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ABSTRACT  

 

In most engineering problems, the solution of meshing grid is non-uniform where fine 

grid is identified at the sensitive area of the simulation and coarse grid at the normal 

area. The purpose of the experiment is to ensure the simulation is accurate and utilizes 

appropriate resources. The discretization of non-uniform grid was done using Taylor 

expansion series and Finite Difference Method (FDM). Central difference method was 

used to minimize the error on the effect of truncation. The purpose of discretization is to 

transform the calculus problem (as continuous equation) to numerical form (as discrete 

equation). The steps are discretizing the continuous physical domain to discrete finite 

different grid and then approximate the individual partial derivative in the partial 

differential equation. This discretization method was used to discritize the Conditional 

Moment Closure (CMC) equation. The discrete form of CMC equation can be then 

coded using FORTRAN or MATLAB software. 

 

Keywords: finite difference method, Taylor series, conditional moment closure, non-

uniform grid, FORTRAN, MATLAB 

 

INTRODUCTION 

 

The fossil fuel is predicted to be the main energy resources for the next 30 years (IEA, 

2009; Maczulak, 2010) Combustion of fossil fuel remains the main source of energy for 

power generation, transportation, domestic and industrial heating. The demand is 

increasing but the adequacy of the reserved is still questionable (Shafiee and Topal 

2009), Combustion process not only produces heat that convert to useful energy, but 

also produces pollutant such as oxide of nitrogen (NOx), soot and unburned 

hydrocarbon (UHC) and greenhouse gases such as carbon dioxide (CO2). The unwanted 

emissions can be reduced by improving the combustion process; thereby, increasing fuel 

economy. Besides the experimental technique, combustion modeling is becoming more 

important and cost effective especially in the design and development stage. The basics 

of the combustion process are fluid flow and chemical reaction process. The continuity 

equation is very important parameters in the study of fluid flow and chemical reaction. 

There are various forms of the continuity equations in the Cartesian, cylindrical and 

spherical forms. The general form in the Cartesian coordinate of continuity equation or 

the conservation of mass equation is 
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The continuity equation for 2D geometries is given by 
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where x is axial coordinate, vx is axial velocity, y is radial coordinate and vy is radial 

velocity. For the incompressible fluid flow, density is constant, the first term in the left 

will be zero and therefore Eq. (2) can be summarized as 
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The conservation of momentum equation is 
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where p is the static pressure,  g is gravitational force and F is other forces. Viscous 

stress tensor (   ) is 
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where   is molecular viscosity. The momentum equation for 2D geometries is given by 
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The combustion modeling played a role in the numerical and simulation work 

before the experimental work is carried out. One of the main modeling in the 

combustion process is turbulent combustion modeling. For non-premixed combustion, 

the concept of Conditional Moment Closure (CMC) was independently proposed by 

Klimenko (1990) and Bilger (1993). The idea is the changes on using normal 

conventional averages to the concept of condition the reactive scalars on the mixture 

fraction. Klimenko has found that turbulent diffusion can be modeled much better in 

mixture fraction space rather than in physical space. Bilger has derived on the 

observation that the reactive scalars fluctuation can be associated with the mixture 

fraction fluctuations. By the year 1999, Klimenko and Bilger (1999) reviewed and did 

the extension of this concept from non-premixed to premixed turbulent combustion. The 

Conditional Moment Closure (CMC) equation for species   
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2D elliptic CMC equation for species α need to use the cylindrical coordinate for the 

term ⟨  | ⟩
   

   
 since the combustion chamber used is cylindrical in shape. The 

comparison for the Cartesian (x, y, 0) and cylindrical coordinate (      ) is as below 
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where for the cylindrical coordinate,   is for axial,   is for radial and   is for azimuthal 

direction. The 2D elliptic CMC equation need axial and radial direction flow and 

becomes 
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for the term ⟨  | ⟩
   

   
 the conditional velocity ⟨  | ⟩ which can be considered as “  ” 

is a function of “ ”. For the term 
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  | ⟩ ̅ ̃   ] the modelling can be done 

using the Eq. (12) and (13). The conditional turbulent fluxes for any quantity of 

  
  ,    or     

(in general use  ) can be modeled with
 

"gradient-diffusion" or 

"Boussinesq" approximation as below, 
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where turbulent diffusivity (  ) can be calculate by the relation of turbulent viscosity 

(  ) and Schmidt number (   ) as below, 
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Turbulent viscosity (µt) and Schmidt number (   ) are constant. For non-

premixed bluff-body flame, Schmidt number used is 1.0 (Giacomazzi et al., 2000, 2004) 

then the equation is summarised as below. For many cases Schmidt number is varied 

from 0.45 to 1.0 depending on the flow characteristics. In auto-ignition CMC 

simulation,     = 0.9 was used (Wright, 2005). For the axial direction 
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For the radial direction 
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This paper discusses the discretization of the CMC combustion turbulent model 

using finite difference central method and Taylor expansion series. The discretization 

for 2D CMC elliptic equation is presented for uniform and non-uniform meshing grids. 

