sub-series with uniform intrinsic mode function
(IMF) and residual components to structure a hybrid
GATE (i.e., H-GATE) model.

3) The decomposition of multivariate data yields numer-
ous predictors, some of which are redundant, noisy,
and poorly correlated to the target variable. Using such
predictors lowers the predictive accuracy and increases
the computational complexity. Hence, an opposition-
based whale optimization algorithm (OBWOA) with
improved exploration ability than WOA and most
meta-heuristic algorithms is used for robust dimension-
ality reduction.

4) Unlike most DL models, GATE exhibits a parameter-
efficient structure. However, to maximize its predictive
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performance, the model hyperparameters undergo
tuning via Bayesian optimization (BO). In contrast
to the conventional grid and random search methods,
BO excels by adapting its sequential search based on
past evaluations, leading to more efficient optimization
of the GATE model.

5) A multi-step-ahead forecasting approach is employed
to predict WS at one-step-ahead (1 hour), two-step-
ahead (2 hours), and three-step-ahead (3 hours) forecast
horizons. The results derived from this method offer
advanced insights into future wind energy production,
facilitating proactive grid management.

The remainder of this paper is organized as follows:
Section II outlines the theoretical overview of the algorithms.
Section III describes the data and methodology. Section IV
discusses the results. Section V presents the conclusions.
Finally, Section VI addresses the study limitations and
proposes future recommendations.

II. THEORETICAL OVERVIEW
The proposed H-GATE forecast model was built using the
MEMD, OBWOA, and GATE algorithms, as described in
this section. The predictive models used for benchmarking
purposes: ABR [67] and CLSTM [33] are well-known
methods and hence, are not explained in detail here.

A. MULTIVARIATE EMPIRICAL MODE DECOMPOSITION
(MEMD)
The EMD [43] technique is commonly used for non-stationary
data decomposition due to its ease of application. However,
it suffers from the problem of mode mixing and is not
suitable for multivariate data [68]. The IMFs generated via
EMD for multivariate data decomposition, rarely correspond
to the same frequency for different variables and often
results in different number of IMFs for different variables.
To overcome the inherent drawbacks of EMD, MEMD [51]
is proposed for multivariate data decomposition. The MEMD
method is an advanced version of EMD, which is designed
to deal with multichannel signals and overcomes the mode
mixing issue by utilizing white Gaussian noises [69].
MEMD effectively concurrently decomposes multivariate
data into respective IMFs and a residue function. The
first decomposed component (i.e., IMF-1) has the longest
wavelength, and the frequency decreases with higher-order
IMFs. The final component of MEMD computation is
the residue function, which extracts the trend information.
The steps of decomposition via MEMD are described as
follows [51]:

• An appropriate pointset is located to sample on a
(n − 1) hypersphere using the Hammersley sequences
for n−dimensional time series:

x(t) = {x1(t), x2(t), . . . , xn(t)}, t = 1, 2, . . . ,T (1)

• The angles θk = {θk1 , θk2 , . . . , θkn−1}, k = 1, 2, . . . ,K
of the normalized Hammersley sequences are computed,
where K represents the total number of projections.

• A set of projections {qθk (t)}Kk=1 is determined for
the multivariate signal x(t) on k th direction using the
direction vectors vθk = {vk1, v

k
2, . . . , v

k
n}.

• The instantaneous moment {tθki }
K
k=1 of the extreme value

of the projection set is determined, where i represents the
location of the extreme dot i ∈ [1,T ].

• The coordinates of the extreme dots [tθki , x(tθki )]
are interpolated to obtain multiple envelope curves
{eθk (t)}Kk=1. The mean of multiple envelope curves m(t)
is obtained using:

m(t) =
1
K

K∑
k=1

eθk (t) (2)

• The final output is computed as:

h(t) = x(t) − m(t) (3)

where output h(t) is the multivariate IMFs if the stopping
condition is met [70]. If the stopping criterion is not met, the
sifting process is continued by repeating the above steps.

B. OPPOSITION-BASED WHALE OPTIMIZATION
ALGORITHM (OBWOA)
The standardWOAmimics the hunting practice of humpback
whales [56]. In WOA, each whale is considered as a potential
candidate solution for a given optimization problem. For
searching the prey location and hunting, the whale updates
its position via two mechanisms: 1) encircling prey and
2) spiral movement. The ‘exploration’ of the search space
is performed during optimization when the whales look for
prey and the ‘exploitation’ happens when the whales attack
the prey. However, a limitation of WOA is that it can get
stuck in the local optimal point; hence, the convergence
during FS becomes time-consuming [65]. This issue arises
because some whales update their position according to the
position of the best whale (i.e., solution). While in real,
the optimal solution might be in the opposite direction to the
current solution. To overcome this, the proposed OBWOA is
designed to locate the global optimal solution in both forward
and opposite directions [66]. The proposed OBWOA consists
of two phases (Figure 1).

In phase one, a random population of whales (X )
with N solution is generated, where the position is Xi,
(i = 1, 2, . . . ,N ). Then the opposition-based learning
(OBL) mechanism is used to improve the exploration and
performance of the whales by computing their opposite
positions (X ), given as:

X = u+ l − X (4)

where u and l denote the upper and lower bounds of the
search domain, respectively. Then, the best N positions (i.e.,
solutions) are retrieved from X ∪ X to produce a new
population.

In phase two, steps of the traditional WOA are used
to update the whale positions using coefficient vectors
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TABLE 1. Summary of reviewed wind speed (WS) forecasting studies, where the forecast models from four major categories are outlined in bold fonts.
Key: ♣ represents multivariate data, ♠ depicts univariate data, ♦ indicates that the mean absolute percentage error (MAPE in %) or mean absolute error
(MAE in ms−1) are presented as average value(s) (considering all sites, forecast horizons, and seasons), and ♥ conveys the standard MAPE or MAE of
individual site or forecast horizon (mainly for single-step-ahead forecasts).

−→
A and

−→
C , which are defined as:

−→
A = 2−→α ·

−→r −
−→α (5)

−→
C = 2 ·

−→r (6)

where−→r is a random vector whose coordinates are uniformly
distributed between [0, 1] and −→α is also a vector whose
coordinates are linearly decreased from 2 to 0.