 

TAYLOR EXPANSION 

 

The implicit formulae can be derived from a Taylor series expansion. Implicit finite 

difference relations have been derived by many mathematicians and physicists with 

various way and methods (Chapra and Canale, 2006; Adam, 1975; Adam, 1977; 

Collatz, 1966;  Rubin and Graves, 1975; Rubin and Khosla, 1977; Peyret, 1978; Peyret 

and Taylor, 1982;  Krause, 1971; Leventhal, 1980; Hirsh, 1975; Lele, 1992; Ciment, 

and Leventhal, 975;). Taylor series is a good tool to study and discretized the numerical 

equation since the theory provides a means to predict a function value at one point in 

term of the function value and its derivatives at another point. In particular, the theorem 

states that any smooth function can be approximated as a polynomial (Chapra and 

Canale, 2006). There are many different types of numerical differentiation formulation, 

depending on the number of point, direction of the formula and the required derivative 

order (Griffiths and Smith, 2006). Taylor Expansion is a useful method to reduce the 

error term. To calculate the value for         ) and         ) until 7th order are 

as below, 
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CENTRAL DIFFERENCE METHOD FOR UNIFORM GRID 

 

Assuming    is constant,           will be         and           will be 

        as below, 
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Rearranging both Eq. (20) and (21) will result in the first order derivative 

equation. This is finite forward difference method which is calculating 
  

  
 on the basis of 

forward movement from      and        . 
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This is finite backward difference method which is calculating 
  

  
 based on backward 

movement from      and        . 
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This is finite central difference method which is calculating 
  

  
 base on central 

movement from         and         obtained from the difference between 20 

and 21. 
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with leading error term of         . Higher order finite difference method is necessary 

to ensure the simulations is more accurate and more error term is cancelled off by 

higher derivative. Using central different derivative, the addition of Eq. (20) and (21), 

can summarized as 
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with leading error term of       . First order derivative for fifth order Taylor 

expansion scheme are summarized as below, for the derivative between          to 
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with leading error term of        . Second order derivative for fifth order Taylor 

expansion scheme are summarized as below, for the derivative between          to 

        : 
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with leading error term of       . Third order derivative for fifth order Taylor 

expansion scheme are summarized as below, for the derivative between          

to         : 
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with leading error term of        . Assuming that there is a uniform spacing of   , 

using notation that is    
   

   , for the Taylor series expansion, central difference 

derivatives can be summarized as Eq. (29): 
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Forward difference derivatives can be summarized as: 
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Backward difference derivatives can be summarized as: 
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where n is the number of points (                 is equal to five points), ET is the 

leading error term and    is the coefficient of   for each point  . 
 

CENTRAL DIFFERENCE METHOD FOR NON-UNIFORM GRID 

 

Equation (18) multiply by       
  and Eq. (19) multiply by       
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Take the difference between Eq. (32) and (33), The  
  

  
 is 
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The error becomes smaller and the equation will be truncated with leading error term of 
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Then for three dimensional elliptic equations, first derivative is 
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For the term 
   

   , the term must 
  

  
 be cancel off. Equation (18) multiply by      and 

Eq. (19) multiply by      
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Take the summation of the Eq. (41) and (42), Then 
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The error becomes smaller and the equation will be truncated with leading error term of 
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The term of        can be truncated and becomes the error term. Then for three 

dimensional equation, second derivative is 
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NUMERICAL METHOD: FINITE DIFFERENCE METHOD 

 

When the complex engineering problem comes with many dimensions and parameters, 

the same non-linear partial differential equations (PDEs) are used for all the problems. 

Solving these types of problems using analytical solutions is extremely difficult and in 

most cases do not have analytical solutions. Then, to solve this type of problem, 

numerical solution has been developed, such as finite difference method (FDM), finite 

element method (FEM) and finite volume method (FVM) (Fletcher, 1991; Hoftman et 

al., 2000, 2001; Slingerland and Kump, 2011). The FDM is a numerical method for 

approximating the solutions to partial differential equations by using finite difference 

equations. FDM uses approximate derivatives based on the properties of Taylor 

expansions and on the straight forward application of the definition of derivatives 

(Hirsh, 2007). The objective is to transform the equation from continuous form. The 

steps are discretizing the continuous physical domain to discrete finite different grid and 

then approximate the individual partial derivative in the partial differential equation.  

Using Taylor expansion method, partial differential equation was discretized in order to 

transform it to FORTRAN code.  
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Homogeneous CMC 

 

The Homogenous CMC equation is 
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For a passive, conserved scalar CMC equation: 
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From the equation, the conditional mass fraction term ⟨ | ⟩ is mathematically written 

as Y to the function of Z (written as Y(Z)) and conditional scalar dissipation ⟨ | ⟩ is 

written as N to the function of Z (written as N(Z)). Then CMC equation becomes: 
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From Taylor expansion, equation can be summarized as 
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The final form of CMC equation after discretize is as 

 

                                                (55) 

 

where B =  
  

     
 . Equation (55) was coded in FORTRAN or MATLAB to simulate 

the CMC modelling (Noor et al., 2012). The parameter for the code: 

   = changing in time 

   = changing in space 

   = total time for the simulation 

 

Two Dimensional CMC 

 

For 2D modeling, the CMC equation 
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Discretization term by term 
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Where superscript p represents time, subscript i and j represent the coordinate system 

for the numerical space and k represents the mixture fraction. For non-uniform grid,  x 

is not uniform 
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where        
                             

                 . For the  
   

    the 

discretization is 
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For three dimensional elliptic equation, from Eq. (38) and (40), the first derivative is 

 
  

  
 

 (          )      
          [      

        
 ]                    

 

            [             ]
    (61) 

 
        

        
        

 
[       

         
 ]         

        
 

              [               ]
             (62) 

  

  
  

                   
           [      

        
 ]                   

 

            [             ]
  (63) 

  
        

 
(     )

 
       

 
[(     )

 
 (     )

 
]         

 
(     )

 

(     )(     )[(     ) (     )]
           (64) 

  

  
 

                   
   [             

        
 ]                    

 

            [             ]
    (65) 

 
        

        
        

 
[       

         
 ]         

        
 

              [               ]
           (66) 

 

For two dimensional elliptic equation, the cylindrical equation needs to be used since 

the combustion chamber is in the cylindrical shape.  From Eq. (38) and (39), the first 

derivative is 
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For 2D elliptic equation, from Eq. (47) and (49), the second derivative is: 
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Two dimensional CMC Eq. (56) can be discretised using Eq. (57), (58), (59), (60), (68, 

(70), (72) and (74). 

 

CONCLUSIONS 

 

The CMC equation was discretized in order to transform the calculus partial differential 

equation to algebra discrete equation. The discretization process of elliptic CMC 

equation was using Taylor expansion. For the small and simple fluid flow problem, 

uniform grid can be used, but turbulent combustion modeling, which is a very complex 

process, requiring the application of non-uniform grid meshing. The term by term 

discretization can be coded into FORTRAN or MATLAB software in order to solve the 

turbulent combustion modeling using CMC turbulence model. 
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NOMENCLATURE 

 

CMC      Conditional Moment Closure 

cp           specific heat, J/kgK 

D            diffusivity 
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Difference Method  
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g            gravitational acceleration, m/s
2
  

k            thermal conductivity, W/mK 

N           scalar dissipation rate 

P            gas pressure  

P, PDF   Probability Density Function 

T            temperature, K 

u   velocity, m/s 

V           volume, m
3
 

W          chemical source term 

w           molecular weight of a gas mixture 

Z           mixture fraction (a conserved scalar) 

α           thermal diffusivity, m
2
/s 

μ           dynamic viscosity, Pa.s, Ns/m 

ν            kinematic viscosity, m
2
/s 

ρ           density or concentration of a gas, kg/m
3 

⟨  |  ⟩      conditional average 
⟨ | ⟩    conditional scalar dissipation 
⟨ | ⟩     conditional generation due to droplet evaporation  
⟨ | ⟩   conditional chemical source term 

⟨ | ⟩    mass fraction of fuel 