Furthermore, the OBL mechanism is employed again to
create the opposite positions X i, (i = 1, 2, . . . ,N ). After
which, the OBWOA selects the best N positions from X ∪ X
based on the fitness function values of the updated solution
f (X ) and the opposite solution f (X ). These steps are repeated
until the stop condition is reached or the best solution is
obtained.

C. GATED ADDITIVE TREE ENSEMBLE (GATE)
The GATE network [36] is an efficient DL architecture for
tabular data. Similar to GRU, GATE uses a gating mechanism

as a feature representation learning unit with an integrated
FS mechanism. The gated feature learning unit (GFLU)
(Figure 2a) is utilized for sequential feature learning [71].
Unlike GRU, weights are not shared between different
GFLUs since each unit applies different transformations in
each stage of feature representation. For instance, at stage n,
the hidden feature representation (Hn) is a linear interpolation
between the current candidate feature representation (H̃n) and
the previous feature representation (Hn−1), given as:

Hn = (1 − zn) ⊙ Hn−1 + zn ⊙ H̃n (7)

where ⊙ denotes element-wise multiplication and zn is the
update gate, which determines how much information is
needed to update its internal feature representation, and is
defined as:

zn = σ (W z
n · [Hn−1;Xn]) (8)

where σ is the sigmoid activation function, W z
n is a

learnable parameter, and [Hn−1;Xn] denotes a concatenation
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FIGURE 1. A schematic showing the opposition-based whale optimization algorithm (OBWOA) used in the proposed H-GATE predictive framework.

operation between Hn−1 and Xn. The current candidate
feature representation (H̃n) and the FS operation (Xn) via
masking (Mn) are obtained as follows:

H̃n = tanh(W o
n · [rn ⊙ Hn−1;Xn]) (9)

Xn = Mn ⊙ X (10)

whereW o
n is a learnable parameter and rn is the reset gate that

determines how much information is needed to forget from
previous feature representation, and is computed as:

rn = σ (W r
n · [Hn−1;Xn]) (11)

In practice, any number of GFLUs can be ensembled
to facilitate hierarchical learning of features. The GFLUs
are combined with an ensemble of differentiable, nonlinear
DTs. The DT model employs decisions made via a series of
hierarchical nodes, where each node acts as a binary classifier
that splits the samples either to the left or right leaf. As shown
in Figure 2b, the node takes feature (Xi) and learns a cutoff
(b) from data to form a hard routing to the left or right
leaf. This gating function (g(Xi, b)) is called the soft binning
function [72]. The overall structure describing this operation
using a single feature (Figure 2b) is termed an individual soft
decision stump.

The nonlinear DTs in GATE use all the features for a split.
Here, instead of a linear combination of features, a nonlinear
function is used for a split. A learnable feature mask M ∈ Rd̃

with dimension d̃ is used to combine the outputs oi ofmultiple
soft decision stumps (Figure 2c). This enables the model to
scale effectively to a large number of features and use the
information from all variables in making split decisions. This

computation is achieved using:

o =

 d̃∑
i=0

Mi ⊙ RLi ,
d̃∑
i=0

Mi ⊙ RRi

 (12)

where the output (o) of an individual decision stump is a
vector of two leaf values, which is obtained by combining
the left and right leaf responses of each variable via a
learned feature mask. The feature mask enables the model
to determine which feature(s) to give higher priority when
generating the predictions.

III. METHODOLOGY
A. STUDY REGION AND DATA DESCRIPTION
The study area is situated in Viti Levu, which is Fiji’s largest
and most populated island with the highest energy demand.
In support of the Paris Agreement commitments and SDG 7,
Fiji has set an ambitious target of 100% RE by 2036 [73].
Currently, 65% of this target has been accomplished mainly
through hydro- and bio-based RE sources [74]. To meet the
actual target, Fiji needs to add more RE capacities in the form
of wind since its availability is more compared to solar. This
is because, during the wet season (November - April), the
availability of solar radiation is uncertain due to extended
periods of rainfall.

The nation has a good wind regime, but the current status
of wind energy in the electricity mix is negligible, with only
one wind farm that has not performed to its full capacity
due to poor commissioning [75]. To harness maximum wind
energy, WS forecasting is an important pre-requisite. Hence,
three sites: Rakiraki (RK), Navua (NV), and Sigatoka (SG)
(Figure 3) were selected to perform the forecast experiments.
RK site has one of the windiest climates in Fiji, which makes
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FIGURE 2. Components of gated additive tree ensemble (GATE) model, where (a) is the gated feature learning unit (GFLU), (b) is the soft decision stump
for a single feature, and (c) is feature masking and aggregation for multiple soft decision stumps using three features as an example.

it a feasible site for future wind farm commissioning. NV site
is about 38 km away from Suva, which is the capital city
of Fiji. Although the wind regime of NV is not like RK, its
location makes it a good site to explore further. SG is close to
the Butoni wind farm site, which makes it a good benchmark
site. Another reason for selecting these sites was due to the
data availability (Table 2) because most monitored stations
had > 20% of data missing.

The forecast models devised in this research were based
on historical data with 1 hour temporal resolution, recorded
at a height of 10 m above ground level. The data comprised
of wind speed (WS), wind direction (WD), maximum
temperature (Tmax), minimum temperature (Tmin), relative
humidity (RH), mean sea-level pressure (Pmsl), total rainfall
(Rain), and total solar radiation (Radn). The Radn data for
RK and SG were not available. All data used were acquired

from Fiji Meteorological Services. For more details on these
attributes, Table 3 summarizes the statistics. The hourly WS
data were symmetrically distributed with 0.02 ≤ skewness
≤ 0.49, which closely depicted a normal distribution at all
three sites. The distribution was further elaborated using the
kurtosis measure, which revealed that the target WS data for
all three sites had a platykurtic distribution.

B. CONSTRUCTION OF THE PROPOSED HYBRID WS
FORECASTING MODEL
This study develops a hybrid GATE-based (H-GATE)
multi-step-ahead WS forecasting framework integrated with
MEMD for data decomposition, OBWOA for FS, and
BO for hyperparameter optimization. All algorithms were
implemented using Python under the Google Colaboratory
platform. The models: GATE, CLSTM, and ABR were
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TABLE 2. Geographical location and general description of three selected wind speed (WS) datasets obtained from Fiji Meteorological Services. (Note:
The hourly WS data are recorded from 01-01-2019 to 31-12-2021.)

TABLE 3. Statistical description in form of mean (Avg), range (Ran), standard deviation (Std), Skewness (Skew), and Kurtosis (Kurt) of wind speed (WS)
and other selected meteorological variables used for the three study sites.

FIGURE 3. Geographical map of Viti Levu, Fiji showing the selected case
study sites - Rakiraki (RK), Navua (NV), and Sigatoka (SG).

developed using PyTorch Tabular [36], Tensorflow [76], and
Sklearn [77] libraries, respectively. Model optimization via
BO was executed using the Optuna library [78]. The overall
structure of the proposed H-GATE model is illustrated in
Figure 4, and the steps are discussed as follows:
Step 1: The raw datasets had 3.73 - 8.42% missing values

(Table 2), which were backfilled with calendar-averaged
values [18], [79]. As part of data cleaning, all extreme outliers
were substituted with themedian values of the respective time
series for better model learning. The data were separated into
two partitions (Table 2), where 2019 to 2020 data (66.67%)
were used for model training and validation; and 2021 data
(33.33%) were used for model testing. The training data was
also used for model optimization and FS. Data partitioning
took place before the decomposition step to prevent the
leakage of training data into the testing data [80], [81]. This
was to avoid adding unintentional bias to the forecast.

Step 2: The MEMD technique was applied to simultane-
ously decompose the target (WS) and input data (WD, Tmax,

Tmin, RH, Pmsl, Rain, and Radn) (Figure 5) into respective
IMFs and the residual components. Figure 6 shows the
decomposed WS for RK. To ensure reliable decomposition
results, two key parameters: ensemble number (N ) and
amplitude of the added white noise (ε), were respectively set
as 500 and 0.2, based on previous studies [42], [45], [82].
Sites RK and SG had 14 IMFs and a residual component,
while NV had 13 IMFs with one residual component
(Table 4). Before FS and model development, all IMFs
and residual components were pooled into respective sets.
For instance, the IMF-1 pool had IMF-1 of WS as the
target variable and all corresponding IMF-1 sub-series of
the predictors (e.g., IMF-1 of WD till IMF-1 of Radn). The
same pooling strategy was carried out for all other IMFs (i.e.,
IMF-2, . . . ,IMF-n) and the residual component.

Step 3: As part of the feature extraction process, partial
auto-correlation function (PACF) and cross-correlation func-
tion (CCF) coefficients were used to retrieve the significant
lagged inputs of the respective IMF and residual component
pools. PACF was used to get the significant lags of the
decomposed WS variable. CCF was applied to obtain
the significant lags of other decomposed meteorological
variables. Only 5 lags (i.e., past 5 hours) were considered
to limit the number of inputs and because the significance
dropped for antecedent lags > 5. The lags which exceeded
the 95% confidence band of PACF and CCF plots were
considered significant, while the remainder were excluded.
The significant inputs of the respective IMF and residual
pools were then fed separately to OBWOA.

Training data was used during OBWOA-based FS. For
optimal dimensionality reduction, the following OBWOA
parameters were utilized: Linearly decreased variable α = 2;
Constant variable to define the spiral shape b= 1; Number of
independent runs NRuns = 10; Number of iterations Iter =

60, and Population size N ∈ {10, 50, 100, 200, 300, 500}.
A range of values was used to select N , where the best
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FIGURE 4. Schematic of the proposed multi-stage hybrid gated additive tree ensemble (i.e., H-GATE) model coupled with
multivariate empirical model decomposition (MEMD), opposition-based whale optimization algorithm (OBWOA), and Bayesian
optimization (BO) used for multi-step-ahead wind speed (WS) (ms−1) forecasting.

solution was obtained at the lowest fitness function value
(FV) (i.e., RMSE). The FV was determined using a K-nearest
neighbour (KNN) regressor with K = 5 and a time series
split (TSS) 5-fold cross-validation (CV). The choice of K is
crucial for achieving optimal FV. A smaller K (e.g., 1) may
lead to overfitting, making KNN sensitive to noise in the data,
whereas a larger K (e.g., 10) could introduce bias through
excessive smoothing of the decision boundary, resulting in
underfitting [83]. Hence, studies [84], [85] on meta-heuristic
algorithms for FS advocate for a balanced K value of
5 as a reasonable number of neighbours. The selection of

parameters α and b were suggested in [65] for robust results.
In addition, there is no general rule for determining optimal
values for parameters NRuns, Iter , and CV. Following the
suggestion in [85], this study adopted an experimental trial-
and-error approach to identify the ideal values for these
parameters within the specified search spaces: NRuns ∈

{5, 10, 15}, Iter ∈ {50, 60, 70}, and CV ∈ {5, 10}.
The FS convergence plots for only IMF-1 and residual are

depicted in Figure 7 for RK. The convergence performance of
the proposed OBWOA is benchmarked against the standard
WOA in terms of the FV. For all panels in Figure 7, OBWOA
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FIGURE 5. Time series plots of the target variable - wind speed (WS) and input variables - wind direction (WD), maximum
temperature (Tmax), minimum temperature (Tmin), relative humidity (RH), mean sea-level pressure (Pmsl), and total
rainfall (Rain) in the training phase for Rakiraki (RK) site as an example.

FIGURE 6. An example of time series plots of the decomposed wind speed (WS) target variable into several intrinsic mode
functions (IMFs) and a residual in the training phase for Rakiraki (RK) site.
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TABLE 4. The selected lags of input variables for the undecomposed (i.e., standalone model) and decomposed data (i.e., hybrid model). Decomposed
data lags are selected using the partial auto-correlation function (PACF), cross-correlation function (CCF), and the opposition-based whale optimization
algorithm (OBWOA), whereas undecomposed data lags are selected only using PACF and CCF. Key: * represents lags selected using PACF, NA = Not
Available, and NS = Not Significant.

converged better thanWOA during FS as it had the lowest FV
at every Iter . For OBWOA, theFV decreased with an increase
in N , where the best solution was obtained at N = 500 for
both IMF-1 and residual. The total features remaining after
the application of OBWOA are furnished in Table 4 for all
IMFs and the residual.

Step 4: The selected inputs for training and test-
ing phases were normalized between 0 - 1 [42], [79]
using:

Xn =
Xact − Xmin
Xmax − Xmin

(13)
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FIGURE 7. Convergence plots for the standard whale optimization algorithm (WOA) and the proposed opposition-based
WOA (OBWOA) feature selection on the predictors of the decomposed (a) intrinsic mode function 1 (IMF-1) and the
(b) residual component for Rakiraki (RK) site as an example.

where Xn, Xact , Xmin, and Xmax represent the normalized,
actual, minimum, and maximum value of the input.

Step 5: The training data with optimal normalized features
were fed to the GATEmodel for hyperparameter optimization
via BO, done using a TSS-based 5-fold CV approach.
BO effectively selected the best hyperparameters with the
lowest computational complexity, which guaranteed optimal
forecasting accuracy. The optimal hyperparameters for the
standalone models are summarized in Table 5 and the best
parameters for the proposed and other hybrid models are
furnished in Table 6, where results for only IMF-1 and
residual are shown.

The optimized GATE was used to forecast the respec-
tive IMF and residual components using a multi-input

multi-output (MIMO) multi-step-ahead forecasting strat-
egy [86]. The MIMO approach developed the entire multi-
step-ahead prediction sequence in a single go without
accumulation of prediction errors. The predicted outputs
included a forecast horizon of one-step-ahead (tL+1), two-
step-ahead (tL+2), and three-step-ahead (tL+3). Lastly, the
multi-step-ahead forecasted WS of the respective IMF and
residual components were summed to compute the final
multi-step-ahead forecastedWS.

Step 6: A total of nine statistical metrics and five
visual plots were used to assess the predictive accuracy
of the proposed H-GATE model against the counterpart
hybrid (H-CLSTM and H-ABR) and standalone (S-GATE,
S-CLSTM, and S-ABR) models.
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TABLE 5. Model hyperparameter search space and the selected hyperparameters obtained via Bayesian optimization (BO) for the undecomposed data
(i.e., standalone models).

C. MODEL PERFORMANCE EVALUATION
To compare the performance of the H-GATE model against
other competing models, a total of nine statistical met-
rics were used, including Pearson’s correlation coefficient
(r), Nash-Sutcliffe Efficiency (ENS ), Willmott’s Index of
agreement (WI), Legates and McCabe Index (LM), mean
absolute error (MAE; ms−1), root mean square error (RMSE;
ms−1), absolute percentage bias (APB; %), mean absolute
percentage error (MAPE; %), and relative root mean square
error (RRMSE; %). These were computed using:

r

=

∑N
i=1

(
WSOi −WS

O
) (

WSFi −WS
F
)

√∑N
i=1

(
WSOi −WS

O
)2√∑N

i=1

(
WSFi −WS

F
)2
(14)

ENS = 1 −

 ∑N
i=1

(
WSFi −WSOi

)2
∑N

i=1

(
WSOi −WS

O
)2

 (15)

WI = 1 −

∑N
i=1

(
WSFi −WSOi

)2
∑N

i=1

(∣∣∣WSFi −WS
O
∣∣∣ +

∣∣∣WSOi −WS
O
∣∣∣)2
(16)

LM = 1 −

∑N
i=1

∣∣WSFi −WSOi
∣∣∑N

i=1

∣∣∣WSOi −WS
O
∣∣∣


(17)

MAE =
1
N

N∑
i=1

∣∣∣(WSFi −WSOi
)∣∣∣ (18)

RMSE =

√√√√ 1
N

N∑
i=1

(
WSFi −WSOi

)2
(19)

APB =

∑N
i=1

(
WSFi −WSOi

)
× 100∑N

i=1WS
O
i

(20)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣WSFi −WSOi
WSOi

∣∣∣∣∣ × 100 (21)

RRMSE =

√
1
N

∑N
i=1

(
WSFi −WSOi

)2
1
N

∑N
i=1

(
WSOi

) × 100 (22)

where WSOi = observed ith WS, WSFi = forecasted ith

WS, WS
O

= average of observed WS, WS
F

= average of
forecastedWS, and N = total number of samples.
Model selection based on diverse metrics can present

challenges due to their inherent trade-offs [87]. A model
excelling in one metric may be less favourable in another.
Consequently, a global performance indicator (GPI) [88]
was employed to amalgamate the results of nine metrics
into a unified index, eliminating the need for analysing
individual metrics. The GPI measure assigns equal weights
to all statistical metrics involved in the computation, where
a larger GPI indicates a more accurate model. For ith model,
the GPI is computed as follows:

GPI =

N∑
j=1

αj
(
yj − yij

)
(23)

where N is the total number of metrics used, αj = −1 for
metrics with ideal value = 1 (i.e., r, ENS , WI, and LM) and
+1 for metrics with ideal value = 0 (i.e., MAE, RMSE, APB,
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TABLE 6. Model hyperparameter search space and the selected hyperparameters obtained via Bayesian optimization (BO) for the decomposed data (i.e.,
hybrid models). (Note: The selected hyperparameters of only intrinsic mode function 1 (IMF-1) and residual components are summarized as an example.)

MAPE, and RRMSE), yij is the scaled value of metric j for
model i, and yj is the median of scaled values of metric j.
The performance metrics and GPI only assess the forecast

models’ predictions against the observed WS data. These
measures do not offer a detailed distinction between the fore-
cast models. Hence, a two-sample t-test [89] was conducted
to ascertain whether a significant difference exists between
the means of the proposed and the benchmark models. The
null hypothesis (H0) of this statistical test indicates that the
mean performance of the proposed model is equal to that
of the benchmark model, while the alternative hypothesis
(H1) suggests the presence of a significant difference. The
t-statistic for a two-sample t-test is calculated as follows:

t-statistic =
WS

F
1 −WS

F
2

Stdpool
√

1
N1

+
1
N2

(24)

where WS
F
1 and WS

F
2 are the means of forecasted WS using

model 1 (i.e., H-GATE) and model 2 (i.e., a benchmark
model), N1 and N2 are the sample sizes, and Stdpool is the
pooled standard deviation, which is given as:

Stdpool =

√(
(N1 − 1) Std21

)
+

(
(N2 − 1) Std22

)
N1 + N2 − 2

(25)

where Std21 and Std22 are the squared standard deviations of
forecastedWS using models 1 and 2.
The resulting t-statistic is compared with the critical

value from the t-distribution table to determine a two-tailed
p-value. The null hypothesis is rejected if the p-value is less
than the significance level, indicating a statistically signifi-
cant difference in performance between the two models. This
statistical test is conducted at a significance level of 0.05,
which is the common choice in most studies [90], [91].

IV. RESULTS AND DISCUSSION
This section presents and discusses the performance of the
proposed H-GATE model against comparative models in the
testing phase.

A. PERFORMANCE OF H-GATE BASED ON STATISTICAL
METRICS
The merits of the proposed H-GATE model were rigorously
assessed against benchmark models using nine statistical
metrics. Table 7 evaluates the model performances in terms
of r, MAE, and RMSE measures. The r indicator captured
the degree of variance between the observed (WSO) and
forecasted (WSF ) data [92], while the error metrics MAE
and RMSE helped determine the model biases [93]. Table 7
shows that the best results are obtained for a one-step-
ahead forecast horizon, where H-GATE registered the highest
r (0.976 - 0.994), and the lowest MAE (0.160 - 0.261) and
RMSE (0.215 - 0.355) for all three sites. The predictive
performance slightly decreases at higher forecast horizons
(e.g., two-step-ahead and three-step-ahead). Since theMIMO
strategy was adopted, 5 significant lags of all selected
predictors were considered as model inputs and 3 leads of
WS were used as multi-outputs. The correlation of WS at
higher leads was lower with the predictors at higher lags
given the stochastic nature of WS. Hence, the forecasting
accuracy of WS at two-step-ahead and three-step-ahead is
lower compared to one-step-ahead WSF in terms of r, MAE,
and RMSE indicators. However, these metrics have a few
limitations. For example, r is scale and offset invariant;
hence, can allocate higher correlation scores to mediocre
models [94]. Also, bothMAE and RMSE are non-normalized
error measures expressed in absolute units; hence, are
unreliable to gauge model performances in geographically
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TABLE 7. Multi-step-ahead forecasting test performance of the proposed hybrid gated additive tree ensemble (i.e., H-GATE) model against other
comparative models in terms of correlation coefficient (r), mean absolute error (MAE) in ms−1, and root mean squared error (RMSE) in ms−1. The best
results are shown in italics. (Key: tL+1 = one-step-ahead, tL+2 = two-step-ahead, and tL+3 = three-step-ahead forecast horizon.)

different sites with differentWS [95]. Therefore, more robust
percentage error measures (APB, MAPE, and RRMSE) were
used to reliably evaluate model bias.
APB gave the error of predicted values as a percentage,

where lower values closer to zero are preferred [96]. MAPE
and RRMSE also used percentage criteria to categorize the
models as excellent (bias < 10%), good (10% < bias <

20%), fair (20% < bias < 30%), and poor (bias ≥ 30%) [97].
APB in Table 8 shows that the proposed H-GATE model
recorded the lowest error at all three forecast horizons i.e.,
the error range for the respective forecast horizons was
between 4.673 - 8.196% (tL+1), 6.701 - 11.818% (tL+2), and
8.973 - 15.461% (tL+3) for the three studied stations. MAPE
in Table 8 classifies the proposed H-GATE as excellent for
RK (at tL+1 and tL+2), NV (at tL+1), and SG (at tL+1);
and good for RK (at tL+3), NV (at tL+2 and tL+3), and SG
(at tL+2 and tL+3). For the accurately predicted one-step-
ahead WS, the optimal H-GATE achieved 73.35%, 67.74%,
and 63.45% reduction in MAPE over the worst-performing
S-ABR for RK, NV, and SG sites, respectively. Furthermore,
RRMSE categorizes H-GATE as excellent for RK (at tL+1
and tL+2) and NV (at tL+1); good for RK (at tL+3), NV (at
tL+2 and tL+3), and SG (at tL+1 and tL+2); and fair for
SG (at tL+3) (Table 8). The proposed H-GATE registered
a high percentage reduction in RRMSE over S-ABR at all
three forecast horizons for all sites. The percentage-based
error measures in Table 8 validate the superior predictive
performance of the GATE model over CLSTM and ABR
models. Additional improvements to the GATE algorithm
were achieved through the MEMD of the predictor signals
and OBWOA-based FS of optimal inputs.

Table 9 further demonstrates the efficacy of the proposed
H-GATE against other benchmark models using ENS , WI,
and LMmeasures. Similar to the coefficient of determination
(R2), ENS measures how well the plot ofWSO versusWSF fits

the 1:1 line. This scaled variant ofMSE helped determine the
relative magnitude of the residual variance compared to the
observed data variance [98].

As presented in Table 9, H-GATE obtained the highest ENS
at all three forecast horizons for all sites. Better results were
shown for one-step-ahead WS forecasting with ENS being
0.989 (for RK), 0.973 (for NV), and 0.952 (for SG). ENS is
a commonly applied criterion for model assessment, but it
overestimates the largerWS values while neglecting the lower
values [94]. WI was designed to resolve this issue by taking
into account the ratio ofMSE instead of the differences [99],
[100].

The WI in Table 9 reconfirms the superior predictive per-
formance of H-GATE at multi-step-ahead forecast horizons;
for instance, WI = (tL+1: 0.986 - 0.996, tL+2: 0.976 - 0.987,
and tL+3: 0.962 - 0.980) for all three sites. While WI is
generally favoured over ENS , it has a limitation. It is
oversensitive to peak residuals and the squaring of residuals
often leads to mediocre models registering large WI values
like r metric (e.g., ≥ 0.65) [101].

Moreover, the LM measure is not overestimated like ENS
and WI as it allocates appropriate weights to errors and
discrepancies [94]. This metric is insensitive to extreme WS
outliers as it is not inflated by the squared values. Hence,
LM is one of the most reliable statistical metrics, which
justified in Table 9 that H-GATE hybridized with MEMD
and OBWOA accomplished the best predictive performance.
Thus, when benchmarked against the standalone S-GATE,
the hybrid H-GATE recorded 24.3%, 29.27%, and 30.72% (at
tL+1), 21.15%, 27.43%, and 29.86% (at tL+2), and 19.36%,
25.71%, and 29.62% (at tL+3) improvements in LM for RK,
NV, and SG, respectively.

Moreover, the results from all nine metrics, as furnished
in Tables 7, 8, and 9, consistently indicate a preference
for the proposed H-GATE model in multi-step-ahead WS
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TABLE 8. Multi-step-ahead forecasting test performance of the proposed hybrid gated additive tree ensemble (i.e., H-GATE) model against other
comparative models in terms of absolute percentage bias (APB in %), mean absolute percentage error (MAPE in %), and relative root mean square error
(RRMSE in %). The best results are shown in italics. (Key: tL+1 = one-step-ahead, tL+2 = two-step-ahead, and tL+3 = three-step-ahead forecast horizon.)

TABLE 9. Multi-step-ahead forecasting test performance of the proposed hybrid gated additive tree ensemble (i.e., H-GATE) model against other
comparative models in terms of Nash-Sutcliffe coefficient (ENS ), Willmott’s Index (WI), and Legates and McCabe index (LM). The best results are shown in
italics. (Key: tL+1 = one-step-ahead, tL+2 = two-step-ahead, and tL+3 = three-step-ahead forecast horizon.)

forecasting, showcasing superior accuracy. However, while
these performance metrics are beneficial in evaluating the
forecast models’ predictions against the observed WS data,
they lack detailed distinctions between different predictive
models. For instance, as evidenced in Table 7, the r values
of the proposed H-GATE and the second-best H-CLSTM
model are close, revealing slight differences of 4.85% (RK),
4.56% (NV), and 3.83% (SG) at a one-step-ahead forecast
horizon. To further justify the H-GATE model’s predictive
superiority, the two-sample t-test results (i.e., t-statistic and
p-value) are summarized in Table 10 to assess the presence of
significant mean differences between the proposed H-GATE
and benchmark models.

The t-statistic values are employed to derive corresponding
p-values, where a p-value ≤ the chosen significance level
results in the rejection of the null hypothesis, indicating no

statistical significance between the means of the proposed
and benchmark models. The choice of the significance level
is pivotal, influencing the decision to accept or reject the null
hypothesis. A lower significance level of 0.01 is generally
preferred for large samples with low variance to bolster
result confidence, and a higher significance level of 0.1 is
favoured for small samples with high variance to enhance
test sensitivity [102]. Since the WS data used in this study is
neither too large nor too small, a significance level of 0.05was
deemed appropriate, which is also a commonly used value in
most studies [90], [91].

The p-values summarized in Table 10 are less than 0.05,
rejecting the null hypothesis for all tests conducted at multi-
step-ahead forecast horizons. It indicates that the mean of
WSF obtained using H-GATE is different from the means
of WSF retrieved using all benchmark models evaluated
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TABLE 10. Results of a two-sample t-test evaluating the statistical significance of the differences between the proposed model and comparative model
predictions at multi-step-ahead forecast horizons. (Note: All tests are performed at a 5% statistical significance level, where a p-value < 5% leads to
rejection of the null hypothesis (HO). Key: tL+1 = one-step-ahead, tL+2 = two-step-ahead, and tL+3 = three-step-ahead forecast horizon.)

in this study. Another observation is that the t-statistic
increases and p-values drop as the comparison extends from
H-GATE (best-performing) vs. CLSTM (second-best) to
H-GATE vs. ABR (worst-performingmodel) (Table 10). This
demonstrates that the mean difference gets higher as bench-
mark model performance deteriorates. Therefore, the two-
sample t-test thoroughly substantiates the superior predictive
ability of H-GATE, even if few statistical metrics (e.g., r)
register close results between H-GATE and counterpart
models.

B. PERFORMANCE OF H-GATE BASED ON VISUAL PLOTS
For a more detailed view of model performances, five
visual plots were used in addition to numerical model
assessment. Only the one-step-ahead forecast horizon results
are visualized based on their excellent accuracy. The Taylor
plots in Figure 8 display the r and the standard deviation
values on the radial and polar axes, respectively. These plots
portray the magnitude of statistical correlation and the root
mean square (RMS) centre difference between the WSO and
WSF .
The proposed H-GATE model registered the highest r

and the lowest centred RMS difference compared to the
benchmark models for all three sites (Figure 8). Also, the
r to standard deviation points for the benchmark models
were highly deviated from the ideal WSO point for all
sites. The proposed H-GATE model had the closest r and

standard deviation to the actual WSO, which confirms its
superior forecasting ability compared to the comparative
models.

Similar to r, R2 measures the strength of the relationship
between the WSO and WSF . Figure 9 shows the scatter plots
of the WSO and one-step-ahead WSF with the R2 scores
(ideal value = +1) for all three sites. The proposed H-GATE
reported optimal R2 of 0.989, 0.973, and 0.952 for sites
RK, NV, and SG, respectively (Figure 9). This revealed
that H-GATE had the lowest variance between WSO and
WSF in comparison to other benchmark models. Therefore,
H-GATE at all three sites demonstrated better and more
reliable forecasting competence.

Absolute forecasting error |FE|, which is the absolute
values of the differences between WSO and WSF were
computed and the distributions are illustrated as box plots
(Figure 10), ECDF plots (Figure 11), and histograms
(Figure 12). The box plots in Figure 10 summarize important
statistical information including the upper quartile, median,
and lower quartile of the |FE|. The points above and below
the whiskers represent the outliers of the extreme |FE| in the
test phase.

The distribution of the |FE| attained by the proposed
H-GATE exhibited the lowest interquartile range (IQR) at
sites RK (0.283), NV (0.204), and SG (0.175). This indicates
that H-GATE had the least |FE| range compared to the
competing models. The ECDF plots of |FE| were also
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FIGURE 8. Taylor plots for one-step-ahead (tL+1) forecasted wind speed (WS) indicating the correlation coefficient (r ) and standard deviation (Std) in
the testing phase generated by the hybrid gated additive tree ensemble (i.e., H-GATE) against other comparative models implemented at (a) Site 1 -
Rakiraki, (b) Site 2 - Navua, and (c) Site 3 - Sigatoka.

displayed in Figure 11 to get additional details on the |FE|

distributions. All hybrid models (i.e., H-GATE, H-CLSTM,
and H-ABR) outperformed the standalone counterparts.

When compared to all benchmark models, the proposed
H-GATE had the least |FE| range for all three sites.
Additionally, Figure 12 shows the probability distribution of
|FE| yielded in error brackets of 0.5 step-sizes for all three
sites. Similar to the information shown in Figures 10 and 11,
the proposed H-GATE acquired the narrowest spreads in |FE|

over other competing models for all sites (Figure 12). For
instance, H-GATE accumulated 85.8%, 92.9%, and 96.6%
errors in the first bin (0 ≤ |FE| ≤ 0.5) for RK, NV,
and SG, respectively. The higher proportion of errors in the

lowest error band revealed that the combination of GATE
with MEMD and OBWOA successfully outperformed the
counterpart models for multi-step-aheadWS forecasting.

C. SEASONAL PERFORMANCE OF H-GATE
H-GATE exhibits strong performance in WS forecasting,
as evidenced by various statistical metrics and visual
plots. To further enhance its predictive capabilities, it is
essential to incorporate seasonal forecasts, specifically for
Fiji’s dry (May - October) and wet (November - April)
seasons. Seasonal forecasting becomes critical due to the
country’s susceptibility to climatic extremes, particularly
cyclones during the wet season, impacting wind turbine
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FIGURE 9. Scatter plots for one-step-ahead (tL+1) forecasted wind speed (WSF ) (ms−1) vs. observed wind speed (WSO) for (a) Site 1 - Rakiraki,
(b) Site 2 - Navua, and (c) Site 3 - Sigatoka in the testing phase. For each panel, both standalone (S) and hybrid (H) models are represented, where the
highest coefficient of determination (R2) is considered ideal. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.).

functionality. In 2020, wind energy contributed only 0.12%
to Fiji’s energy mix, influenced by non-functional turbines
and tropical cyclones. The subsequent year saw the lowest
generation at 0.03%, attributed to additional turbine damages
exacerbated by cyclones and hindered repairs due to COVID-
19 restrictions [74]. Although turbines at the Butoni wind
farm can be lowered during cyclones, the absence of WS
forecasting tools delays timely deployment and hampers pre-
planning. Hence, implementing accurate seasonal forecasting
tools would not just safeguard against turbine damage
but also streamline strategic energy supply management,
particularly during periods of low WS in the dry season,
thereby mitigating the risk of power brownouts.

Table 11 provides an overview of the test phase perfor-
mance evaluation of the proposed H-GATE and comparative
models developed for dry and wet seasons. The results
are presented only for the one-step-ahead forecast horizon
in terms of MAPE, LM, and GPI, offering insights into
the predictive performance of models across two different
climatic conditions in Fiji. MAPE, a relative measure
expressing errors in percentage form, facilitates effective
model comparison across diverse geographical sites. Notably,
MAPE underscores H-GATE’s robust predictive ability for
WS forecasting across both seasons, evident by the ‘‘darker
green’’ colours. However, all models revealed better MAPE
for the dry season, where H-GATE registered 29.718% (RK),

VOLUME 12, 2024 58769



L. P. Joseph et al.: Multi-Step-Ahead Wind Speed Forecast System

FIGURE 10. Box plots for one-step-ahead (tL+1) forecasted wind speed (WS) indicating the absolute value of the forecasting errors |FE | (ms−1) in the
testing phase generated by the hybrid gated additive tree ensemble (i.e., H-GATE) against other comparative models implemented at (a) Site 1 - Rakiraki,
(b) Site 2 - Navua, and (c) Site 3 - Sigatoka. (Key: IQR is the interquartile range of |FE |.).

17.534% (NV), and 16.702% (SG) lower errors compared to
the wet season. Site-wise, H-GATE’s performance ranking
during the dry season is RK (5.184%) > NV (6.754%)
> SG (8.359%). Additionally, the LM metric, known for
its reliable allocation of weights to errors, supports MAPE
findings, reinforcing H-GATE’s predictive superiority for
both seasons. LM results (Table 11) further highlight the
collective poor performance of all models in WS forecasting
during the wet season.

Moreover, Table 11 summarizes the unified performance
index,GPI, derived from the results of nine statistical metrics,
including MAPE and LM. GPI is a robust indicator that
eliminates the need to assess individual metrics. The GPI
results of models developed for wet and dry seasons are also
benchmarked against the original models (Tables 7, 8, and 9)
developed for all seasons. Based on this, GPI yields greater
and lower performance scores for H-GATE and all other
models tested during the dry and wet seasons, respectively.
It makes sense, given that the wet season has a higher
occurrence of cyclones, which induce rapid and unpredictable
changes in wind patterns. Hence, the variability in WS
during cyclonic events makes it challenging to accurately
predict the behaviour of wind. Conversely, the dry season has

less variability in WS, providing better forecast accuracies.
Accurate predictions during these distinct seasons are vital
for optimizing energy production, enhancing grid stability,
and minimizing potential damages to wind infrastructure.
Therefore, incorporating seasonal forecasting into H-GATE’s
capabilities is crucial for ensuring a comprehensive and
resilient approach to wind energy management in Fiji.

D. MERITS OF THE PROPOSED H-GATE MODEL
The statistical error metrics and diagnostic plots used for
model evaluation supported the H-GATE model for its
supreme predictive ability. We wish to clarify that the
proposed H-GATE model is superior in the following ways:

1) The GATE architecture outperformed the CLSTM
model due to its novel parameter-efficient design,
which combines a gating mechanism inspired by GRU
and differential nonlinear DTs inspired by tree-based
ML models. The GFLUs in GATE are superior for
feature learning and selection compared to the feature
extraction ability of the 1D-CNN layer in CLSTM.
The nonlinear DT-like structure in GATE captures as
much of the inductive bias of a DT as possible while
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FIGURE 11. Empirical cumulative distribution function (ECDF) plots for one-step-ahead (tL+1) forecasted wind speed (WS) indicating the absolute value
of the forecasting errors |FE | (ms−1) in the testing phase generated by the hybrid gated additive tree ensemble (i.e., H-GATE) against other comparative
models implemented at (a) Site 1 - Rakiraki, (b) Site 2 - Navua, and (c) Site 3 - Sigatoka.

TABLE 11. Seasonal evaluation of the one-step-ahead (tL+1) forecasting test performance of the proposed hybrid gated additive tree ensemble (i.e.,
H-GATE) model against other comparative models in terms of mean absolute percentage error (MAPE in %), Legates and McCabe index (LM), and global
performance indicator (GPI) (Note: GPI is also tabulated for All seasons for comparison with Dry and Wet season predictive results. Key: Colours ‘‘darker
green’’ denotes better model performance, while ‘‘darker red’’ represents poor-performing models.)

remaining parameter-efficient. This makes GATE scal-
able to large datasets. For better performance, GATE
constructs multiple layers of differentiable DTs and

ensembles the outputs to obtain accurate WS pre-
dictions. GATE also outweighed the ML-based ABR
model, which could not capture the complex nonlinear
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FIGURE 12. Histograms for one-step-ahead (tL+1) forecasted wind speed (WS) illustrating the
probability of the absolute value of the forecasting errors |FE | (ms−1) in the testing phase
generated by the hybrid gated additive tree ensemble (i.e., H-GATE) against other comparative
models implemented at (a) Site 1 - Rakiraki, (b) Site 2 - Navua, and (c) Site 3 - Sigatoka.
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patterns in the data effectively. Another limitation of
ABR is its sensitivity to stochastic data. For instance,
if the outlier data points get higher weights during
model training, then the test performance suffers due
to overfitting. This issue is avoidable in GATE due to
its gating mechanism.

2) The application of MEMD helped denoise the stochas-
tic WS and other meteorological data simultaneously.
MEMD effectively captured the interdependencies and
interactions between variables during the decomposi-
tion process by yielding IMF and residual components
with meaningful information. Also, unlike the tradi-
tional Fourier and WT-based methods, MEMD did
not require any predefined functions or filters, which
made it suitable for nonlinear data used in this study.
Thus, data decomposition helped further improve the
forecasting accuracy of the GATE model.

3) The use of OBWOA helped reduce the risk of
overfitting during model training as it enabled the
selection of optimal features. The opposition-based
learning strategy adopted in OBWOA helped improve
the convergence rate during FS. For instance, OBWOA
integrated the ‘exploration’ abilities of the WOA with
opposition-based learning’s ‘exploitation’ capabilities.
This balance between ‘exploration’ and ‘exploitation’
was crucial for locating the optimal feature subset,
which helped maximize the generalization perfor-
mance of the GATE model.

V. CONCLUSION
In recent years, the wind power industry has grown rapidly.
Therefore, reliable wind energy management requires accu-
rate WS forecasting to encourage further wind energy
expansion. Despite this, there is difficulty in obtaining precise
short-term WS predictions due to the intermittent nature
of wind. Accordingly, this paper proposes a novel hybrid
GATE (H-GATE) approach to improve the accuracy of WS
prediction at multi-step-ahead forecast horizons.

In the first step, target and input data are decomposed
using MEMD into IMFs and residuals. From the respective
IMF and residual pools, the best-lagged IMFs and residuals
are selected using the efficient OBWOA. For each pool,
optimal lagged IMFs and residuals are fed separately to
the BO-optimized GATE model for forecasting each IMF
and residual. Using the MIMO strategy, all forecasted IMF
and residual components are summed to get the predicted
WS at one-step-ahead, two-step-ahead, and three-step-ahead
forecast horizons. The predictive performance of H-GATE is
evaluated against H-CLSTM, H-ABR, S-GATE, S-CLSTM,
and S-ABR benchmark models.

Numerous statistical metrics and diagnostic plots endorse
the superior forecasting competence of H-GATE over other
competing models. The H-GATE model obtained the best
results for the one-step-ahead forecast horizon, registering the
highest r (0.976 - 0.994), and the lowestMAE (0.160 - 0.261)
and RMSE (0.215 - 0.355) for all three sites.

The error analysis reconfirms the excellent predictive
capacity of H-GATE at tL+1 by accumulating 85.8%, 92.9%,
and 96.6% errors in the lowest error bin (0 ≤ |FE| ≤ 0.5) for
RK, NV, and SG, respectively. With this accurate multi-step-
ahead prediction method, wind energy managers can produce
more energy with less losses, integrate grids, participate in
markets, and reduce risks. This tool can help the wind energy
industry address the challenges associated with the variable
nature of wind resources, ensuring a reliable and sustainable
energy supply.

VI. LIMITATIONS AND FUTURE RESEARCH SCOPE
The proposed H-GATE model has acquired accurate multi-
step-ahead predictive results at all tested sites. To further
improve the forecast performance and the research scope,
a few limitations are identified and potential solutions are
recommended, which are listed as follows:

1) This study used a MIMO multi-step-ahead forecasting
strategy to predict WS, which gave highly accurate
results for one-step-ahead forecastedWS. For two-step-
ahead and three-step-ahead predictions, performance
dropped successively. In the future, different multi-
step-ahead forecasting strategies should be compared,
such as recursive, direct, combined direct and recursive
(dirREC), and direct and MIMO (dirMO).

2) The wet season WS predictions exhibited suboptimal
performance compared to the dry season. Future
research should prioritize improving wet season
WS predictions by focusing on advanced modelling
strategies, including stacking-based ensemble models,
anomaly detection tools, error correction methods,
and robust data decomposition techniques. Addressing
these aspects with focused efforts can significantly
enhance the reliability and precision of WS forecasts
during the wet season.

3) The forecasted outputs were conveyed as point fore-
casts. In the future, interval forecasting should be
explored to quantify the uncertainty associated with
a prediction, and probabilistic forecasting should be
explored to fully interpret the distribution of possible
outcomes.

4) While the GATE model is interpretable, model inter-
pretability is not discussed in this study as the PyTorch
Tabular library used for model execution did not
support this feature. To explain the results of GATE,
model-agnostic explainable artificial intelligence (xAI)
methods like LIME and SHAP are recommended for
future studies.

5) Data availability is another limitation. Case study sites
were selected mainly based on data availability. Most
monitored sites in Fiji have over 20% of missing data,
which cannot be used for forecasting studies. Advanced
data imputation techniques (e.g., transfer learning)
should be explored to test if optimal forecasting results
are obtained.
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TABLE 12. List of acronyms.

APPENDIX
ACRONYMS LIST
Table 12 shows the list of acronyms used along the paper.
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